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Abstract

This work proposes a finite element procedure for the simulation of biologically inspired adhesives with
a mushroom-shaped patterned surface by formulating a novel interface finite element. The proposed com-
putational method can capture the attachment and detachment mechanisms without modeling in detail the
microstructures on the surface, which is the major issue of large-scale simulations involving complex sur-
faces. A data-driven phenomenological interface constitutive law has been formulated starting from pull-out
experimental tests on patterned surfaces with different inclination angles to assess Mode Mixity effects in
a range of peeling angles of relevance for applications. The proposed computational model represents a
versatile tool for modeling structural problems involving arbitrary shapes components, as in bio-inspired
adhesives.
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1. Introduction

The industrial sector has shown a growing inter-
est in dry adhesives, especially bio-mimetic adhe-
sives inspired by the natural microstructures ob-
served on the animals’ skin. The ability of geckos,
spiders, and many insects to run up walls and ceil-
ings relies on the unique distribution of microstruc-
tures on their feet covered by multiple contact ele-
ments [1, 2, 3]. Such natural ways to enhance the
biological attachment represent a significant source
of information for developing novel artificial bio-
inspired adhesives.

The adhesive properties of these natural surfaces
are highly influenced by their microstructures ge-
ometry. Gecko’s footpads are covered by a huge
number of keratin hairs, called setae, branching at
the tip into hundreds of projections, called spatulae
[4]. Next to the more famous microstructures on the
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gecko’s footpads, the attachment systems of bee-
tles from the family Chrysomelidae have inspired
the Mushroom-Shaped Adhesive Micro-Structures
(MSAMSs) [5]. The beetles’ fibrillar surface can
be easier reproduced for industrial dry adhesives
with better results in comparison with flat surfaces
[4]. MSAMSs are usually produced using poly-
mers through soft molding technique. The result
is shown in Fig. 1.

The single mushroom-shaped unity that com-
poses the texture of the adhesive, is shown in
Fig. 1d. The height of a single pillar is about
100µm, while the base diameter is 60µm, decreas-
ing to 35µm at the middle section and having a
neck close to the contact plate with a 25µm diame-
ter. The contact plate diameter is about 48µm, and
its thickness is 2µm. The pillar geometry needs to
be optimized by considering the stress distribution
dependence on the dimension of each part of the
pillar to avoid stress singularities [4] that would be
critical for the correct adhesion between the sub-
strate and the pillar.

In the case of an optimized geometry, if a tensile
load acts on a pillar of the MSAMSs, the pull-off
force required for the detachment of the pillar de-
pends upon the tilt angle α (see Fig. 1d).
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Fig. 1: Mushroom-shaped fibrillar adhesive microstructures made of polyvinylsiloxane (PVS) and detail of a single mushroom-
shaped pillar upon the action of a pull-off force P tilted by an angle α.

A detailed review of the experimental and the-
oretical investigations on the micro-pillars is avail-
able in [6]. In the same work, a FE simulation of
a single pillar has been used to derive the stress
state at the interface between the pillar and the
adhering surface. The MSAMSs detachment pro-
cess has been simulated in [7] testing the friction-
less and sticking friction conditions at the contact
surface. The adhesive interface of bio-mimetic ad-
hesives has also been simulated through the cohe-
sive zone model in [8, 9] using different traction-
separation laws.

Few computational models have been proposed
for systems consisting of more than a single pillar
due to the computational effort required for mesh-
ing the complex geometry of a patterned surface
with all its microstructure. An example can be
found in [10], regarding a gecko-inspired adhesive
pressed against a rigid sphere. Gecko’s spatulae
have been modeled as a cohesive layer over the tip
surface of a seta in [11]. A more complex approach
has been proposed in [12] simulating the gecko’s
microstructure through a 3D multi-scale finite el-
ement model. Moreover, the attachment systems
of geckos and the adhesive spider web anchorages
have been analyzed through the theory of multi-
ple peeling developed in [13] and extended in [14].
This theoretical analysis has been applied in a com-
putational model in [15] to reproduce the contact
formed between a smooth substrate and individ-
ual tape-like terminal elements. A ’fractal gecko
hairs’ model composed of multiple layers of self-
affine brush structures has been proposed in [16]
to simulate the hierarchical fibrillar structure of
gecko’s footpads and the dependence of the ad-
hesion strength on the direction of pulling. The
orientation-dependent adhesion has been further in-

