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Abstract
Scenario-based stochastic optimal control problems suffer from the curse of
dimensionality as they can easily grow to six and seven figure sizes. First-order
methods are suitable as they can deal with such large-scale problems, but
may perform poorly and fail to converge within a reasonable number of iter-
ations. To achieve a fast rate of convergence and high solution speeds, in this
article, we propose the use of two proximal quasi-Newtonian limited-memory
algorithms—minfbe applied to the dual problem and the Newton-type alter-
nating minimization algorithm (nama)—which can be massively parallelized
on lockstep hardware such as graphics processing units. In particular, we use
minfbe and nama to solve scenario-based stochastic optimal control problems
with affine dynamics, convex quadratic cost functions (with the stage cost func-
tions being strongly convex in the control variable) and joint state-input convex
constraints. We demonstrate the performance of these methods, in terms of con-
vergence speed and parallelizability, on large-scale problems involving millions
of variables.

K E Y W O R D S

graphics processing units (GPUs), parallelizable numerical optimization, scenario-based
linear-quadratic constrained stochastic optimal control

1 INTRODUCTION

1.1 Background

Stochastic optimal control is the backbone of stochastic model predictive control (MPC), which is known for its appealing
stability and constraint satisfaction properties1,2 and has found several applications.3-5 More specifically, scenario-based
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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stochastic MPC is gaining great popularity6-9 due to its applicability to virtually any stochastic model of uncertainty that
can be reasonably approximated by a discrete distribution. However, the limiting factor towards its industrial uptake is
the computational time required to solve numerically the resulting large-scale optimization problem. Indeed, multistage
scenario-based stochastic optimal control problems suffer from the curse of dimensionality and can lead to problems with
millions of decision variables.7

Several approaches have been proposed for solving stochastic optimal control problems. Benders decompo-
sition is a popular method for solving (mixed integer) linear stochastic problems,10,11 including multistage for-
mulations.12 Stochastic dual dynamic programming is used for solving both linear13 and general convex mul-
tistage stochastic problems.14 The progressive hedging algorithm, the theoretical basis of which was laid by
Rockafellar and Wets,15,16 is an alternating direction of method multipliers (ADMM)-like algorithm17 where the
non-anticipativity constraints are relaxed; this can lead to parallelizable algorithms.18 Other notable approaches include
the progressive decoupling algorithm,19 scenario aggregation methods,20 and the most recent incremental proximal
method.21

Graphics processing units (GPUs) have been used for their massive parallelization capabilities in applications as
diverse as cryptocurrency mining,22 cosmology,23 medical image processing,24 simulations of molecular dynamics,25

machine learning,26 and a lot more. GPUs are suitable for lockstep parallelization, where the same elementary oper-
ations are applied to different memory positions using dedicated functions known as kernels. Programming GPUs for
general-purpose data-parallel computations is facilitated by programming languages and frameworks such as CUDA27,28

(for NVIDIA GPUs, used by well-known software such as TensorFlow29 and Caffe30), OpenCL, OpenACC, OpenGL and
more.

Field programmable gate arrays (FPGAs) have also been used in MPC applications. Some of the algorithms that have
been successfully implemented on FPGAs for solving MPC problems include interior point,31,32 ADMM,33,34 GPAD35 and
active set algorithms.36 To date, FPGAs have led to solution times at the 𝜇 s range for problems of small to medium size.

In recent years, a number of papers have proposed parallelizable variants of numerical optimization methods such
as the interior point method,37 parallel quadratic programming,38 ADMM39-41 and other proximal algorithms.42,43 In
these approaches, GPUs are used to parallelize the involved algebraic operations and the solution of linear systems:
the primal-dual optimality conditions in interior point algorithms and equality-constrained QPs in ADMM. Given the
lockstep data parallelization paradigm of GPUs, numerical methods that aim at splitting the problem into smaller opti-
mization problems that are to be executed in parallel (such as References 44 and 45) do not lend themselves to GPU
implementations.

Scenario-based problems possess a certain structure that can be exploited to design very efficient ad hoc GPU-enabled
implementations leading to a higher acceleration as discussed in Reference 7. It has been shown that first-order
algorithms such as the accelerated proximal gradient method can be used to achieve significant speed-ups.7,46,47

However, first-order methods tend to be prone to ill-conditioning as they disregard curvature information. This moti-
vates the development of numerical methods that can exploit the underlying problem structure of scenario-based
optimal control problems, come with good convergence characteristics, and are amenable to lockstep parallelization
on GPUs.

1.2 Contributions

In this article, we propose the use of two proximal quasi-Newtonian limited-memory algorithms for the parallelizable
solution of scenario-based stochastic optimal control problems with linear or affine dynamics, convex quadratic cost
functions (with the stage costs being strongly convex in the control variable) and joint state-input convex constraints. In
particular, the key contributions of the article are as follows

1. We propose two massively parallelizable numerical methods that exploit the structure of scenario-based stochas-
tic optimal control problems, building up on the minfbe method48 applied to the dual problem, the Newton-type
alternating minimization algorithm (nama)49 algorithms, as well as on our previous work on GPU-accelerated
optimization.50

2. We demonstrate that all methods lend themselves to highly parallelizable implementations and lead to similar
convergence speeds.
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SAMPATHIRAO et al. 47

3. We show that nama allows a significantly higher parallelizability and lower computation times. In fact, minfbe and
nama involve only simple algebraic operations, use limited-memory BFGS directions, and can achieve better accuracy
and significantly faster convergence than the accelerated proximal gradient method of Reference 7 (linear convergence
rate instead of (1∕k2)).

