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a b s t r a c t

Innovative developments in data processing, archiving, analysis, and visualization are nowadays
unavoidable to deal with the data deluge expected in next-generation facilities for radio astronomy,
such as the Square Kilometre Array (SKA) and its precursors. In this context, the integration of source
extraction and analysis algorithms into data visualization tools could significantly improve and speed
up the cataloguing process of large area surveys, boosting astronomer productivity and shortening
publication time. To this aim, we are developing a visual analytic platform (CIRASA) for advanced
source finding and classification, integrating state-of-the-art tools, such as the CAESAR source finder,
the ViaLactea Visual Analytic (VLVA) and Knowledge Base (VLKB). In this work, we present the project
objectives and the platform architecture, focusing on the implemented source finding services.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Innovative developments in data processing, archiving, anal-
sis, and visualization are nowadays critical to deal with the
ata deluge expected in next-generation observing facilities for
adio astronomy, such as the Square Kilometre Array (SKA) and
ts major precursors, i.e. the Australian Square Kilometre Array
athfinder (ASKAP), MeerKAT, the Murchison Widefield Array
MWA) and the Low Frequency Array (LOFAR). The increased
ize and complexity of the archived image products will raise
ignificant challenges in the source extraction and cataloguing
tage, requiring more advanced algorithms to extract valuable
cientific information in a mostly automated way. Traditional
ata visualization performed on local or remote desktop viewers
ill be also severely challenged in the presence of very large
ata cubes, requiring more efficient rendering strategies, possibly
ecoupling visualization and computation, for example moving
he latter to a distributed computing infrastructure. The analysis
apabilities offered by existing radio image viewers are currently

✩ This code is registered at the ASCL with the code entry ascl:2108.009..
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ttps://doi.org/10.1016/j.ascom.2021.100506
213-1337/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
limited to the computation of image/region statistical estimators
or histogram displays and to data retrieval (images or source
catalogues) from survey archives. Advanced source analysis, from
extraction to catalogue cross-matching and object classification,
are unfortunately not supported as the graphical applications
are not interfaced with source finder batch applications. On the
other hand, source finding often requires visual inspection of
the extracted catalogue, for example, to select particular sources,
reject false detections, or identify the astronomical object class.
Integration of source analysis into data visualization tools could
therefore significantly improve and speed up the cataloguing
process of large surveys, supporting astronomers in the discovery
of unknown and unexpected results, boosting their productivity
and shortening publication times. Interestingly, a recent survey
(Bordiu et al., 2020), conducted among astronomers of different
fields, has shown a surprising demand for visual analytics tools,
denoted by ∼72% of the respondents as one of the major needs
in their research.

To tackle some of the highlighted challenges, we proposed
to realize an integrated platform, dubbed CIRASA (Collaborative
and Integrated platform for Radio Astronomical Source Analysis),
for advanced source finding and classification driven by visual
analytics techniques. CIRASA will integrate state-of-the-art tools,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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lready in use within international collaborations, but also pro-
ide new developments to improve the source extraction and
ataloguing capabilities (e.g. real vs spurious source identification,
bject classification, etc.) of existing finders and richer source
isualization. The platform is mainly tailored to the needs of the
KA and precursor radio community, aiming at providing a tool
eplicable at a larger scale in the SKA Regional Center infrastruc-
ure. Some of the provided features (e.g. source extraction and
nalysis algorithms) are, however, general purpose and may well
erve the broader astronomical community in other wavelength
omains (e.g. infrared, optical or gamma).
This paper represents the first of a series of works, aiming

t presenting the major components of the CIRASA project. It is
rganized as follows. In Section 2 we discuss in more detail the
cientific context in which the CIRASA project was devised and
s moving its first steps. In Section 3 we summarize the techno-
ogical context of reference. In Section 4 we present the project,
escribing the current architecture and planned objectives. In
ection 5 we present the source finding services, representing
ne of the major components that has been developed so far for
he platform. Other components will be presented in follow-up
apers. In Section 6 we describe the current service deployment,
eporting the reference testing metrics obtained on simulated
mages. Finally, in Section 7 we highlight the results achieved and
he future activities.

. Scientific context

SKA (Dewdney, 2013; SKA Observatory, 2021) will be the
argest radio interferometer ever built, enabling sky surveys with
nprecedented speed and level of detail (∼nJy sensitivity, sub-
rcsec spatial resolution, full frequency coverage from 50 MHz to
5 GHz), thus it is expected to revolutionize our knowledge of the
niverse. Breakthrough discoveries are expected in several areas,
rom galaxy formation and evolution in the Epoch of Reionization
o strong-field tests of gravity and the search for gravitational
aves, but, possibly also in the Cradle of Life domain with the
earch for exoplanets and signals of extraterrestrial life. Signif-
cant discoveries are also expected in the study of our Galaxy.
KA will allow for a nearly complete census of radio-emitting
alactic objects, such as Hii regions, planetary nebulae (PNe) and

supernova remnants (SNRs), currently prevented by the limited
area and uv coverage of past surveys.

While SKA is currently starting the construction phase, its
precursors have already completed the telescope commissioning
phase and carried out scientific observations. ASKAP (Hotan et al.,
2021), for example, has currently completed the Early Science
phase and first pilot survey observations (Norris et al., 2021a;
McConnell et al., 2020), showing a great potential for serendipi-
tous discoveries of new classes of objects and phenomena (Norris
et al., 2021b). The observations done in the Galactic plane (Umana
et al., 2021), in particular, already achieved superior imaging per-
formance compared to past surveys, enabling valuable scientific
results to be obtained, even with an incomplete array (Riggi et al.,
2021a).

MeerKAT had its first light in 2016 using 16 antennas, with
the first science results published in April 2018 (Camilo et al.,
2018). Data observations were carried out later on for all large sci-
ence projects using 64 antennas. In the Galactic science context,
preliminary scientific results from the MeerKAT Galactic Plane
Survey (0.8–1.6 GHz) were recently reported (Thompson et al.,
2021; Riggi et al., 2021b), and first data release is expected by
the end of the year.

At lower frequencies, MWA observations, started in mid-2013,
are delivering hundreds of scientific works from the MWA collab-
oration (about 150 papers since 2015) or from external authors.
2

The GaLactic and Extragalactic All-sky MWA (GLEAM) survey
(Hurley-Walker et al., 2017) has surveyed the sky south of decli-
nation +30◦ over a frequency range of 72–231 MHz. Image and
atalogue data covering a portion of the Galactic plane (|b|≤10◦;
45◦<l<67◦, 180◦<l<240◦) were recently released (Hurley-Walker
t al., 2019). In this frequency range, LOFAR is also progressing
imilarly, releasing first data for both the Two-metre Sky Survey
LoTSS) (Shimwell et al., 2019) at 120–168 MHz and the LBA
ky Survey (LoLSS) (de Gasperin et al., 2021) at 42–66 MHz, and
elivering hundreds of scientific works.