vestigated in [17].
Nowadays, it would be desirable to have a suit-

able computational tool that could be used to scale
up the individual pillar’s behavior and study com-
plete devices separated by patterned adhesives. For
this reason, the present work aims at reproduc-
ing the mushroom patterned adhesive performance
through the formulation of a phenomenological in-
terface constitutive law that can be incorporated
into a zero-thickness interface finite element. In this
way, advanced applications of MSAMSs adhesives
can be investigated with a reduced computational
effort, albeit preserving the accuracy in the adhe-
sive mechanical response.

The starting point of the proposed computational
framework is the experimental data acquired during
pull-off tests on adhesives’ samples, focusing the at-
tention on the dependence of the adhesion strength
on the tilt angle, which is a crucial parameter of the
performance of the adhesive, see Sec. 2. The inter-
face finite element formulation is then proposed in
Sec. 4, and the experimental results allow establish-
ing a data-driven interface constitutive model for
the adhesive interface, as proposed in Sec. 3. Fi-
nally, Sec. 5 discusses an application example and
highlights possible future developments.

2. Experimental investigation

The experimental campaign has been carried
on at the University of Kiel by using MSAMSs
samples produced with polyvinylsiloxane (PVS) in
which the elastic modulus is about 3 MPa. The
mushroom-shaped pillars are hexagonally packed
on the sample’s surface, as shown in Fig. 1a in Sec. 1
and the tests measure the overall behavior of the
textured surface.
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The adhesion measurements have been per-
formed on a custom-built apparatus, shown in
Fig. 2, at a constant velocity of 0.1mm/s, composed
by a 6-axes positioning table. The samples have
been pressed against a glass cylinder with 5 mm
diameter and later retracted from it, considering
a defined tilt angle α with respect to the vertical
axis of the set-up. Nine tilt angle values have been
tested from 0◦ up to 4◦ with a step of 0.5◦. For each
angle, about 30 cycles of attachment (loading) and
detachment (unloading) have been considered using
decreasing values of the maximum loading displace-
ment ranging between −0.80 mm up to −0.1 mm.

z

x
y

Glass cylinder

MSAMSs
sample

Fig. 2: Experimental set-up for adhesion measurements and
magnification with the global reference system.

A typical traction-displacement curve for a single
cycle is depicted in Fig. 3, obtained considering the
nominal traction T as the ratio between the force
value recorded during the experiment and the glass
cylinder area. The curves presented in this Section
refer to the external global coordinate system of the
experimental set-up presented in Fig. 2.. The sign
convention adopted in the latter plot and in the rest
of the article is consistent with the finite element
formulation, assuming loading tractions as nega-
tive and adhesive tractions in the unloading phase
positive. The detachment stage can be further di-
vided into: (i) an increasing unloading phase up
to the maximum traction values corresponding to
the pull-off force; and (ii) an unloading decreasing
phase till the complete detachment of the adhesive.
The division in these two steps is required to iden-
tify the maximum adhesive traction and facilitate
the data interpolation procedure, as detailed in the
next Section. Some relevant quantities are shown
in the same plot to introduce the notation: (i) the
displacement at the end of the loading phase, gu (af-
terward referred to as unloading displacement), and
the corresponding traction values Tu; (ii) the maxi-
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Fig. 3: Experimental curve in terms of imposed displacement
g and traction T measured w.r.t. the global reference system
in Fig. 2. Tilt angle with respect to the z axis is α = 2.5◦

and the unloading displacement is gu = −0.81 mm.

mum traction Tad and the related displacement gad;
and (iii) the critical displacement at complete ad-
hesive failure, gmax.

