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Abstract

In this work we present a Reduced Order Model which is specifically designed to deal with turbulent flows
in a finite volume setting. The method used to build the reduced order model is based on the idea of merg-
ing/combining projection-based techniques with data-driven reduction strategies. In particular, the work
presents a mixed strategy that exploits a data-driven reduction method to approximate the eddy viscosity
solution manifold and a classical POD-Galerkin projection approach for the velocity and the pressure fields,
respectively. The newly proposed reduced order model has been validated on benchmark test cases in both
steady and unsteady settings with Reynolds up to Re = O(10%) .
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1. Introduction

A large part of physical problems (fluid dynamics, mechanics and heat transfer, ...) in relevant engineering
and physics applications is governed by conservation laws. Over the years, several different numerical
methods have been developed to solve the systems of Partial Differential Equations (PDEs) resulting from
these conservation laws. Among these we mention the finite difference (FDM), the finite element (FEM),
the finite volume (FVM), and the spectral element method (SEM). In particular, the Finite Volume one
[1l 2] is very often used to solve fluid dynamics and more in general hyperbolic problems.

Despite the recent increase of available computational power and new computational methods, the res-
olution of the governing equations, using one of the classical discretization methods previously mentioned,
may become for several reasons not convenient. This is evident in common situations such as real-time
control problems, where a small computational time is a major requirement or in a multi-query contest
(e.g. optimization, uncertainty quantification, repetitive computational environment), where one needs to
compute a certain output of interest for a large number of different input settings. This makes the cost of
resorting to standard numerical methods (that will be referred as the Full Order Model (FOM)) prohibitive.
These challenges in simulating computational problems has pushed the scientific community to seek tech-
niques which could reduce the computational cost. Reduced Order Methods (ROMs) have been successful
in meeting the needs of reducing the computational time offering high speed up rates. For a comprehensive
review on ROMs, the reader may refer to [3] 4 [5] 6] [7].
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Projection based ROMs [8], [9], on which this article is focused, have been applied in several scientific
contributions dealing with laminar fluid dynamics problems and the methodology is already well established.
On the other side, for what concerns turbulent flows, there are still several issues that need to be addressed.
For instance, it is well known that projection based ROMs of turbulent flows suffer from energy stability
issues [10]. This is due to the fact that the POD retrieves the modes which are biased toward large, high-
energy scales, but the turbulent small scales are the responsible scales for the dissipation of the turbulent
kinetic energy [11].

Several strategies have been proposed to stabilize ROMs for turbulent flows and here a brief overview of
the possible strategies is outlined. A possible approach suggests to include dissipation via a closure model,
see [12, [13]. In [14], it has been theoretically and numerically shown that the POD modes have similar
energy transfer to the one of the Fourier modes. This suggests that the use of Large Eddy Simulations
(LES) at the full order level could be beneficial in the case of POD-Galerkin-based ROMs.

Another possible approach [I5] to obtain more dissipative ROMs, and justified by the fact that small
scale modes have H! norm value that is higher than their L? norm value, proposes the usage of the H'
inner product instead of the L? one in order to compute the POD modes.

Efforts to reduce CFD problems for turbulent flows include also employing minimum residual formulation
in the reduced order model [I6, 17, [I8] or the use of the Dynamic Mode Decomposition (DMD) [19} 20} 2T, 22].

Recently in [23], the authors proposed a constrained formulation to deal with long time instabilities. In
the latter work, a constrained Galerkin formulation is proposed in order to correct the standard Galerkin
approach. The reduced order model in [23] was generated using H!'-POD-hGreedy strategy, which is a
simplified version of the h-type Greedy [24]. In [25] the authors presented a reduced order model (based
on the FEM) for the Smagorinsky turbulence model [26] for steady flows. Their approach consisted into
the approximation of the non-linear eddy diffusion term using the Empirical Interpolation Method. The
contribution [27] presents a reduced order model which is designed also to deal with Smagorinsky turbulence
model. The authors in [27] proposed a model which solves for the degrees of freedom of the velocity
components and does not take into account pressure, the matrix coefficients, which come from the projection
of the eddy viscosity term onto the velocity POD modes, have been assumed to be time dependent, and
thus, these coefficients were dynamically updated during the time integration of the momentum equation at
reduced order level. Additional works on Smagorinsky ROMs are presented in [28] [29] [30]. In the context
of ROMs for turbulent flows it is also worth mentioning the Variational Multi-Scale (VMS) method [31] 32].
Smagorinsky VMS-ROMs are proposed in [3334]. In [35] started from a Discontinuous Galerkin formulation
to inherits the stability of the full order discretization.

Most of the works mentioned above make use of Projection-based methods. However, ROMs can also be
obtained by data-driven approaches [36], 37, [38, B9 [40, [4T], 42} [43]. A recent work on data-driven reduced
order modeling for time-dependent problems can be found in [44], where the authors proposed a regression
based model to approximate the maps between the time-parameter values and the projection coefficients
onto the reduced basis.

Since the final aim is to develop ROMs for flows with high Reynolds number, at the FOM level a Direct
Numerical Simulation (DNS) is not affordable and thus we have to introduce turbulence modeling. In the
FVM setting the most used techniques to introduce turbulence modeling are based on the Reynolds Averaged
Navier-Stokes (RANS) equations and on the Large Eddy Simulation (LES) method. In this work, the RANS
approach is considered. In order to solve the RANS equations a turbulence closure model that describes
the effect of sub grid scales is required. In order to approximate the Reynolds stress tensor, we analyzed
eddy viscosity closure models for both steady parametrized flows and unsteady flows. We considered closure
models with both k — € and SST k — w [45, [46] which are two equations models, in which the eddy viscosity
vy depends algebraically on two variables k and € or w. These variables stand respectively for the turbulent
kinetic energy, turbulent dissipation and the specific turbulent dissipation rate. An additional PDE is solved
for each of the turbulence variables.

In this work we present a mixed approach between projection-based ROMs and data-driven-based ROMs,
for some references on hybrid projection/data-driven ROM see [47, 48], 49], 50, [51], 52]. In [47] the authors
presented a combination of projection based ROM with a Data Driven Filtering technique. In particular
the work proposed to modify the standard Galerkin ROM by introducing a correction term which models
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the interaction between resolved modes and truncated modes. The authors used data driven modeling only
to approximate the correction term, and tested the ROM on a 2D channel flow past a circular cylinder at
Reynolds number of 100, 500 and 1000.

In [48, [49], calibration methods have been constructed for the goal of reducing the Navier—Stokes equa-
tions, the authors used POD-Galerkin projection strategy and then they utilized data-driven techniques for
calibrating the reduced order models. In [48], this is done by assuming that the term which contains the
pressure gradient (in the projected momentum equation) is modeled by the product of a calibration matrix
and the reduced vector of velocity coefficients. Afterwards, the calibration matrix entries can be found
by minimizing a functional that depends on the values of the interpolated velocity vector of L? projection
coefficients. In [49], the calibration is done by finding the polynomial function that sets up the reduced dy-
namical system for the velocity coefficients as the solution to an optimization problem, where the functional
which has to be minimized has two weighted terms. The first term measures the error between the values of
the projection coefficients obtained from the data and the reduced solution of the dynamical system. The
second imposes a cost for the difference between the original polynomial of the reduced dynamical system
and the new one that determines the calibrated system.

In [51], the hybrid approach is similar to [48], where an empirical pressure model is used to approximate
the pressure term in the projected momentum equation. The data-driven approach utilized is a linear
regression which fitted a set of coefficients in the empirical model from the data. In the last mentioned works,
the hybrid/mixed approaches include modeling projected terms at the reduced order level and modifying
the reduced order matrices entries. We mentioned only works which focus on reducing the the Navier—
Stokes equations in both laminar and turbulent settings. Since such works were focused on reconstructing
the velocity field of Direct Navier—Stokes resolutions, we here stress that the corresponding reduced model
did not include the pressure field nor any turbulence associated field. In the present reduced approach we
instead aim at reconstructing both the velocity and pressure fields and also consider the turbulent viscosity
field 1. This is motivated by the fact that the eddy viscosity is used at the reduced level to stabilize
the momentum equation, as is the case for any FOM employing one or two equations turbulence model
based on the Boussinesq eddy viscosity assumption. In fact, including the eddy viscosity in the ROM
formulation introduces consistency with the FOM. Furthermore, the motivation behind the computation of
a reduced version of the pressure field is that in several applications, important performance parameters
not only depend on the velocity field, but also on the pressure one. Among these performance parameters,
we mention for instance the fluid dynamics forces acting on the surface of a certain body. Thus, the ROM
approach developed aims at approximating the fluid dynamics variables w, p and v;. For such reason,
separate sets of ROM coefficients are employed for the reduced order expansion of the u, p and v; fields.
Yet, if the pressure and velocity coefficients are determined through a well assessed projection methodology,
the correct identification of the ROM coefficient for the turbulent variable v; is less obvious. Ideally, a
proper projection procedure requires that the specific turbulence model equations used in the FOM solver
must be taken into account. Unfortunately, given the wealth of one and two equations turbulence models
of common use in the engineering community, their several variants and the even higher number of closure
coefficients to be tracked at the ROM level, this approach appears not suitable for versatile ROMs which
aim at being applied to FOM results obtained with different solvers. For instance, for solvers included in
the OpenFOAM® (OF) [53] library — which are employed in this work — users can access to about 20
RANS one or two equation turbulence models. This would not only require the development of a projection
strategy for each turbulence equation encountered, but would also force constant monitoring of the FOM
solvers libraries updates. In fact, even minimal changes in the turbulence models closure coefficients would
make the results of the ROM solvers inaccurate. Hence, a versatile ROM solver, that can be employed in
the every day virtual prototyping work by design engineers, should ideally be sensitive to the turbulence
models used at the FOM level, but its implementation should not be dependent on their smallest details and
intricacies. For such reason, we decided to use data-driven techniques for the computation of the reduced
order coefficients of v, while still resorting to reduced order expansion of the w and p fields. Indeed, such
approach is able to reproduce differences due to changes in the particular turbulence model employed in
the FOM simulations, while avoiding the increased ROM complexity due to the projection of the specific
turbulence equations.