. Technological context and challenges

Data processing and analysis challenges are, without any
oubt, particularly relevant in SKA. Raw radio data produced from
he antennas will be injected in the data processing pipeline at
rate of ∼TB/s and the amount of archived data, comprised of

mages, visibilities, and catalogues with millions of objects, is of
he order of ∼EB/yr (Dewdney, 2013; SKA Observatory, 2021).
he volume and complexity of the final data products is so high
hat it will require more advanced analysis algorithms to extract
he most important features in a mostly automated way, possibly
xploiting data parallelism and emerging technologies in High
erformance Computing (HPC) and Machine Learning (ML).
The analysis of SKA precursor observations is already raising

ignificant challenges in the source extraction and cataloguing
rocess at multiple levels, but also in data visualization, anticipat-
ng what will be needed to face with future SKA observations. In
he following section, we will briefly present the open issues and
elative state-of-the-art for both topics, motivating the activities
roposed for the CIRASA project, discussed in detail in Section 4.
e will mostly consider the ASKAP Evolutionary Map of the
niverse (EMU) survey (Norris et al., 2011) (1.4 GHz, noise rms
10 µJy/beam, angular resolution ∼10 arcsec, coverage ∼75%

ull sky) as a reference case, taking in mind that similar challenges
re present in all SKA precursors. Furthermore, we will focus on
he analysis of 2D images only, thus not reviewing challenges
nd relevant tools specifically applicable to the analysis of 3D
ata cubes. These will be considered for future phases of project
evelopment.

.1. Source finding and classification

The large field of view and the improved angular resolution of
he SKA precursors have significantly increased the typical size
f the image data products, up to ∼160002 pixels per continuum
urvey tile in ASKAP (Norris et al., 2021a), and ∼320002 pixels in
KA Data Challenge I (SDC1) simulations (Bonaldi et al., 2021).
his introduced scalability issues in existing source finding al-
orithms, causing the processing time to exponentially increase,
hus requiring the development of new finders able to distribute
omputing among multiple processing units. At present, none
f the existing finders are able to fully exploit the potential
ffered by modern High Performance Computing (HPC) systems
based on multi-nodes and one or more accelerators per node) to
cale up to very large images. Some finders, like PySE (Carbone
t al., 2018), aegean (Hancock et al., 2018) and SoFia(Westmeier
t al., 2021), have started to provide support for multithread runs,
thers also for multi-node processing, like selavy (Whiting and
umphreys, 2012) and caesar (Riggi et al., 2016, 2019). Other
inders (Lucas et al., 2019) have invested in the optimization of
xisting algorithms, reaching optimal scalability performance on
ompact source extraction.
While the tools cited above were primarily designed for ra-

io continuum observations (2D maps), other finders, like SoFia



S. Riggi, C. Bordiu, F. Vitello et al. Astronomy and Computing 37 (2021) 100506

(
i
q
p

l
s

Serra et al., 2015) or duchamp (Whiting, 2012), were specif-
cally developed to tackle the even harder computational re-
uirements of present spectral line observations (involving 3D
osition–position–velocity cubes).
The expected boost in sensitivity will allow for detecting mil-

ions of sources in large area surveys done with the SKA precur-
ors, corresponding to an expected source density of a ∼1000 s
sources per deg2. For example, the future EMU survey is expected
to detect ∼70 million sources (Norris et al., 2011). At present,
however, a much smaller density of few hundreds of catalogued
sources per deg2 is reported in ASKAP pilot surveys (Norris et al.,
2021a; McConnell et al., 2020). Such a cataloguing process will
require a level of automation and knowledge extraction never
reached before by state-of-the-art source finders. Although some
finders used in the radio community have already been upgraded
in this direction, many critical aspects still remain to be tack-
led, particularly for observations done in a dense and complex
environment like the Galactic plane.

3.1.1. Compact source extraction reliability
The false detection rate (mainly due to over-deblending and

image artefacts around bright sources) in many tested finders can
indeed reach up to 20% in fields with significant diffuse emis-
sion or extended sources (Riggi et al., 2021a). A major effort is
therefore needed to meet the high source reliability expectations
(at least better than 99%) of large area surveys. Spurious source
rejection is, however, still manually performed in most of them.
Besides being time-consuming and error-prone, this task is no
longer feasible at the scale of SKA precursors. Moreover, the con-
siderable efforts made in the visual source selection are typically
not standardized in the adopted methodology and, unfortunately,
often limited to the project under study without being re-used for
the benefit of other projects. Although this stage cannot be com-
pletely avoided, particularly in the early project phase, investing
time to develop improved quality selection criteria and advanced
rejection algorithms is of high priority. Promising results have
been already obtained in this area with ML-classifiers (e.g. neural
networks or decision trees) on simulated training datasets (Riggi
et al., 2019) and on real datasets that were prepared by visual
inspection of radio survey maps (Mauch et al., 2003; Williams
et al., 2019; Magro et al., 2021; Pino et al., 2021).

3.1.2. Automated detection of extended sources
Several works attempted to quantify the completeness and

reliability degradation (being reported around 10%–20%) of dif-
ferent source finders on both 2D images (e.g. Hopkins et al.,
2015) and 3D data cubes (e.g. Popping et al., 2012) in presence of
extended sources. All of these studies only tested performances
on extended sources using the same algorithm developed for
point-source extraction, considering one particular class of ex-
tended sources, generally modelled as elliptical gaussians with
axes larger than the synthesized beam size. Extended structures
with different morphologies and flux density profiles, such as the
diffuse and faint objects found in the Galactic plane (e.g. large
SNRs or Hii regions), are however mostly missed out by existing
finders used in SKA precursor pipelines, highlighting a general
lack of algorithms designed for this purpose.

At present, only a few source finders (Riggi et al., 2016;
Robotham et al., 2018) provide dedicated algorithms for extended
source extraction, but their performance, often measured on
simulated data (e.g. see Riggi et al., 2019), is still well below
to what is achieved for compact sources. These poor results
force astronomers to eventually resort to a manual segmentation
approach when extracting and delivering catalogues of extended
sources (Bordiu et al., 2021).
3

3.1.3. Source classification
Source classification into known classes of objects is another

poorly covered area to be already addressed in pilot survey ob-
servations.

In the Galactic plane, for instance, observations done with the
SKA precursors (Umana et al., 2021; Riggi et al., 2021a) now en-
able the detection of almost all catalogued objects present in the
surveyed field (Hii regions, SNRs, PNe, evolved stars), including
a large fraction of sources previously considered as radio-quiet,
thanks to the notable increase in sensitivity. Still, more than 90%
of the extracted sources have no counterparts at other wave-
lengths, or object identity information in existing astronomical
databases. It is likely that the vast majority of unclassified objects
are radio galaxies and Hii regions, while a smaller fraction is
associated to PNe, evolved stars (Luminous Blue Variables, Wolf–
Rayet) and SNRs. Completely new classes of objects are also to be
expected. In this area, some progresses were recently reported
(Akras et al., 2019; Riggi et al., 2021a) with classifiers based
on traditional machine learning algorithms, making use of the
infrared colours or the correlation between radio and infrared
morphologies as the discriminant information among different
classes of Galactic objects.