The different cycles related to the same tilt angle
have been overlapped in Fig. 4 to observe the effect
of the unloading displacement gu.
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Fig. 4: Experimental curves measured w.r.t. the reference
system in Fig. 2 related to the same tilt angle α = 2.5◦ but
with a decreasing unloading displacement gu.

The same procedure has been repeated for each
examined tilt angle, and the curves of the first cycle
for different tilt angles are shown in Fig. 5. The
plot shows that for increasing values of tilt angle,
the adhesion peak decreases.

3. Interface Finite Element formulation

The described experimental data are exploited
for the formulation of a zero-thickness interface fi-
nite element whose kinematics derives from [18].
The numerical framework has been modified by de-
veloping a data-driven micromechanics-based inter-
face constitutive law for the analyzed bio-mimetic
adhesives. For the sake of brevity, the detailed de-
scription of the interface finite element formulation
is omitted here. The reader can refer to [18] for
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Fig. 5: Experimental traction-displacement curves obtained
at the first-cycle, for different tilt angles.
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Fig. 6: Sketch of the interface finite element topology.

more details. The hypothesis of small displacement
has been put forward.

Focusing the attention on the interface between
two solids, referred as Γ, the energy contribution of
the interface cohesive traction T = (τ, σ)

T
to the

principle of virtual work is given by:

Πint =

∫
Γ

gTTdΓ (1)

where g = (gt, gn) describes the gap field across the
interface represented by the relative displacement
field between the two sides of the interface. The in-
terface finite element topology used for the interface
discretization is shown in Fig. 6.

The finite element routine provides the value of
the displacement gap g at each integration point.
Hence, the interface model presented in the next
Sec, must allow the computation of the cohesive
traction T and the tangent interface constitutive

matrix C =
∂T

∂g
necessary to solve the nonlinear

system of equations deriving from the finite element
discretization with a Newton-Raphson scheme.

Let us consider a generic time-step t of a quasi-
static finite element analysis. The interface finite

element routine provides the tangential and normal
components, gt and gn, of the gap vector in the
element local reference system. Hence, the local
tilt angle ᾱ can be computed as:

ᾱ =

arctan

(∣∣∣∣ gt

gn

∣∣∣∣) if gn 6= 0

90◦ if gn = 0
(2)

The condition and the absolute value are neces-
sary to get ᾱ ∈ [0, 90◦] since the considered exper-
imental angles are assumed to be always positive,
and the results are symmetric with respect to the
vertical axis. The notation ᾱ is here introduced to
distinguish the tilt angle values referred to the ex-
perimental data and the quantities computed dur-
ing the FE simulation at the element level.

The constitutive model will take the form of
T = f(g, gu) for each experimental tilt angle, hence
ᾱ is compared with the known experimental val-
ues, evaluating the interval for which ᾱ ∈ [α1, α2].
In the case of a local tilt angle greater than 4◦, the
analyzed interval is [4◦, 90◦] and the traction con-
tribution related to the tilt angle 90◦ is supposed to
be equal to zero. However, the results in this range
must be taken with care since they are not based
on experimental data.

The modulus of the gap vector is needed as well,
and it reads:

g =
√
g2

n + g2
t (3)

The interface constitutive law described in the
following Section will consider the gap to be nega-
tive during the unloading phase, and then it spans
from negative to positive values in the unloading
phase. For this reason, the gap value used as input
in the interface law subroutine must account for the
sign as well: the gap g is considered to be negative
if gn < 0 and positive if gn > 0.