1.3 Notation

LetN,R,Rn, andRm×n denote the sets of nonnegative integers, real numbers, n-dimensional vectors and m-by-n matrices
respectively. LetN[k1,k2] ∶= {n ∈ N ∶ k1 ≤ n ≤ k2}. LetR = R ∪ {+∞} be the set of extended-real numbers. Given a set
X ⊆ Rn and x ∈ Rn we define the indicator of X as the extended-real-valued function 𝛿(⋅ |X) ∶ Rn → Rwith 𝛿(x | X) = 0
for x ∈ X and 𝛿(x | X) = ∞ otherwise. For A ∈ Rm×n, A⊺ denotes the transpose of A. For A,B ∈ Rm×n, we write A ≻ B
(A ≽ B) if A − B is positive (semi)definite. For a convex function f ∶ Rn → R, its convex conjugate function f ∗ is defined
as f ∗(y) = supx{x⊺y − f (x)}. Given a nonempty, closed, convex set X ⊆ Rn, we define the projection operator onto X as
projX (x) = argminy∈X ||y − x||.

The proximal operator of a proper, closed, convex function g plays a major role in modern optimization theory and
is defined as prox

𝜆g(v) = argminz{g(z) + 1∕2𝜆||v − z||2}, with 𝜆 > 0. Proximal operators of a great variety of functions
including indicators of sets, distance-to-set functions and norms can be easily evaluated analytically and at a very low
computational cost.51 For example, the proximal operator of the indicator of a set Y is the projection on Y , that is
prox

𝜆𝛿(⋅|Y )(v) = proj(v|Y ).

2 PROBLEM STATEMENT

We start by stating the stochastic optimal control problem we will study in this article.

2.1 Stochastic dynamics on scenario trees

Consider a discrete-time stochastic dynamical system of the form

xt+1 = Awt xt + Bwt ut + cwt , (1)

with state xt ∈ Rnx and input ut ∈ Rnu , which is driven by the stochastic process wt. For example, Markov jump affine
systems fall into this category.52 The evolution of this system over a finite sequence of time instants, t ∈ N[0,N], can
be described using a scenario tree: a directed graph of the form shown in Figure 1. The scenario tree structure is
essentially the representation of a discrete multistage probability distribution. A scenario tree represents the evolu-
tion of the system states as more information becomes available: at every stage t, we assume that the state, xt, can
be measured and a control action ut can be decided based on that measurement, thus modeling an entire feedback
policy.

The nodes of the scenario tree are organized in stages, t ∈ N[0,N], and indexed by a unique integer i. At stage
t = 0 we assume that the state—which is the current state in an MPC setting—is known; this corresponds to
the root node of the tree, which is indexed by i = 0. The nodes at a stage t are denoted by nodes(t) and the
nodes at stage t = N are called the leaf nodes of the tree. For notational convenience, we will denote the nodes
at stages t ∈ N[t1,t2], with 0 ≤ t1 ≤ t2 ≤ N, by nodes(t1, t2)=

⋃t2
t=t1

nodes(t). The set nodes(t) is a probability space:
every node i ∈ nodes(t) is assigned a nonzero probability value 𝜋

i. Naturally 𝜋
0 = 1 and

∑
i∈nodes(t) 𝜋

i = 1 for all
t ∈ N[0,N].

Every node i at a stage t ∈ N[1,N] has an ancestor, anc(i) ∈ nodes(t − 1), and all nodes at a stage t ∈ N[0,N−1] have a set
of children, child(i) ⊆ nodes(t + 1). The set child(i) is a probability space with probability vector 𝜋[i] ∈ R|child(i)|. This is
a vector whose i+th element is equal to 𝜋i+∕𝜋i—for short 𝜋[i] = 1

𝜋i (𝜋i+)i+∈child(i).
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48 SAMPATHIRAO et al.

F I G U R E 1 Scenario tree structure with three stages and the system dynamics on its nodes. The cost associated with node i = 1 is
𝓁1(x0

,u0
,w1).

The system dynamics, (1), across the nodes of the scenario tree can be stated as

xi+ = Ai+xi + Bi+ui + ci+ , (2)

for i ∈ nodes(0,N − 1), i+ ∈ child(i). Note that the total number of scenarios coincides with the number of leaf nodes,
and the number of non-leaf nodes with the number of free input variables (see Figure 1).

2.2 Stochastic optimal control problem

A multistage stochastic optimal control problem for (1) with horizon N can be formulated as

P(p) ∶ minimize
{ut}N−1

t=0 ,{xt}N
t=0

E

[

Vf (xN) +
N−1∑

t=0
𝓁t(xt,ut,wt)

]

, (3)

subject to (1) and the condition x0 = p, where xt is the state at stage t starting from x0 and with the application of the
control actions u0,u1, … ,ut−1. Note that in this formulation, {ut}N−1

t=0 and {xt}N
t=0 are random variables. The stage cost at

stage t ∈ N[1,N] is a random variable which admits the values 𝓁i(xanc(i)
,uanc(i)) ∶= 𝓁t(xanc(i)

,uanc(i)
,wi), for i ∈ nodes(t),

with probability 𝜋i. The terminal cost function is also a random variable which admits the values Vf (xi) for i ∈ nodes(N)
with probability 𝜋i. That said, the optimal control problem can be written as

P(p) ∶ minimize
{ui}i∈nodes(0,N−1)
{xi}i∈nodes(0,N)

∑

i∈nodes(1,N)
𝜋

i𝓁i(xanc(i)
,uanc(i)) +

∑

i∈nodes(N)
𝜋

iV i
f (x

i), (4)

subject to the system dynamics (2) and the condition x0 = p.
The stage cost function, 𝓁i ∶ Rnx ×Rnu → R, at node i ∈ nodes(1,N), is an extended-real-valued function which can

be decomposed as follows

𝓁i(x,u) = 𝜙i(x,u) + 𝜙
i
(Fix + Giu), (5)

where 𝜙i ∶ Rnx ×Rnu → R is a smooth convex function and 𝜙
i
∶ Rmi → R is a proper, extended-real-valued, possi-

bly nonsmooth, convex, lower semicontinuous function and Fi ∈ Rmi×nx , Gi ∈ Rmi×nu . Functions 𝜙
i

can be taken to be
indicator functions so as to model constraints on inputs and states.
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SAMPATHIRAO et al. 49

