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Abstract
Backtracking linesearch is the de facto approach for minimizing continuously differentiable func-

tions with locally Lipschitz gradient. In recent years, it has been shown that in the convex setting it
is possible to avoid linesearch altogether, and to allow the stepsize to adapt based on a local smooth-
ness estimate without any backtracks or evaluations of the function value. In this work we propose an
adaptive proximal gradient method, adaPGM, that uses novel estimates of the local smoothness mod-
ulus which leads to less conservative stepsize updates and that can additionally cope with nonsmooth
terms. This idea is extended to the primal-dual setting where an adaptive three-term primal-dual al-
gorithm, adaPDM, is proposed which can be viewed as an extension of the PDHG method. Moreover,
in this setting the “essentially” fully adaptive variant adaPDM+ is proposed that avoids evaluating the
linear operator norm by invoking a backtracking procedure, that, remarkably, does not require extra
gradient evaluations. Numerical simulations demonstrate the effectiveness of the proposed algorithms
compared to the state of the art.
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1 Introduction
Backtracking linesearch is one of the most successful ideas in smooth optimization. It is well known
that gradient descent with linesearch converges under mild differentiability assumptions [8, §1.2]. Even
under Lipschitz gradient continuity such techniques can lead to significant speedups compared to using
a constant stepsize dictated by a global Lipschitz modulus due to their ability to adapt to the local
geometry of the problem. In this work we explore an alternative approach which can cope with nonsmooth
formulations, does not require any backtracking procedures or function value evaluations, and yet only
requires local Lipschitz gradient continuity of the differentiable term. The key property that allows for
this improvement is the assumption of convexity.

Our work is inspired by [47] where an adaptive gradient method xk+1 = xk − γk+1∇f(xk) is studied
with stepsizes updated by the rule

γk+1 = min

{
γk

√
1 + γk

γk−1
,

1

2Lk

}
, (1.1)

where

Lk :=
∥∇f(xk)−∇f(xk−1)∥

∥xk − xk−1∥ (1.2)

is a local Lipschitz estimate of ∇f . The idea of using an estimate for the Lipschitz modulus has also been
explored in the setting of variational inequalities [70, 64, 12, 69, 10], but often at the cost of enforcing
the stepsize sequence to be nonincreasing, which can lead to slow convergence. Allowing the stepsize to
increase is a crucial feature of (1.1) which our proposed methods maintain. It is worth noting that in [46]
another adaptive scheme, aGRAAL, was proposed for hemivariational inequalities which also allows for
increasing stepsizes (see also [1]). Recently, in the setting of the gradient method for Lipschitz smooth
minimization, [31] advanced an interesting choice of stepsizes according to predefined cyclic patterns. A
similar idea appears in [2] that adopts nonrepeating fractal-like patterns. These methods provably yield
improved worst-case rates over the standard gradient method but are bound to globally Lipschitz smooth
problems. Moreover, they incorporate predetermined stepsize sequences agnostic to the local geometry of
the cost function. Interestingly, adaPGM, the adaptive scheme presented in this paper, as well as the one
in [47], automatically leads to sequences of large stepsizes that exhibit a seemingly cyclic behavior, see
Figure 4 and the discussion in Section 4.3. We also mention recent works [63, 51] whose adaptive rules
are designed to guarantee worst-case rates, and [3] that exploits a continuous-time viewpoint to develop
adaptive algorithms.

In [47] it was observed that the line of proof therein does not provide any route for generalization to
the composite proximal setting. Additionally to showing that this is in fact possible, in this work we will
actually provide larger stepsizes. As better detailed in the discussion before Section 2.2, the improvement
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is partially due to tighter estimates of the geometry of f in which both Lipschitz and (inverse) cocoercivity
estimates are taken into account, namely

ℓk :=
⟨∇f(xk−1)−∇f(xk), xk−1 − xk⟩

∥xk−1 − xk∥2 (1.3a)

and

ck :=
∥∇f(xk−1)−∇f(xk)∥2

⟨∇f(xk−1)−∇f(xk), xk−1 − xk⟩ (1.3b)

for a pair of points xk−1, xk ∈ �n. Noting that the denominator of ℓk or ck is zero iff ∇f(xk)−∇f(xk−1) =
0 (the latter owing to the Baillon-Haddad theorem [4, Cor. 10]; see Lemma A.2 for the local version needed
here), we stick to the convention 0

0 = 0 so that both ℓk and ck are (well-defined, positive) real numbers.
Throughout, we shall also adhere to 1

0 =∞. Note that ℓk and ck are the inverse of the Barzilai-Borwein
stepsize choices [5], which have been considered in the setting of gradient descent [56, 21] but whose
convergence results are limited to the quadratic setting (see also [62, 14] for extensions). Our proposed
adaptive proximal gradient scheme adaPGM (Algorithm 2.1) combines the two estimates and involves the
update rule

γk+1 = min

γk
√

1 + γk

γk−1
,

γk

2
√

[γkℓk(γkck − 1)]+

 (1.4)

on the stepsize. Note that whenever γkck ≤ 1 the update reduces to γk+1 = γk
√

1 + γk

γk−1
, effectively

strictly increasing the stepsize. Regardless, this update is easily seen to be less conservative than (1.1),
the one prescribed in [47, Alg. 1]; see Remark 2.4 for the details. We also point out the recent follow-up
work [48] of [47], subsequent to the preprint version of our manuscript, that also considers the proximal
gradient setting (with a different stepsize update) and improves the second term in (1.1) by a factor of√
2 in the smooth case.

In the second part of the paper this idea is extended to the primal-dual setting to address more general
problems of the form

minimize
x∈�n

φ(x) := f(x) + g(x) + h(Ax), (1.5)

where A is a linear mapping, g and h are (possibly nonsmooth) extended-real-valued convex functions,
and f is a convex function typically assumed to have Lipschitz continuous gradient (this is relaxed to
local Lipschitz continuity here, cf. Assumption II).

In the past decade primal-dual algorithms have gained a lot of popularity in areas ranging from
machine learning and signal processing to control [18, 61, 35, 34, 37, 38]. Their popularity is primarily
due to their ability to achieve full splitting on composite problems of the form (1.5). Moreover, inherent
properties of first-order operations facilitate block-coordinate and distributed variants, see for instance
[9, 41, 27, 43, 42] and the references therein.

There is a large body of literature on primal-dual algorithms; see, e.g., [15, 26, 20, 11, 38, 68]. De-
spite employing different techniques in their convergence analysis, the majority of existing methods rely
on establishing a Fejér-type inequality. In fact, most can be viewed as intelligent applications of a mono-
tone splitting technique such as forward-backward, Douglas-Rachford, and forward-backward-forward
splittings for solving the associated primal-dual optimality conditions; see, e.g., [33, 66, 20, 11, 19].
More recently, the introduction of new splitting techniques such as AFBA [39, 40], NOFOB [28], forward-
Douglas-Rachford-forward [59], forward-backward-half forward [13], forward-reflected-backward [50], has
led to new primal-dual algorithms. We remark also that when A = id in (1.5) one can directly solve the
problem without any lifting by using the three-term splitting [22]. There exists also an adaptive/linesearch
variant of this algorithm (see, e.g., [54]) which however requires potentially costly extra gradient evalua-
tions during the backtracking procedure.
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Unlike the above described correspondence with splitting techniques, our proposed method cannot be
viewed as an instance of any splitting technique for solving general monotone inclusions, in that it relies
heavily on the knowledge that the operators involved are subdifferentials of convex functions. Although
the proposed idea is extendable to other primal-dual methods such as those in [39], our focus here is on
an adaptive variant of PDHG [15, 66, 20]. An interesting algorithm in this line of work was proposed in
[65] which however cannot handle the third nonsmooth term g in (1.5). In adaPDM (Algorithm 3.1) we
provide a different stepsize rule that not only can handle (1.5) but also inherits the same idea of using
tighter estimates ck, ℓk as in the case of the proximal gradient method.

A second consideration for primal-dual methods is that in the usual (nonadaptive) setting the primal-
dual stepsizes γ, σ should typically satisfy a condition of the form γσ∥A∥2 ≤ 1− γLf

2 (see for instance [20,
Thm. 3.1] and [39, Prop. 5.1]). In practical applications the norm of the linear operator may be costly to
compute and can lead to smaller stepsizes, and thus slower convergence. Recently, in the setting where
f ≡ 0, a linesearch procedure was proposed in [49] for selecting the stepsizes based on an estimate of the
norm of the linear operator. A linesearch extension of [46] in the primal-dual setting was also proposed
in [17]. Instead, the linesearch procedure that we propose naturally integrates our adaptive primal-dual
algorithm adaPDM+ (Algorithm 3.2) to handle the more general problem (1.5) without any extra gradient
evaluations during the backtracks.

1.1 Contributions
The main contributions of the paper are summarized below.

1. We propose a nonmonotone adaptive stepsize rule for the proximal gradient method that departs from
the usual linesearch technique. In contrast to backtracking linesearch, the new approach eliminates the
need for backtracks or function value evaluations altogether. More importantly, the proposed algorithm
does not require any parameter tuning and can quickly recover from a bad stepsize initialization. This is
achieved by adapting the stepsize to the local geometry of the smooth function, combining local estimates
of cocoercivity and Lipschitz moduli of the differentiable term along the last two iterates. Compared to
[47], even when restricted to the case of gradient descent, the proposed approach allows for less restrictive
stepsizes. Through this observation, convergence of the aforementioned work in the proximal case follows
immediately as a by-product of our analysis.

2. This idea is extended to the primal-dual setting where an adaptive three-term splitting for composite
minimization problems is developed. The proposed algorithm can be viewed as an extension of the Condat-
Vũ algorithm [20, 66], which in turn is an extension of the PDHG algorithm [15].

3. As a final contribution, an “essentially” fully adaptive variant of the primal-dual method is presented.
This is meant in the sense that it no longer requires evaluating the norm of the linear operator A,
and is thus “fully” adaptive, but only “essentially” so, for all this comes at the expense of performing a
backtracking to potentially correct the given (local) estimates. Remarkably nevertheless, the proposed
linesearch does not require any extra gradient evaluations and can thus be implemented efficiently.

1.2 Organization
We conclude this section by introducing the adopted notation. The proposed adaptive proximal gradient
method adaPGM is formally studied in Section 2. The underlying idea is then extended to the primal-dual
setting in Section 3, where adaPDM is presented that can handle one additional nonsmooth term composed
with a linear operator. The issue of estimating the norm of the linear operator is resolved through the
introduction of a linesearch procedure in Section 3.2. The convergence results for both variants of the
primal-dual algorithm are presented in a unified fashion in Section 3.3 with some of the proofs deferred
to Appendix A. Numerical simulations for the proposed algorithms are presented in Section 4, together
with a commentary on some empirical observations. Section 5 concludes the paper.
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1.3 Notation
The set of real and extended-real numbers are � := (−∞,∞) and � := � ∪ {∞}, while the positive and
strictly positive reals are �+ := [0,∞) and �++ := (0,∞). We use the notation [x]+ = max {0, x}.
With id we indicate the identity function defined on a suitable space. We denote by ⟨ · , · ⟩ and
∥ · ∥ the standard Euclidean inner product and the induced norm. Given a set D ⊆ �n, with intD,
relintD and bdryD we respectively denote its interior, relative interior, and boundary, and for a se-
quence (xk)k∈� we write (xk)k∈� ⊆ D to indicate that xk ∈ D for all k ∈ �. The diameter of D is
diamD := sup {∥x− y∥ | x, y ∈ D}, while its indicator function is ιD, namely ιD(x) = 0 if x ∈ D and ∞
otherwise. Given two sets D,D′ ⊆ �n, the notation D + D′ := {x+ x′ | x ∈ D, x′ ∈ D′} indicates their
Minkowski sum.