To obtain the correct traction value for a given
gap g, it is essential to identify if the interface is in
the loading or unloading phase. In the latter case,
it is also necessary to know the unloading displace-
ment gu. For this purpose, two history variables are
introduced at each integration point: ghist contain-
ing the gap g of the previous timesteps t − 1, and
gu

hist containing the unloading gap gu. While the
variable ghist is updated at each timestep, the vari-
able gu

hist is updated only during the loading phase
such that it remains available for the following un-
loading phase.
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With these inputs, the traction values T1(g, gu)
for α1 and T2(g, gu) for α2 are computed selecting
the appropriate fitting functions, see Sec. 4. Sub-
sequently, the traction values are linearly interpo-
lated to obtain the traction T and ∂T

∂g for the angle
ᾱ. The sign of the traction T derives directly from
the fitting function.

The final step of the element routine regards the
computation of the traction components τ and σ,
and the tangent stiffness matrix C. The traction
components are evaluated as:

σ = T cos(ᾱ), τ = T sin(ᾱ) (4)

Since the analytical expression of the interface
constitutive law allows the direct computation of
the derivative of T with respect to the gap g, after
some algebraic manipulation, the tangent constitu-
tive matrix components have been derived as:

C1,1 =
∂τ

∂gt
=
∂T

∂g

gt√
g2

t + g2
n

+ T
g2

n

(g2
t + g2

n)
3
2

(5a)

C1,2 =
∂τ

∂gn
=
∂T

∂g

gn√
g2

t + g2
n

+ T
−gngt

(g2
t + g2

n)
3
2

(5b)

C2,1 =
∂σ

∂gt
=
∂T

∂g

gt√
g2

t + g2
n

+ T
−gngt

(g2
t + g2

n)
3
2

(5c)

C2,2 =
∂σ

∂gn
=
∂T

∂g

gn√
g2

t + g2
n

+ T
g2

t

(g2
t + g2

n)
3
2

(5d)

The algorithm of the presented interface finite
element has been condensed in Appendix A.

4. Development of the interface constitutive
model

As previously mentioned, the desired constitutive
model assumes the form of T = f(g, gu) for each
experimental tilt angle α.

Three different functions have been used to ex-
press the fulltraction-separation law: P1(g) for the
loading phase, P2(g, gu) for the increasing unload-
ing phase up to the adhesion peak, and P3(g, gu)
for the decreasing unloading phase.

Polynomial expressions of the gap have been fit-
ted to the experimental data using the linear least-
squares solver with linear constraints offered by
Matlab (function lsqlin1 with the default ”interior-
point” algorithm) which provides the solution to

1See https://it.mathworks.com/help/optim/ug/

lsqlin.html

least-squares curve fitting problems of the form:

min
p

1

2
||C · p−T||22

s.t.

{
A · p ≤ b

Aeq · p = beq

(6)

where || ||22 indicates the squared Euclidean norm,
p is the vector of the unknown polynomial coef-
ficients, C collects the displacement data in a ma-
trix form according to the degree of the polynomial,
and T collects the traction values. The inequality
and equality constraints are expressed through: (i)
the matrices A and Aeq containing the powers of
the displacement vector; and (ii) b and beq for the
traction values. All these terms are detailed in the
following paragraphs.

Collecting the experimental displacement and the
traction data of the i-th cycle respectively in the
column vectors gi and Ti with i = 1, ..n and n
number of cycles for the analysed tilt angle, the
total displacement vector g and the total traction
vector T read:

g =



g1

...
gi

...
gn


, T =



T1

...
Ti

...
Tn


(7)

The matrix C collects hence the element-wise
powers of g. As an example, in the case of a third-
order polynomial, C reads:

C =

{g}3 {
g

}2 {
g

} {
g

}0
 (8)

The matrix A and Aeq are used to enforce con-
straints on the fitting function. The inequality con-
straint has been used to impose the monotonic in-
creasing (or decreasing) of the function by consid-
ering the analytical derivative of the polynomial
expression, while the equality condition binds the
curve to pass through given couples of traction-
gap values. As for the C matrix, A and Aeq col-
lect the powers of the displacement vector, while b
and beq contain the traction vectors. For example,
the monotonic decreasing behavior of a third-order
polynomial would be expressed as A · p ≤ b with:

A =

3

{
g

}2

2

{
g

} {
g

}0 {
0

} (9)
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and b equal to a vector of zero values. The three
phases of the experimental curves differ for the
polynomial order and the imposed constraints.