We can also decompose the terminal cost function, V i
f ∶ R

nx → R, as follows

V i
f (x) = 𝜙

i
N(x) + 𝜙

i
N(Fi

N x), (6)

where Fi
N ∈ R

mN,i×n, 𝜙i
N ∶ R

nx → R is real valued, smooth, convex function and 𝜙
i
N ∶ RmN,i → R is a proper

extended-real-valued, convex, lower semicontinuous function.
Functions 𝜙

i
need not be smooth. They can be used to describe hard joint state-input constraints of the form Fix +

Giu ∈ Y i by taking 𝜙
i
(⋅) = 𝛿(⋅|Y i). Similarly, 𝜙

i
can describe soft constraints simply by replacing the indicator function

𝛿(⋅|Y i) by a distance-to-set function. On the other hand, functions𝜙i and𝜙i
N are typically taken to be convex quadratic (and

𝜙
i are assumed to be strongly convex with respect to u and jointly convex in (x,u)). Hereafter, we consider the quadratic

cost functions

𝜙
i(x,u) =

[
x
u

]⊺[
Qi S⊺i
Si Ri

][
x
u

]

+ q⊺i x + r⊺i u, (7)

for x ∈ Rnx and u ∈ Rnu , with Qi = Q⊺
i ≽ 0, and Ri = R⊺i ≻ 0, and

[
Qi S⊺i
Si Ri

]

≽ 0, (8)

for all i ∈ nodes(0,N − 1). Lastly, Vf (x) = x⊺PN x + p⊺N x for x ∈ Rnx with PN = P⊺N ≻ 0.

2.3 Formulation of optimization problem

The decision variable of P(p) is the vector x =
(
(ui)i∈nodes(0,N−1), (xi)i∈nodes(1,N)

)
∈ Rn, where n = |nodes(0,N − 1)|nu +

|nodes(1,N)|nx. Let us define the affine space

(p) =

{

x
|
|
|
|
|
|

x0 = p, xi+ = Ai+xi + Bi+ui + ci+ ,

i ∈ nodes(0,N − 1), i+ ∈ child(i).

}

, (9)

which describes the system dynamics. Let us also define the function f (⋅; p) ∶ Rn → R as

f (x; p) =
∑

i∈nodes(1,N)
𝜋

i
𝜙

i(xanc(i)
,uanc(i)) +

∑

i∈nodes(N)
𝜋

i
𝜙N(xi) + 𝛿(x|(p)). (10a)

Next, for every i ∈ nodes(0,N) we define zi = Fixanc(i) + Giuanc(i), and for every i ∈ nodes(N) we define zi
N = Fi

N xi. Let
z = ((zi)i∈nodes(0,N), (zi

N)i∈nodes(N)). We then define the function g ∶ Rm → R as

g(z) =
∑

i∈nodes(1,N)
𝜋

i
𝜙

i
(zi) +

∑

i∈nodes(N)
𝜋

i
𝜙N(zi

N), (10b)

where z = ((zi)i∈nodes(0,N), (zi
N)i∈nodes(N)) and define H ∶ Rn → Rm as a linear operator that maps x to a vector z ∈ Rm as

above with zi = Fixanc(i) + Giuanc(i) for i ∈ nodes(0,N) and zi
N = Fi

N xi for i ∈ nodes(N).
Given that functions 𝜙i are quadratic as described in the previous section, function f is strongly convex (as it follows

from Reference 53 [Prop. 6]) with a strong convexity modulus 𝜇f , therefore the convex conjugate of f , f ∗, is differentiable
with L-Lipschitz gradient, with L = 1∕𝜇f , because of Reference 54 (Prop. 12.60).
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50 SAMPATHIRAO et al.

ProblemP(p) can be written as

P(p) ∶ minimize
x∈Rn

f (x; p) + g(Hx). (11)

Hereafter, we assume thatP(p) is feasible. The Fenchel dual of ProblemP(p) in Equation (11) is

D(p) ∶ minimize
y∈Rm

f ∗(−H⊺y; p) + g∗(y). (12)

Let us define the function f̂ ∶ Rm → R as

f̂ (y; p) ∶= f ∗(−H⊺y; p). (13)

Then, problemD(p) can be written as

D(p) ∶ minimize
y∈Rm

f̂ (y; p) + g∗(y). (14)

For given p, strong duality holds if there is an x ∈ (p) such that Hx ∈ relint domg Reference 55 (Theorem 15.23)—we
will hereafter assume that this assumption is satisfied.

2.4 Optimality conditions

A simple optimality condition for the dual optimization problem of Equation (12) is

y − prox
𝜆g∗ (y − 𝜆∇f̂ (y)) = 0, (15)

for some 𝜆 > 0.56 By virtue of the Moreau decomposition formula, Equation (15) is equivalently written as

∇f̂ (y) + prox
𝜆−1g(𝜆−1y − ∇f̂ (y)) = 0. (16)

We define the forward–backward mapping

T𝜆(y) ∶= prox
𝜆g∗ (y − 𝜆∇f̂ (y)), (17)

which, using the Moreau decomposition property, becomes

T𝜆(y) = y − 𝜆∇f̂ (y) − 𝜆prox
𝜆−1g(𝜆−1y − ∇f̂ (y)), (18)

and we also define the fixed-point residual mapping

R𝜆(y) ∶= 𝜆
−1(y − T𝜆(y)) (19)

= z𝜆(y) −Hx(y), (20)

where x(y) and z𝜆(y) are defined as

x(y) ∶= ∇f ∗(−H⊺y), (21a)

z𝜆(y) ∶= prox
𝜆−1g

(
𝜆
−1y +Hx(y)

)
, (21b)
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SAMPATHIRAO et al. 51

therefore,

x(y) = argmin
z

{⟨z,H⊺y⟩ + f (z)}. (22)

Note also that T𝜆(y) can be computed from Equation (18) as

T𝜆(y) = y − 𝜆
(

∇f̂ (y) − z𝜆(y)
)

. (23)

The aforementioned optimality condition in Equation (15) is equivalently written as R𝜆(y) = 0, that is, solving the dual
optimization problem (12) becomes equivalent to finding a zero of the operator R𝜆.