The notation B(x̄; r) := {x | ∥x− x̄∥ ≤ r} indicates the closed ball centered at x̄ and with radius
r. The domain and epigraph of an extended-real-valued function h : �n → � are the sets domh :=
{x ∈ �n | h(x) <∞} and epih := {(x, c) ∈ �n ×� | h(x) ≤ c}. Function h is said to be proper if domh ̸=
∅, and lower semicontinuous (lsc) if epih is a closed subset of �n+1. We say that h is level bounded if its
c-sublevel set lev≤c h := {x ∈ �n | h(x) ≤ c} is bounded for all c ∈ �. The conjugate of h is defined by
h∗(y) := supx∈�n {⟨y, x⟩ − h(x)}.

We say that a differentiable function h : �n → � has locally Lipschitz continuous gradient if for every
convex and compact set V ⊂ �n there exists Lh,V > 0 such that ∥∇h(x)−∇h(x′)∥ ≤ Lh,V∥x− x′∥ holds
for all x, x′ ∈ V.1

2 Adaptive proximal gradient method
The proximal gradient method (PGM) is the natural extension of gradient descent for constrained and
nonsmooth problems. It addresses nonsmooth minimization problems by splitting them into the sum of
two terms as follows:

minimize
x∈�n

φ(x) := f(x) + g(x). (2.1)

Throughout this section the following underlying assumptions are imposed on problem (2.1).

Assumption I (Requirements for the proximal gradient setting). The following hold in problem (2.1):

a1 f : �n → � is convex and has locally Lipschitz continuous gradient.

a2 g : �n → � is proper, lsc, and convex.

a3 A solution exists: argminφ ̸= ∅.

In addition to the gradient of the differentiable term, the fundamental oracle of PGM is the proximal
mapping [7, Def. 6.1] defined as

proxτg(x) := argmin
w∈�n

{
g(w) + 1

2τ ∥w − x∥2
}
,

where τ > 0 is a given stepsize. In the convex setting the proximal map is single valued and in fact
Lipschitz continuous. It is well known that for many applications of interest such as constrained or
regularized problems the nonsmooth term admits closed form proximal operator (e.g., projection on sets,
shrinkage operator, etc.). The most common variant of PGM involves a constant stepsize that is upper
bounded by 2/Lf , where Lf is the global Lipschitz constant of ∇f . A common strategy in practice is to
estimate such modulus via backtracking linesearch.

1By virtue of [57, Thm. 9.2], this condition is equivalent to strict continuity of ∇h at every point, in the sense of [57,
Def. 9.1].
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Algorithm 2.1 Adaptive proximal gradient method (adaPGM)

Require starting point x−1 ∈ �n and stepsizes γ0 ≥ γ−1 > 0

Initialize x0 = proxγ0g(x
−1 − γ0∇f(x−1))

Repeat for k = 0, 1, . . . until convergence
2.1.1: With ℓk and ck as in (1.3), define the stepsize as // [r]+ := max {r, 0}

γk+1 = γk min

√
1 + γk

γk−1
,

1

2
√

[γkℓk(γkck − 1)]+


2.1.2: xk+1 = proxγk+1g

(xk − γk+1∇f(xk))

2.1 Algorithmic overview
Diverging from the linesearch technique, we propose adaPGM that adaptively selects the stepsizes based
on the estimates ck, ℓk as in (1.3). Note that an adaptive gradient method with g ≡ 0 was proposed in
[47] with a different update rule, see (1.1), where it was observed that the adopted line of proof does
not seem to provide any route for generalization to account for a nonsmooth term. This appears to
be fundamentally due to the fact that the analysis therein revolves around the fact that the difference
of consecutive iterates is a multiple of the gradient. In contrast, we circumvent this by combining the
subgradient inequality for the nonsmooth term g at three different pairs of points, namely (x⋆, xk+1),
(xk+1, xk), and (xk−1, xk). In addition, the combined use of the quantities ℓk and ck as in (1.3) allows for
estimating, along with that of the gradient, the local Lipschitz constant of the forward operator id−γk∇f .
This appears to be fundamental for recovering the update rule (1.1) of [47], and in fact leads to the less
conservative update rule of adaPGM.

Initialization and practical considerations

AdaPGM has the ability to recover from a small stepsizes which may be due to bad initialization, or
stumbling upon steep/ill-conditioned regions, by linearly increasing the stepsize (by a factor of at least√
2) until a value proportional to the inverse of a local Lipschitz estimate is attained; see the proof of

Theorem 2.3(ii) for the details. On the other extreme, too large an initial stepsize is corrected in one
iteration thanks to the second term in (1.4). Nevertheless, this event can also result in the very first
algorithmic step being pushed far away without control.

To mitigate such scenarios at initialization, γ0 can be refined by running offline proximal gradient
updates; starting from the initial point x−1, γ0 can be updated by the inverse of either one of the
quantities in (1.3) or (1.2) evaluated between x−1 and the prox-grad point. If the updated stepsize is
orders of magnitude smaller than the original one, the same procedure may be repeated an additional
time. This procedure is helpful even for problems with globally Lipschitz gradient continuity. Once a
reasonable γ0 is obtained, we suggest selecting γ−1 small enough such that γ0

√
1 + γ0/γ−1 ≥ 1

2L0
, ensuring

that γ1 ≥ 1
2L0

. It is important to note that this choice of γ−1 doesn’t affect the convergence results of
Theorem 2.3. In fact, with this initialization Theorem 2.3(ii) holds with k0 = 1.

2.2 Preliminary lemmas
Throughout, we will make use of the following shorthand for the forward operator with stepsize γk:

Hk := id− γk∇f.
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The subgradient characterization of the proximal step implies that (see (2.4))

1
γk

(
Hk(x

k−1)−Hk(x
k)
)
∈ ∂φ(xk). (2.2)

This quantity plays an important role in our analysis. As we are about to show, the combined adoption
of the estimates ℓk and ck provides an estimate of the Lipschitz modulus of not only ∇f but also the
forward operator Hk.

Lemma 2.1. Suppose that Assumption I holds, and let xk−1, xk ∈ �n. Then, with Lk, ℓk, and ck as in
(1.2) and (1.3) the following hold:

(i) ∥∇f(xk−1)−∇f(xk)∥2 = ckℓk∥xk−1 − xk∥2, that is, ckℓk = L2
k.

(ii) ∥Hk(x
k−1)−Hk(x

k)∥2 =
(
1− γkℓk(2− γkck)

)
∥xk−1 − xk∥2.

(iii) ℓk ≤ Lk ≤ Lf,V and Lk ≤ ck, where Lf,V is a Lipschitz modulus for ∇f on a compact convex set V
containing xk−1 and xk.

Proof. The first assertion is of trivial verification, and similarly the third one follows from the Cauchy-
Schwarz inequality and the Baillon-Haddad theorem [4, Cor. 10], see also [6, Cor. 18.17]. To conclude,
observe that

∥Hk(x
k−1)−Hk(x

k)∥2 = ∥xk−1 − xk∥2 + γ2
k∥∇f(xk−1)−∇f(xk)∥2

− 2γk⟨∇f(xk−1)−∇f(xk), xk−1 − xk⟩,

from which assertion (ii) follows.

Our convergence analysis will rely on first establishing boundedness of the generated sequence, thereby
entailing the existence of a Lipschitz constant Lf,V > 0 for ∇f on a bounded convex set V that contains
the iterates. It will then follow from Lemma 2.1(iii) that both Lk and ℓk are upper bounded by this
quantity, which in turn will be used to show that this modulus provides a lower bound for the stepsize
separating it from zero. Before that, we show how the combined use of ℓk and ck can be employed to
estimate the progress of the iterates generated by PGM with arbitrary stepsizes, not necessarily dictated
by the update rule of adaPGM. To simplify the presentation, we introduce the following notation:

ρk := γk

γk−1
and Pk := φ(xk)−minφ. (2.3)

Lemma 2.2. Suppose Assumption I holds, and consider a sequence (xk)k∈� generated by PGM iterations
xk+1 = proxγk+1g

(xk − γk+1∇f(xk)). Then

1
2∥xk+1 − x⋆∥2 + γk+1(1 + ρk+1)Pk + 1

4∥xk − xk+1∥2

≤ 1
2∥xk − x⋆∥2 + ρk+1γk+1Pk−1 − ρ2k+1γkℓk(1− γkck)∥xk−1 − xk∥2

holds for any k ≥ 1 and x⋆ ∈ argminφ, where ℓk and ck are as in (1.3), and ρk and Pk as in (2.3).

Proof. The subgradient characterization

Hk+1(x
k)−xk+1

γk+1
= xk−xk+1

γk+1
−∇f(xk) ∈ ∂g(xk+1) (2.4)

of xk+1 = proxγk+1g
(xk − γk+1∇f(xk)) implies that

0 ≤ g(x⋆)− g(xk+1) + ⟨∇f(xk), x⋆ − xk+1⟩ − 1
γk+1
⟨xk − xk+1, x⋆ − xk+1⟩

= g(x⋆)− g(xk+1) + ⟨∇f(xk), x⋆ − xk+1⟩
(A)

+ 1
2γk+1

∥xk − x⋆∥2 − 1
2γk+1

∥xk+1 − x⋆∥2 − 1
2γk+1

∥xk − xk+1∥2
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holds for any solution x⋆. We next proceed to upper bound the term (A) as

(A) = ⟨∇f(xk), x⋆ − xk⟩+ ⟨∇f(xk), xk − xk+1⟩
= ⟨∇f(xk), x⋆ − xk⟩+ 1

γk
⟨Hk(x

k−1)− xk, xk+1 − xk⟩+ 1
γk
⟨Hk(x

k−1)−Hk(x
k), xk − xk+1⟩

(2.4)
≤ f(x⋆)− f(xk) + g(xk+1)− g(xk) + 1

γk
⟨Hk(x

k−1)−Hk(x
k), xk − xk+1⟩

(B)

.

We bound the term (B) by Young’s inequality with parameter εk+1 as

(B) ≤ εk+1

2γk
∥xk − xk+1∥2 + 1

2εk+1γk
∥Hk(x

k−1)−Hk(x
k)∥2

2.1(ii)
= εk+1

2γk
∥xk − xk+1∥2 + 1−γkℓk(2−γkck)

2εk+1γk
∥xk−1 − xk∥2. (2.5)

Let φ⋆ := minφ. The three inequalities combined give

0 ≤ φ⋆ − φ(xk) + 1
2γk+1

∥xk − x⋆∥2 − 1
2γk+1

∥xk+1 − x⋆∥2

+
(

εk+1

2γk
− 1

2γk+1

)
∥xk − xk+1∥2 + 1−γkℓk(2−γkck)

2εk+1γk
∥xk−1 − xk∥2.