Far from the Galactic plane, many activities are focused on the
detection and classification of different flavours or morphologies
of radio galaxies (Wu et al., 2019; Clarke et al., 2019; Liu et al.,
2019; Lukic et al., 2018, 2019) or on the cross-identification of
extragalactic radio sources and host galaxies (Alger et al., 2018),
through deep convolutional neural networks. Many of these stud-
ies are carried out in the context of the Radio Galaxy Zoo (RGZ)
project (Banfield et al., 2015) and its ongoing follow-ups within
some SKA precursors (for example ASKAP and LOFAR).

3.2. Data visualization

As we approach to the SKA era, two main challenges are to
be faced in the data visualization domain: scalability and data
knowledge extraction and presentation to users. The present
capability of visualization software to interactively manipulate in-
put datasets will not be sufficient to handle the image data cubes
expected in SKA (∼200–300 TB at full spectral resolution). Even
after frequency channel averaging, the requirement for next-
generation data viewers is of the order of TB per cube and tens
of GB per 2D image. Such a high data volume will require inno-
vative visualization techniques and a change in the underlying
software architecture models to decouple the computation part
from the visualization. This is, for example, the approach followed
by new-generation radio viewers such as CARTA.1 CARTA uses
a ‘‘tiled rendering’’ method and a client–server model, in which
computation and data storage is performed on remote clusters
with high performance storage, while visualization of processed
products is performed on clients with modern web features, such
as GPU-accelerated rendering.

The volume and complexity of future SKA data will however
require not only to import and visualize input data but also,
mostly, to maximize the user perception efficiency, e.g. enabling
for extraction of scientific results and discovery of new unex-
pected information from the processed data. To address these
needs under a unified framework, visual analytics (VA) has re-
cently emerged as the ‘‘science of analytical reasoning facilitated
by interactive visual interfaces’’ (Yi et al., 2007). VA aims to
develop techniques and tools to support people in synthesizing
information and deriving insight from massive, dynamic, unclear,
and often conflicting data (Keim et al., 2008). To achieve this
goal, VA integrates methodologies from information, geospatial

1 https://cartavis.org/.

https://cartavis.org/
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Fig. 1. High-level architecture of the CIRASA platform showing interactions
mong the major software components: ViaLactea Visual Analytic (VLVA)
lient, Authentication and Authorization Infrastructure (AAI) service, ViaLactea
nowledge Base (VLKB) service and source finding (SFinder) service.

nd scientific analytics but also takes advantage of techniques
eveloped in the fields of data management, knowledge repre-
entation and discovery, and statistical analytics. In this context,
ew developments have recently taken place in astronomy. As an
xample, the encube framework (Vohl et al., 2016) was developed
o enable astronomers to interactively visualize, compare and
uery a subset of spectral cubes from survey data. The ViaLactea
isual Analytic application (VLVA) (Vitello et al., 2018) (see Sec-
ion 4) allows for an integrated analysis of all new-generation
urveys, combining the visualization of heterogeneous data, 2D
ntensity images, and 3D molecular spectral cubes.

. The CIRASA project

To address some of the highlighted challenges, we are de-
eloping a visual analytic platform, dubbed CIRASA. A high-level
rchitecture diagram of the platform with major software compo-
ents and expected data flow is shown in Fig. 1. The main com-
onents are a Visual Analytic client (VLVA) interfacing, through
n authentication layer, with a series of services for source ex-
raction, classification, and analysis, and a set of data collec-
ions (catalogues, images, cubes) exposing services for search,
utout and merge on top of the overall knowledge base archive
VLKB). All components are deployed in a distributed computing
nfrastructure.

The platform, currently in development, should reach the fol-
owing objectives:

1. Integrate existing compact and extended source finders
(optimized for either continuum or spectral line images)
into a common framework, exploiting each software’s
strengths and possibly combining their outputs to improve
detection capabilities and source measurement (position,
flux density, etc.) accuracy;

2. Develop and integrate new source classifiers, exploiting in-
novative deep learning techniques, to enhance the perfor-
mance of traditional source finders and to enable creation
of added-value catalogues;
4

3. Extend VLVA with interactive source visualization and val-
idation functionalities, including both automated (e.g. by
cross-matching with astronomical databases from the VLKB
archive) and human-driven annotation functions to gener-
ate added-value catalogues and training datasets for clas-
sification scopes.

.1. Software components

A high-level overview of the CIRASA software components is
eported as follows.

.1.1. Visual analytic client (VLVA)
The ViaLactea Visual Analytic client (VLVA) (Vitello et al.,

018) is a desktop interface implemented in C++ and based on
t and VTK libraries. It represents the astronomer’s entry point
o platform resources. VLVA currently supports 2D and 3D visu-
lization (e.g. through volume rendering, isocontours, slice views,
tc.) of images and data cubes, loaded either from the user local
ilesystem or from the remote VLKB archive upon valid authoriza-
ion. The tool also enables the user to load and view catalogues
f both compact and extended sources (currently only Galactic
ubbles and filaments).
VLVA is publicly available at https://github.com/NEANIAS-

pace/ViaLacteaVisualAnalytics and distributed for both macOS
nd Linux (Debian/Ubuntu). More details are available in the
nline documentation at https://vlva.readthedocs.io/en/latest/
ndex.html.

New developments are occurring in different areas of the
IRASA project. Interfacing the VLVA client with source finding
ervices described in this paper is one major area of extension.
urther developments are planned to enhance the source visual-
zation and analysis capabilities, following the use case described
n Section 4.2. Such activities will be reported in a forthcoming
aper.

.1.2. Knowledge base archive and services (VLKB)
The ViaLactea Knowledge Base (VLKB) (Molinaro et al., 2016;

utora et al., 2019; Smareglia et al., 2019) is a large (∼2 TB)
rchive of infrared, radio and molecular survey and source cat-
logue data (∼40000 cubes and 2D images from > 30 surveys),
ffering a series of service interfaces for catalogue access, dataset
iscovery, cutout creation (for 2D images as well as 3D cubes),
nd image/cube mosaicking through merging of adjacent areas
f the sky stored in separate files. A Table Access Protocol (TAP)
nterface (Dowler et al., 2010) and a customMulti-Order Coverage
MOC) based interface are furthermore available as defined by the
nternational Virtual Observatory Alliance (IVOA), enabling the
ser to search and cross-match catalogues of both compact and
xtended objects, respectively.
VLKB services are currently already interfaced with the VLVA

lient application. To support the main driving scientific use cases
f the CIRASA project, the archive will also include the newest
adio data produced in the Early Science phase of SKA precursors
ASKAP, MeerKAT) and simulated data generated in the SKA Sci-
nce Data Challenges. New developments are also to be made in
he VLKB service components to support cross-matching remote
e.g. stored in the VLKB archive) and local catalogues (e.g. residing
n the local system of the VLVA client instance).