3 NUMERICAL OPTIMIZATION

3.1 Forward–backward envelope

The forward–backward envelope (FBE) of (12) is a real-valued function 𝜑𝜆 given by57,58

𝜑𝜆(y) = f̂ (y) + g∗(T𝜆(y)) − 𝜆⟨∇f̂ (y),R𝜆(y)⟩ +
𝜆

2
||R𝜆(y)||2. (24)

If f̂ is twice continuously differentiable—conditions under which this is the case can be found in Reference 59—then 𝜑𝜆
is continuously differentiable with

∇𝜑𝜆(y) = (I − 𝜆∇2 f̂ (y))R𝜆(y). (25)

Note that in practice it is not necessary to compute or store the Hessian matrix ∇2 f̂ (y). Instead, it suffices to implement
an algorithm that returns Hessian-vector products of the form ∇2 f̂ (y) ⋅ z. The most important property of the FBE is that
for 𝜆 ∈ (0, 1∕L), the set of minimizers of (12) coincides with

argmin 𝜑𝜆 ≡ zer∇𝜑𝜆 ∶= {y ∶ ∇𝜑𝜆(y) = 0}

= argmin f̂ (y) + g∗(y) = zer R𝜆.

Essentially, the problem of solving the dual optimization problem (12) is equivalent to the unconstrained minimization
of the continuously differentiable function 𝜑𝜆, that is

inf f̂ (y) + g∗(y) = inf 𝜑𝜆, (26a)

argmin f̂ (y) + g∗(y) = argmin 𝜑𝜆. (26b)

Moreover, the above is equivalent to finding a zero of the fixed-point residual operator. In the case where f̂ is strongly
convex quadratic, 𝜙𝜆 is both continuously differentiable and convex.

3.2 Dual minfbe method

If f̂ is twice differentiable, according to (26) the original (dual) optimization problem can be cast as an unconstrained opti-
mization problem with a smooth cost function. As a result we can use an appropriate unconstrained optimization method
to solve such problems, such as limited-memory BFGS,50 however, convergence is only guaranteed under restrictive
requirements (such as twice differentiability and uniform convexity of the FBE60).
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52 SAMPATHIRAO et al.

Algorithm 1. Dual minfbe with L-BFGS directions

Require: 𝜆 ∈ (0, 1∕L), y0, m (memory), 𝜖 (tolerance)
Ensure: Primal-dual solution triple (x, z, y)

1: Initialize an L-BFGS buffer with memory m
2: while ‖R𝜆(yk)‖∞ > 𝜖 do
3: dk = −Bk∇𝜑𝜆(yk) (Compute an L-BFGS direction using the L-BFGS buffer)
4: Choose the largest 𝜏k ∈ {2−𝜈}𝜈∈N so that

𝜑𝜆(wk) ≤ 𝜑𝜆(yk), (27)

where wk = yk + 𝜏kdk

5: xk+1 = T𝜆(wk)
6: Compute the L-BFGS-related quantities sk = yk+1 − yk, qk = ∇𝜑𝜆(yk+1) − ∇𝜑𝜆(yk)and 𝜌k = ⟨sk

, qk⟩

7: if ⟨sk
, qk⟩>𝜖′‖sk‖2‖∇𝜑𝜆(yk)‖2 then

8: Push (sk
, qk

, 𝜌
k) into the L-BFGS buffer

9: end if
10: k = k + 1
11: end while
12: return (x, z, y) = (x(yk), z(yk), yk)

Instead, minfbe is a method that can be applied to problems with nonsmooth cost functions using the FBE as a
merit function using a simple line search.48 minfbe involves simple and computationally inexpensive iterations, and
exhibits superior global convergence properties. The application of minfbe to the dual optimization problem,D(p), leads
to Algorithm 1.

minfbe consists in applying the forward–backward mapping on the extrapolated vector wk = yk + 𝜏kdk which
satisfies the decrease condition (27). The L-BFGS buffer is updated with the vectors sk, qk, and their inner
product 𝜌k, provided that the minimum-curvature condition in line 7 is satisfied for a small tolerance 𝜖

′
> 0,

following.61

The algorithm iterates on the dual vectors yk and returns a triple (x, z, y) which satisfies the termination condition
||R𝜆(yk)||∞ ≤ 𝜖, which, in light of Equation (20) means that

||z −Hx||∞ ≤ 𝜖, (28a)

−H⊺y ∈ 𝜕f (x), (28b)

dist||⋅||∞(y, 𝜕g(z)) ≤ 𝜆𝜖, (28c)

where dist||⋅||∞ denotes the point-to-set distance with respect to the ∞-norm.
We should highlight that the line search in line 4 of Algorithm 1 is a simple descent condition on the FBE, which is

simpler than the Wolfe conditions used in Reference 50. Moreover, although in Algorithm 1 we use L-BFGS directions,
the method works with any direction of descent dk with respect to the FBE, that is, if ⟨dk

,∇𝜑𝜆(yk)⟩ ≤ 0.
If f is quadratic plus the indicator of an affine subspace, x(y) turns out to be linear, that is

x(w) = x(y + 𝜏d) = x(y) + 𝜏x(d), (29)

and f̂ is a quadratic function, that is ∇f̂ is linear and f̂ (y) = ⟨y,∇f̂ (y)⟩, from which we can see that

f̂ (y + 𝜏d) = ⟨y + 𝜏d,∇f̂ (y + 𝜏d)⟩

= f̂ (y) + 𝜏2 f̂ (d) + 2𝜏⟨y,∇f̂ (d)⟩. (30)
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SAMPATHIRAO et al. 53

By virtue of the last two properties and after some algebraic manipulations, we find that the line search condition𝜑𝜆(wk) −
𝜑𝜆(yk) ≤ 0 is equivalent to

𝛼2(y, d)𝜏2 + 𝛼1(d)𝜏 + 𝛼0(𝜏; y, d) ≤ 0, (31)

where

𝛼0(𝜏; y, d) = g∗(T𝜆(y + 𝜏d)) − g∗(T𝜆(y)) +
𝜆

2
[||z𝜆(y + 𝜏d)||2 − ||z𝜆(y)||2], (32a)