Using again the subgradient (2.4) (since ∂φ = ∇f + ∂g) one has

vk := xk−1−xk

γk
− (∇f(xk−1)−∇f(xk)) ∈ ∂φ(xk), (2.6)

hence, for any ϑk+1 ≥ 0,

0 ≤ ϑk+1

(
φ(xk−1)− φ(xk)− ⟨vk, xk−1 − xk⟩

)
= ϑk+1

(
φ(xk−1)− φ(xk)− 1

γk
∥xk − xk−1∥2 + ⟨∇f(xk−1)−∇f(xk), xk−1 − xk⟩

)
= ϑk+1

(
φ(xk−1)− φ(xk)− 1−γkℓk

γk
∥xk − xk−1∥2

)
. (2.7)

By summing the last two inequalities, multiplying by γk+1, and observing that

φ⋆ − φ(xk) + ϑk+1(φ(x
k−1)− φ(xk)) = ϑk+1Pk−1 − (1 + ϑk+1)Pk,

we obtain

1
2∥xk+1 − x⋆∥2 + γk+1(1 + ϑk+1)Pk + 1−εk+1ρk+1

2 ∥xk − xk+1∥2

≤ 1
2∥xk − x⋆∥2 + ϑk+1γk+1Pk−1 + ρk+1

(
1−γkℓk(2−γkck)

2εk+1
− ϑk+1(1− γkℓk)

)
∥xk−1 − xk∥2. (2.8)

Selecting ϑk+1 = ρk+1 and εk+1 = 1/2ρk+1 results in the claimed inequality.

As detailed in the proof, the inequality in Lemma 2.2 is a special case of the more general (2.8)
obtained by setting ϑk = ρk and εk+1 = 1/2ρk+1 for any k. As we are about to see in the following
Theorem 2.3, these choices strike a nice balance between simplifying inequality (2.8) and enabling large
stepsizes: the result is a rather simple update rule for the stepsize that works very well in practice. It
would be tempting to explore if more sophisticated tunings of these parameters could lead to further
improvements, an aspect that we believe is worth investigating in the future, see Remark 2.6.
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2.3 Convergence results
While adaPGM can be seen as a special case of the more general primal-dual adaPDM, the convergence
results of adaPGM is obtained under fewer restrictions (cf. Section 3.1). For this reason, we provide a
dedicated proof for the adaptive proximal gradient algorithm.

Theorem 2.3. Suppose that Assumption I holds, and consider the iterates generated by adaPGM. Then,
for any x⋆ ∈ argminφ, with ρk and Pk as in (2.3) and with Uk(x⋆) defined as

Uk(x⋆) := 1
2∥xk − x⋆∥2 + 1

4∥xk − xk−1∥2 + γk(1 + ρk)Pk−1,

the following hold:

(i) For all k ≥ 1, Uk+1(x
⋆) ≤ Uk(x⋆)−

( ≥0

1
4 − ρ2k+1γkℓk(γkck − 1)

)
∥xk−1−xk∥2−γk

( ≥0

1 + ρk − ρ2k+1

)
Pk−1.

(ii) The sequence (xk)k∈� is bounded and γk > 1
2Lf,V

holds for every k ≥ k0 :=
⌊
2 log2

1
2γ0Lf,V

⌋
+
, where

Lf,V is a Lipschitz modulus for ∇f on a compact convex set V containing (xk)k∈�.

(iii) The sequence (xk)k∈� converges to a solution. The claim remains true if the stepsizes are chosen in
such a way that (1.4) holds with “≤”, as long as (γk)k∈� is bounded away from zero.

(iv) The following rate holds

min
k=0,1,...,K

(φ(xk)−minφ) ≤ U1(x⋆)∑K+1
k=1 γk

,

which by assertion (ii) implies a sublinear O(1/K) convergence rate on the best-so-far cost.

Proof.

♠ (i) Expressed in terms of Uk(x⋆), the inequality in Lemma 2.2 simplifies to the one in the statement.
The update rule for γk implies that the coefficients indicated in the statement are greater than or equal
to zero, and the claim follows.

♠ (ii) The proven inequality implies that (Uk(x⋆))k∈� converges for any x⋆ ∈ argminφ. Taking into
account the nonnegativity of the last two terms in the definition of Uk(x⋆), it follows that (xk)k∈� is
bounded. As such, V and Lf,V as in the statement exist. Observe that

γk

2
√

[γkℓk(γkck−1)]+
= 1

2

√
1

ℓkck

γkck
[γkck−1]+

≥ 1
2
√
ℓkck

= 1
2Lk

, (2.9)

where the last identity owes to Lemma 2.1(i), and therefore

γk+1 ≥ min
{
γk

√
1 + ρk,

1
2Lk

}
(2.10)

holds for every k. Suppose that γk ≤ 1/2Lf,V for k = 0, . . . ,K. Because of (2.10) and Lemma 2.1(iii), this
implies that γk+1 = γk

√
1 + ρk for k = 0, . . . ,K − 1. Then, for these k one has that ρ2k+1 = 1 + ρk > 1,

which inductively gives ρ2k ≥ 2 for all k = 1, . . . ,K (since ρ0 ≥ 1). We then have

γ2
K = ρ2Kγ2

K−1 ≥ 2γ2
K−1 ≥ · · · ≥ 2Kγ2

0 , (2.11)

showing that in at most k0 iterations stepsize exceeds 1/2Lf,V . From this point, a trivial induction argument
using (2.10) reveals that γk ≥ 1/2Lf,V for all k ≥ k0.

♠ (iii) We begin by observing that, as is apparent from its proof, assertion (i) remains valid if the
identity in (1.4) is replaced by an inequality “≤”. Either way, a telescoping argument yields that

γk(1 + ρk − ρ2k+1)Pk−1 → 0 as k →∞. (2.12)

We proceed by intermediate claims.
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Claim 2.3.1: lim infk→∞ Pk = 0, and in particular (xk)k∈� admits a limit point x∞ ∈ argminφ.
Since (xk)k∈� is bounded and φ is lsc, it suffices to show that lim infk→∞ Pk = 0. If lim supk→∞(1 +
ρk − ρ2k+1) > 0, then (2.12) yields the claim, since γk is bounded away from zero. Alternatively, since
1+ρk−ρ2k+1 ≥ 0, necessarily 1+ρk−ρ2k+1 → 0, from which it easily follows that lim infk→∞ ρk > 1, and
that therefore γk → ∞; in this case, because of the inequalities γk(1 + ρk)Pk−1 ≤ Uk ≤ U1, this directly
proves that Pk → 0.
Claim 2.3.2: x∞ is the only limit point that belongs to argminφ.
Suppose that x′

∞ ∈ argminφ is a limit point. Observe that

⟨xk, x∞ − x′
∞⟩ = Uk(x′

∞)− Uk(x∞) + 1
2∥x∞∥2 − 1

2∥x′
∞∥2,

and since (Uk(x⋆))k∈� is convergent for all x⋆ ∈ argminφ, then so is (⟨xk, x∞− x′
∞⟩)k∈�. Passing to the

limit along the two converging subsequences thus yields ⟨x∞, x∞ − x′
∞⟩ = ⟨x′

∞, x∞ − x′
∞⟩, which after

rearranging results in ∥x∞ − x′
∞∥2 = 0, establishing the claim.

Claim 2.3.3: (xk)k∈� converges to a point in argminφ.
Let x∞ be the (unique) optimal limit point of (xk)k∈� as in Claim 2.3.2, and let

U := lim
k→∞

Uk(x∞), (2.13)

which exists since the sequence is monotonically decreasing by assertion (i). Because of the inequality
1
2∥xk − x∞∥2 ≤ Uk(x∞), it suffices to show that U = 0. Observe that, for every k,

ρk ≤ ρmax where ρmax := max
{

γ0

γ−1
, 1
2 (1 +

√
5)
}
> 1, (2.14)

as it can be verified by induction. We consider two mutually exclusive scenarios.
♢ Suppose that (γk)k∈� is bounded, and consider a subsequence (xk)k∈K such that limK∋k→∞ Pk =
0, which exists and converges to x∞ by virtue of the previous claims. Extract K ′ ⊆ K such that
(γk+1)k∈K′ → γ for some γ > 0. Then, xk+1 = proxγk+1g

(xk− γk+1∇f(xk))→ proxγg(x∞−γ∇f(x∞)) =
x∞ as K ′ ∋ k →∞ as well. This yields the sought identity

U = lim
k→∞

Uk(x∞) = lim
K′∋k→∞

Uk+1(x∞)

= lim
K′∋k→∞

(
1
2∥xk+1 − x∞∥2 + 1

2∥xk+1 − xk∥2 + γk+1(1 + ρk+1)Pk

)
= 0,

where the vanishing of the last term owes to boundedness of (γk)k∈� and (ρk)k∈�.
♢ Suppose instead that (γk)k∈� is unbounded, and let (γk)k∈K′ be an arbitrary subsequence such that
γk →∞ as K ′ ∋ k →∞. From the inequality γkPk−1 ≤ Uk(x∞) ≤ U1(x∞) <∞, we conclude that

Pk−1 → 0 and xk−1 → x∞ as K ′ ∋ k →∞ (2.15)

(recall that φ is lsc, (xk)k∈� is bounded, and x∞ is the unique optimal limit point). Then, since by (2.14)
γk−1 ≥ γk/ρmax → ∞ as K ′ ∋ k → ∞, by the same argument also xk−2 → x∞ as K ′ ∋ k → ∞. With U
as in (2.13), we thus have

U = lim
k→∞

Uk(x∞) = lim
K′∋k→∞

Uk−1(x∞) = lim
K′∋k→∞

γk−1(1 + ρk−1)Pk−2 (2.16)

holding for any set of indices K ′ ⊆ � along which the stepsizes are divergent.
We now construct a specific subsequence K := {k0, k1, . . .} as follows: start with k0 = 1, and for i ≥ 0 let

ki+1 = min {k ≥ ki | γk ≥ ρmaxγki
}. (2.17)

10



Then, (γki)i∈� →∞, which as argued after (2.15) implies that both (xki−1)i∈� and (xki−2)i∈� converge
to x∞. Observe that ρki > 1 holds for all i ∈ � by minimality of ki. Notice further that

ρki−1 ≥ ρ−1
max ∀i ∈ �. (2.18)

To see why, suppose on the contrary that ρki−1 < ρ−1
max; then in particular ρki−1 < 1, thereby ensuring

by the previous observation that ki − 1 /∈ K, and thus ki−1 ≤ ki − 2. This leads to the contradiction

ρmaxγki−1

(2.17)
≤ γki

(2.14)
≤ ρmaxγki−1 = ρmaxρki−1γki−2 < γki−2 < ρmaxγki−1 ,

where the last inequality follows either in case ki − 2 = ki−1 (since ρmax > 1) or when ki−1 < ki − 2 < ki
(from minimality in the definition of ki). This shows (2.18).
Next, by the stepsize update at step 2.1.1,

1
ρmax

γki−2Lki−2

(2.18)
≤ γki−1Lki−2 ≤

γki−2Lki−2

2
√[

γ2
ki−2ℓki−2cki−2 − γki−2ℓki−2

]
+

≤ γki−2Lki−2

2
√[

γ2
ki−2L

2
ki−2 − γki−2Lki−2

]
+

=
1

2

√[
1− 1

γki−2Lki−2

]
+

,

where the third inequality uses the fact that L2
ki−2 = ℓki−2cki−2, and ℓki−2 ≤ Lki−2 by Lemma 2.1.

This implies that (γki−2Lki−2)i∈� must be bounded. The subgradient characterization in (2.6) and the
Cauchy-Schwarz inequality then yield

γki−1Pki−2 ≤ ρki−1⟨xki−2 − x∞, xki−2 − xki−3 − γki−2(∇f(xki−2)−∇f(xki−3))⟩
≤ ρmax(1 + γki−2Lki−2)

bounded

∥xki−2 − x∞∥∥xki−2 − xki−3∥
→0

→ 0 as i→∞.