.1.3. Source finding services
Source finding services, labelled as SFinder in Fig. 1, include

ne or more web applications, interfacing with various source
xtractor tools, enabling jobs to be launched on user data and out-
uts to be retrieved for visualization or further post-processing
t the client level. In Section 5 we will present the architecture

https://github.com/NEANIAS-Space/ViaLacteaVisualAnalytics
https://github.com/NEANIAS-Space/ViaLacteaVisualAnalytics
https://github.com/NEANIAS-Space/ViaLacteaVisualAnalytics
https://vlva.readthedocs.io/en/latest/index.html
https://vlva.readthedocs.io/en/latest/index.html
https://vlva.readthedocs.io/en/latest/index.html
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nd implementation of one of these services, dubbed as caesar-
est, currently integrating caesar source finder and newer tools
eing developed as caesar extensions or standalone applications.
s discussed in Section 5.5, we foresee that caesar-rest can also
ntegrate other source finders with limited efforts, so to provide
single SFinder interface to other CIRASA services.

.2. Use cases

A typical user workflow on the CIRASA platform, mainly aris-
ng from the experience gained with ASKAP (Umana et al., 2021;
iggi et al., 2021a) and MeerKAT (Bordiu et al., 2021) early science
ata analysis, would therefore include the following major steps:

1. Load image or cube from local filesystem or from the VLKB
archive using the image discovery, cutout, and mosaicking
services;

2. Extract sources from image/cube using one or more inte-
grated finders, according to the desired configuration, and
draw them on the image/cube;

3. Apply group or filter operations to the source catalogue,
e.g. select sources by position, region or name, apply selec-
tion criteria on source parameters or select/reject sources
manually;

4. Inspect/analyse extracted sources individually (e.g. upon
manual selection) or collectively (e.g. after a group oper-
ation) through dedicated panels showing summary infor-
mation, source parameter plots, analysis, or validation plots
(e.g. source counts, sky distribution, etc.);

5. Label or select sources in the following ways:

• Cross-match source catalogue with desired astronom-
ical catalogues through the VLKB and classify sources
accordingly in an automated way;

• Apply pre-trained classifiers (e.g. for spurious source
rejection or object classification) to the extracted
source catalogue and relabel sources accordingly in
an automated way;

• Label/annotate sources interactively through the
aided visual inspection tool;

6. Finalize the source catalogue and save outputs (tables in
different formats, DS9 regions, etc.).

Many of the above functionalities are rather cross-domain and
ot only tied to the radio-astronomical community needs, making
he platform reusable for astronomical data taken at different
avelengths.

.3. Long-term goals and synergies with other projects

The CIRASA project fits well in the design activities of the
KA Regional Center (SRC) infrastructure, currently carried out
ithin the SRC Working Groups (WGs), and in the supporting
ctions undertaken by many European countries for the setup
f a network of supporting competence and computing centres.
ndeed, one of the long-term goal of the project is making the
latform available to SKA and precursor users, possibly deployed
n SRC resources.
Besides the technical design of the computing infrastructure,
major challenge is reducing the technological gaps for as-

ronomers, promoting Open Science practices in research. A key
ole will be played in this context by the European Open Science
loud (EOSC) programme, started by the EU Commission in 2015,
nd aiming to develop a trusted, virtual and federated environ-
ent, allowing researchers from different scientific disciplines to
tore, share, process and re-use research products following FAIR
5

Findable, Accessible, Interoperable, Reusable) principles. Under
he EOSC initiative, the H2020 NEANIAS (Novel EOSC Services for
merging Atmosphere, Underwater & Space Challenges) project2

s developing a Service Oriented Architecture (SOA) to deliver
hematic services from different scientific communities into the
OSC. The first release of services tailored to the astrophysics
nd planetary science communities has recently been published,
ncluding tools for data management and visualization, for map
aking and mosaicking, and for automated structure detection

Sciacca et al., 2021).
The CIRASA platform is adopting the same principles and

echnologies, reusing auxiliary services provided by the NEANIAS
roject (see Section 5.3), and testing its services in the same
eployment environment (see Section 6). Furthermore, all CIRASA
ervice components, have been made publicly available (through
oogle or Microsoft account authentication) in the EOSC service
arketplace,3 although the currently available computing and
torage resources do not allow supporting yet a large community
f users, such as SKA Key Science Project (KSP) or SKA precursor
urvey teams. Nevertheless, the goal of both projects is to develop
nd deploy a system that can scale up once additional resources
ecome available, either on the future EOSC cloud infrastructure,
n SRC network node, or a smaller data centre (e.g. a Tier-3 cluster
n a public research department, eventually part or not of the SRC
etwork).

. Caesar-rest source finding service

For the CIRASA platform, we have developed a web service for
ource extraction and classification, named caesar-rest. The soft-
are is developed in python and is publicly available at , includ-

ng API documentation, configuration options and instructions for
ervice deployment.
The architecture of the service consists of a few containerized

icroservices, shown in Fig. 2, deployable on a distributed com-
uting infrastructure (see Section 6). The core service component
s the web REST service, based on the Flask4 web framework and
dditional packages from the Flask ecosystem. In production, the
lask application is served by a uWSGI5 server, eventually repli-
ated and run behind an NGINX load balancer. In Appendices A
nd B we report a list of command-line configuration options and
ajor software dependencies required by the REST service.
A MongoDB6 database service is deployed to support the stor-

ge and retrieval of user data and job information (see details in
ection 5.1).
The job monitoring service supports periodical monitoring of

ser jobs and status info updates in the database. It is expressly
equired when using Kubernetes or Slurm job management (see
ections Section 5.2.2. It is not required, instead, when using
elery (see Section 5.2.1), as, in that case, job monitoring is done
y the deployed workers. Finally, the accounting service is not
trictly mandatory, but, when deployed, computes some useful
ggregated user data and job stats, making them available for
uerying (see Section 5.1) or displaying in the UI dashboard.
The following paragraphs cover in more depth the service

omponents and relative implementation.

2 https://www.neanias.eu/.
3 https://marketplace.eosc-portal.eu/.
4 https://flask.palletsprojects.com/en/2.0.x/.
5 https://uwsgi-docs.readthedocs.io/en/latest/.
6 https://www.mongodb.com.

https://www.neanias.eu/
https://marketplace.eosc-portal.eu/
https://flask.palletsprojects.com/en/2.0.x/
https://uwsgi-docs.readthedocs.io/en/latest/
https://www.mongodb.com
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Fig. 2. Software components of the caesar-rest service, representing the current implementation of CIRASA SFinder service component, shown in a more schematic
nd abstract way in Fig. 1. Other CIRASA components (e.g. the VLKB services) are not shown here.
.1. Data management

Service data (user images, job products) are stored in re-
ote storage, directly accessible only by interested services (web
pplications and workers) through container volume mounting.
ptions tested were an NFS (Network File System) volume or a
extcloud7 storage managed with Rclone tool8 when deploying

to OpenStack cloud instances or on a Kubernetes cluster.
Both user data (e.g. location in storage, id, possible tags pro-

vided by the user, size) and job information (e.g. configura-
tion options, id, status) are recorded in the MongoDB database
following the naming conventions (dbname.username.jobs, db-
name.username.files) for jobs and data collections, respectively.
When the accounting service is deployed, an additional collec-
tion (dbname.username.accounting) is populated with information
about storage usage (for data and jobs) and job stats for each
user as a function of time. Accounting information is periodically
monitored (by default every 2 min) and aggregated over all users
in a dbname.appstats collection to provide some metrics at the
application level.