𝛼1(y, d) = ⟨Hx(d), 2y − 𝜆Hx(y)⟩, (32b)

𝛼2(d) = f̂ (d) − 𝜆

2
||Hx(d)||2, (32c)

and f̂ (d) can be computed by invoking Theorem 23.5 from Reference 62, from which

f̂ (d) = −⟨Hx(d), d⟩ − f (x(d)). (33)

Note that 𝛼1 and 𝛼2 do not depend on 𝜏, therefore, can be computed once per iteration. This leads to a sig-
nificant reduction of the involved floating point operations per iteration. The most computationally demanding
parts of minfbe are (i) the computation of x(y) and x(d), and (ii) the computation of the Hessian-vector product
∇f̂ (yk)R𝜆(yk) that is required to determine ∇𝜑𝜆(yk) in line 3 of Algorithm 1. The involved operations can be paral-
lelized on a GPU as we shall discuss in Section 3.4, but the computations of x(y), x(d) and ∇f̂ (yk)R𝜆(yk) cannot be
parallelized.

Often, the Lipschitz constant of the gradient of f̂ is not known and needs to be estimated with a backtracking pro-
cedure. The original backtracking proposed in Reference 48 halves the value of 𝜆 after the line search in line 4 if the
following condition is satisfied

f̂ (T𝜆(wk)) > f̂ (yk) − 𝜆⟨∇f̂ (yk),R𝜆(yk)⟩ + (1 − 𝛽)𝜆
2

||R𝜆(yk)||2, (34)

for some 𝛽 ∈ [0, 1). The values f̂ (yk), ⟨∇f̂ (yk),R𝜆(yk)⟩ and ||R𝜆(y)||2 are known from the preceding line search, so the
cost of the backtracking is that of computing f̂ (T𝜆(wk)). Alternatively, we may use the backtracking method proposed in
Reference 63 (Linesearch 1) which halves 𝜆 if

𝜆||∇f̂ (T𝜆(yk)) − ∇f̂ (yk)|| > 𝜖′′||T𝜆(yk) − yy||, (35)

where 𝜖′′ ∈ (0, 1∕2). This backtracking procedure has a lower computational cost compared to Equation (34). In both
cases, the L-BFGS buffer is emptied when the value of 𝜆 is updated.

3.3 Parallelizable Newton-type alternating minimization algorithm

The nama can be used to solve the dual optimization problem D(p) in Equation (12) without the need to compute the
gradient of the FBE.49 nama, applied to the dual optimization problem is given in Algorithm 2.

nama involves a simple line search which consists in determining a 𝜏k so that the dual vector defined as wk = yk +
𝜏kdk + (1 − 𝜏k)rk satisfies the descent condition 𝜑𝜆(wk) ≤ 𝜑𝜆(yk). Again, if f̂ is a quadratic function, we can precompute
certain quantities in a fashion akin to Equation (31). In particular, before the line search in line 7 of Algorithm 2 we need
to compute x(r) and x(d).

The main computational cost involved in Algorithm 2 comes from the evaluation of x(y), x(r), and x(d). Note that if x
is linear, x(w) can be computed at a very low computational cost. In particular, the extrapolated vector wk can be written
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54 SAMPATHIRAO et al.

Algorithm 2. nama method for the dual optimization problem

Require: 𝜆 ∈ (0, 1∕L), y0, 𝜖>0 (tolerance)
Ensure: Primal-dual solution triple (x, z, y)

1: k = 0
2: while ‖R𝜆(yk)‖>𝜖 do
3: xk = x(yk), zk = z𝜆(yk)
4: rk = zk −Hxk

5: dk = − Bkrk (Compute an L-BFGS direction using the L-BFGS buffer)
6: Choose the largest 𝜏k ∈ {2−𝜈}𝜈∈N so that

𝜑𝜆(wk) ≤ 𝜑𝜆(yk), (36)

where wk = yk + 𝜏kdk + (1 − 𝜏k)rk

7: x̃k = x(wk), z̃k = z𝜆(wk)
8: yk+1 = yk + 𝜆(Hx̃k − z̃k)
9: Compute the L-BFGS-related quantities sk = yk+1 − yk, qk = R𝜆(yk+1) − rkand 𝜌k = ⟨sk

, qk⟩

10: if ⟨sk
, qk⟩>𝜖′‖sk‖2‖rk‖2 then

11: Push (sk
, qk

, 𝜌
k) into the L-BFGS buffer

12: end if
13: k = k + 1
14: end while
15: return (x, z, y) = (x(yk), z(yk), yk)

as wk = ỹk + 𝜏kd̃k, where ỹk = yk + rk and d̃k = dk − rk, therefore the decrease condition of nama in Equation (36) is
equivalent to Equation (31) with ỹk and d̃k in lieu of yk and dk respectively, that is,

𝛼2(ỹ, d̃)𝜏2 + 𝛼1(d̃)𝜏 + 𝛼0(𝜏; ỹ, d̃) ≤ 0. (37)

Again, the Lipschitz constant L may not be known, but it can be determined using the line search method we described
in the previous section.

Overall, given that the computation of Hessian-vector products in minfbe comes at approximately the same cost
as computing the dual gradient, and given that the computation of x(r) and x(d) can be carried out in parallel, nama
has a lower per-iteration computation cost. Although minfbe and nama exhibit similar convergence properties, with
nama we can afford a greater parallelizability that leads to superior performance in practice as we shall show in
Section 4.

3.4 Efficient parallel computations

GPUs have a hardware architecture that allows the execution of the same set of instructions on different memory positions.
GPUs are equipped with a set of SIMD stream processors, each having its own computing resources, that execute “compute
kernels,” that is, functions that are executed simultaneously on different data.