It is also necessary to introduce the unloading
displacement vector gu that collects the unloading
displacements of all the cycles, the vector of the
unloading traction Tu, and, for the values related
to the adhesion peaks, the vectors gad and Tad.

The loading phase is interpolated using a third-
degree polynomial having general expression:

P1(g) = p3g
3 + p2g

2 + p1g + p0 (10)

The vector p in the minimization problem in
Eq. (6) is hence given by p = {p3, p2, p1, p0}T.
Since the polynomial must assume zero value trac-
tion at the initial displacement, the fourth coeffi-
cient p0 is always equal to zero. Moreover, the
function is constrained to have a monotonic increas-
ing behavior and to pass through the unloading
traction-displacement couple of the first cycle since
it has been observed that this constraint improves
the fitting quality.

The result for α = 2.5◦ is shown in Fig. 7 where
the unloading points for all the cycles are high-
lighted with red asterisks, and the fitting curve is
depicted by the black line. The constraints are sat-
isfied within the default tolerance. The coefficient
values found for each α are given in the Appendix
A together with all the coefficients that will be com-
puted in the following paragraphs.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

g [mm]

-0.1
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T
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a
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Fig. 7: Loading phase interpolation curve (black line) for α =
2.5◦. The unloading points for all the cycles are highlighted
with red asterisks.

The second step regards the unloading phase. In
this case, the fitting procedure of the unloading
phase is complicated by the traction’s dependency
not only on the gap at the interface but also on the
unloading displacement gu. The 3D plot in Fig. 8
shows the experimental curves obtained varying gu,
which becomes the third axis of the plot. In the

same figure, the initial points, the adhesion peaks,
and the final points of each curve are highlighted.

Fig. 8: 3D plot of the unloading phase experimental curves
for α = 2.5◦. For each curve, the initial points, the adhesion
peaks and the final points are highlighted.

To improve the convergence of the algorithm used
for the minimization problem, the traction values at
the adhesive peak Tad have been interpolated by
a second-order polynomial function of gu, before
being used in the equality conditions. Hence, the
fitting function for this case reads:

Q1(gu) = q2(gu)2 + q1g
u + q0 (11)

The polynomial coefficients have been found using
Eq. (6) without constraints, and it can be seen in
Fig. 9 that the experimental values are very well
reproduced by the chosen function.
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g
u
 [mm]

0.01

0.02

0.03

0.04

0.05

0.06

T
a
d
 [

M
P

a
]

Fig. 9: Fitting of the adhesion peak traction Tad with re-
spect to the unloading gap gu for α = 2.5◦.

Going back to the unloading phase fitting proce-
dure, the chosen functions are polynomials of fifth
degree in g and second degree in gu having the fol-
lowing general expression:

Pi(g,g
u) = p00 + p10g + p01g

u + p20g
2 + p11g ◦ gu

+ p02(gu)2 + p30g
3 + p21g

2 ◦ gu + p12g ◦ (gu)2

+ p40g
4 + p31g

3 ◦ gu + p22g
2 ◦ (gu)2 + p50g

5

+ p41g
4 ◦ g + p32g

3 ◦ (gu)2

(12)
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where ◦ represents the element-wise product.
Equation (6) provides the coefficients vectors for

the increasing and the decreasing sections of the
unloading phase. The fitting surfaces are shown
in Fig. 10 for the branch up to the peak adhesive
traction and in Fig. 11 for the post-beak branch.

Fig. 10: Experimental curves and fitting surface for the
branch up to the peak adhesive tractions of the unloading
phase for α = 2.5◦.