5.2. Job management

User task submission requests are managed by the web ap-
plication and pushed to a job scheduler queue for execution.
Three different job schedulers and execution strategies are sup-
ported and can be configured at application startup: Kubernetes,9
Slurm,10 and Celery.11

A user job can assume the following possible state values dur-
ing the run: {PENDING, RUNNING, SUCCESS, FAILURE, ABORTED,

7 https://nextcloud.com.
8 https://rclone.org/.
9 https://kubernetes.io/.

10 https://slurm.schedmd.com/documentation.html.
11 https://docs.celeryproject.org.
6

CANCELED, TIMED-OUT}. Values are self-explanatory, but not all
of them can be mapped in the three architectures as discussed in
the following paragraphs. Jobs are periodically monitored (by de-
fault every 30 s) by the job monitoring service and relevant infor-
mation (e.g. state, status message, elapsed time, etc.) is updated
in the database.

5.2.1. Celery
This is the most common approach encountered in Flask-

based applications to handle long-running tasks. A Celery-based
scheduling system requires a broker service to be added to re-
ceive task messages from the application and add them to a
queue. Tasks of different source finding applications can be sub-
mitted to different queues. RabbitMQ12 and Redis13 are the two
supported broker transports that can be selected and configured.

One or more Celery workers must then be added to the system
to consume the queued tasks. Workers executing a given source
finding application, eventually customized in terms of consum-
able computing resources, subscribe and receive only the tasks
queued for that application.

Once received, tasks are processed by a Celery worker in
the background and the process status is periodically monitored
and updated in the MongoDB database. Celery allows for result
backend components to be added to automatically store task
status. In our application we have tested both Redis and MongoDB
backends, using the latter as the default to have a unique database
service in the architecture.14

This job management implementation has proven to work in
our deployments, but we found these major limitations:

• Workers need to be constantly running, consuming the node
resources allocated for them, even when no jobs are queued.
This is not desired in a cloud infrastructure;

12 https://www.rabbitmq.com.
13 https://redis.io.
14 In this case, Celery automatically creates an additional table (named
celery_taskmeta) in the database to store task information.

https://nextcloud.com
https://rclone.org/
https://kubernetes.io/
https://slurm.schedmd.com/documentation.html
https://docs.celeryproject.org
https://www.rabbitmq.com
https://redis.io
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• The architecture complexity is increased compared to the
others described below, as two additional services need to
be deployed (the broker and the task result backend, if
different from the application database);

• There is no straightforward way to allocate resources (CPU
and memory) on demand. At present, the allocated re-
sources can be configured on a per-worker basis.

hese considerations motivated us to implement an additional
ork management schema.

.2.2. Kubernetes
In this schema, jobs are submitted to a Kubernetes cluster that

an eventually be the same hosting the application or an external
ne. Kubernetes has a default scheduler (kube-scheduler) running
n the control plane. When a Kubernetes job is submitted, the
cheduler searches for a suitable worker node where to run job
ods.15 A job is tracked and eventually restarted until termination
onditions are met according to configurable specs (e.g. see com-
letionMode and backoffLimit specs). Finished jobs (either
ompleted successfully or failed) and all dependent Pods can
e cleaned up automatically from the system immediately or
fter a configurable time in seconds following the completion
see ttlSecondsAfterFinished spec). In practice, we found
hat this feature is not working properly in Kubernetes clusters
ith an older server version, for example, the one considered in
ection 6 (version 1.16.15). We therefore implemented a periodic
lean-up of finished jobs in the job monitoring service. Jobs can
e also deleted or suspended. This has the effect of cleaning up
ll dependent Pods permanently or until the job is resumed.
We made use of the Kubernetes Python client libraries16

o manage jobs within our application. This requires to con-
igure user authentication by passing the Kube cluster configu-
ation and key/certificate files at the application startup. Once
he client is initialized and configured, we mostly employed
he BatchV1Api API create_namespaced_job, read_namespaced_job,
elete_namespaced_job functions to implement the job submis-
ion, monitoring, and clean-up logic. In this schema, a source
inding job from one of the supported applications, is run by
ubernetes in a single Docker container Pod.
Kubernetes API allows for a limited number of job states:

• PENDING: when the job is found in the job list, but its Pod is not active
(e.g. running) nor failed or succeeded;

• RUNNING: when the job Pod is reported as active;
• FAILED: when the job Pod is reported as failed;
• SUCCESS: when the job Pod is reported as succeeded;

Another limitation is on the amount of job information reported,
for example, the job elapsed time is only reported for successful
jobs.

5.2.3. Slurm
In this schema, jobs are submitted to a Slurm cluster, typically

external to the service. Slurm currently17 provides a REST API
aemon named slurmrestd enabling access to cluster resources
pon valid authentication through RFC7519 JWT (JSON Web To-
ens) tokens. Authentication can be configured in caesar-rest
ervice by passing the Slurm HS256-signed JWT user key at the
pplication startup. This key is internally used by our Slurm client

15 A Pod is the atomic deployment unit on a Kubernetes cluster, representing
single instance of a running process in it. A Pod contains a group of one

r more application containers (such as Docker) that includes shared storage
volumes), a unique cluster IP address and information about how to run them.
ee https://kubernetes.io/docs/concepts/workloads/pods/ for more details.
16 https://github.com/kubernetes-client/python.
17 Slurm version is v20.11 at the time of writing.
7

to initially generate the required JWT token (by default with 1
h duration), controlling its validity and regenerating it whenever
needed.

The same job management logic discussed in the previous
section can be implemented around these API calls:

• POST /slurm/v0.0.36/job/submit: for submitting a job, where the request body
requires a job submission script and environment to be specified;

• GET /slurmdb/v0.0.36/job/{job_id}: for retrieving the status of a job;
• DELETE /slurm/v0.0.36/job/{job_id}: for cancelling a job;

Jobs are submitted in this scenario using Singularity containers.
Docker containers, used in the Kubernetes schema above, require
root privileges to run and this is typically not granted for security
reasons in co-shared Slurm clusters (e.g. department clusters,
typically providing resources to multiple projects).

As Slurm defines additional job states compared to our schema,
we mapped them as follows:

• {PENDING, SUSPENDED}→PENDING
• RUNNING→RUNNING
• COMPLETED→SUCCESS
• CANCELLED→CANCELED
• {FAILED,NODE_FAIL,PREEMPTED,BOOT_FAIL,DEADLINE, OUT_OF_MEMORY}→

FAILURE
• TIMEOUT→TIMED-OUT

nother difference with respect to Kubernetes is in the storage
olume management. External data storage, e.g. the Nextcloud
torage, is automatically mounted by the Kubernetes pods before
ctually executing the job. In this case, instead, they are mounted
y the Slurm cluster administrator and Singularity job containers
nly need to bind to the defined mount point.