NVIDIA’s GPUs use the CUDA programming interface where kernels are executed in parallel threads, which are
organized in blocks which can share memory and which are in turn organized in grids. At a hardware level, threads are
executed in parallel in warps of 32 threads. Threads in the same block have asynchronous read/write access to a local
shared memory and can synchronize. Each thread has its own local memory, and all threads have access to the device’s
global memory. Modern GPUs count several streaming multiprocessors with hundreds of cores, possess a computing
throughput of several Tera-FLOPs, and have a significant memory capacity of several GBs. The hardware architecture and
programming model of GPUs necessitates a fresh look at parallelization approaches for numerical optimization. Kernels
are best suited for the parallel execution of simple numerical operations.
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SAMPATHIRAO et al. 55

The efficient computation of the dual gradient is of crucial importance for the performance of the algorithm we
are about to describe. By virtue of the conjugate subgradient theorem (see Theorem 23.5 in Reference 62), we have
that

x(y) = argmin
x∈(p)

{
∑

i∈nodes(1,N)
𝜋

i
𝜙̂

i(xanc(i)
,uanc(i)) +

∑

i∈nodes(N)
𝜋

i
𝜙̂N(xi)

}

, (38)

where 𝜙̂i(xanc(i)
,uanc(i)) = 𝜙i(xanc(i)

,uanc(i)) + ⟨yi
,Fixanc(i) + Giuanc(i)⟩ for i ∈ nodes(1,N), and 𝜙̂N(xi) = 𝜙N(xi) + ⟨yi

,Fi
N xi⟩,

for i ∈ nodes(1,N). The solution of the minimization problem in Equation (38) can be determined via dynamic pro-
gramming leading to Algorithms 3 and 4.47 Algorithm 3 calculates the matrices Φi, Θi, Di, Λi, Ki, 𝜎i, and ĉi following a
Riccati-type recursion. These matrices are computed once offline and are used in Algorithm 4. Note that Algorithm 3 is
also amenable to parallelization. In cases where the data of the optimal control problem need to be updated (e.g., if the
dynamical system is time varying, or the parameters of the cost must be updated in real time), the computation of these
matrices can be carried out on a GPU and in fact the time for their computation is negligible compared to that of solving
the problem.

The computation of Hessian-vector products of the form ∇2 f̂ (y)r that is required for the computation of the gradient
of the FBE. This can be rewritten as Gâteux directional derivative of the gradient ∇f̂ at y along the direction r, which is
given by

∇2 f̂ (y)r = lim
𝜖→0

∇f̂ (y + 𝜖r) − ∇f̂ (y)
𝜖

. (39)

Algorithm 3. Offline computation of matrices used in Algorithms 4 and 5

Require: N (prediction horizon), Ai, Bi, ci (system data), Qi, Ri, Si, qi, ri,PN , pN (weight matrices), 𝜋i (probabilities), Fi,
Gi, Fi

N
Ensure: Φi, Θi, Di, Λi, Ki, 𝜎i, c̄i

1: Pi ← PN
, for all i ∈ nodes(N)

2: for k = N−1,… , 0 do
3: for [ do in parallel ] i ∈ nodes(k)
4: P̄i ←

∑
i+∈child(i) Bi+⊺Pi+Bi+

5: R̄i ← 2(𝜋iRi + P̄i), Φi = −(R̄i)−1Gi⊺

6: Ki ← −2(R̄i)−1
(

𝜋
iSi +

∑
i+∈child(i) Bi+⊺Pi+Ai+

)

7: 𝜎
i ← ri − 2(R̄i)−1 ∑

i+∈child(i) Bi+⊺Pi+ci+

8: Āi+ ← Ai+ + Bi+Ki, Di+ = Fi+ + Gi+Ki + Si⊺KiΦi, ∀i+ ∈ child(i)
9: c̄i ← Ki⊺ri + qi + Si⊺Ki

𝜎
i + 2

∑
i+∈child(i) Āi+⊺Pi+ci+

10: if k = N − 1 then
11: Θi+ ← −(R̄i+)−1Bi+⊺Fi+⊺

N ,∀i+ ∈ child(N−1)
12: Λi+ ← Fi+Āi+⊺,∀i+ ∈ child(N−1)
13: c̄i ← c̄i +

∑
i+∈child(i) Ai+⊺pN

14: 𝜎
i ← 𝜎

i +
∑

i+∈child(i) Bi+⊺pN

15: else
16: Θi+ ← −(R̄i+)−1Bi+⊺,∀i+ ∈ child(i)
17: Λi+ ← Āi+⊺,∀i+ ∈ child(i)
18: end if
19: Pi ← 𝜋

i(Qi + Ki⊺RiKi + Si⊺Ki) +
∑

i+∈child(i) Āi+⊺Pi+Āi+⊺

20: end for
21: end for
22: return Φi, Θi, Di, Λi, Ki, 𝜎i, c̄i
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56 SAMPATHIRAO et al.

Algorithm 4. Computation of the dual gradient, x(y)

Require: Dual vector y ∈ Rm

Ensure: x(y)
1: q̂i ← yi

, for all i ∈ nodes(N)
2: for [ do in parallel ] i ∈ nodes(0,N − 1)
3: ui ← Φiyi + 𝜎i

4: q̂i ← Di⊺yi + c̄i

5: end for
6: for k = N − 1,… , 0 do
7: for [ do in parallel ] i ∈ nodes(k)
8: ui ←

∑
i+∈child(i) Θi+ q̂i+

9: q̂i ←
∑

i+∈child(i) Λi+⊺q̂i+

10: end for
11: end for
12: x0 = p
13: for i ∈ nodes(0,N − 1) do
14: ui ← Kixi + ui

15: for [ do in parallel ] i+ ∈ child(i)
16: xi+ ← Ai+xi + Bi+ui + ci+

17: end for
18: end for
19: return x(y) = ({xi}, {ui}).

As the gradient ∇f̂ (y) is affine—meaning that ∇f̂ (y) − ∇f̂ (0) is linear—we have that ∇f̂ (y + 𝜖r) − ∇f̂ (y) = 𝜖(∇f̂ (r) −
∇f̂ (0)), so

∇2 f̂ (y)r = ∇f̂ (r) − ∇f̂ (0). (40)

This means that Hessian-vector products can be determined via gradient computations. In particular, Hessian-vector
products can be computed via Algorithm 5. It should be noted that Algorithms 4 and 5 incur roughly the same
computation cost.