Combined with the fact that ρki−1 ≤ ρmax, it follows from (2.16) that U = 0.

♠ (iv) A telescoping argument in the descent inequality of assertion (i) yields

UK+1 +

K∑
k=1

γk
(
1 + ρk − ρ2k+1

)
Pk−1 ≤ U1

for K ≥ 1. By further lower bounding UK+1 we obtain

γK+1(1 + ρK+1)PK +
∑K

k=1 γk
(
1 + ρk − ρ2k+1

)
Pk−1 ≤ U1.

Considering the best-so-far quantity mink=0,1,...,K Pk, it follows that

min
k=0,1,...,K

Pk ≤
U1

γK+1(1 + ρK+1) +
∑K

k=1 γk(1 + ρk − ρ2k+1)

=
U1

γK+1(1 + ρK+1) +
∑K

k=1 γk +
∑K

k=1(γkρk − γk+1ρk+1)

=
U1

γ1ρ1 +
∑K+1

k=1 γk
≤ U1

(K + 1)γmin
, (2.19)

where γmin := min
{
γ0,

1
2Lf,V

}
is a lower bound on the stepsize, as demonstrated in the proof of assertion

(ii).
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We remark that if the suggested initialization in Section 2.1 is used, the initial stepsize satisfies
γ0 ≥ 1/Lf,V and consequently (2.19) holds with γmin = 1/2Lf,V . The rate for the best-so-far cost thus
simplifies to mink=0,...,K Pk ≤ 2U1Lf,V

K+1 in this case. More importantly, as a consequence of Theorem 2.3
it can be easily seen that [47, Alg. 1] can in fact cope with nonsmooth problems of the form (2.1). This
fact can be deduced from the inequality (2.10) in the proof of Theorem 2.3(iii), as formalized next.

Remark 2.4 (Comparison with [47, Alg. 1]). With γk+1 as in step 2.1.1 and Lk as in (1.2), as shown in
(2.10) one has that

γk+1 ≥ min
{
γk

√
1 + ρk,

1
2Lk

}
(2.20)

holds for every k. Note that the right-hand side corresponds to the stepsize update of [47, Alg. 1]. As a
consequence, in addition to accommodating proximal terms, adaPGM also comes with a less conservative
stepsize update rule.

Inequality (2.20) cannot be reiterated inductively, and in particular there is no guarantee that,
iteration-wise, the entire sequence of stepsizes produced by adaPGM is larger than that generated by
[47, Alg. 1], even if the algorithms are started with same initial conditions. This is nevertheless enough
to infer convergence of [47, Alg. 1] applied to composite minimization problems as in (2.1).

Corollary 2.5 (Proximal extension of [47, Alg. 1]). Suppose that Assumption I holds. Then, PGM iter-
ations xk+1 = proxγk+1g

(xk − γk+1∇f(xk)) with stepsize rule (1.2) converge to a solution of (2.1).

Proof. The validity of Theorem 2.3(iii) guarantees that the generated sequence remains bounded. As
also observed in [47, Thm. 1], this guarantees that γk ≥ 1

2Lf,V
(up to possibly excluding initial iterates),

where Lf,V is a Lipschitz constant of ∇f on a compact convex set V that contains all the iterates. The
proof follows by invoking Theorem 2.3(iii) in light of (2.20).

Remark 2.6 (Alternative stepsize choices). The update for γk in adaPGM is designed to ensure descent
on the Lyapunov function Uk, cf. Theorem 2.3(i). As commented after the proof of Lemma 2.2, choices
of the parameter ϑk appearing in (2.8) other than ϑk = ρk lead to different update rules for the stepsize.
For instance, retaining εk = 1/2ρk but setting ϑk = πρk for some π > 0 results in2

γk+1 = γk min

√
1
π + γk

γk−1
,

1

2
√
[γkℓk(γkck − 2 + π) + 1− π]+

, (2.21)

bringing about a trade-off between improving either term at the expense of the other. A similar concept
is already pursued in [48], which advances the update

γk+1 = γk min

√
2
3 + γk

γk−1
,

1√
[2γ2

kL
2
k − 1]

+


(unrelated to (2.21), and obtained through different arguments) remarkably improving the worst-case
rate coefficient, see [48, Thm. 3 and §3.2].

3 Adaptive three-term primal-dual methods
In this section the idea of adaptively estimating the local geometry of f will be extended to composite
problems of the form (1.5), which we rewrite here for the reader’s convenience

minimize
x∈�n

φ(x) := f(x) + g(x) + h(Ax).

2The update (2.21) is obtained by expressing (2.8) in terms of Uπ
k (x⋆) := 1

2
∥xk−x⋆∥2+ 1

4
∥xk−xk−1∥2+γk(1+πρk)Pk−1,

and enforcing descent as in Theorem 2.3(i).
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Although the analysis in this setting is inevitably more complicated, the key idea of using the estimates
ck, ℓk in (1.3) remains the same. We will first propose an adaptive algorithm under the assumption that
the norm of the linear operator A is known. This assumpion will then be lifted through a certain linesearch
procedure.

Problem (1.5) is studied under the following assumptions.

Assumption II (Requirements for the primal-dual setting). The following hold in problem (1.5):

a1 f : �n → � is convex and has locally Lipschitz continuous gradient.

a2 h : �m → � and g : �n → � are proper convex and lsc, and A : �n → �m is a linear mapping.

a3 A solution exists: argminφ ̸= ∅.
a4 The problem is strictly feasible: there exists x ∈ relint dom g such that Ax ∈ relint domh.

A well-established approach for addressing (1.5) is to lift it into the primal-dual space and solve the
associated convex-concave saddle point problem

minimize
x∈�n

maximize
y∈�m

L(x, y) := f(x) + g(x) + ⟨Ax, y⟩ − h∗(y).

This lifting is the key to splitting the composed term h ◦ A. Moreover, in doing so the primal and the
dual solutions can be obtained simultaneously. A pair z⋆ = (x⋆, y⋆) will be referred to as a primal-dual
solution if the following primal-dual optimality condition holds

0 ∈ −Ax⋆ + ∂h∗(y⋆), 0 ∈ A⊤y⋆ +∇f(x⋆) + ∂g(x⋆). (3.1)

The set of all such pairs will be denoted by S⋆. Under the constraint qualification of Assumption II.a4,
the set of solutions for the dual problem is nonempty, and thus so is S⋆, and the duality gap is zero, see
[58, Cor. 31.2.1] and [6, Thm. 19.1]. Moreover, the pair (x⋆, y⋆) is a primal-dual solution if and only if x⋆

is a primal and y⋆ is a dual solution. Since (1.5) is a convex problem, the primal-dual solution pairs are
equivalently characterized by the saddle point inequality

L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆) ∀(x, y) ∈ �n ×�m. (3.2)

In our analysis we will measure deviation from L(x⋆, y⋆) along the primal and dual sequences using
shorthand notations Pk = Pk(x

⋆, y⋆) and Qk = Qk(x
⋆, y⋆) defined as

Pk := L(xk, y⋆)− L(x⋆, y⋆) = (f + g)(xk)− (f + g)(x⋆) + ⟨xk − x⋆, A⊤y⋆⟩ (3.3a)
and

Qk := L(x⋆, y⋆)− L(x⋆, yk) = h∗(yk)− h∗(y⋆) + ⟨Ax⋆, y⋆ − yk⟩, (3.3b)

which are both positive due to the saddle point inequality (3.2).

3.1 Algorithmic overview
The proposed algorithm is presented in adaPDM (Algorithm 3.1). It can be viewed as an adaptive variant
of the algorithm proposed in [20, 66], which itself is an extension of the PDHG method [15]. In compari-
son to the aforementioned algorithms with constant stepsizes, here a varying and potentially increasing
stepsize rule is proposed based on the estimates ck, ℓk. Moreover, in PDHG the dual update combines
two consequent primal updates as 2Axk − Axk−1 (in our notation). In [39, Alg. 3] it was shown that
many primal-dual algorithms can be unified by modifying the dual update to use terms of the form
θAxk + (1 − θ)Axk−1 followed by a correction step. While depending on the application this can lead
to parallel implementations and potentially larger stepsizes compared to PDHG (with θ = 2), the im-
provement in speed is limited by the use of global estimates. Differently from the aforementioned works,
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in adaPDM the mixing constant θ is selected adaptively as 1 + γk+1/γk. When viewed as an extension of
the proximal gradient method adaPGM, this idea appears natural. In fact, this was proposed in [65] as
a primal-dual extension of [47] where superior convergence rate compared to constant stepsize variants
was observed. AdaPDM uses a different stepsize update rule and inherits the tighter estimates in (1.3)
while permitting for the third nonsmooth term g. Notice also that it is not symmetric with respect to the
primal and dual variables and a different algorithm can be obtained by applying it to the dual problem.

Algorithm 3.1 Adaptive primal-dual method (adaPDM)

Require primal/dual (square inverse) stepsize ratio t > 0
stepsize parameters ϵ > 0 and ν > 1 + ϵ (e.g., ϵ = 10−6, ν = 1.2)
initial primal-dual pair (x−1, y0) ∈ �n ×�m and stepsizes γ−1 ≤ γ0 ≤ 1/2νt∥A∥

Initialize x0 = proxγ0g

(
x−1 − γ0∇f(x−1)− γ0A

⊤y0
)

Repeat for k = 0, 1, . . . until convergence
3.1.1: Set δk = γkℓk(γkck − 1) and ξk = t2γ2

k∥A∥2, where ℓk and ck are as in (1.3)
3.1.2: Define the stepsizes as

γk+1 = min

{
γk

√
1 + γk

γk−1
, 1

2νt∥A∥ , γk

√
1−4ξk(1+ϵ)2

2(1+ϵ)
(√

δ2k+ξk(1−4ξk(1+ϵ)2)+δk

)
}

σk+1 = t2γk+1

3.1.3: yk+1 = proxσk+1h∗

(
yk + σk+1

((
1 + γk+1

γk

)
Axk − γk+1

γk
Axk−1

))
3.1.4: xk+1 = proxγk+1g

(
xk − γk+1∇f(xk)− γk+1A

⊤yk+1
)

Initialization and practical considerations

AdaPDM involves a few parameters, some of which require tuning in practice. The constant ϵ is required
to be strictly positive due to theoretical reasons, and in practice can be selected very close to zero (see
Remark 3.1 and the discussion thereafter). The constant ν affects the second and third arguments of the
min operator in step 3.1.2; too large a ν results in the second term limiting the stepsizes, while a value
close to 1 + ϵ can potentially result in the third term becoming too small during the next iterate. In
practice, we suggest a value between 1.1 and 1.5 for this constant. Possibly a more critical parameter in
play is t > 0, which denotes the ratio between the primal and the dual stepsizes. It is well known that
this parameter can have a big impact on the performance of primal-dual methods. Even for the Condat-
Vũ algorithm, where a simple stepsize condition γσ∥A∥2 ≤ 1 − γLf

2 is available, this parameter has to
be tuned in general. Having an algorithm that adaptively selects the parameter t is an open research
question. Finally, the initial primal stepsize can be chosen equal to the minimum between 1/2νt∥A∥ and a
suitable estimate (obtained, e.g., as in Section 2.1 for adaPGM).