.3. Auxiliary services

In the frame of the NEANIAS project, a layer of composite
ulti-tier services, integrated with the NEANIAS core infrastruc-

ure, was provided to support the open science lifecycle and
he integration with the EOSC infrastructure. These include: an
uthentication and Authorization Infrastructure (AAI), a Config-
ration Management Service, a Service Instance Registry, a Log
ggregator Service, Accounting and Notification services, and data
epositing, sharing and exploration services. The auxiliary ser-
ices currently exploited by the CIRASA platform are described
n more detail below.

.3.1. Service authentication
User access verification on the service can be enabled at the

pplication startup when in production mode. The only authenti-
ation protocol supported at present is Open ID Connect (OIDC).18
lient requests without a valid auth token are rejected at this
tage. In authorized requests, username information is extracted
rom the user email address field and used for all subsequent
ctions, e.g. to store data and job information in the database.

.3.2. Logging
The logging solution adopted is backed by an ELK stack, one

f the most widely used stacks for collecting and processing
pplication logs. The ELK stack is composed of three open source
omponents, namely:

• Elasticsearch,19 for storing and indexing application logs,
making them searchable.

18 https://openid.net/connect/.
19 https://www.elastic.co/elasticsearch/.

https://kubernetes.io/docs/concepts/workloads/pods/
https://github.com/kubernetes-client/python
https://openid.net/connect/
https://www.elastic.co/elasticsearch/
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• Logstash,20 for extraction and homogenization of log entries
from different sources.

• Kibana,21 a visualization framework with aggregation and
filtering capabilities.

On the application side, the service employs the Beats frame-
ork22 for collecting the logs from the different architecture
omponents and shipping them to the Logstash securely.
The logging configuration can be configured at the appli-

ation startup using a series of self-explanatory options (see
ppendix A). The Filebeat service and logging to file must be
nabled to collect application logs.

.4. Access layer

.4.1. REST API
caesar-rest provides a REST API for:

• Uploading, downloading, or deleting input images from ser-
vice data storage (see Section 5.1);

• Submitting source finding jobs using different supported
applications to a workload management system, cancelling
user jobs, or retrieving job status info and output data
products (see Section 5.2);

• Retrieving information about each supported source finder
applications (e.g. configuration options useable for launch-
ing jobs);

• Retrieving user accounting information of job and data min-
imal stats;

PI specifications are reported in Appendix C.

.4.2. Web interface
A web interface application has been developed in the context

f the NEANIAS project to enhance accessibility and improve
ser experience for onboarding users. It provides authenticated,
nteractive access to the main service capabilities through a web
rowser, allowing for consuming the service REST APIs and the
verall functionality in the first place, but also to guide as a
aluable reference the development of a source finding interface
or VLVA.

The application is based on Django, a high-level Python frame-
ork for web development, and has been built following the stan-
ard MVT design pattern (Model-View-Template). The presenta-
ion layer follows the recommendations of the W3C on Cascading
tyle Sheets, Level 2 (CSS2), employing a customized version of
he popular Twitter Bootstrap template, with a collapsible sidebar
enu that provides access to the different features. User expe-

ience and interactiveness are boosted using multiple JavaScript
ibraries, such as jQuery. REST APIs are consumed by means
f Ajax requests, allowing for an asynchronous update of page
ontents and a smoother navigation.
The User-Centred Design methodology (Cooper et al., 2014)

as been loosely followed in the design of the user workflow,
aking into account user requirements collected during the early
tages of the NEANIAS project (Sciacca et al., 2020), and conduct-
ng several validation and feedback sessions with end users. The
esulting workflow is intuitive: after logging in, the user is pre-
ented with a dashboard that compiles accounting information
ia simple graphs and widgets (e.g. number of jobs submitted,
ccumulated execution time, storage). Then, the user can:

20 https://www.elastic.co/logstash/.
21 https://www.elastic.co/kibana.
22 https://www.elastic.co/beats/.
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• Manage files via the manage files view, uploading images to
be analysed – currently only FITS format supported –, and
eventually adding convenient tags for easier identification.
The files can also be downloaded back or removed from the
system;

• Submit source extraction jobs. The submit job view pro-
vides a wizard that guides the user through the submission
process: in the first step, the user selects which files to
analyse; in the second, the user can customize the job, fine-
tuning performance settings, source extraction settings, and
background estimation settings; finally, in the last step, a
summary of the selected options is displayed, and the user
can assign a distinctive tag for the job. Multiple jobs can be
submitted at a time if multiple files are selected, sharing the
same settings and tag;

• Preview and retrieve job outcomes. The check job view
presents a refreshable list of the submitted jobs, reporting
the submission date, the current status, and contextual
actions to cancel, preview, or download the job outputs (see
Fig. 3). Currently, the application offers limited visualization
capabilities, displaying a dismissible modal pop-up that
shows the input image with extracted source contours along
with an excerpt of the produced source catalogue (source
name, position, and flux density), as displayed in Fig. 4.

At the time of writing, the interface provides access exclu-
sively to the caesar source finder service. However, we note
that the application is modular by design, facilitating further
extensibility through the seamless addition of new components
(e.g. access to new source finders or classifiers). In this regard,
panels for performing runs with supported ML-based finders (see
Section 5.5.2) are planned to be added once their upgrade is
complete.

5.5. Supported applications

The service currently integrates the following applications:
{caesar,mrcnn,tiramisu} (see next section). In the future, we plan
to integrate other source finders widely used in the community
for 2D images (e.g. aegean, PyBDSF, CuTEx and FilamentFinder
tools) or 3D cubes (e.g. SoFia) or new finders, for example based
on deep learning models, either developed within the CIRASA
project or within the radio community. In this respect, the in-
tegration of a new app only requires the provision of expected
job options and application Docker containers. Integration in
the CIRASA platform, requires, however, also a standardization
of catalogue outputs across different finders, including content
(e.g. the provided parameters) and format, currently ranging from
custom tabular formats (CSV, ASCII) to other standards (e.g. JSON,
VOTable). One possibility, currently under analysis in the project,
foresees an extra processing step at the end of each source finder
run, standardizing catalogue parameters and converting data into
the desired format (likely JSON or a VO standard).

5.5.1. CAESAR
caesar (Riggi et al., 2016, 2019) is a source finder for both

compact and extended sources developed in the context of the
ASKAP EMU survey. It currently supports batch parallel pro-
cessing using two levels of parallelism (OpenMP and MPI) and
provides both Docker and Singularity containers.