Fig. 11: Experimental curves and fitting surface for the post-
peak branch of the unloading phase for α = 2.5◦.

The fifteen coefficients for the increasing phase
have been computed imposing the equality con-
straints at the unloading points, represented by
blue asterisks in Fig. 10, and at the adhesion peaks,
shown by green asterisks in the same plot.

For the post-peak branch, the chosen constraints
are the equality condition at the adhesive peaks
(green asterisks in Fig. 11) and the inequality con-
dition for the fitting surface’s monotonic behavior,
which must decrease towards zero till the critical
displacement (purple asterisks in Fig. 11).

Finally, the complete interface model for a given
angle α assumes the form summarised in Tab. 1 and
the final result is shown in Fig. 12 for the case of
α = 2.5◦.

The interface routine stores all the polynomial
function coefficients and expressions necessary to

Fig. 12: 3D Fitting surface obtained for α = 2.5◦.

compute the traction vector according to the gap
and to the local tilt angle ᾱ. The interface element
subroutine contains the information regarding the
experimental critical displacements, gu, gad, and
gmax for each angle α to be compared with the sim-
ulation gap g.

5. Numerical examples

5.1. Assessment of the accuracy of the computa-
tional model to reproduce the experimental re-
sults

The interface finite element formulation, coded
as a new user element in the FE program FEAP
version 8.3 [19]. The program employs a full New-
ton Raphson solution scheme and the simulations
converge in at most 3 iterations using the default
convergence criteria corresponding to 10−16 for the
energy norm tolerance and 10−8 for the residual
norm tolerance.

The interface finite element has been tested us-
ing a simple benchmark model to assess the con-
sistency of the numerical implementation and ap-
proximation to reproduce the experimental results
accurately. The model consists of two square blocks
meshed with standard 4-nodes linear finite elements
and separated by the interface finite elements (see
Fig. 13). The two solids have been considered al-
most rigid as compared to the interface and with
the same material parameters: Young’s modulus
E = 1000 MPa and Poisson ratio ν = 0.45.

The simulation is conducted under displacement
control by imposing vertical and horizontal dis-
placements on the upper edge, such that the far-
field tilt angle is known. As in the experiments, the
simulation considers a loading phase by pressing the
upper block against the lower one and then an un-
loading phase until the interface complete debond-
ing.
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Phase General Form Intervals Polynomial order Number of coefficients

Loading T = P1(g, α) gu < g ≤ 0 3rd order in g 4

Unloading - Increasing T = P2(g,gu, α) gu ≤ g < gad 5th order in g and
2nd order in gu 15

Unloading - Decreasing T = P3(g,gu, α) gad ≤ g ≤ gmax 5th order in g and
2nd order in gu 15

Tab. 1: Summary of the different fitting polynomials used for the interface constitutive model.

Fig. 13: Benchmark test geometry and boundary conditions
with one single interface finite element.

The results for a tilt angle equal to 2.5◦ are shown
in Figs. 14 and compared with the experimental
data for different values of gu. As expected, the
model reproduces exactly the fitting functions, and
it is in excellent agreement with the experimental
data.
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Fig. 14: Numerical simulation results compared to experi-
mental and fitting functions for different gu and α = 2.5◦.

The traction-displacement curves for increasing
values of α are shown in Fig. 15 for the normal
and the tangential directions. The same unloading
displacement has been used for all the simulations.
The curves with α equal to { 0.2◦, 0.8◦, 1.2◦ } have
been obtained through linear interpolation of the

known experimental angles, reported in the same
plot for comparison. The chosen linear interpola-
tion captures the experimental dependence of the
traction on the applied tilt angle with good results.
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Fig. 15: Traction-displacement curves computed by the FE
model for different values of α.