Termination criteria

The primal and dual proximal updates lead to the following inclusions:

vk+1
1 := 1

σk+1
(yk − yk+1) + γk+1

γk

(
Axk −Axk−1

)
+

(
Axk −Axk+1

)
∈ ∂h∗(yk+1)−Axk+1 (3.4a)

vk+1
2 := 1

γk+1
(xk − xk+1) +∇f(xk+1)−∇f(xk)

∈ ∂(g + f)(xk+1) +A⊤yk+1. (3.4b)
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The sequence (vk)k∈� = (vk1 , v
k
2 )k∈� is uniquely determined by the sequence (zk)k∈� = (xk, yk)k∈� and

can be computed efficiently without the need for additional gradient evaluations or matrix-vector prod-
ucts. Note that vk ∈ Tzk, where T (x, y) :=

(
∂h∗(y)−Ax, ∂g(x) +∇f(x) +A⊤y

)
denotes the operator

associated with the primal-dual optimality conditions (3.1). Therefore, the quantity

∥vk∥ ≥ dist(0, T zk) (3.5)

serves as a measure of optimality and can be used as a termination criterion.

Comparison to the proximal gradient method

When h ≡ 0 (and A = 0), problem (1.5) reduces to problem (2.1) and adaPDM with ϵ = 0 reduces
to adaPGM. In fact, in this case apparently yk ≡ 0 and xk+1 = proxγk+1g

(xk − γk+1∇f(xk)), and since
ξk ≡ 0 the stepsize update on γk reduces to

γk+1 = γk min

√
1 + γk

γk−1
, 1√

2
(
|δk|+δk

)


= γk min

{√
1 + γk

γk−1
, 1

2
√

[δk]+

}
,

which is precisely the stepsize update rule in adaPGM.

Remark 3.1. Although there is an apparent relation between Pk as in (3.3a) and the one in Lemma
2.2, while for adaPGM it was sufficient to show that lim infk→∞ Pk = 0 to infer existence of optimal
limit points, in the primal-dual setting an argument through the cost function cannot be used. In fact,
although lim infk→∞ Pk = 0 and limk→∞ Qk = 0 do hold even when ϵ = 0 (cf. Theorem 3.3(iii)), and
thus limit points (x̂, ŷ) of (xk, yk)k∈� generated by either one of Algorithms 3.1 and 3.2 exist that satisfy

L(x̂, y⋆) = L(x⋆, ŷ) = L(x⋆, y⋆) ∀(x⋆, y⋆) ∈ S⋆, (3.6)

we can only guarantee convergence to solutions by establishing sufficient descent in terms of the residual
∥(xk+1, yk+1)−(xk, yk)∥ (enforced in the algorithms through the introduction of the parameter ϵ > 0).

The fact that primal optimality of x̂ and/or dual optimality of ŷ cannot be inferred from (3.6) can be
demonstrated with a simple counterexample.3

Example 3.2. Consider the Lagrangian L(x, y) = x(1 + y) of the problem

minimize
x∈�

x subject to x = 0.

The unique saddle point of L is (x⋆, y⋆) = (0,−1), this being the only primal-dual solution of the problem.
Nevertheless, any x ∈ � minimizes L(x, y⋆) ≡ 0 and similarly L(x⋆, y) ≡ 0 is maximized by any y ∈ �;
equivalently, Pk and Qk as in (3.3) are identically zero independently of xk and yk.

Example 3.2 demonstrates that Pk and Qk cannot, in general, be employed as optimality measures.
Sufficient conditions involve the minimizer of L( · , y⋆) and/or the maximizer of L(x⋆, · ) being unique,
which can be guaranteed under strict convexity assumptions on the primal and/or dual formulations.
Whether adaPDM can accommodate ϵ = 0 in the generality of Assumption II remains an open question
and is left for future work.

3Example taken from https://math.stackexchange.com/a/3039783/53739.
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Algorithm 3.2 Adaptive primal-dual method with linesearch (adaPDM+)

Require primal/dual (square inverse) stepsize ratio t > 0
stepsize parameters ϵ > 0 and ν > 1 + ϵ (e.g., ϵ = 10−6, ν = 1.2)
initial primal-dual pair (x−1, y0) ∈ �n ×�m, estimate η0 > 0 of ∥A∥,
stepsizes 0 < γ−1 ≤ γ0 ≤ 1/2tνη0, backtracking parameter r > 1 (e.g., r = 2)

Initialize x0 = proxγ0g

(
x−1 − γ0∇f(x−1)− γ0A

⊤y0
)

Repeat for k = 0, 1, . . . until convergence
3.2.1: Set δk = γkℓk(γkck − 1) and ξ̄k = t2γ2

kη
2
k(1 + ϵ)2, with ℓk and ck as in (1.3)

3.2.2: Choose an estimate 0 < ηk+1 ≤ ηk of ∥A∥ (e.g., ηk+1 = 0.95ηk)

3.2.3: while true do // (linesearch loop)

3.2.4: Define the stepsizes as
γk+1 = min

{
γk

√
1 + γk

γk−1
, 1

2νtηk+1
, γk

√
1−4ξ̄k

2(1+ϵ)
(√

δ2k+(tηk+1γk)2(1−4ξ̄k)+δk

)
}

σk+1 = t2γk+1

3.2.5: yk+1 = proxσk+1h∗

(
yk + σk+1

((
1 + γk+1

γk

)
Axk − γk+1

γk
Axk−1

))
3.2.6: if ηk+1 ≥ ∥A⊤(yk+1−yk)∥

∥yk+1−yk∥ then break, else ηk+1 ← rηk+1

3.2.7: xk+1 = proxγk+1g

(
xk − γk+1∇f(xk)− γk+1A

⊤yk+1
)

3.2 Linesearch variant without linear operator norm
The employment of the quantities ℓk and ck in the adaptive stepsize strategies of adaPGM and adaPDM
enables much tighter estimates of the local geometry of the problem, as opposed to adopting preset
constants such as global Lipschitz moduli (when available). By the same principle, the norm of the linear
operator A only offers a worst-case bound of the kind ∥A⊤ · ∥ ≤ ∥A∥∥ · ∥, which can potentially be very
loose on specific instances. To completely remove any dependency on global quantities, in this subsection
we introduce adaPDM+ (Algorithm 3.2), a fully adaptive primal-dual algorithm that replaces also the
norm of the linear operator A with local estimates. As was also the case for the other two algorithms,
adaPDM+ follows the convention of indexing with k all the variables that depend on quantities defined
up to iteration k. This choice highlights the nested dependency of γk+1 and ηk+1 at step 3.2.4, which
appears to be solvable only by means of a linesearch procedure (see also the discussion before Theorem
3.3). In account of this, we dub the method essentially adaptive. The employment of a linesearch within
an adaptive scheme is also pursued in [44], where an extension of adaPGM is developed in the context
of simple bilevel optimization, a setting that encompasses the primal-dual problem setting (1.5) as a
special case.Backtracking linesearch has also been employed in combination with PDHG in various forms.
In [30, 29] it is used to potentially increase the speed of convergence by balancing the primal and dual
residuals. In [49] an adaptive linesearch algorithm is presented for PDHG and the idea is extended to the
composite form (1.5), see [49, Alg. 4]. In addition to a different stepsize update rule, a major difference
here is that the backtracks involved do not require evaluations of the gradient ∇f . We also remark that
adaPDM+ provides a practical way of initializing the stepsize, and that it reduces to adaPDM if ηk is
taken as ∥A∥ for all k.

Practical considerations and termination criteria

The same initialization and parameter values described for adaPDM can be used in adaPDM+ with the
difference that the initial estimate η0 replaces ∥A∥. The estimate η0 can be computed, for instance, by
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evaluating the Frobenius norm of the linear operator as an underestimation for it. Subsequent values of
ηk+1 can be initialized based on the previously accepted value ηk; consistently with what suggested in
step 3.2.2, a multiple in the range [0.9, 1) is recommended. Regarding the termination criterion, the same
strategy discussed in Section 3.1 for adaPDM can be employed.

3.3 Convergence results
The convergence analysis will once again revolve around showing descent on a suitable merit function,
this time defined as Uk = Uk(x⋆, y⋆) given by

Uk := 1
2∥xk − x⋆∥2 + 1−4ξk(1+ϵ)

4 ∥xk − xk−1∥2 + 1
2t2 ∥yk − y⋆∥2 + γk(1 + ρk)Pk−1, (3.7)

where (x⋆, y⋆) ∈ S⋆ is any primal-dual optimal pair. The next theorem allows us to study the convergence
of Algorithms 3.1 and 3.2 under a unified analysis. It should be noted that, unless ∥A∥ is known and
ηk+1 is chosen greater to or equal than that quantity (as it happens in adaPDM), the following theorem
does not furnish an implementable stepsize update rule, owing to the implicit dependency between the
stepsize γk+1 and the norm estimate ηk+1. The linesearch prescribed by adaPDM+ circumvents this issue.

Theorem 3.3. Suppose that Assumption II holds, and let t > 0, ϵ ≥ 0, and ν > 1 + ϵ be fixed. Consider
a sequence (xk, yk)k≥1 generated byyk+1 = proxσk+1h∗

(
yk + σk+1

((
1 + γk+1

γk

)
Axk − γk+1

γk
Axk−1

))
xk+1 = proxγk+1g

(
xk − γk+1∇f(xk)− γk+1A

⊤yk+1
)
,

(3.8)

starting from a triplet (x−1, x0, y0) ∈ �n × �n × �m and with initial primal stepsizes γ0 ≥ γ−1 > 0.
Denote ξk := t2η2kγ

2
k and δk := γkℓk(γkck − 1) with ℓk and ck as in (1.3), η0 ≤ 1

2νtγ0
and ηk+1 any such

that ∥A⊤(yk−yk+1)∥
∥yk−yk+1∥ ≤ ηk+1 ≤ ηmax for some ηmax < ∞, k ∈ �. Suppose that the sequences of stepsizes

comply with the rules

γk+1 = min

{
γk

√
1 + γk

γk−1
, 1

2νtηk+1
, γk

√
1−4ξk(1+ϵ)2

2(1+ϵ)
(√

δ2k+(tηk+1γk)2(1−4ξk(1+ϵ)2)+δk

)
}

and σk = t2γk, k ∈ �. Then, for any primal-dual solution (x⋆, y⋆) of (1.5) and with Uk as in (3.7), the
following hold:

(i) Uk+1 ≤ Uk − ϵ
2t2(1+ϵ)∥yk − yk−1∥2 − 1−4ξk−4ρ2

k+1(δk+ξk+1)

4

≥ϵ/4(1+ϵ)

∥xk − xk+1∥2 − γk(

≥0

1 + ρk − ρ2k+1)Pk−1 −
γk+1Qk+1.

(ii) The sequence (xk, yk)k∈� is bounded, and γk ≥ γ̂ > 0 for all k ≥ 1 (see (A.7) for the value of γ̂).

(iii) lim infk→∞ Pk = limk→∞ Qk = 0.

(iv) If ϵ > 0, the sequence (xk, yk)k∈� converges to a primal-dual solution.

We also remark that, thanks to the descent inequality in Theorem 3.3(i), the same telescoping argu-
ments as in [15] can be used to show an O(1/k) convergence rate in terms of the partial primal-dual gap
function introduced in [15]. The sequential convergence results stated next for adaPDM follow from the
more general Theorem 3.3(iv), specialized to ηk ≡ ηmax = ∥A∥. For adaPDM+ the assertions follow from
Theorem 3.3 this time with ηmax = max {η0, r∥A∥}, as this furnishes an upper bound on (ηk)k∈� (this
fact simply follows by observing that whenever ηk+1 ≥ ∥A∥ one has that the backtracking procedure
terminates at step 3.2.6, and that ηk+1 is otherwise increased by a factor r at any failed attempt).