As a result, the approach developed in this work exploits the traditional projection methods in the part
that computes the degrees of freedom for the reduced velocity and pressure fields. On the other hand,
it uses a data-driven technique for the computation of the reduced coeflicients of the eddy viscosity field.
This is done by means of an interpolation process with Radial Basis Functions (RBF). The approach in
the offline stage involves the construction of a RBF interpolant function (with Gaussian kernel functions)
based on the set of samples used to train the ROM. In the general case of parametrized unsteady flows, both
the coefficients obtained by the L? projection of the velocity snapshots (obtained by different values of the
parameters and/or acquired at different time instants) onto the spatial modes of the velocity, as well as their
vector derivatives, will be used to compute the weights of the RBF interpolant function. In the online stage,
the values of the eddy viscosity coefficients are obtained by interpolation. The dynamical system resulted
from the projection step can be solved to obtain POD coefficients of the pressure and velocity expansion. To
summarize, this approach is based on two main ideas. The first one is to approximate the solution manifold
of the eddy viscosity field by means of an interpolation based approach. The second idea is to still exploit
projection based methods to determine the expansion coefficients for velocity and pressure.

The work is organized as follows: section [2[ deals with the description of the full order model and of
the numerical methods used to solve the incompressible Navier—Stokes equations. Section |3| presents the
methodologies used in this work to assemble the reduced order model. A review of projection based ROMs
is outlined in then the POD-Galerkin projection method is addressed in Subsection focuses
on the mixed projection-based/data-driven reduced order model. Subsection addresses how boundary
conditions are treated at the reduced order level. The numerical examples are presented in [4 with two
benchmark test cases which are the steady case of the backstep and the unsteady case of the flow past a
circular cylinder. Conclusions and perspectives follow.

2. The full order model (FOM)

The present section is devoted to a description of the governing equations of the full order fluid dynamic
model. Thus, the parametrized incompressible Navier—Stokes equations will be presented, along with de-
tails of their finite volumes discretization. Finally the Reynolds Averaged Navier—Stokes equations will be
presented, including some relevant aspects of the turbulence modeling considered in this work.

2.1. The mathematical problem: parametrized Navier-Stokes equations

In this subsection, the strong form of the mathematical problem of interest is recalled. Given a parameter
vector u € P < R4, where P is a g-dimensional parameter space. The Navier-Stokes equations parametrized
by p read as follows :

) o (u(t, @i ) @ult, i) — Vv (Vult @) + (Valt 2 )" ) = —Vplt,as ) in @ x [0,7],
V-u(t,z;p) =0 in Q x [0,7T],
u(t,z; u) = f(x, 1) on 'y, x [0,77,
u(t,z; ) =0 on Iy x [0,T],
(vVu—-pl)in=0 on Loyt x [0,T1],
u(0,z) = R(x) in (Q,0),

(1)
where I' = I';,, U Ty U 'y is the boundary of the fluid domain € RY, with d = 1, 2 or 3. The boundary
is formed by three different parts I'y,, I'ows and I'g , which correspond respectively to the inlet boundary,
the outlet boundary and the physical walls. w is the flow velocity vector field, ¢ is the time, v is the fluid
kinematic viscosity, and p is the normalized pressure field, which is divided by the fluid density ps, f is
a generic function that describe the velocity on the inlet I'y, and it is parametrized through p. R is the
initial velocity field and [0,77] is the time window under consideration. We remark that in this work the
parameter p is always a physical parameter.



2.2. The finite volume discretization

The governing equations of are discretized using the FVM [I]. After choosing an appropriate polyg-
onal tessellation, one can write the system of partial differential equations (1f) in integral form over each
control volume. In the present work 2-dimensional tessellations are considered. The number of degrees of
freedom of the discretized problem represents the dimension of the full order model (FOM) which is denoted
by Nj. In the next subsections, the discretization methodology of the momentum and continuity equations
is addressed. In particular the momentum and continuity equations are solved using a segregated approach
in the spirit of Rhie and Chow interpolation. The discretization starts writing the momentum equation in
integral form for each control volume V; as follows:

ﬁudv+f V~(u®u)dV—f V-V(Vu-i—(Vu)T) dV+J VpdV = 0. 2)
v, Ot Vi Vi Vi

We define then a generic cell center P and a set of neighboring points around it N (Figure 1)). For each cell
P, the discretized form of the momentum equation is then written as:

apup + Za}(,uN =—Vp, (3)
N

where uy and up are the velocities at the centers of two neighboring cells, a% is the vector of diagonal
coefficients of the equations and afy is the vector that consists off diagonal coefficients. is
rewritten for all the cells in matrix form as:

Au =H — Vp. (4)

In the above expression the terms H = — >y a%uyn and Vp are evaluated in an explicit manner based
on previous tentative values of the velocity and pressure fields or on the values converged at the previous
iteration or at the previous time step. The A matrix is a diagonal matrix and can be easily inverted and

therefore can be easily solved:
u=A""H - A'Vp. (5)

If we apply the divergence operator and then exploit the continuity equation (V -u = 0) we obtain a Poisson
equation for pressure:

V- (A'Vp) =V (AH). (6)

The equation for pressure can be solved and used together with [Equafion 5| and with the discretized version
of the continuity equation to update Fy (the mass flux through each face of the control volume):

Fr=u; -S;=-A"'S; - Vp+ A 'S, H, (7)

where Sy is the area vector of each face of the control volume and uy is the velocity vector evaluated at the
center of each face of the control volume. The procedure used to discretize all the different terms inside the
Navier-Stokes equations is explained in what follows. The pressure gradient term is discretized with the use
of Gauss’s theorem:

J VpdV = JS pdS ~ > Sypy, (8)
i i f

where py is the value of pressure at the center of the faces (Figure 1)).
Again using Gauss’s theorem, the convective term can be discretized as follows:

V-(u®u)dV:J

Vi S

(dS-(u®u))NZSfuf@uJe:ZFfuf. (9)
f f



Figure 1: Sketch of a finite volume in 2 dimensions

We remark that the velocity unknowns in the discretized form of the equations are always computed at the
center of the faces. Therefore these values must be interpolated using the values at the cell centers. Several
interpolation schemes are available such as central, upwind, second order upwind and blended differencing
schemes. Fy is the mass flux through each face of the control volume and, in order to remove the non-
linearity, it is computed using the previous converged velocity and updated with )

The diffusion term is discretized as follows:

fv,- Ve (Vu+ (Vo)) av - Li ds-v (Vu+ (va)") ~ ;st (V) (10)

where (Vu); is the gradient of w at the faces. A procedure similar to the one described for pressure in
is used to compute the value of (V). As for computing the term Sy - (Vu)y in (10)), its value depends on
whether the mesh is orthogonal or non-orthogonal. The mesh [I] is orthogonal if the line that connects two
cell centers is orthogonal to the face that divides these two cells. For orthogonal meshes the term S¢-(Vu)

is computed as follows :
uNy —up
81+ (Vu)y = |84/ X 22
|d|
where uy and wp are the velocities at the centers of two neighboring cells and d is the distance vector
connecting the two cell centers see If the mesh is not orthogonal, then a correction term has to be
added to the above equation. In that case, one has to consider computing a non-orthogonal term to account
for the non-orthogonality of the mesh [54] as given by the following equation:

: (11)

—Uu

Sy (Vu)y = |AIZFZ=E 40 - (Vu)y, (12)
where the following relation holds S = A+ J. The first vector A is chosen parallel to Sy. The term (Vu);
is obtained through interpolation of the the values of the gradient at the cell centers (Vu)y and (Vu)p
in which the subscripts N and P indicate the values at the center of the cells of the two neighboring cells.
The coupled system of discretized equations given by [Equation 5| and [Equation 6]is solved by a segregated
approach and specifically using the the SIMPLE [55] algorithm for the steady case and the PIMPLE [I]
algorithm for the unsteady case that merges the PISO [56] and the SIMPLE [55] algorithms.