5.2. Simulation of a peeling problem.

The proposed computational framework can also
model a more realistic application of the MSAMSs
adhesive, for example, the simulation of a poly-
meric layer’s bond to a glass substrate through the
mushroom-shaped adhesive. The following simula-
tion has been inspired by MSAMSs adhesives usage
to realize adhesive gloves for climbing vertical walls.
These applications rely on the tilt angle variation
to quickly release the gloves from the wall since the
detachment force is strictly connected to the peel-
ing angle. Hence, the proposed formulation must
correctly capture the force variation with the tilt
angle variation over time.

The finite element model used for this simulation
is shown in Fig. 16 and consists of a glass substrate
layer with Young’s Modulus equal to 70 GPa and
Poisson ratio equal to 0.3, and an upper polymeric
layer in ABS (acrylonitrile butadiene styrene) hav-
ing E = 3200 MPa and ν = 0.3. The interface finite
elements have characteristic length h = 0.17 mm re-
sulting in 120 elements for the discretization of the
interface.
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The simulation has been conducted in a quasi-
static framework with the far-field angle α depend-
ing on the current timestep. After a loading phase
with a constant tilt angle α = 1◦, the interface has
been tested, considering firstly an increasing tilt an-
gle and secondly a decreasing one. The results have
been compared with those that could be obtained
by imposing a constant angle of peeling along the
whole interface. The tilt angle evolution has been
controlled by checking the local tilt angle at the
interface at the last integration point through the
Eq. (2), as underlined in Fig. 16a, and it has have
been plotted in Fig. 16b. The simulation results in
terms of total reaction force per unit width vs im-
posed displacements are shown in Fig. 16c for the
simulations with constant tilt angle (green curve),
and for the increasing (blue curve) and decreasing
α (red curve) plotted in Fig. 16b.

Figure 17 shows the displacement field magnitude
of the joint for the case with constant α at different
time-steps: the initial configuration in Fig. 17(a),
the end of the loading phase (b) and the unloading
steps (c)-(e).

Numerical results show that even a small de-
crease of α as compared to the uniform tilt angle
case, it is sufficient to drop the peeling force and
enhance detachment of the mushroom-shaped ad-
hesive.

6. Conclusion

This article presented a novel computational
framework for the simulation of bio-inspired adhe-
sives to enhance the simulation of large-scale struc-
tural joints that have great potential compared to
traditional pressure-sensitive adhesives. In par-
ticular, bio-mimetic PVS adhesive samples with
mushroom-shaped microstructures have been ana-
lyzed in pull-off tests. The team in Lucca has used
the experimental data collected by researchers in
Kiel to develop a micromechanics-based interface
finite element capable of reproducing the adhesive
performance as a whole.

The first step regarded the identification of the
dominant parameters affecting the adhesive re-
sponse in the experimental tests. In line with the
literature, the MSAMSs adhesive’s pull-off strength
depended on the maximum load reached during the
loading phase and on the tilt angle with which the
test is conducted. This last aspect is relevant for
the applications since the detachment from the ad-
hering surface can be enhanced by increasing the

inclination of the peeling force. The loading and
unloading data have been fitted using polynomial
surfaces depending on the gap separation between
the adhesive surfaces, the unloading gap, and the
applied tilt angle. Hence, the functions have been
transferred in the interface finite element routine
and decomposed in the normal and tangential di-
rections.

After assessing the accuracy of the discretized
formulation to reproduce the experimental results,
the proposed framework has been exploited to test
loading and unloading scenarios involving a poly-
meric layer bonded onto a glass substrate with a
tilt angle variable during the simulation, a situa-
tion relevant for MSAMs adhesives that cannot be
easily tested in the lab. Results show that small
changes of the tilt angle can effectively release ad-
hesion of the adhesive strip. The method’s poten-
tiality could be further investigated by extending
the method to a 3D setting and simulating more
complex applications and prototypes exploiting the
patterned adhesives technology.
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Appendix A. Supplementary Material

The list of the fitting function coefficients com-
puted for each tilt angle and the algorithm of the
proposed interface finite element can be found in
the supplementary material provided together with
this article.
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