Lastly, most proximal operations can be massively parallelized. For example, if 𝜙
i
(z) = 𝛿(z|Y i) and Y i = {z ∶ zi

min ≤

z ≤ zi
max}, then the computation of prox

𝜆𝜙
i = projY i is element-wise independent and can be easily parallelized. Likewise,

a great many proximal operators, such as those of the indicators of rectangles and common norm-balls, and functions
such as || ⋅ ||1, the Huber loss function and more, lend themselves to high parallelizability.56

In general, the total memory that needs to be allocated on the GPU grows linearly with the length of the L-BFGS
buffer, linearly with the prediction horizon, and linearly with the number of nodes of the tree, and quadratically with
the system states and inputs. The additional parallelization in nama requires the allocation of additional memory on the
GPU, but leads to a higher throughput and occupancy of the device.

3.5 Preconditioning

Stochastic optimal control problems tend to be ill conditioned because of the presence of generally small probability
values. As first-order methods are known to be affected by the problem being ill conditioned, here we make use of a
simple diagonal preconditioning heuristic where we scale the original dual variables y = ((yi)i∈nodes(0,N), (yi

N)i∈nodes(N)) by
introducing the scaled dual variables y = ((yi)i∈nodes(0,N), (y

i
N)i∈nodes(N)) with

yi =
yi

√
𝜋i
, (41)

 10991514, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oca.3054 by C

ochraneItalia, W
iley O

nline L
ibrary on [13/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SAMPATHIRAO et al. 57

Algorithm 5. Computation of Hessian-vector products required for the computation of ∇𝜑𝜆

Require: Vector r
Ensure: Hessian-vector product, ∇2 f̂ (y) ⋅ r

1: q̂i ← ri
, for all i ∈ nodes(N)

2: for k = N − 1,… , 0 do
3: for [ do in parallel ] i ∈ nodes(k)
4: ûi ← Φiri +

∑
i+∈child(i) Θi+ q̂i+

5: q̂i ← Di⊺ri +
∑

i+∈child(i) Λi+⊺q̂i+

6: end for
7: end for
8: x̂0 = 0
9: for i ∈ nodes(0,N − 1) do

10: ûi ← Kix̂i + ûi

11: for i+ ∈ child(i) do
12: x̂i+ ← Ai+ x̂i + Bi+ ûi

13: end for
14: end for
15: return ∇2 f̂ (y) ⋅ r = ({x̂i}, {ûi}).

for i ∈ nodes(0,N) and

yi
N =

yi
N

√
𝜋i
, (42)

for i ∈ nodes(N). This scaling is a heuristic similar to the Jacobi preconditioning discussed in Reference 64.

3.6 Warm start

Generally, the accelerated projected gradient method converges at a rate (1∕k2) and although it may exhibit slow con-
vergence, its iterations are computationally cheap, so it can be used to warm start minfbe and nama. We have observed
that running as few as five iterations of gpad7,65 can provide a good warm starting point for minfbe and nama.

4 NUMERICAL SIMULATIONS

This section is organized in two parts: in Section 4.1 we compare minfbe and nama with the accelerated projected gradi-
ent method and discuss the convergence rate of each method. In particular, we demonstrate that a serial implementation
of nama and minfbe leads to superior performance compared to the accelerated proximal gradient method. The two
methods exhibit comparable convergence speed. Next, in Section 4.2 we apply minfbe and nama to solve a large-scale
stochastic optimal control problem for the operating management of the drinking water network of Barcelona taken from
Reference 7. We show that nama affords a higher parallelization leading to a significant performance improvement.

4.1 Spring-mass-damper array

Consider an array of M consecutive point particles of mass m connected to each other through elastic springs of stiffness
ks and linear dampers with viscous damping coefficients bd illustrated in Figure 2.

In between the successive masses j and j + 1, for j = 1, … ,M − 1, there is an actuator that can apply a force uj ∈
[umin,umax]. The state variable of this system comprises the positions pj of the masses and their velocities vj, which are
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58 SAMPATHIRAO et al.

F I G U R E 2 Array of M consecutive interconnected masses, M + 1 elastic springs and dampers and M − 1 actuators.

F I G U R E 3 Infinity norm of the fixed point residual against the iterations; comparison between nama, minfbe, gpad, and the L-BFGS
method applied to 𝜑𝜆 with a memory of 5.

constrained in [pmin, pmax] and [vmin, vmax], respectively. The system is described by a set of linear differential equations
which can be obtained by the application of Newton’s second law of motion, which, after discretization with sampling
time Ts and a zero-order hold, yields a discrete-time linear time invariant system. Furthermore, we assume that there is
an external additive disturbance cwk , as in Equation (1), which is driven by a discrete Markov process, wk, with two modes.

In this example, we consider a stochastic optimal control problem with prediction horizon N, quadratic stage cost
functions 𝜙i(x,u) = x⊺Qx + u⊺Ru, and quadratic terminal costs 𝜙i

N(x) = x⊺PN x. Moreover, we have M = 5 masses with
m = 5 kg, ks = 1 N∕m, bd = 0.1 Ns∕m, umax = −umin = 2 N and the maximum allowed velocity is 5 m/s. The prediction
horizon is N = 11 and the external disturbance ck is driven by a Markov chain with two modes with initial probability

distribution pc = (0.5, 0.5) and probability transition matrix Pc =
[

0.1 0.9
0.9 0.1

]

; at mode 1 the value of c is zero and at mode

2, c takes the value 0.1. The sampling time is Ts = 0.5 s. Lastly, the weights of the stage and terminal cost functions are
Q = 5I10, R = 2I4, and PN = 100I10. No warm starting is used in any of the algorithms.