2.3. Turbulence modeling

Since the interest is to solve and and to reduce computational fluid dynamics problems characterized by
high Reynolds numbers, the direct numerical resolution of the whole spectrum of temporal and spatial scales
is not feasible. In order to model turbulence without resolving all the temporal and spatial scales up to the
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Kolmogorov scale two main different approaches are typically used. The first approach — the one considered
in this work — is based on Reynolds Averaged Navier-Stokes (RANS) equations and substantially consists
into the decomposition of velocity and pressure fields into a mean part and a fluctuating part with zero
mean. The decomposition of a generic scalar field o(z,t) will read as follows

oc=0+0, (13)

where 7 is the mean part and ¢’ is the fluctuating one. The RANS equations are obtained after introducing
such decomposition for each scalar field (there are four scalar fields consisting of the three velocity compo-
nents and the pressure field) into Navier-Stokes equations and time averaging them. In RANS, the approach
is based on solving the equations for the mean part of each field after making use of the assumption that the
fluctuating part has zero mean. A second possible approach — which not considered in this work — consists
into Large Eddy Simulations (LES) [57, [58]. LES turbulence modeling is done by filtering and solving the
Navier-Stokes equations just for specific scales which are the large scales.

2.3.1. RANS equations

In this subsection, the RANS equations will be presented in further detail. As mentioned earlier, in
RANS the turbulence modeling starts by the Reynolds decomposition of the velocity and pressure fields
into a mean part and a fluctuating one. These are denoted with w,p for the mean part and u’,p’ for the
fluctuating part. Inserting the Reynolds decomposition into (1f), and time averaging the equations yields
the so-called Reynolds Average Navier-Stokes (RANS) equations.

Due to the the non-linearity of Navier-Stokes equations, the velocity fluctuations will not completely
vanish in the time averaged equations. In particular the so called Reynolds stress tensor R = w/u’ is the
single residual term in which the fluctuating components still appear after time averaging. Thus, such tensor
must be expressed in terms of the mean part of the flow variables so as to obtain a closed problem for the
latter unknowns. In this work we consider eddy viscosity models, that are based on Boussinesq assumption

that the Reynolds stress tensor can be expressed by R = %[Vﬁ—&- (Vﬁ)T]. Different possibilities are

available for the approximation of the additional coefficient v¢, which is named eddy viscosity [59]. In the
most effective cases the estimation of 14 is based on the resolution of one or more additional transport-
diffusion equations. We mention here the one equation Spalart—Allmaras (S-A) turbulence model [60] and
the two equations k — e [61] and SST %k — w turbulence models [45].

We here report the RANS equations for the & — w turbulence model, which reads:

%L V. (wRuE) = V- [—pl + (vt ) (vu+ (vu)T)] in Q x [0, 77,

V-u=0 in Q x [0,7T],

a(t,z) = f(z,pn) on 'y, x [0,T],

u(t,x) =0 on I'y x [0,T],
wVu—-pl)n=20 on Ty x [0,T], (14)
u(0,z) = R(x) in (2,0),

vy = F(k,w), in Q,

Transport-Diffusion equation for k,
| Transport-Diffusion equation for w,

where F' is the function that describes the algebraic relationship between 14 and the turbulence variables k
and w.
3. The reduced order model (ROM)

The proposed reduced order model is an extension of the model introduced in [62]. In the main
notions of projection-based ROMs are recalled. Subsection [3.2] introduces the POD technique and the
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general procedure used to construct a POD-Galerkin ROM. Subsection [3.3] addresses in details how data-
driven techniques can be exploited to stabilize ROMs for turbulent ﬂows. In particular, the subsection
[3-3] explains how the model in the online stage uses data acquired in the offline stage for approximating
the Reynolds stress term. Finally subsection [3.4] outlines the treatment of non-homogeneous boundary
conditions at the reduced order level.

3.1. Projection based ROMs

In the context of this work, we aim to develop ROMs which are able to approximate the solutions of
Parametrized PDEs (PPDEs) in turbulent fluid dynamic problems efficiently and accurately. Reduced order
modeling for PPDEs is based on the assumption that the solution field lives in a low dimensional manifold
[3]. Based on this assumption any element of the solution manifold can be approximated by the linear
combination of a reduced number of global basis functions. The velocity and pressure fields can be approx-
imated as a linear combination of the dominant modes (basis functions) multiplied by scalar coefficients.
The modes are assumed to be dependent on space variables only, while the coefficients are allowed to have

temporal and/or parameter dependency. The last statement leads to the following approximation of the
fields:

N, N,
u(w, t; p) ~ Z (tp)gi(z), pla,tip) ~ Z (t: ) xi( (15)

where ¢;(x) and y;(x) (which do not depend on p and t) are the spatlal modes for velocity and pressure,
respectively, a;(t; u) and b;(t; u) are temporal coefficients which depend on time t and on the parameter

u

vector p. The reduced basis spaces V,;, = span {(bl} 1 and Qrp = span{x;}; pl can be obtained either by
Reduced Basis (RB) method with a greedy approach [ ], using Proper Orthogonal Decomposition (POD)
[62], by the Proper Generalized Decomposition (PGD) [63][64], or by Dynamic Mode Decomposition (DMD)
[65]. For unsteady PPDESs, a POD-Greedy approach (POD in time and RB method with greedy algorithm
in parameter space) can be used as in [66] or a nested POD can be used where POD is applied on time and
later on parameter space. In this work, in order to calculate the reduced basis functions, we rely on a POD
approach applied onto the full snapshots matrices formed by the fields obtained for different values of the
parameters as well as for different time instants.

3.2. POD-Galerkin projection method for laminar flows

One of the most used approaches to construct reduced order spaces is the proper orthogonal decompo-
sition (POD) [67, 68 69} [70) [7TT]. The POD is a method to compress a set of numerical realizations (in
the time or parameter space) into a reduced number number of orthogonal basis (modes) that capture the
most important information when suitably combined. As mentioned above, in this work the POD is applied
on a group of different realizations which are called snapshots. The POD modes are optimal in the sense
that, for every number of chosen modes, the difference between the L? projection of the snapshots onto the
modes and the snapshots themselves is minimized. In this setting, it has to be remarked that the FOM
presented in [2] is solved for each value of the vector parameter pu € Pys = {1, ...pu507} < P where Py is a
finite set of samples inside the parameter space P. In case of non-stationary problems, while generating the
snapshots for constructing the reduced order space, one has to consider time and parameter dependencies.
Consequently, for each parameter value one has the time instants {¢1,ta, ..., tn, } < [0,T] at which snapshots
are taken. For this reason, there will be a total number of snapshots Ny = M * Np. The snapshots matrices
S, and Sy, for velocity and pressure respectively, will be given by:

h
S‘u, = {u(ll?,t1;[.t1),...,u(m,tNT;[l}]\/[)} € RNUXNSa (16)

h

p = {p<w7tlalj’1)77p(watNT7lJ/M)} € IRJVP><]V$7 (17)

where N and Ng‘ are the degrees of freedom for velocity and pressure fields, respectively. The POD space
for velocity is constructed by solving the following optimization problem:

N
1 U
Vpop = arg min—- Z = D (Wns &) L2 illF 2 ()5 (18)

n=1 i=1
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where wu,, is a general snapshot of the velocity field which is obtained for any value of the parameter p
and acquired at any time instant ¢;. It can be shown that solving is equivalent to solve the following
eigenvalue problem [72] :

CUV*" = VYA, (19)

where C* e RMs*Ns ig the correlation matrix of the velocity field snapshot matrix S,, V% e RNs*Ns
is the matrix whose columns are the eigenvectors, A" is a diagonal matrix whose diagonal entries are the

eigenvalues. The entries of the correlation matrix are defined as follows:
(C*)ij = (Wi, u5) 2 - (20)
One can compute the velocity POD modes as follows [73],
R
¢ = N ; u; Vig, (21)

similar procedure can be followed for the computation of the POD pressure modes [Xl(m)]fvzpl

After computing the POD modes of velocity and pressure, one can perform a Galerkin projection of the
governing equations onto the POD space. Projecting the momentum equation of onto the POD space
spanned by the velocity POD modes yields:

<¢i,au+V-(U®U)—V-V<Vu+(Vu)T> +Vp> =0. (22)
ot L2(Q)

Inserting the approximations into gives the following system:
a=vBa—a’Ca— Hb, (23)

where a and b are the reduced vectors of coefficients a;(t; u) and b;(¢; p), respectively, while the reduced
matrices B, C and H are computed as follows:

(B)ij = (00, V- V&) 120 (24)
(C)ijk = (¢i7 \E (¢] ® ¢]€))L2(Q) ) (25)
(H)ij = (i: VXi) 120 - (26)

In [62], one can find more details on the treatment of the non-linear term in Navier-Stokes equations.
An important remark is that the system has N, + IV, unknowns but just IV, equations. Therefore one
must seek NV, additional equations in order to close the system. It is not possible to directly exploit the
continuity equation at this stage because the velocity snapshots are divergence free and so are the velocity
POD modes. The additional equations could be obtained by the usage of a Poisson equation for pressure
also at the reduced order level, see [73]. Another possible approach is to employ a supremizer enrichment
technique [74] [75] where the velocity POD space is enriched with additional, non divergence-free modes in
order to satisfy a reduced version of the inf-sup condition. We refer to [62] for the implementation of this
approach in the finite volume setting. There exist also other approaches to obtain pressure-stable ROMs,
for example the use of Pressure Stabilized Petrov-Galerkin (PSPG) methods during the online procedure
[69, [76] or ROMs based on the assumption that velocity and pressure expansions share the same scalar
coefficients [68, [77].