Theorem 3.4 (convergence of Algorithms 3.1 and 3.2). Under Assumption II, all the assertions in
Theorems 3.3(i) to 3.3(iv) remain valid for both of the sequences generated by Algorithms 3.1 and 3.2.
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4 Numerical simulations
In this section the performance of the proposed algorithms is evaluated through a series of simulations
on standard problems on both synthetic data as well as datasets from the LIBSVM library [16]. All the
algorithms are implemented in the Julia programming language and are available online.4

PGM Proximal gradient with constant stepsize 1/Lf

PGM-ls Proximal gradient with backtracking
Nesterov Nesterov’s acceleration with constant stepsize 1/Lf [7, §10.7]
aGRAAL The golden ratio algorithm [46]
PDHG The algorithm of [15]
CV The algorithm of Condat and Vũ, proposed in [20, 66]
MP-ls The linesearch method of Malitsky and Pock [49, Alg. 4]
adaPGM Algorithm 2.1
adaPGM-MM Proximal extension of Malitsky and Mishchenko [47, Alg. 1]5
adaPDM Algorithm 3.1
adaPDM+ Algorithm 3.2

Table 1: Algorithms compared against in the numerical simulations (when applicable).

The backtracking procedure in PGM-ls is meant in the sense of [7, §10.4.2], (see [60, LS1] and [23, Alg.
3] for the locally Lipschitz smooth case), without enforcing monotonic decrease on the stepsize sequence.
Specifically, the initial guess for γk+1 is warm-started as rγk, where γk is the accepted value in the
previous iteration and r ≥ 1 is a scaling factor. In each simulation the best outcome for PGM-ls among
the choices r ∈ {1, 1.5, 2} is reported.

We also considered two linesearch variants of Nesterov’s accelerated method. The first variant is
described in [52, Eq. 4.9] and allows the stepsize to increase (by warm starting the backtracks with a
multiple of the last accepted stepsize). The second variant is described in [7, §10.7] and initializes the
backtracking procedure with the last accepted stepsize. We tested the first algorithm with scaling factors
of 1.5 and 2. Both variants performed worse than the constant stepsize regime, and we have therefore
omitted them from the plots. The degradation in performance is likely due to the extra cost of evaluating
the backtracking condition.

4.1 Adaptive proximal gradient
We compare the performance of adaPGM (Algorithm 2.1) on three practical problems that can be cast
as (2.1). In the figures, the distance of the cost from the minimum is plotted against the number of calls
to linear operations, which in all problems correspond to the most costly operation. This accounts for all
gradient evaluations, and all additional cost evaluations that linesearch methods incur.

In order to have a fair comparison between different methods, for globally Lipschitz-smooth problems
we initialized the stepsize for all the methods with 1/Lf where Lf denotes the Lipschitz constant of ∇f .
For cubic regularization we perturbed the initial point with a random vector and used the inverse of the
estimate as in (1.2) using these two points. We note that r = 1.5 usually worked best in backtracking
linesearch variants; for other parameters we used standard choices. For aGRAAL, we set the algorithm
parameters as suggested in [46, §5]. The inital point x0 was set to zero for all algorithms. The results of
all the simulations are reported in Figure 1.

4https://github.com/pylat/adaptive-proximal-algorithms
5See Corollary 2.5.
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Figure 1: Simulations for problem (2.1).
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Logistic regression

We consider an ℓ1-regularized logistic regression problem

minimize
x∈�n+1

− 1
m

∑m
i=1

[
yi log

(
si(x)

)
+ (1− yi) log

(
1− si(x)

)]
+ λ∥x∥1,

where λ > 0 is the regularization parameter, m,n are the number of samples and features, si(x) =
(1 + exp(−d⊤i x))−1 are logistic sigmoid functions with di ∈ �n+1 denoting the i-th data sample (up
to absorbing the bias terms), and yi ∈ {0, 1} is the associated label. In Figure 1a the algorithms are
compared in terms of the total number of calls to D and its adjoint, where D denotes the data matrix
constructed by stacking the vectors di. In all the simulations λ = 0.01 was used.

Cubic regularization

The subproblem in the cubic Newton method [53] involves solving

minimize
x∈�n+1

1
2 ⟨x,Qx⟩+ ⟨x, q⟩+ M

6 ∥x∥3,

where Q ∈ �(n+1)×(n+1), q ∈ �n+1, and M > 0 is some regularization parameter. In the simulations,
the Hessian Q and the gradient q are generated for the logistic loss problem evaluated at zero on the
mushroom, a5a, and phishing datasets. Moreover, M = 1 is used in the plots, though we remark that the
behavior of the algorithms for different values is similar.

Regularized least squares

Consider the lasso problem
minimize

x∈�n

1
2∥Dx− b∥2 + ∥x∥1,

where matrix D ∈ �m×n and vector b ∈ �n are generated based on the procedure described in [52,
§6], and n⋆ denotes the number of nonzero elements of the solution. In all simulations, the parameter
controlling the magnitude of the primal solution was set equal to one (ρ = 1 in the notation of [52, §6]),
but the general behavior of the algorithms is similar for alternative values.

4.2 Adaptive primal-dual algorithms
We now compare the performance of adaPDM (Algorithm 3.1) and its operator norm–free extension
adaPDM+ (Algorithm 3.2) on problems fitting into formulation (1.5).

Optimality criterion

The optimality criterion defined in Section 3.1 will be used in all the simulations for comparison between
algorithms. It consists of computing the norm of the sequence vk uniquely determined by the generated
sequence for which vk ∈ Tzk holds. This quantity is provided in (3.4) for adaPDM and adaPDM+, as well
as the Condat-Vũ and PDHG algorithms (both corresponding to updates in steps 3.1.3 and 3.1.4 with
constant stepsize). In the case of MP-ls [49, Alg. 4], it is similarly obtained according to the optimality
conditions of the proximal updates at steps 1 and 2.a therein (the extra evaluations needed are not
counted in the plots).
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Figure 2: Simulations for the dual SVM problem (4.1). First row: C = 1, second row: C = 0.1. The x-axis
reports gradient evaluations, which is the most expensive operation (since A ∈ �1×N , calls to A and A⊤

are negligible). As explained, in this case adaPDM+ is indistinguishable from adaPDM and thus omitted.
AdaPDM and MP-ls are tuned for best performance by a grid search for t ∈ [0.01, 100].

Stepsize selection

The stepsize parameters for adaPDM and adaPDM+ were configured as follows: ϵ = 10−8, ν = 1.2, and
γ0 = γ−1 = 1/(2νtη0). In the presented simulations, for comparison purposes we used η0 = ∥A∥, noting
that adaPDM+ displays low sensitivity to the initial choice of η0. Consenquently, there is little need for
fine-tuning this parameter and any reasonable estimate results in a very similar trajectory.

We observed that the stepsize ratio t requires some tuning. In our preliminary simulations for Algo-
rithms 3.1 and 3.2, on the problems presented in here, we ran a grid search for t ∈ [0.01, 100] and observed
that often t = 1 performed well enough on the presented examples. For the Condat-Vũ and PDHG algo-
rithms, we used the heuristic stepsize selection rule suggested in [36, Eq. (3.53)]. In the case of MP-ls, in
[49, §5] it was suggested to set t equal to the ratio obtained by tuning the constant stepsize regime of
the Condat-Vũ algorithm. In our experiments, in addition to this heuristic the performance of MP-ls was
fine-tuned through a grid search in the range t ∈ [0.01, 100].

Dual support vector machine problem

The support vector machine (SVM) problem consists of solving

minimize
x∈�n

C

N∑
n=1

max
{
0, 1− ai(d

⊤
i x+ x0)

}
+ 1

2∥x∥2,

where (di, ai) ∈ �n × � represents the i-th data pair, and C > 0 is some positive constant. Computa-
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Figure 3: Simulations for problem (4.2) of Section 4.2 with λ = 10. First row: regularized least-absolute
deviation (p = 1); second row: square-root lasso (p = 2). AdaPDM+ and MP-ls are tuned for best
performance by a grid search for t ∈ [0.01, 100]. Having f = 0, adaPDM reduces to PDHG with worse
(constant) stepsizes and is thus omitted from the comparisons.

tionally, a popular approach is to instead consider the dual SVM problem [32, §12.2.1]

minimize
α1,...,αN

1
2∥

∑N
i=1 αiaidi∥2 −

∑N
i=1 αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , N (4.1)∑N
i=1 αiai = 0.

In the simulations we used C ∈ {1, 0.1}. The problem is cast in the standard form (1.5) by letting f
represent the quadratic cost, g the indicator of the box constraints, h = ι{0}, and A = [a1, . . . , aN ] ∈
�1×N . Notice that the dual vectors yk are scalars in this case, and in particular one has ∥A⊤(yk+1−yk)∥ =
∥A∥∥yk+1 − yk∥ for any k, where ∥A∥ is a vector norm which is negligible to compute. Apparently, in
this case (up to dicarding inital iterates) the linesearch variant adaPDM+ produces the same iterates
of adaPDM with no computational advantage, and is thus omitted from the plots. The results of this
simulation are reported in Figure 2.

Least absolute deviation regression and square-root lasso

As a final application we consider regularized regression, consisting of

minimize
x∈�n

∥Dx− b∥p + λ∥x∥1. (4.2)

Whenever p = 2, this problem is referred to as square-root lasso, and for p = 1 it is known as the
least absolute deviation (LAD) regression. Both problems are cast as (1.5) by letting f ≡ 0, g = ∥ · ∥1,
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h = ∥ · − b∥p, and A = D. For the regression data D ∈ �m×n and b ∈ �m, three different datasets from
the LIBSVM library were used. The results are reported in Figure 3. It is apparent that the linesearch
variant adaPDM+ (as well as MP-ls, for similar reasons) excels by adaptively employing tighter bounds
of the linear operator norm along one-dimensional subspaces. We ran the simulations for λ ∈ {0.1, 1, 10},
but only report them for λ = 10 remarking that the behavior is similar for the other values.

4.3 Observations about the stepsize sequence
Theorem 2.3(ii) certifies that the stepsizes γk produced by adaPGM do not drop below 1/2Lf,V , where Lf,V
is a Lipschitz modulus for ∇f on a convex and bounded set V that contains all the iterates. A refined
analysis can nevertheless reveal some interesting additional details that, informally, confirm the pattern
exhibited by the sequence (γk)k∈� in all our experiments.
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Figure 4: Demonstrative plot of stepsize magnitudes in windows of 50 and 100 iterations extracted from
the simulations in this section. First row, left: logistic regression, mushroom dataset; right: lasso problem
with m = 500, n = 1000, n⋆ = 100. As commented after Remark 2.4, despite the fact that the stepsize
update rule of adaPGM is less conservative than that of adaPGM-MM, the comparison does not carry over
iterationwise. Second row, left: dual SVM, mushroom dataset, C = 0.1; right: square-root lasso (housing
dataset, λ = 10). Primal-dual algorithms are compared on problems where the ratio t2 = σk/γk coincides,
so that the plots are representative also for dual stepsizes σk.