It was recently employed to produce the compact source cat-
alogue of the Scorpio field observed with ASKAP and ATCA (Riggi
et al., 2021a). Ongoing works (Bordiu et al., 2021) are using it to
produce compact and extended source catalogues from MeerKAT
Galactic Plane survey data. Online documentation describing sup-
ported algorithms and configuration options is available at https:
//caesar-doc.readthedocs.io/en/latest/.

https://www.elastic.co/logstash/
https://www.elastic.co/kibana
https://www.elastic.co/beats/
https://caesar-doc.readthedocs.io/en/latest/
https://caesar-doc.readthedocs.io/en/latest/
https://caesar-doc.readthedocs.io/en/latest/
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Fig. 3. List of submitted jobs in CAESAR UI.
Fig. 4. Visualization of job results in CAESAR UI, displaying input image, with the extracted source contours overlaid, and an excerpt of the source catalogue.
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.5.2. ASGARD & Tiramisu
We recently developed two new tools for source detection and

lassification, dubbed asgard (Automated Source, Galaxy, and
rtefact R-CNN Detector) (Magro et al., 2021) and Tiramisu (Pino
t al., 2021), based on Mask-RCNN and U-Net deep learning mod-
ls, respectively. They were trained on the same dataset, made
f both public and private radio survey data (including ASKAP
arly Science and pilot data), to detect three classes of objects:
adio galaxies with extended morphology, compact sources and
maging sidelobes (artefacts). At the present stage, both tools are
eing upgraded to support processing on large images, rather
han limited size cutouts. Another area of development aims
o exploit both classifier predictions to boost performances of
raditional finders, such as caesar. Along this line, new state-
f-the-art deep models and architectures are being tested on
he existing training dataset to enhance current detection and
lassification performances, reported in the reference papers.
9

6. Service deployment and testing

We have deployed the caesar-rest service on different resource
nfrastructures, from single to multiple machines running on
edicated servers or on private clouds. Here we present the tests
arried out with the service deployed on a Kubernetes cluster
rovisioned for the scopes of the NEANIAS project on the GARR
penStack cloud.23 Due to the limited resources available in this
luster, shared among other NEANIAS services, only the web ap-
lication, database, and accounting/job monitoring services were
eployed on the cloud. Job execution was instead performed
n a Slurm cluster installed on a standalone server (Dell Pow-
rEdge R740, 2×Intel Xeon Gold 6248R 3.0 GHz, 48 cores, 512 GB

memory) dedicated for the CIRASA project. The REST application

23 https://cloud.garr.it/.

https://cloud.garr.it/
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Fig. 5. Left: Median service response time taken when submitting a job to the caesar-rest service as a function of the number of parallel job requests sent by a
client. Results are reported for 1 (blue squares), 5 (black dots) and 10 (red triangles) web application replicas (see text). Right: Median runtime taken to complete
caesar jobs as a function of the input image size in pixels. Runtimes are reported for two different image source densities (see text): 250 deg−2 (blue squares), 2500
deg−2 (black dots). For images of size 7200 × 7200 pixels and source densities of 2500 deg−2 , we report the runtimes obtained in multithread (nthreads = 40, green
diamond) and hybrid MPI parallel runs (nproc = 4 each with nthreads = 3, red triangle).
Fig. 6. A sample simulated map (900 × 900 pixels, 1 deg2 area) produced for
he testing campaign. FWHM synthesized beam is equal to 15" and Gaussian
oise has a 20 µJy/beam rms. Point sources were injected uniformly spaced

and with flux density S following exp−λS (λ = 1.6) and ranging from 50 µJy
o 1 Jy. Extended sources were injected uniformly spaced from a 2D elliptical
aussian model with randomized axes, up to a maximum major axis size of 3×
eam size and minor/major axis size ratio varying from 0.4 to 1. Flux densities S
ere generated according to exp−λS (λ = 1.6) and ranging from 5 µJy to 1 mJy.
otal source density is equal to 2500 deg−2 , with a fraction of 10% of extended
ources.

as replicated on the Kubernetes cluster and put behind a load
alancer service to improve the service scaling capabilities. Each
eplica requires 1 dedicated CPU and runs 2 uWSGI dual-threaded
orkers.
In Fig. 5 we report some metrics extracted from the performed

ests. The left panel shows the median service response time (in
10
seconds) obtained when submitting one or more jobs in parallel.
Error bars are the median absolute deviations (MADs) for each
test case. Tests were done with 1 (blue squares), 5 (black dots),
and 10 (red triangles) REST application replicas running in the
Kubernetes cluster. Response times are due to both the Flask and
Slurm REST applications, currently deployed in different sites. As
expected, the response times are increasing with the service load
and overall improving as more replicas are available.

For testing purposes, we produced several simulated radio
maps of varying size and source density with both point and
extended sources generated according to configurable parame-
ters. Given the limited computing resources currently dedicated
for the project, the maximum image size considered for the
scalability tests was 7200 × 7200, which is roughly comparable
with image mosaic products of some SKA precursors surveys
(e.g. LOFAR LoTSS, MeerKAT GPS, ASKAP Early Science surveys),
but smaller by a factor 2 and 4.5 with respect to other surveys
(e.g. the EMU Pilot and Rapid ASKAP Continuum Surveys) and
SDC1 simulations, respectively. A sample test map is reported in
Fig. 6. In Fig. 5(b) we report the median runtime of completed
caesar jobs for different simulated image sizes (in pixels) and
source densities (in number of sources per deg2). All runs were
performed in serial mode, using a single core in the Slurm cluster.
Computing times are particularly relevant for larger images and
high source densities and are mostly due to the source fitting
stage, as discussed in Riggi et al. (2019). If sufficient resources are
provided, however, caesar jobs can be eventually run in parallel
mode using OpenMP and MPI, reducing the computing times.
For example, in Fig. 5(b) we report the runtimes relative to the
longest task (image size = 7200 × 7200 pixels, source density
= 2500 deg−2) obtained in multithread (40 OpenMP threads,
green diamond) and hybrid parallel (4 MPI processes, each with
3 OpenMP threads, red triangle) runs. As one can see, a modest
speed-up is gained in the first case, while the computing time
can be reduced by a factor of ∼20 by employing two levels
of parallelism. In the first case, in fact, the input image is not
partitioned into smaller sub-tiles (as in the second case, where
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erial tasks are operating on a smaller image) and some finder
ub-tasks are known to have poor multithread scalability above
–8 threads (Riggi et al., 2019).

. Conclusions and future work

We have presented the CIRASA project, a visual analytics plat-
orm for astronomical source visualization and analysis, being
eveloped mainly for meeting the radio astronomical commu-
ity’s needs in the SKA and its precursors era, but also useable
ith datasets at other wavelengths. The platform consists of
hree main pillars: the VLVA client, the VLKB services, and the
ource finding services. The VLVA and VLKB services have al-
eady been integrated in the platform, and both are currently
ndergoing new developments to support the functionalities and
equirements of the CIRASA and NEANIAS projects. New imple-
entations will be described in forthcoming papers.
In this paper we described the architecture, implementation,

nd testing of the source finding service, also named caesar-rest
hroughout the text. The service is currently deployed on a proto
uropean Open Science Cloud infrastructure, backed up by dedi-
ated CIRASA computing resources. This deployment was used to
arry out performance tests on simulated radio maps to study the
ervice response and scalability when varying the size of the input
mage, the radio source density, and the number of computing
esources used for the application and the job submission. We
ave found that increasing the number of application replicas and
he computing elements allow to significantly reduce the service
esponse latencies, bringing the job runtimes to acceptable levels
or a user even with large and densely populated maps.