In this work, the supremizer stabilization method has been chosen. This approach will ensure that
velocity POD modes are not all divergence free so one can project the continuity equation onto the space
spanned by the POD pressure modes. This will give the following reduced system:

Pa =0, (27)
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where the new reduced matrices M and P are the mass matrix, that due to the additional supremizer
modes is not anymore unitary, and the matrix associated with the continuity equation. The entries of the
two additional matrices are given by:

(M);; = (¢i7¢j>L2(Q)) (28)
(P)ij = (Xia A\ ¢j)L2(Q) . (29)

3.3. POD-Galerkin Mixed-ROM for turbulent flows

In this subsection, the attention will be shifted to flows characterized by high Reynolds number. As
mentioned earlier, turbulence modeling at the full order level is resolved using the RANS equations with a
proper closure model . This motivated the development of a reduced order model specifically tailored
to turbulent flows. This model will be referred to from now on as Mixed-ROM.

A possible approach could consist into a POD procedure applied also onto the additional turbulence
variables (k, w, €) as it was done with the velocity and pressure fields in . This phase should be followed by
a POD-Galerkin projection of the additional transport diffusion equations that define the specific turbulence
model in order to obtain a reduced version of the equations. The last step, in the online phase, would
consist into the coupling of all the ”reduced” equations and into their simultaneous resolution. The reduced
equations come from the momentum equation, the continuity equation and the additional PDEs of the
turbulent model. However, this approach has some drawbacks:

e it implies that the reduced order model needs to be customized to the specific turbulence model used
during the offline stage;

e since it requires also the projection of the PDEs of the turbulent equations, the effort in the generation
of the reduced order model and the number of reduced unknowns is increased.

Since one of the aims of this work is to develop a ROM which is "independent” from the turbulence model
used to generate the FOM snapshots the latter approach is ruled out. The chosen approach involves the
extension of the assumption of the reduced order expansion only for the eddy viscosity without considering
the additional turbulence variables (k,e or w). In more details, this means introducing the reduced order
eddy viscosity as a sum of eddy viscosity POD modes multiplied by temporal or parameter dependent
coefficients. The eddy viscosity modes are computed using a POD approach and, during the online stage, the
scalar coefficients of the POD expansion are computed with a data-driven approach that uses interpolation
with Radial Basis Functions (RBF) [78, [79], thus the reduced order viscosity reads as follows:

N,
vi(@,t;p) ~ Y gilt, wni(), (30)
i=1

where 7;(x) are the POD modes for the eddy viscosity field and g;(t, ) are the scalar coefficients of the
POD expansion. One can see that the temporal coefficients in the above equation are not the same of
neither the ones of the velocity a;(t, i) nor the ones of the pressure b;(t, u). The data-driven approach will
be used for the computation of these coefficients. The momentum equation of the RANS is projected
onto the spatial modes of velocity, inserting also the POD decomposition of the eddy viscosity field . On
the other hand, the continuity equation is projected onto the pressure modes with the usage of supremizer
enrichment. The POD-Galerkin projection will result in the following reduced system:

Ma =v(B + Br)a—aTCa + g¥(Cry + Cr2)a — Hb,
(31)

Pa =0,
Ny,
i=1>

where g is the vector of the coefficients [g;(¢, pt)] and the new terms with respect to the dynamical
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system in are computed as follows:

(BT)ij = (¢Z’ \'E (V¢?))L2(Q) ) (32)
(Cr1)iji = (¢4,1; V - V¢>k)L2(Q) , (33)
(Cr2)ijic = (65, V - 1;,(V L)) 12 - (34)

As one can notice, system has more unknowns a, b and g than the available equations. This problem
can be resolved by finding a proper way to compute the coefficients of the eddy viscosity POD expansion g.
This is carried out with the usage of a POD-I approach [80) 811 [82] using radial basis functions.

Before explaining more details about the used methodology we fix a set of notations and conventions.
Let X,,; be the set defined as follows:

X[J,,t :PM ><{t17t27"'7tNT}a (35)

Xt is the Cartesian product of the discretized parameter set and the set of time instants at which snapshots
were taken. This set has a cardinality of N; and its i-th member will be referred as wj” We remark that
for each term ‘Eim there is a corresponding unique snapshot (for u, p and v;) that is used to compute the
reduced basis for each variable in the offline stage. On the other hand, we define the parameter sample p*
as the one introduced to the reduced order model in the online stage. A remark has to be made that p*
should be close enough in the parameter space to the parameter samples used in the offline stage that will
assure an accurate ROM result. Also we define t* as the time instant at which the Mixed-ROM solution
is sought, where t; < ¢* < tn,. The last statement essentially means that currently it is not possible to
extrapolate in time. Also we define z* = (t*, u*) as the combination of the online parameter sample and
the time instant at which the Mixed-ROM solution is desired.

As done for velocity and pressure in and 7 respectively, we define a matrix of snapshots for the
eddy viscosity field as follows:

h
Sut = {Vt(watl;ul)a"'7Vt($7tNT;IJ/M)} € RNW‘XNS? (36)

where the ¢-th column of the S,, represents an eddy viscosity snapshot and is denoted by Sf,t. We define

g as the coefficient computed from the L? projection of the r-th eddy viscosity snapshot S, onto the I-th
eddy viscosity mode n;.

gri = (S, m)r2), for 7=1,2,..,N; and [=1,2,..,N,,. (37)

1%

The interpolation statement will be the following: given the set X, ;, the corresponding eddy viscosity

snapshots [S,i,t]fisl and the coefficients [gr,l]f«\/:si]\l]:p predict the value of the vector g in for the vector

z* defined earlier. The goal can be split to each of the scalar coefficients [g;(t*, p,*)]fvz”{ Meaning that the

interpolation will be done separately N,, times for each one of the scalar coefficients. From now on, we will

include the dependency as follows g(z*) or [gl(z*)]fvz”{

The interpolation procedure will be carried out for each mode separately, therefore one could fix the
viscosity mode in to be nr, and then the vector Y; = [g,«,L]i\]:S1 e RM: is considered as the set of
observations. The next step is to consider the pair of data (X, Yz) which is obtained in the offline stage
by doing the computations in . The objective is to approximate the value of the scalar coefficient g, (z*).

The interpolation using RBF functions is based on the following formula :

N, )
Gr(z) = Y wrCi(lz = @ llz@eny), for L=1,2,..,N,, (38)

j=1
where z = (t, ) with g e P and ¢t € [0,T], wr ; are some appropriate weights and (z, ; for j = 1,..., N, are

the RBF functions which are chosen to be Gaussian functions, (, ; is centered in wim. For the computation

of the weights, the following property has to be used, which essentially comes from the data of the FOM:
Gr(x), ) = giL, for i=1,2,.., N, (39)
11



and then it follows that,

Ns
Z wL,jCLJ(HwL,t — wil,,t”LQ(Rq‘*'l)) = 9i,L, for 7= 1,2, ...,NS. (40)
j=1

The last equation can be rewritten as a linear system, namely:
A%wL = YL, (41)

where (A%)ij = Crjllel, - ﬂ:i‘t,t||L2(Rq+1), one can solve the latter linear system to obtain the weights wr,,
which will be stored to be then used in the online stage.
In the Online Stage, as Input we have the new time-parameter vector z* and the goal is to compute
* N ioh i ; .
g(z*) = [g:(2*)],21, which is done simply by:

N

gi(z*) ~ Gi(z*) = Y wi Gy (12" = @), plrz@ery), for i=1,2,..N,. (42)
j=1

To summarize the procedure, the interpolation using RBF is done in the online stage. The procedure
consists into separated IV, times interpolation tasks for the interpolation of the elements of the vector g,
which appears in for some value of the combined time-parameter vector z*.

The interpolation problem has as input a set of known data called X,, ; with cardinality of N,. A member
in that set is a vector called wf"t and lies in R7T!) where one can see that basically time has been treated as
another parameter. The other discrete set of outputs (which has the same cardinality N;) is the set of the
coefficients obtained by the projection mentioned in with the viscosity mode being fixed. At the end,
based on the observations given in the offline stage, the value of the coefficient g;(z*) (the interpolant) will
be approximated.