Whenever a stepsize is below a certain threshold, a first phase is triggered where the stepsize strictly
increases until the threshold is surmounted. As ensured by Lemma A.2, ck is upper bounded by a local
Lipschitz modulus Lf,V for ∇f on some enlargement V of the set V containing the iterates. Because of
the update rule at step 2.1.1, if γk ≤ 1/Lf,V (hence γkck ≤ 1) then γk+1 > γk (in fact it increases at least
linearly, cf. (2.11)). This is followed by a second phase of unspecified length, during which the stepsizes
remain strictly greater than 1/Lf,V . Should a stepsize again drop below it (yet surely not below 1/2Lf,V),
the cycle restarts from phase one. Such an oscillatory behavior is confirmed in all our simulations (see
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Figure 4 for particular instances) and could also explain the adoption of much larger stepsizes compared
to the standard constant stepsize regime. Whether more rigorous arguments could be made in support
of this empirical evidence is an interesting open question left for future work.

5 Conclusions
In this paper we studied convex composite problems involving the sum of a locally Lipschitz differentiable
term and two nonsmooth terms, one of which composed with a linear operator. The primal-dual algorithm
adaPDM was proposed that updates the stepsizes adaptively using already available information without
any backtracking procedures. The stepsize update is based on a novel rule that combines estimates of
local cocoercivity and Lipschitz continuity of the gradient of the differentiable function. When the linear
operator is zero we obtain adaPGM that not only extends the adaptive gradient descent algorithm of [47],
but also involves a less conservative stepsize update rule. More generally, we further waive the computation
of the norm of the linear operator (required by the stepsize update rule) through a linesearch procedure.
The resulting algorithm, adaPDM+, can be implemented efficiently given that the backtracks do not
require additional gradient evaluations.

Future research directions involve extending the presented line of proof to the setting of variational
inequalities in the framework of algorithms such as the extra-gradient method and other projection-
based splittings such as those in [39, 28]. Other potential directions include nonmonotone extensions
for problems satisfying the so-called weak Minty assumptions [25, 55], as well as block-coordinate and
stochastic variants. It would also be interesting to explore extensions of the ideas presented in this work
to other types of adaptive settings such as those in [45, 24, 71, 67].

A Convergence analysis for Section 3
We begin by establishing an inequality for the iterates in (3.8) that would eventually under proper stepsize
choices lead to a descent inequality.

Lemma A.1. Let (γk)k∈�, (σk)k∈� be sequences of strictly positive scalars, and starting from a triplet
(x−1, x0, y0) ∈ �n×�n×�m let (xk, yk)k∈� be recursively defined by (3.8). Then, for any εk, τk, µk > 0

and ηk ≥ ∥A⊤(yk−yk−1)∥
∥yk−yk−1∥ (e.g., ηk = ∥A∥) it holds that

0 ≤ 1
2∥xk − x⋆∥2 − 1

2∥xk+1 − x⋆∥2 + εk+1ρk+1+µk+1ηk+1γk+1−1
2 ∥xk − xk+1∥2

+ ρk+1

(
1−αk(2−βk)

2εk+1
+ τk+1ηk+1γk+1

2 − ρk+1(1− αk)
)
∥xk−1 − xk∥2

+ γk+1

2σk+1
∥yk − y⋆∥2 −

(
γk+1

2σk+1
− ηk+1γk+1

2

(
1

µk+1
+ ρk+1

τk+1

))
∥yk+1 − yk∥2

− γk+1

2σk+1
∥yk+1 − y⋆∥2

+ γk+1ρk+1Pk−1 − γk+1(1 + ρk+1)Pk − γk+1Qk+1,

where ρk+1 := γk+1

γk
, αk := γkℓk, βk := γkck, and Pk, Qk are as in (3.3).

Proof. Let ȳk+1 := yk + σk+1
γk+1

γk
A(xk − xk−1), so that yk+1 = proxσk+1h∗(ȳk+1 + σk+1Axk). The

characterization of yk and xk+1 as in the respective updates then reads

ȳk+1−yk+1

σk+1
+Axk ∈ ∂h∗(yk+1) (A.1a)

and
Hk+1(x

k)−xk+1

γk+1
−A⊤yk+1 = xk−xk+1

γk+1
−∇f(xk)−A⊤yk+1 ∈ ∂g(xk+1). (A.1b)
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In particular, for any solution pair (x⋆, y⋆) ∈ S⋆

0
(A.1b)
≤ g(x⋆)− g(xk+1) + ⟨A⊤yk+1, x⋆ − xk+1⟩+

(A′)

⟨∇f(xk), x⋆ − xk+1⟩
+ 1

2γk+1
∥xk − x⋆∥2 − 1

2γk+1
∥xk+1 − x⋆∥2 − 1

2γk+1
∥xk − xk+1∥2

and

0
(A.1a)
≤ h∗(y⋆)− h∗(yk+1)− ⟨Axk, y⋆ − yk+1⟩ − 1

σk+1
⟨ȳk+1 − yk+1, y⋆ − yk+1⟩

= h∗(y⋆)− h∗(yk+1)− ⟨Auk+1, y⋆ − yk+1⟩
+ 1

2σk+1
∥yk − y⋆∥2 − 1

2σk+1
∥yk+1 − yk∥2 − 1

2σk+1
∥yk+1 − y⋆∥2,

where uk+1 := (1 + ρk+1)x
k − ρk+1x

k−1. We next proceed to upper bound the term (A′) as

(A′) = ⟨∇f(xk), x⋆ − xk⟩+ ⟨∇f(xk), xk − xk+1⟩
= ⟨∇f(xk), x⋆ − xk⟩+ 1

γk
⟨Hk(x

k−1)− xk, xk+1 − xk⟩
+ 1

γk
⟨Hk(x

k−1)−Hk(x
k), xk − xk+1⟩

(A.1b)
≤ f(x⋆)− f(xk) + g(xk+1)− g(xk) + ⟨A⊤yk, xk+1 − xk⟩

+ 1
γk
⟨Hk(x

k−1)−Hk(x
k), xk − xk+1⟩

(B)

.

Let φ = f + g. We bound the term (B) as done in (2.5) and combine the three inequalities to obtain

0 ≤ (f + g)(x⋆)− (f + g)(xk) + 1
2γk+1

∥xk − x⋆∥2 − 1
2γk+1

∥xk+1 − x⋆∥2

+
(

εk+1

2γk
− 1

2γk+1

)
∥xk − xk+1∥2 + 1−γkℓk(2−γkck)

2εk+1γk
∥xk−1 − xk∥2

+ h∗(y⋆)− h∗(yk+1) + ⟨A⊤yk, xk+1 − xk⟩+ ⟨A⊤yk+1, x⋆ − xk+1⟩ − ⟨Auk+1, y⋆ − yk+1⟩
+ 1

2σk+1
∥yk − y⋆∥2 − 1

2σk+1
∥yk+1 − yk∥2 − 1

2σk+1
∥yk+1 − y⋆∥2.

Using again the subgradient (A.1), one has

vk := xk−1−xk

γk
− (∇f(xk−1)−∇f(xk))−A⊤yk ∈ ∂(f + g)(xk), (A.2)

hence

0 ≤ γk+1

γk

(
(f + g)(xk−1)− (f + g)(xk)− ⟨vk, xk−1 − xk⟩

)
= γk+1

γk

(
(f + g)(xk−1)− (f + g)(xk)

)
− γk+1

γk

1−γkℓk
γk
∥xk − xk−1∥2

+ γk+1

γk
⟨A⊤yk, xk−1 − xk⟩. (A.3)

Sum the last two inequalities and use the identity ρk+1(x
k − xk−1) = uk+1 − xk to obtain

0 ≤ 1
2γk+1

∥xk − x⋆∥2 − 1
2γk+1

∥xk+1 − x⋆∥2 + ⟨Ax⋆, yk+1⟩ − ⟨Auk+1, y⋆⟩

+
(

εk+1

2γk
− 1

2γk+1

)
∥xk − xk+1∥2 +

(
1−γkℓk(2−γkck)

2εk+1γk
− γk+1

γk

1−γkℓk
γk

)
∥xk−1 − xk∥2

+ 1
2σk+1

∥yk − y⋆∥2 − 1
2σk+1

∥yk+1 − yk∥2 − 1
2σk+1

∥yk+1 − y⋆∥2

+
(
h∗(y⋆)− h∗(yk+1)

)
+ γk+1

γk

(
(f + g)(xk−1)− (f + g)(xk)

)
−

(
(f + g)(xk)− (f + g)(x⋆)

)
(C)

+ ⟨A⊤(yk+1 − yk), uk+1 − xk+1⟩
(D)

.
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To conclude, observe that

(C) = ρk+1Pk−1 − (1 + ρk+1)Pk + ⟨uk+1 − x⋆, A⊤y⋆⟩
and

(D) = γk+1

γk
⟨xk − xk−1, A⊤(yk+1 − yk)⟩+ ⟨xk − xk+1, A⊤(yk+1 − yk)⟩

≤ γk+1

γk

τk+1ηk+1

2 ∥xk−1 − xk∥2 + µk+1ηk+1

2 ∥xk+1 − xk∥2

+ ηk+1

2

(
1

µk+1
+ γk+1

γkτk+1

)
∥yk+1 − yk∥2, (A.4)

where µk, τk > 0 are parameters related to Young’s inequality, so that the proof follows from the identity
⟨Ax⋆, yk+1 − y⋆⟩ = L(x⋆, yk+1)− L(x⋆, y⋆).

In addition to the upper estimate Lf,V for Lk and ℓk in Lemma 2.1(iii), the proof of Theorem 3.3 will
exploit an upper bound for ck which is obtained in the next lemma. The proof is a slight refinement of
known cocoercivity results in the globally Lipschitz setting [7, Thm. 5.8], and is provided for completeness
to highlight the need of the enlarged set V
Lemma A.2. Suppose that Assumption I.a1 holds. Then, for every x, y ∈ �n it holds that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1
2Lf,V

∥∇f(x)−∇f(y)∥2,

where Lf,V is a Lipschitz modulus for ∇f on V := V + B(0; diam(V)), and V ⊆ �n is a bounded and
convex set that contains x and y. In particular,

∥∇f(x)−∇f(y)∥2
⟨∇f(x)−∇f(y), x− y⟩ ≤ Lf,V .

Proof. We henceforth fix x, y ∈ V ⊆ V. Since ∇f is Lipschitz continuous on V with modulus Lf,V , it
follows from the descent inequality [8, Prop. A.24] that

f(z) ≤ f(y) + ⟨∇f(y), z − y⟩+ Lf,V
2 ∥z − y∥2 ∀z ∈ V. (A.5)

Let lx(y) := f(y)−f(x)−⟨∇f(x), y−x⟩, and note that lx is a convex function with∇lx(y) = ∇f(y)−∇f(x).
For any z ∈ V, we have

lx(z) = f(z)− f(x)− ⟨∇f(x), z − x⟩
(A.5)
≤ f(y) + ⟨∇f(y), z − y⟩+ Lf,V

2 ∥z − y∥2 − f(x)− ⟨∇f(x), z − x⟩
= f(y)− f(x)− ⟨∇f(x), y − x⟩+ ⟨∇f(y)−∇f(x), z − y⟩+ Lf,V

2 ∥z − y∥2

= lx(y) + ⟨∇lx(y), z − y⟩+ Lf,V
2 ∥z − y∥2.