The service is currently undergoing a second major testing
ithin a restricted community of astronomers (<50) selected

n the NEANIAS project. User feedback will drive new develop-
ents to be made in the very near future, before moving to the

ntegration with the VLVA.
In the future we plan to integrate into the service other source

inding applications widely in use in the radio community, ad-
itional source finding utilities provided with the caesar tool
e.g. for source selection mainly), and new ML-based finders
nd classifiers being developed within the CIRASA project. The
andling of the source catalogues produced by different finder
lgorithms is one of the functionalities that we foresee to develop
oth at the service and VLVA client level. This will ultimately
rovide the users with a wide selection of algorithms to be
ombined, leading to a considerable boost in source extraction
erformance for their analyses.
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Appendix A. Caesar-rest configuration options

In Table A.1 we report a list of the command-line options
currently available to configure the caesar-rest service. The same
options can also be configured for the provided Docker con-
tainer (see https://hub.docker.com/repository/docker/sriggi/caesa
r-rest ).

Appendix B. Software dependencies

In Table B.2 we report a list of major software dependencies
used in caesar-rest service.

Appendix C. Caesar-rest APIs

caesar-rest APIs are described in the online software reposi-
tory. Here we summarize the main functions.

Users can upload their image data using the provided API
method:

POST caesar/api/v1.0/upload

In case of success, the returned file uuid has to be used for
job submission or to download/delete the uploaded files, through
these API methods, respectively:

GET /caesar/api/v1.0/download/{uuid}
POST /caesar/api/v1.0/delete/{uuid}

where the following method allows for retrieving all the files
uploaded by a user:

GET /caesar/api/v1.0/fileids

To submit a job, clients need to use the following API method:

POST /caesar/api/v1.0/job

where the expected request JSON data are described in Table C.3.
Supported job options can be queried for each supported source
finding application with the API method:

GET /caesar/api/v1.0/app/{appname}/describe

while a list of supported apps can be retrieved with this API
method:

GET /caesar/api/v1.0/apps

Job submission returns the job identifier that has to be used to
query the status of the job or cancel it using these API methods,
respectively:
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able A.1
ist of command-line options defined to configure the caesar-rest service.
Option Default Description

Main options

--datadir /opt/caesar-rest/data Directory where to store uploaded data
--jobdir /opt/caesar-rest/jobs Directory where to store jobs
--job_scheduler Celery Job scheduler to be used. Options are: {celery, kubernetes, slurm}

Logging options

--loglevel INFO Log level threshold. Options are: {DEBUG, INFO, WARN, ERROR}
--logtofile – Enable log writing also to files
--logdir /opt/caesar-rest/logs Directory to store log files
--logfile app_logs.json Log filename
--logfile_maxsize 5 Max file size in MB

DB options

--dbhost Localhost MongoDB database host
--dbname Caesardb Name of MongoDB database
--dbport 27017 MongoDB database port

AAI options

--aai – Enable service authentication
--secretfile – File (.json) with client credentials for AAI service

Celery options

--result_backend_host Localhost Celery result backend service host
--result_backend_port 27017 Celery result backend service port
--result_backend_proto mongodb Celery result backend service type. Options are: {mongodb,redis}
--result_backend_dbname Caesardb Celery result backend database name.
--broker_host Localhost Celery broker service host.
--broker_port 5672 Celery broker service port.
--broker_proto amqp Celery broker service type. Options are: {amqp,redis}
--broker_user Guest Celery broker service username
--broker_pass Guest Celery broker service password

Kubernetes options

--kube_config – Kubernetes cluster configuration file path
--kube_cafile – Path to Kubernetes client certificate authority file
--kube_keyfile – Path to Kubernetes client key file
--kube_certfile – Path to Kubernetes client certificate file

Slurm options

--slurm_keyfile – Path to Slurm rest service key file
--slurm_user Cirasa Username enabled to run jobs in the Slurm cluster
--slurm_host Localhost Slurm rest service host
--slurm_port 6820 Slurm rest service port
--slurm_batch_workdir – Path to Slurm rest service key file
--slurm_queue normal Slurm cluster queue for submitting jobs
--slurm_jobdir /mnt/storage/jobs Path in which the job directory is mounted in Slurm cluster
--slurm_datadir /mnt/storage/data Path in which the data directory is mounted in Slurm cluster
--slurm_max_cores_per_job 4 Maximum number of cores per node reserved for a job in the Slurm cluster

Volume mount options

--mount_rclone_volume – Enable mounting of Nextcloud volume through rclone
--mount_volume_path /mnt/storage Mount volume path for container jobs
--rclone_storage_name – rclone remote storage name
--rclone_storage_path . rclone remote storage path to mount
Table B.2
List of major software dependencies used in caesar-rest service.
Software Mandatory Notes References

Flask YES – https://flask.palletsprojects.com/en/2.0.x/
uwsgi NO Desired when running the service in production https://uwsgi-docs.readthedocs.io/en/latest/
flask-pymongo YES – https://flask-pymongo.readthedocs.io/en/latest/
pymongo YES – https://pymongo.readthedocs.io/en/stable/
flask_oidc_ex NO Required when enabling service authentication https://pypi.org/project/flask-oidc-ex/
structlog YES Needed to format log files to be sent to Logstash service https://www.structlog.org/en/stable/
celery NO Required when enabling Celery job management https://docs.celeryproject.org/en/stable/
kubernetes NO Required when enabling Kubernetes job management https://pypi.org/project/kubernetes/
GET /caesar/api/v1.0/job/{job_id}/status
POST /caesar/api/v1.0/job/{job_id}/cancel

To retrieve job outputs (in a zipped file format), the following
ethod is provided:

GET /caesar/api/v1.0/job/{job_id}/output
12
Some applications may also support additional methods for re-
trieving the individual job products. For example, caesar supports
retrieving the extracted source islands as ASCII table file or JSON
format, using these API methods, respectively:

GET /caesar/api/v1.0/job/{job_id}/output-sources
GET /caesar/api/v1.0/job/{job_id}/sources

https://flask.palletsprojects.com/en/2.0.x/
https://uwsgi-docs.readthedocs.io/en/latest/
https://flask-pymongo.readthedocs.io/en/latest/
https://pymongo.readthedocs.io/en/stable/
https://pypi.org/project/flask-oidc-ex/
https://www.structlog.org/en/stable/
https://docs.celeryproject.org/en/stable/
https://pypi.org/project/kubernetes/


S. Riggi, C. Bordiu, F. Vitello et al. Astronomy and Computing 37 (2021) 100506

T
L

B
r

C
C
C
C

D
D

d
H
H
H

able C.3
ist of job submission request data to be provided by user.
Field Mandatory Type Description

app YES String Job application name
tag NO String Assigned job label
data_inputs YES String Input data uuid
job_inputs YES Dictionary Valid job options

Same functionality is available for fit component catalogue:

GET /caesar/api/v1.0/job/{job_id}/output-components
GET /caesar/api/v1.0/job/{job_id}/source-components

A preview plot of extracted sources as PNG image file or
ase64 encoded string can be obtained using these API methods,
espectively:

GET /caesar/api/v1.0/job/{job_id}/output-plot
GET /caesar/api/v1.0/job/{job_id}/preview
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