The approach above is general for unsteady parametrized cases, a description of the same approach but
just for steady cases can be found in [83]. A modified version of this approach for unsteady flows may involve
the splitting of the eddy viscosity field into two parts. The first part, for each individual parameter sample
describes the time averaged viscosity field and the second one contains the time varying contribution. In
other words we assume that the eddy viscosity field can be rewritten as follows:

vi(,t; p) = 7i(x; p) + vy, t; p). (43)

Such decomposition is justified by the fact that usually the part which is largely affected by parameter
changes is the mean contribution. Small fluctuations are in fact poorly affected by parameter variations and
in our numerical example we have noticed that excluding the parameter value from the RBF approximation,
v,(x, t; ) ~ vi(x,t), does not lead to a degradation of the accuracy. Therefore, this approach with such an
approximation we have the advantage of splitting the time and parameter contributions into two separate
terms which will ease the function approximation. At this point the reduced order approximation of the
eddy viscosity field will be modified as follows:

M Ny,
v, tp) ~ Y G (®) + Y gi(tni(=), (44)
i=1 i=1

where the first sum approximates the averaged part while the second one approximates the time varying
contribution. The fields [7;]}£, are given by the time averaged eddy viscosity fields of the M different
parameter samples (each field is computed as the time averaged field of only the eddy viscosity snapshots
corresponding to one parameter sample), while [g;]}, are the parameter dependent coefficients which, for a
parameter sample outside of the training set p*, can be approximated by an interpolation procedure. The
dynamical system [31]is modified as follows:

{Md = I/(B + BT)a —aTCa + ET(6T1 + 6T2)a + gT(C’Tl + CTz)a — Hb, (45)

Pa =0,
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where there are two new tensor terms defined as follows:

(CTl)ijk = (¢iaﬁjv : V¢k¢)L2(Q) ’ (46)

One of the drawbacks of the approach in the current setting is that for unsteady cases one can not
extrapolate in time. In order to address this issue the RBF interpolation can be rewritten in a different
fashion. The idea is to change the independent variable of the RBF interpolation from being the time value
t* to the combination of the reduced order velocity coefficients vectors a and a. The motivation comes from
the fact that the eddy viscosity field v, at time ¢", denoted hereafter by v}*, is a function of the time history
of the velocity field u, in other words v' = 14 (ul,u?, ..., u"), in the last formula u™ is the FOM velocity
field obtzizned at time t". This allows us to write the eddy viscosity coefficients vector in the expansion
as follow

g’fL — g’fL(tTL) ~ gTL<aTL7('L7l)' (48)

The training phase of the RBF in the offline stage is done with the L? projection coefficients of the velocity
modes (excluding the supremizer modes) onto the snapshots as well as the vector of time derivatives of these
coefficients. In order to establish a clear idea of the training methodology, the following notation will be

Sﬂlau SMlaP Sﬂl,Vt
S YU 8 ) S WVt

Su=| TV.S=| TS =] T, (49)
SI-LM,U SMM,ZJ SHMth

where the snapshots matrices for all the variables have been written as M vertically aligned submatrices
with each one of the submatrices containing the time snapshots corresponding to a single sample. The next
step is to define the L? velocity projection coefficients denoted by azk 12 € RNw:

a:quQ = [(S,:,c,uaqbl)LQ(Q), ceey (S;k,u’ ¢N1‘,)L2(Q)]7 for r= 1,2, ...,NT, k= 1,2, ,M (50)

Let ) )
Dpy, L2 Ay, L2
a; L2 a; L2
Mk, — 122 —
A= 7" e RINT=IxNe Ay = | 7 e RINT=DxNeu, (51)
Nr—1 Nt
@y, L2 @y, L2

then the needed time derivative vectors for the RBF interpolation are simply computed by the backward
differentiation scheme as follows:

r r—1
a —a
al, .= W for =23, ...Nr, k=12..M. (52)
1223

In the formula above At,,, is the time step at which snapshots were acquired for the parameter sample fiy.
As a result, the following matrix of time derivative velocity coefficients is formed

-2
agk7L2
p Ao — Ark pr,L2 _
A =222 = e ROT=1xNu, (53)
Aty :
. NT
al—Llc,L2

1This expression aim to mimic the dependency between the eddy viscosity field and the velocity field. At the FOM level this
dependency is described by a PDE. Therefore the expression is an approximation that could be extended with further terms
in order to get closer to the map described by the PDE. However, for the numerical examples considered in this work such an
approximation turned out to be sufficient.
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Finally, merging the L? projection coefficients of velocity starting from the second time snapshot with the
time derivative coefficients will yield the following matrix

Ay = [Az,k Ak] e RINT—1>2Nu, (54)
On the other hand, the projection coefficients of the eddy viscosity modes onto the snapshots are given by:
G L2 = (S;k,yt,m)Lz(Q), for r=2,3,.,Np , i=1,2,..,N,, and k=12, . M. (55)

One may define the vector G’i,k e R(NT=1 a5 the vector containing the coefficients in for a fixed 4

and k. The combined matrices and vectors for all parameter samples will be called A and G;, respectively,
which are defined as follows:

A Gia
5 .

e RN, G, G.z,2 e RON-—M) (56)
Ay Gim

At this point, the goal of the interpolation will be to approximate the maps [ fi]f\i"{ in g; = fi(a,a), where:
fi : R?Ne SR, (57)

This approximation is based on the interpolation points given in each row of the matrix A and the vector
G,.

3.4. Treatment of boundary conditions

In reduced order modeling, it is often the case that the parameterization is in the boundary conditions,
and in particular at the inlet boundary. In this subsection, the available methodologies to tackle this aspect
are presented. The main two methods to take into account boundary conditions at reduced order level are
the penalty method [84] [85] [86] [87, [88] and the lifting function method [89] @0}, [O1].

Let I'p be the Dirichlet boundary that might be composed by separate boundaries, i.e. I'p = I'p; U
I'ps... uT'pk. Let Npeo be the number of velocity boundary conditions we would like to impose on some
parts of the Dirichlet boundary. We emphasize that, each non-zero scalar component value of the velocity
field that has to be set at one part of the boundary, is counted as one boundary condition. As an example
let Upir = (U, Uy) be the velocity vector that must be imposed at the Dirichlet boundary for the problem
under interest. It is supposed that U, and U, are the values of the velocity components in the z and y
directions, respectively, in this case there are two boundary conditions to set and thus Npc = 2. Let Upc,;,;
be the value of i-th component of the velocity to be imposed at reduced order level at the j-th part of the
Dirichlet boundary I'p;. We define Upc as the vector of all scalar velocities Upc s 5, this vector has a
dimension of Np¢, and Upgcy, is the k-th element of Ugce.

3.4.1. The penalty method

In the penalty method, an additional term is added in the formulation of the dynamical system of the
reduced order model. The added term represents a constraint that has to be satisfied at the reduced order
level on certain parts of the boundary. The penalty method has been used for both laminar and turbulent

reduced order models as presented in [(7]. If we consider employing the method addressed in [77] to the
POD-Galerkin Mixed-ROM model, the result will be the following system:

{Md = Z/(B + BT)CL —aTCa + gT(CT1 + CTz)a — Hb + T(Zklec (UBCka — Eka)), (58)

Pa =0,
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where 7 is called the penalization factor, and its value is usually determined by sensitivity analysis. In
general the higher the value of 7 is and the stronger is the enforcement of the boundary conditions. The
additional boundary terms with respect to system are defined as follows:

(D*)i = (@) L2(rp,) » (59)
(Ek)ij = (¢‘La ¢j)L2(FDk,) . (60)

In this method, the POD is applied directly on the snapshots matrices for all variables without the homog-
enization of the fields. This will result in POD modes which don’t have homogeneous Dirichlet boundary
conditions.

3.4.2. The lifting function method

The lifting or control function method involves the use of the so-called lifting function which handles the
non-homogeneous values on the boundaries. The method involves the creation of a new set of snapshots for
the velocity field where the non-homogeneous Dirichlet boundary conditions are removed. After that the
POD procedure is applied on the newly formed snapshots and this gives POD modes which have homogeneous
Dirichlet conditions at the Dirichlet boundary.

The procedure of modifying the velocity snapshots is done as follows:

ur = ur — ¢r - Upc, (61)

where ¢, € RN *NEe ig a matrix of the lifting functions ¢r,; ;. Each lifting function ¢, ; has homogeneous
Dirichlet boundary conditions in all parts of the Dirichlet boundary except in the i-th component at I'p;
where it has unitary value. We would like to remark that the same lifting method can be used for pressure
fields if the formulation of the problem involves non-homogeneous Dirichlet boundary condition for pressure.
In that case if the non-homogeneous pressure value is po,¢ then the new pressure snapshots will be computed
as follows:

ﬁk = Pk — PoutXe> (62)

where . is the pressure lifting function. The new snapshots matrices for velocity and pressure are denoted,
respectively, by U = [@1,Us,...,aN,] and P = [D1,P2,---,Pn.].- These snapshots matrices will be used for
computing the reduced order bases for the velocity and pressure POD spaces, respectively.

During the online stage, it is required to approximate the velocity and pressure fields for the value of the
combined time-parameter vector z* (which might contain new velocity values to be imposed at some parts
of the boundary), this could be done as follows:

Nu NIJ
U(:B,Z*) ~ d)L : UEC + Z a‘i(Z*)¢i(w)a p(iL‘,Z*) R PoutXe T+ Z bi(Z*)Xi(w)> (63)
i—1 i=1

where Uf is the vector of boundary velocity values that corresponds to z*.