Noticing that ∇lx(x) = 0, it follows from convexity of lx that x is its global minimizer. Hence that
min lx = lx(x) = 0. Let us denote v := 1

∥∇lx(y)∥∇lx(y) and set z = y − ∥∇lx(y)∥
Lf,V

v. Note that

∥z − y∥ = ∥∇lx(y)∥
Lf,V

= ∥∇f(y)−∇f(x)∥
Lf,V

≤ ∥y − x∥,

and in particular z ∈ V +B(y; ∥y − x∥) ⊆ V. From the previous inequality we get

0 = min lx = lx(x) ≤ lx

(
y − ∥∇lx(y)∥

Lf,V
v
)

(A.5)
≤ lx(y)− ∥∇lx(y)∥

Lf,V
⟨∇lx(y), v⟩+

Lf,V
2

1
L2

f,V
∥∇lx(y)∥2

= f(y)− f(x)− ⟨∇f(x), y − x⟩ − 1
2Lf,V

∥∇f(x)−∇f(y)∥2.
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Proof of Theorem 3.3.

♠ (i) Denoting

Ũk := 1
2∥xk − x⋆∥2 + 1−εkρk−µkηkγk

2 ∥xk − xk−1∥2 + γk

2σk
∥yk − y⋆∥2 + γk(1 + ρk)Pk−1,

the inequality in Lemma A.1 can be expressed as

Ũk+1 ≤ Ũk −
(

γk

2σk
− γk+1

2σk+1

)
∥yk − y⋆∥2 − γk(1 + ρk − ρ2k+1)Pk−1

−
(

1−εkρk−µkηkγk

2 + ρk+1

(
ρk+1(1− αk)− 1−αk(2−βk)

2εk+1
− τk+1ηk+1γk+1

2

))
∥xk−1 − xk∥2

−
(

γk+1

2σk+1
− ηk+1γk+1

2

(
1

µk+1
+ ρk+1

τk+1

))
∥yk+1 − yk∥2 − γk+1

(
L(x⋆, y⋆)− L(x⋆, yk+1)

)
.

Since σk = t2γk and ξk = t2γ2
kη

2
k, by selecting εk := 1

2ρk
and µk := 2(1 + ϵ)tξ

1/2
k one has that Ũk = Uk.

Note also that the coefficient of ∥xk − xk−1∥ in Uk is strictly positive since the stepsize update ensures
ξk ≤ 1/4ν2. Moreover, with this choice the above inequality becomes

Uk+1 ≤ Uk − γk(1 + ρk − ρ2k+1)Pk−1 − γk+1

(
L(x⋆, y⋆)− L(x⋆, yk+1)

)
−
(

1−4ξk(1+ϵ)
4 + ρk+1

(
ρk+1αk(1− βk)−

τk+1ξ
1/2
k+1

2t

))
∥xk−1 − xk∥2

− 1
2t

(
1+2ϵ

2t(1+ϵ) −
ξ
1/2
k+1ρk+1

τk+1

)
∥yk+1 − yk∥2.

We now set τk+1 := ρk+1µk+1 = 2(1 + ϵ)tξ
1/2
k+1ρk+1 so the inequality overall simplifies to the one of the

statement

Uk+1 ≤ Uk − γk(1 + ρk − ρ2k+1)Pk−1 − γk+1

(
L(x⋆, y⋆)− L(x⋆, yk+1)

)
−
(

1−4ξk(1+ϵ)
4 + ρk+1(ρk+1αk(1− βk)− ρk+1ξk+1(1 + ϵ))

)
≥ ϵ

4(1+ϵ)

∥xk−1 − xk∥2

− ϵ
2t2(1+ϵ)∥yk+1 − yk∥2,

up to ensuring that the coefficient of Pk−1 is positive and that the inequality for the coefficient of
∥xk −xk−1∥2 holds. The former is of trivial verification, having ρk+1 ≤

√
1 + ρk. It thus remains to show

that
1
4 − ϵ

4(1+ϵ) − ξk(1 + ϵ)− ρ2k+1(δk + ξk+1(1 + ϵ)) ≥ 0

holds for every k. By using the fact that ξk+1 = (tηk+1γk+1)
2 = (tηk+1γk)

2ρ2k+1, this reduces to the
second-order inequality (in ρ2k+1)

(tηk+1γk)
2(1 + ϵ)ρ4k+1 + δkρ

2
k+1 −

[
1

4(1+ϵ) − ξk(1 + ϵ)
]
≤ 0.

Note that the bound γk ≤ 1
2νtηk

implies 1
4(1+ϵ) − ξk(1 + ϵ) ≥ ν2−(1+ϵ)2

4ν2(1+ϵ) > 0, thus ensuring that the
inequality always admits solutions for small enough ρ2k+1. Namely, letting ξ̄k := ξk(1 + ϵ)2

ρ2k+1 ≤
−δk +

√
δ2k + (tηk+1γk)2(1− 4ξ̄k)

2(1 + ϵ)(tηk+1γk)2
=

1− 4ξ̄k

2(1 + ϵ)

(
δk +

√
δ2k + (tηk+1γk)2(1− 4ξ̄k)

) ,

which is indeed guaranteed by one of the bounds on γk+1 = γkρk+1. Note that the second expression
removes the singularity in case ηk+1 = 0.
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♠ (ii) Boundedness of the sequence follows from the fact that 1
2∥xk − x⋆∥2 + 1

2t2 ∥yk − y⋆∥2 ≤ Uk ≤ U1,
where the first inequality follows by definition of Uk, cf. (3.7), and the second one from assertion (i). In
particular, there exists a convex and compact set V ⊆ �n that contains (xk)k∈�. Up to considering a
suitable enlargement V as in Lemma A.2, ℓk ≤ ck ≤ Lf,V holds for every k by Lemma 2.1(iii) and Lemma
A.2, where Lf,V > 0 is a Lipschitz modulus for ∇f on V. To prove the lower bound on the stepsize, we
will show that whenever γk+1 < γk occurs, then necessarily γk+1 is greater than some constant γ̂ as in
the statement. The proof will then follow from a trivial inductive argument. Suppose that γk+1 < γk. If
γk+1 = 1

2νtηk+1
, then clearly γk+1 ≥ 1

2νtηmax
. Otherwise, necessarily

γ2
k > γ2

k+1 =
γ2
k(1− 4ξ̄k)

2(1 + ϵ)

(√
δ2k + (tηk+1γk)2(1− 4ξ̄k) + δk

)
≥ γ2

k ν̄

2(1 + ϵ)
(√

δ2k + (tηmaxγk)2ν̄ + δk

) , (A.6)

where ν̄ := ν2−(1+ϵ)2

ν2 , and the second inequality uses the fact that 1− 4ξ̄k ≥ ν̄ > 0 together with the fact
that (0,∞) ∋ x 7→ x√

b2+a2x+b
is increasing for any value of a, b ∈ �. We now distinguish two cases:

♢ Case 1. δk ≤ 0. By comparing the outermost terms of the chain of inequalities in (A.6) we obtain
that √

δ2k + (tηmaxγk)2ν̄ + δk > ν̄
2(1+ϵ) ⇔ δk > ν̄

4(1+ϵ) − (1 + ϵ)(tηmaxγk)
2,

and in particular γk >
√
ν̄

2(1+ϵ)tηmax
. Then, since x 7→ 1√

x2+b2 +x
is decreasing for any value of b ∈ �, by

setting δk equal to 0 in (A.6) we obtain

γ2
k+1 ≥ γk

√
ν̄

2(1 + ϵ)tηmax
≥ ν̄

(2(1 + ϵ)tηmax)2
.

♢ Case 2. δk > 0 or, equivalently, γkck > 1. Denoting α := γkLf,V , one has that α ≥ γkℓk and
α ≥ γkck > 1, hence that δk ≤ α(α − 1). Arguing as in the previous case, this time by setting
δk ← α(α− 1) in (A.6), yields

γ2
k+1L

2
f,V ≥

α2ν̄

2(1 + ϵ)
(√

α2(α− 1)2 + (tηmaxγk)2ν̄ + α(α− 1)
)

=
αν̄

2(1 + ϵ)
(√

(α− 1)2 + (tηmax/Lf,V)
2ν̄ + α− 1

)
≥ min

{
Lf,V

√
ν̄

2(1+ϵ)tηmax
, ν̄

4(1+ϵ)

}
,

where the last inequality owes to the fact that [1,∞) ∋ x 7→ x√
(x−1)2+b2 +x−1

attains the infimum at

either 1 or ∞ for any b ∈ �.

Putting all the cases together yields

γk ≥ γ̂ := min

{
γ0,

4√ν̄√
2(1+ϵ)tηmaxLf,V

,
√
ν̄

2
√

(1+ϵ)Lf,V
, 1

2νtηmax
,

√
ν̄

2(1+ϵ)tηmax

}
> 0 (A.7)

(where we remind that ν̄ = ν2−(1+ϵ)2

ν2 ), establishing the claim.
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♠ (iii) That Qk → 0 as k → ∞ follows from a telescoping argument in assertion (i), since (γk)k∈�
is bounded away from zero by assertion (ii). As to (Pk)k∈�, if lim supk→∞(1 + ρk − ρ2k+1) > 0, then
the same telescoping argument yields the claim. Alternatively, by the stepsize update rule one has that
1 + ρk − ρ2k+1 ≥ 0 and therefore 1 + ρk − ρ2k+1 → 0, from which it easily follows that lim infk→∞ ρk > 1
and that therefore γk → ∞. Consequently, since γk(1 + ρk)Pk−1 ≤ Uk ≤ U0, this directly proves that
Pk → 0.

♠ (iv) Let (x̂, ŷ) denote a limit point of (xk, yk)k∈�. Telescoping the inequality in assertion (i) yields
that both ∥xk+1 − xk∥ and ∥yk−1 − yk∥ vanish. By the optimality condition for step 3.1.4 we have

1
γk+1

(xk − xk+1) ∈ ∇f(xk) +A⊤yk+1 + ∂g(xk+1). (A.8a)

Passing to the limit along the subsequence converging to (x̂, ŷ), using the fact that (γk)k∈� is bounded
away from zero by assertion (ii) and outer semicontinuity of ∂g yield 0 ∈ ∇f(x̂)+∂g(x̂)+A⊤ŷ. Similarly,
for the dual variable,

1
σk+1

(yk − yk+1) + γk+1

γk
A(xk − xk−1) ∈ ∂h∗(yk+1)−Axk. (A.8b)

A trivial induction argument reveals that γk+1

γk
is upper bounded by max

{
γ0

γ−1
, 1
2 (1 +

√
5)
}

. Therefore,
passing to the limit along the same subsequence and recalling that σk+1 = t2γk+1 is bounded away from
zero yield 0 ∈ ∂h∗(ŷ) − Ax̂. Along with the previous inclusion, primal-dual optimality of the limit pair
(x̂, ŷ) is established. Therefore, any limit point of (xk, yk)k∈� is a primal-dual optimal pair. Suppose that
(x∞, y∞) and (x̂∞, ŷ∞) are two primal-dual optimal limit points of (xk, yk)k∈�. Define vk = (xk, 1

t y
k),

and consistently v∞ = (x∞, 1
t y

∞), v̂∞ = (x̂∞, 1
t ŷ

∞). Observe that

⟨vk, v∞ − v̂∞⟩ = Uk(x̂∞, ŷ∞)− Uk(x∞, y∞) + 1
2∥v∞∥2 − 1

2∥v̂∞∥2,

and since (Uk(x⋆, y⋆))k∈� is convergent for all primal-dual optimal pairs (x⋆, y⋆), then so is (⟨vk, v∞ −
v̂∞⟩)k∈�. Passing to the limit along the two converging subsequences thus yields ⟨v∞, v∞ − v̂∞⟩ =
⟨v̂∞, v∞− v̂∞⟩, which after rearranging results in ∥v∞− v̂∞∥2 = 0 establishing uniqueness of the optimal
limit point.
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