To solve this problem we apply minfbe and nama and we compare with gpad and with the L-BFGS method for the
minimization of the FBE with a memory of 5.50 The progress of these methods, in terms of the infinity norm of the fixed
point residual, against their iterations is shown in Figure 3. Although L-BFGS seems to perform well in practice, note that
according to Reference 60 (Thm. 5.7.4) uniform convexity of 𝜑𝜆 is necessary for the L-BFGS method to converge, but this
condition may not be satisfied (it is not satisfied in this example).

In order to assess the how minfbe and nama perform when faced with problems of different parameters—and, in
particular, ill-conditioned ones—we tested with weight matrices Q of different condition numbers. Figure 4 shows the
total number of calls of Algorithms 4 and 5 required for convergence. Apart from the fact that minfbe and nama require
fewer such calls, we observe that for high condition numbers, gpad and L-BFGS fail to converge within 5000 calls.

gpad is known to converge at a rate of (1∕k2), which can be observed in Figure 3; clearly, gpad can only achieve
low to medium accuracy solutions within a few hundred iterations. On the other hand, minfbe and nama exhibit a
significantly faster convergence rate and require fewer iterations to achieve solutions of higher accuracy.

We ran the stochastic optimal control problem for 300 initial states x0 = p, sampled uniformly from the problem’s
domain. These problems were solved with nama, minfbe and the accelerated projected gradient method applied to the
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SAMPATHIRAO et al. 59

F I G U R E 4 Total number of oracle calls of Algorithms 4 and 5 necessary for convergence (𝜖 = 10−4) against the condition number of Q
for nama, minfbe, gpad, and the LBFGS method applied to 𝜑𝜆 with a memory of 5.

F I G U R E 5 Distribution of the number of oracle calls required for the computation of the dual gradient (Algorithm 4) and Hessian-vector
products (Algorithm 5) for gpad, minfbe, gpad, and the L-BFGS algorithm with memory 5 applied for the minimization of the FBE.

dual problem (gpad) following Reference 7. In nama and minfbe we used L-BFGS directions with a memory of 5. We
used the same termination condition in all methods with 𝜖 = 10−4.

In Figure 5, we show the number of calls of Algorithms 4 and 5 required to solve the aforementioned collection of 300
random problems up to the desired accuracy. We may observe that in the majority of cases (84%), minfbe and nama can
solve the problems with no more than 50 calls, whereas the median of the number of calls corresponding to gpad is 188.
We should note that, in all 300 cases, the first control action, u⋆0 , obtained by the above algorithms is element-wise within
0.011% of the solution obtained using the interior point solver of Gurobi.

Note that nama and minfbe appear to perform on a par. However, in the next section we will demonstrate that nama
allows for greater parallelizability leading to superior performance on a GPU.
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4.2 Large-scale drinking water network

In this section, we apply the proposed numerical optimization methods for the solution of an MPC problem for a drinking
water network, whose transportation dynamics is described by

xt+1 = Axt + But + Gdt, (43a)

0 = Euut + Eddt, (43b)

where xt is the vector of the volume of water in the reservoirs of the network, ut is the vector of pumping set points and
dt is the vector of water demands from the various distribution nodes. The value of dt is measured at time t and future
demand values are predicted by a model that returns estimates d̂t+t′|t, for t′ ≥ t, while dt+t′ = d̂t+t′|t + 𝜖t′ , where 𝜖t′ is a
random process that can be described by a scenario tree.7

The water network model (43) comprises 63 states corresponding to water level in the tanks, 114 inputs corre-
sponding to flow control devices (pumps and valves), 88 disturbance variables corresponding to the demand sectors and
input-disturbance relationship corresponding to the 17 mixing nodes. The detailed stochastic optimal control problem
and the formulation of the optimization problem is discussed in Reference 7. The operation of the water network is subject
to uncertainty in water demand and electricity prices.

F I G U R E 6 Box plots of the computational time with different scenario tree sizes for the GPU implementation of the algorithms:
(parallel) nama, minfbe, and gpad.
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The nama and minfbe algorithms are implemented in the RapidNet* software package that is developed for the
operational control of water network problems. All simulations presented in this section were carried out on an NVIDIA
Tesla C2075 GPU which counts 448 CUDA cores running at 1.15 GHz and 6 GB of dedicated memory.

In order to demonstrate the effect of the additional parallelization in nama that we discussed in Section 3.3, we
provide results for the method with that additional parallelization in the computation of the line search (p-nama) and
nama without that additional parallelization.

The parallel computations involved in Algorithms 4 and 5 are carried out using cuBLAS’s cublasSgemmBatched
and cublasSgemm. In this example, matrices A, B, Gd, Eu, and Ed are sparse, and this has been used to tailor the
implementations of Algorithms 4 and 5 to be more efficient.

The L-BFGS memory is set to 15. In the case with 577 scenarios, the problem involves 2.1 million primal and 3.8
million dual variables and nama and minfbe algorithms require an excess of 2.9% (172 MB) of memory and p-nama
requires an excess of 4.1% (242 MB) of memory than dual accelerated proximal gradient (gpad) algorithm. The solve
times of p-nama, nama, minfbe and gpad are shown in Figure 6, where note that the horizontal axis is logarithmic.
It can be observed that p-nama is noticeably faster compared to nama, minfbe and gpad. Lastly, the (element-wise)
difference between the solutions obtained by the above algorithms is in all cases within 0.01% of the solution that was
obtained using Gurobi.

5 CONCLUSIONS

In this article, we proposed the use of minfbe and nama for solving large-scale scenario-based convex stochastic opti-
mal control problems. Both methods use limited-memory quasi-Newtonian, L-BFGS, directions and exhibit a very fast
convergence rate. They are both suitable for parallelization on GPUs, but nama lends itself to a significantly higher par-
allelization. We presented compelling results on two stochastic optimal control problems, namely a spring-mass-damper
array and the drinking water network of Barcelona, demonstrating that the two methods significantly outperform gpad,
whose parallelizable implementation on a GPU has been previously shown to outperform Gurobi’s interior point solver.7
Future work will focus on the development of parallelizable methods for large-scale scenario-based risk-averse optimal
control problems.67
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