4. Numerical results

In this section, we present the results obtained applying the proposed POD-Galerkin Mixed-ROM on
two turbulent flow problems. The first problem is that of the turbulent flow past a backstep. Such classical
benchmark in the turbulence modeling community is here considered in a steady state parametrized setup.
The second problem analyzed is that of the turbulent flow past a circular cylinder. In the second problem the
case is parametrized with Reynolds number being the parameter. In both cases we will present a comparison
of the Mixed-ROM results with the ones obtained by the ROM developed in [77]. The authors in their work
proposed a ROM which considers a single set of reduced coefficients for the velocity, pressure and eddy
viscosity field. In such a way it is possible to resort on a unified approach to deal with turbulent flows. Such
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Figure 2: The computational domain used in the numerical simulations, all lengths are described in terms of the characteristic
length D that is equal to 1 meter.

an approach, that is used as comparison with respect to methodology developed here, will be referred as
P-ROM from now on.

The finite volume C++ library OpenFOAM® (OF) [53] is used as the numerical solver at the full order
level. At the reduced order level the reduction and resolution of the reduced order system is carried out
using the C++ based library ITHACA-FV [92)].

4.1. Steady case

The steady Mixed-ROM solver has been tested on the backward step benchmark case. depicts
the layout of the domain with details of the computational mesh. The plot also reports the boundary
conditions enforced on every side of the domain. The inflow velocity U has been modified in the simulations
to parametrize the problem with respect to the Reynolds number. Thus, the objective of this numerical
experiment is to assess the Mixed-ROM solver ability to reproduce flows with high Reynolds number and
their dependence on the parameters. To this end, the Mixed-ROM results will be compared both to the full
order results and to the results of the P-ROM model. Moreover, to test the Mixed-ROM solver capability to
deal with different turbulence models, we tested the model both on full order solutions obtained with k& — ¢
and SST k — w models.

The 100 snapshots required for the training during the offline phase were generated by solving the FOM
with inlet velocity values ranging from 1 m/s to 25 m/s on an equally spaced distribution. Given the physical
viscosity v = 1072 m?/s and the characteristic length is D = 1 m, this corresponds to a Reynolds number
that varies from 1 x 103 to 2.5 x 10%. In the full order simulations, Gauss linear scheme was selected for
the approximation of the gradients and Gauss linear scheme with non-orthogonal correction was selected
to approximate the Laplacian terms. A 2-nd order bounded Gauss upwind scheme was instead used for
the approximation of the convective term. Finally, 1st order bounded Gauss upwind scheme is used to
approximate all terms involving the turbulence model parameters k, € and w.

The modes of velocity, pressure and eddy viscosity fields have been obtained by POD analysis of the
snapshots matrices. shows the cumulative eigenvalues decay for velocity, pressure and eddy viscosity.
As can appreciated relatively small number of modes is sufficient to recover most of the energetic information
in the snapshots.

Once the reduced model training was carried out and the modes were computed, Mixed-ROM and P-ROM
simulations have been carried out on new set of sampling points in the parameter space. More specifically,
the online sample values for U, denoted by U} where i = 1, ..., Nontine—samples, have been chosen as 80
equally distributed samples in the range of [3,20]. This set of samples includes both samples close to those
used in the offline stage and samples which lie almost midway between two offline samples. Clearly, the test
is aimed at assessing how accurate the reduced approximation is for parameter values that were not in the
training set.

The enforcement of the correct inflow velocity in the reduced simulations is carried out by means of the
penalty method as in|3.4.1} In this regard, we must here remark that the simulations results appeared quite
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Figure 3: Cumulative ignored eigenvalues decay. In the plot, the solid red line refers to the velocity eigenvalues, the dashed
black line indicates the pressure eigenvalues and the dash-dotted blue line finally refers to the eddy viscosity eigenvalues.

sensitive to the penalization factor 7. Thus, a sensitivity analysis had to be performed to set the value of 7
for both k — € and SST k — w turbulence models considered.

The first step of the online stage is represented by the interpolation of the eddy viscosity coefficients with
respect to the values of the considered parameter (the inflow velocity). More specifically, the result of the
interpolation is the vector g, which is used to solve the reduced system and finally obtain the vectors
of coefficients @ and b. The interpolation using the RBF in this work has been carried out using the C++
library SPLINTER [93].

depicts the velocity fields corresponding to U* = 7.0886 m/s computed via the FOM, the P-ROM
and Mixed-ROM in the case of k — ¢ turbulence model. A similar comparison is presented in for
the pressure fields. We remark that all the solutions were generated using 10 velocity, pressure, supremizer
and eddy viscosity modes in the online stage for both the Mixed-ROM and the P-ROM. The images clearly
indicate that the hybrid projection/data-driven-based approach allows for qualitatively accurate approxi-
mations of the FOM solutions. This is clearly not the case when the P-ROM approach is employed since the
pressure field does not correctly reproduce its FOM counterpart. To provide a quantitative measurement of
both reduced order models performance, we evaluate the relative L? error for velocity and pressure which,
respectively, read

B Juw— U*HLz(m

P = p* 20
€y = _

x 100%, €, = x 100%, (64)

H"HL2(Q) ||pHL2(Q)

in which u* and p* are general reduced order velocity and pressure fields, respectively. The relative L? errors
between the FOM and the Mixed-ROM velocity and pressure fields presented in [Figure 4] and [Figure 5| are
respectively €, = 0.4444 % and €, = 0.3654 %. As for the P-ROM results, the corresponding errors are
€, = 0.6522 % and €, = 20.9441 %, respectively.

A further simulation campaign has been carried out with a different, SST k — w turbulence model, to
evaluate how responsive the hybrid Mixed-ROM and the P-ROM results are with respect to the turbulence
model employed for the FOM simulations. Thus, a new set of SST k —w FOM simulations has been run
using the same inflow velocity values as in k — € model case. The snapshots generated have been again used
to train both reduced models considered. [Figure 7} [Figure 8 and [Figure 9| show the velocity, pressure and
eddy viscosity fields obtained by the FOM, the P-ROM and the Mixed-ROM for the inflow velocity value
U* = 7.0886, respectively. Again, the Mixed-ROM results appear in good qualitative agreement with their
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Figure 4: k — e turbulence model case, velocity fields for the value of the parameter U = 7.0886 m/s: (a) shows the FOM
velocity, while in (b) one can see the P-ROM velocity, and finally in (¢) we have the Mixed-ROM velocity.

FOM Pressure P-ROM Pressure
-9.261e+00 -6.9 6.835e-02 -9.261e+00 6.835e-02

Mixed-ROM Pressure

-9.261e+00 6.835e-02
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()
Figure 5: k — € turbulence model case, pressure fields for the value of the parameter U = 7.0886 m/s: (a) shows the FOM
pressure, while in (b) one can see the P-ROM pressure, and finally in (c¢) we have the Mixed-ROM pressure.

FOM EddyVlscoslty P-ROM Eddy Vlscoslty
0.000e+00 0.022 0.065 8.620e-02 0.000e+00 0.022 0.065 8.620e-02
HHH“HHIH\‘M WHHH“HHHH‘
(2) (b)

Mixed-ROM Eddy Viscosity
0.000e+00 0.022 0.043 0.065 8.620e-02

IHIH‘HHHH”M
(c)

Figure 6: k — € turbulence model case, eddy viscosity fields: (a) shows the FOM eddy viscosity, while in (b) one can see the
P-ROM eddy viscosity, and finally in (c) we have the Mixed-ROM eddy viscosity.
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Figure 7: SST k — w turbulence model case, velocity fields for the value of the parameter U = 7.0886 m/s: (a) shows the FOM
velocity, while in (b) one can see the P-ROM velocity, and finally in (c) we have the Mixed-ROM velocity.

SST k£ —w FOM counterparts, while the same cannot be claimed for the P-ROM results. By a quantitative
standpoint, the L? relative errors between the FOM and the Mixed-ROM velocity and pressure fields are
respectively €, = 0.8088 % and ¢, = 0.7329 %. As for the P-ROM results, the corresponding errors are
w = 0.8177 % and €, = 22.3972 %, respectively.

The FOM fields obtained solving the RANS equations with the two different turbulence models have
quantitatively speaking different values across the domain (except for the velocity). In order to give a clear
idea about how accurate was the reduction performed by the Mixed-ROM regardless of the turbulence model
employed at full order level, one may plot the FOM and the Mixed-ROM pressure fields (obtained by the
two turbulence models) for a fixed value along the x5 axis (the perpendicular axis) versus the values along
the x; axis (the horizontal one). The last test is done in where one can see the FOM and the
Mixed-ROM pressure fields along the horizontal direction at a fixed height of zo = % which is half the
height of the domain. The plot is done for both k — e and SST k& —w. As can be appreciated from the figure,
the Mixed-ROM was successful in obtaining pressure field values which are close the FOM ones regardless of
the turbulence model utilized at full order level. This accomplishes one of the main goals of the Mixed-ROM
developed in this work.

Finally, the convergence analysis for the Mixed-ROM results is shown in The plots show
the mean L? relative error for all the 80 samples used in the cross validation test in the online stage, as
a function of the number of modes used. As previously mentioned, the number of modes used for velocity
(Ny), pressure (N,), supremizer (Ng) and eddy viscosity (NV,,) was kept uniform in these preliminary tests.
The plots indicate that for the problem considered, the Mixed-ROM results exhibit fast convergence to the
FOM solution for both £ — € and SST k£ — w. Yet, after less then ten modes, the convergence appears to
stall, as the error settles on non zero, but fairly acceptable values. This is likely due to the fact that as the
number of modes grow, the gain in accuracy becomes only marginal compared to the v; field interpolation
error.

4.2. Unsteady case

The present subsection presents the application of the Mixed-ROM on a parametrized non-stationary
case. The problem considered is that of the turbulent and unsteady flow around a circular cylinder. For more
details on such classical benchmark flow, the reader may refer to [94] [95]. In the framework of the unsteady
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Figure 8: SST k — w turbulence model case, pressure fields for the value of the parameter U = 7.0886 m/s: (a) shows the FOM
pressure, while in (b) one can see the P-ROM pressure, and finally in (c¢) we have the Mixed-ROM pressure.
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Figure 9: SST k — w turbulence model case, eddy viscosity fields: (a) shows the FOM eddy viscosity, while in (b) one can see
the P-ROM eddy viscosity, and finally in (c) we have the Mixed-ROM eddy viscosity.
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Figure 10: The pressure fields obtained using both k — ¢ and SST k — w turbulence models and the Mixed-ROM ones. The
plot is for the pressure value along the x1 direction keeping the value of zg fixed at half the maximum height.
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Figure 11: The mean of the L2 relative errors for all the online samples versus the number of modes used in the online stage.
The convergence analysis is done for both Mixed-ROM models obtained with two different turbulence models at the full order
level which are k — e and SST k —w. The errors are reported in percentages, in (a) we have the velocity fields mean error, while
in (b) the pressure fields mean error .

ROM analysis described in Section [3| time is treated as one of the parameters characterizing the PDE
problem. A further parameter considered in this numerical investigation is the Reynolds number associated
with the inflow velocity. The domain and the 2D computational grid used are depicted in which
also reports the boundary conditions imposed in the simulations. In the picture, all the lengths reported
are referred to the problem characteristic length which is the diameter of the cylinder D = 1 m. The grid
features 11644 cells, while the physical viscosity v is equal to 10~* m?/s. Uniform and constant horizontal
velocities Uy, = (Uip,0) with Uy, € [7.5,12] m/s (corresponding to Reynolds number in the range of
[7.5 x 10%,1.2 x 10°]) were imposed at the inlet boundary, and the simulations evolve in time from rest until
a final periodic regime solution is reached.

In this test, the turbulence model considered is SST k — w. As for the numerical schemes used to set
up the FOM simulations, time discretization is done using backward Euler scheme, while gradients are
approximated using Gauss scheme. The convection term is discretized through a 2nd order bounded upwind
divergence scheme which utilized upwind interpolation weights, with an explicit correction based on the
local cell gradient. Finally, the diffusive term is discretized by Gauss linear scheme.

The main objective of this numerical test is that of building a reduced order model which can successfully
reproduce the flow fields corresponding to the final periodic regime solution. For such reason it is important
to properly select the time window from which snapshots will be taken and ensure that it contains enough
solution cycles (1.5 — 2 cycles at least). The evaluation of the cycles period length has been carried out
through Fourier analysis of the FOM time signal of lift and drag fluid dynamic forces acting on the cylinder.

As mentioned, the physical parameter varied in the numerical tests, is the horizontal velocity at the
inlet called U;,,. Ten samples are taken from the velocity range [7.5,12] m/s, and for each of such samples
the FOM simulator was run and snapshots were acquired at time steps covering approximately two cycles
after reaching the final regime solution. It must be remarked that the extent of the time windows in which
snapshots were taken was adapted for each velocity sample to track the solution period variations due to
the change of the frequency of vortex shedding of the system.

As an example of this procedure, if we consider the inlet velocity of 10 m/s, the FOM simulation has
been run for 12 seconds using the OpenFOAM solver pimpleFoam which adapts the timestep so as to keep
the Courant number C'F'L [96] [97] under a prescribed value CF Ly, = 0.9. depicts the resulting
lift coefficient curve, which is obtained from the lift L as C; = lpﬁ. The non-uniformly spaced time
signal of the lift coefficient has been interpolated on equally distribilted time nodes so as to allow the use of
Fast Fourier Transform (FFT) for the computation of the time period corresponding to the principal, vortex
shedding, frequency. The time period computed is 0.4299 s, corresponding to a Strouhal number [98] of
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Figure 12: (a) The OpenFOAM mesh used in the simulations for the unsteady case of the flow around a circular cylinder. (b)
A picture of the mesh zoomed near the cylinder.

Parameter sample : U, in m/s | FOM time step | Snapshot acquiring time
7.5 0.0004 0.008
8 0.0004 0.008
8.5 0.00035 0.007
9 0.0003 0.006
9.5 0.0003 0.006
10 0.0003 0.006
10.5 0.0003 0.006
11 0.0003 0.006
11.5 0.00025 0.005
12 0.00025 0.005

Table 1: Offline parameter samples and the corresponding snapshots data

St=0.2326, which is in line with well assessed experimental value of approximately 0.20 [99]. After this value
was available, the simulations have been extended keeping a fixed time step of 0.0003 s to start acquiring
snapshots which cover two periods at least. More specifically, the simulations were run for 1.2 s additional
seconds, saving snapshots of the flow field with a 0.006 s time rate so as to finally obtain 200 snapshots.
We remark that, to be as consistent as possible, the time step imposed in the resolution of the Mixed-ROM
dynamical system at the reduced level, has been the same one used for the FOM simulations.

The offline stage was carried out taking 200 snapshots for each parameter sample. Table [1| shows the
values of the parameters and the corresponding values of the simulation time step and the time interval at
which snapshots were acquired.

The non-homogeneous Dirichlet boundary condition at the inlet is enforced with the penalty method.
POD modes have been obtained applying POD analysis to snapshots matrices of velocity, pressure and
eddy viscosity fields. depicts the decay of the cumulative eigenvalues corresponding to the three
correlation matrices. The supremizer problem was then solved for each of the pressure modes, to finally
obtain the supremizer modes added to the velocity ones.

The online resolution of the Mixed-ROM system requires that an interpolation strategy is used to obtain
the eddy viscosity coefficient vector g at each time step t* of the simulation corresponding to the parameter
value U} . More specifically, at each time instant g(¢t*,U}) should be obtained through interpolation —
with respect to the combined time-parameter vector — from its values corresponding to the snapshots. Yet,
while all snapshots are contained in the aforementioned 1.2 s time window, the online time integration
must extend for much longer times. This means that for each instant outside the time window of the
original snapshots, g must be in fact extrapolated. To avoid such problem, the eddy viscosity coefficients
are obtained through RBF interpolation from the reduced order velocity coefficients vectors of a and a
. As the values of the reduced velocity solution vector components oscillate between minima
and maxima over time integration, using a(t) instead of ¢ as the RBF interpolation variable has in fact the
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convenient benefit of avoiding extrapolation. Of course, this is true if the values of the a vector components
obtained during the ROM time integration fall within the bounds of the FOM snapshots. For such reason,
it is clear that the accuracy of such interpolation outside the offline snapshots window highly depends on
how close the current solution vector a is to the vectors of the L? projection coefficients used in the offline
stage for training the RBF.

As for the dependence on the inlet velocity parameter, the results presented have been obtained by
splitting v; into its time average and its fluctuating part. The inlet velocity parameter dependence has been
then only enforced on the time average degrees of freedom g, while the aforementioned interpolation based
on the reduced velocity vector has been only applied to the fluctuating part g. This means that in M = 10
different average eddy viscosity fields were computed by taking the average of the set of snapshots which
correspond to one value of the ten inlet velocity samples. The average reduced vector g has been then
obtained from U}, in the online stage using linear interpolation, while the reduced vector g is obtained from
RBF interpolation with respect to @ and a. Finally, the initial values for all vectors a(0,U}%), b(0,U})
and g(0,U%) are obtained from the inlet velocity parameter using linear interpolation as well (based on the
values of the initial L? projection vectors of a(0,Usy,), b(0,Usy,) and g(0,Usy,)).

The first numerical test is a cross validation test for the parameter value U, = 7.75 m/s, not contained in
the samples set. Once the offline phase was completed with the computation of the reduced order matrices,
system was solved for @ and b and the Mixed-ROM solution fields were computed. A comparison
is made between the fields obtained by the FOM solver and the ones computed by both the Mixed-ROM
and the P-ROM ones. The FOM simulator was run for enough time to reach a periodic regime and then
it was launched again with a constant simulation time step of 0.0004 s exporting the solution fields every
0.008 s. The total FOM simulation time for this test was 8 s which contained 13 periods. The starting
time of the simulation of the final periodic regime of all tests in this section is set to 0. The first results
shown correspond to the flow fields computed by the FOM, the P-ROM and the Mixed-ROM at t = 2.8 s.
shows the velocity fields while [Figure 16| and [Figure 17] present the pressure and eddy viscosity
fields, respectively. indicates that both the P-ROM and the Mixed-ROM are able to obtain
accurate velocity prediction. The L? relative norm of the error committed by the two models is in fact 1.218
% and 0.6921 %, respectively. On the other hand the pressure fields shown in suggest that the
P-ROM model fails in giving sufficiently accurate results for the reduction of the pressure fields. In fact,
the P-ROM pressure field does not match the FOM one. This is particularly true in the region near the
cylinder, which is of course crucial for an accurate reproduction of the forces acting on the body. As for
the Mixed-ROM, the reduced pressure field appear to be in closer agreement with the FOM one. This is
confirmed by more quantitative assessments, as the L? relative norm of the Mixed-ROM pressure field error
is 4.7894 %, while that of the P-ROM is 29.5958 %. We must remark that to obtain the best results with
each model developed in this numerical test, the number of modes used in the online stage for the P-ROM
is 9, while in the Mixed-ROM case 20 velocity modes were used and 10 modes were employed for pressure,
supremizers and eddy viscosity.

The behavior of the reduced approximation accuracy over time is analyzed considering the time evolution
of the relative L? error of both the ROM velocity and pressure fields with respect to their FOM counterparts.
[Figure 18 depicts values of the velocity error €, plotted as a function of time for both the P-ROM and Mixed-
ROM models. A similar graph for the pressure field is presented in Both diagrams suggest that
the P-ROM model pressure approximation is not as accurate as that obtained with the Mixed-ROM. Again,
we must remark that the modal truncation order used in the P-ROM model to generate and
represent the most accurate choices among all values of N, € [1,30], as will be shown in the next
results.

One of the main goals for researchers and engineers studying fluid dynamic problems such as the crossflow
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Figure 13: The lift coefficient curve for parameter sample U;,, = 10 m/s.
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Figure 14: Cumulative ignored eigenvalues decay. In the plot, the solid red line refers to the velocity eigenvalues, the dashed
black line indicates the pressure eigenvalues and the dash-dotted blue line finally refers to the eddy viscosity eigenvalues.
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Figure 15: Velocity fields for the parameter value U;, = 7.75 m/s at ¢ = 2.8 s: (a) shows the FOM velocity, while in (b) one
can see the P-ROM velocity, and finally in (c) we have the Mixed-ROM velocity.
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Figure 16: Pressure fields for the parameter value U;, = 7.75 m/s at t = 2.8 s: (a) shows the FOM pressure, while in (b) one
can see the P-ROM pressure, and finally in (c) we have the Mixed-ROM pressure.
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Figure 17: Eddy viscosity fields for the parameter value U;, = 7.75 m/s at ¢t = 2.8 s: (a) shows the FOM eddy viscosity, while
in (b) one can see the P-ROM eddy viscosity, and finally in (c) we have the Mixed-ROM eddy viscosity.
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Figure 18: The time evolution of the L? relative errors of the velocity reduced approximations for both the P-ROM and the
Mixed-ROM models. The curves correspond to the case run with the parameter value U;,, = 7.75 m/s : (a) shows the error
curve for the P-ROM model. Figure (b) depicts the case of the Mixed-ROM model. The error values in both graphs are in
percentages.
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Figure 19: The time evolution of the L? relative errors of the pressure reduced approximations for both the P-ROM and the
Mixed-ROM models. The curves correspond to the case run with the parameter value U;, = 7.75 m/s : (a) shows the error
curve for the P-ROM model. Figure (b) depicts the case of the Mixed-ROM model. The error values in both graphs are in
percentages.

cylinder one here considered, is often the evaluation of a force acting on a body or a boundary surface in
general. As such forces depend on the local values of the pressure and velocity fields around the body of
interest, global error evaluators shown so far might not be good indicators if the aim is that of assessing
how well the ROM solvers are able to predict the fluid dynamic forces acting on a body. In the case of the
present numerical test for instance, a considerable pressure or velocity error localized in the small region
around the cylinder might have a substantial impact on the forces values, while having little effect on the
global fields errors. For such reason, the following analysis considers the time evolution of the lift coefficient
Cy, i.e.: the non-dimensionalized vertical component of the fluid dynamic force acting on the cylinder. It is
important to point out that the lift and drag forces exerted by the fluid on the cylinder are not a direct result
of the Mixed-ROM computations. The reduced system solution consists in fact in the modal coefficients
of the velocity and pressure fields at each time instant, which are in turn used to obtain the Mixed-ROM
approximation of the full rank flow field. Such approximation can be obviously used to obtain — through
integration of pressure and skin friction on the cylinder surface — the reduced order approximation of
the fluid dynamic force components and the corresponding force non-dimensional coefficients. Yet, in the
reduced order model community this procedure is typically avoided, as it involves a possibly expensive
operation such as the evaluation of the full rank flow field. For this reason, the lift and drag coefficients
in this work are computed in a fully reduced order fashion, based on the offline computation of suitable
matrices which are then used in the online stage. The detailed procedure for online fluid dynamic forces
computation is explained in To provide an evaluation of the reduced model C; approximation
throughout the whole time integration, depicts time evolution of the lift coefficient obtained with
the FOM, the P-ROM and the Mixed-ROM solvers for the inlet velocity parameter value Uy, = 7.75 m/s.
The left plot (a) shows the C; values for the full time range under consideration which is [0,8] s. The
right diagram (b) represents a detail of the last three cycles of the time span. The plots clearly indicate
that the Mixed-ROM model outperforms the P-ROM model in the C; approximation. The Mixed-ROM C;
curves seem in fact to closely approximate the FOM lift coefficient ones. The P-ROM C] approximations
are instead not completely accurate and it is evident that the P-ROM suffers from instability issues, as
through time integration the P-ROM curve diverges from the FOM one. More quantitative assessment of
the lift coefficient accuracy during the time integration is obtained through the evaluation of the L? relative
percentage error, in the integration time interval [T'1,T2], between the reduced model approximations of
the lift coefficients and their FOM counterparts, namely

Hcl(t) B Cl*(t)HLQ(Tl,TQ)
1C O 1y (11,12
Here, C)(t) is the time signal of the values of the FOM lift coefficients at all time instants between T} and T5.
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Figure 20: Lift coefficients curves for the cross validation test done for the parameter value U;, = 7.75 m/s for the time range
[0, 8] s, the figure shows the FOM, the P-ROM and the Mixed-ROM lift coefficients histories : (a) the full range is shown (b)
the last 2 s C} is shown.
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Figure 21: The graph of the L? relative errors for the lift coefficients curve versus number of modes used in the online stage
in both cases of the P-ROM and the Mixed-ROM models. The curves correspond to the case run with the parameter value
U;n = 7.75 m/s. The error is computed between the lift coefficients curve obtained by the FOM solver and the one reconstructed
from both the P-ROM and the Mixed-ROM models for the time range [0,8] s : (a) shows the error curve for the P-ROM
model, where N, is the number of modes used in the online stage for all variables (by construction of the P-ROM it is not
possible to choose different number of online modes for the reduced variables). Figure (b) depicts the case of the Mixed-ROM
model, where one can see the error values varying the number of modes used for the pure velocity with different fixed settings
for the three other variables (the pressure, the supremizers and the eddy viscosity). The error values in both graphs are in
percentages.

On the other hand C;*(t) is the time evolution of the lift coefficients computed by the reduced order model
— whether P-ROM or Mixed-ROM. depicts the L? relative errors between the reduced model
approximation of the lift coefficients and their FOM counterparts, as a function of the online phase modes
employed. As expected from the previous figures the convergence plots highlight that the Mixed-ROM
model is able to reproduce the FOM force coefficient with significantly greater accuracy than the ROM. In
fact, the Mixed-ROM error reaches values as low as 3 %, while the ROM C] are consistently above 16 % off
the FOM values.

To further analyze the results in [Figure 21 we also attempt to assess how much the curve L? error is
due to incorrect reproduction of the amplitude or frequency of the lift coefficient oscillations. To evaluate,
from quantitative perspective, the accuracy of the lift coefficients peak prediction, we define the relative
peak error €peq, as follows:

€ voak = PKn,FOM - PKn,*
» PKy rom

x 100%, (66)
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Figure 22: The graph of the peaks relative errors for the lift coefficients curves for varied values of the number of modes used
in the online stage in both cases of the P-ROM and the Mixed-ROM models. The curves correspond to the case run with the
parameter value U;y, = 7.75 m/s. The error is computed between the peaks values of the lift coefficients curve obtained by the
FOM solver and the ones reconstructed from both the P-ROM and the Mixed-ROM models for the time range [0,8] s : (a)
shows the error curve for the P-ROM model, where N is the number of modes used in the online stage for all variables (by
construction of the P-ROM it is not possible to choose different number of online modes for the reduced variables). Figure (b)
depicts the case of the Mixed-ROM model. The error values in both graphs are in percentages.

where PK, rou is the value of the n—th FOM C; peak and PK, , is the value of the n—th P-ROM
or Mixed-ROM C; peak. The relative peak error is plotted for both P-ROM and Mixed-ROM models in
[Figure 22| [Figure 22| presents the relative peak error values obtained for each of the 29 peaks the time
interval [0,8] s. We point out that the values of modal truncation order N, in correspondence of which
the peak errors are computed are the resulted most accurate in the relative L? lift error analysis presented.
suggests that the P-ROM peaks relative error grows in time and settles around values as high as
10 — 20 %. On the other hand, the corresponding error values for the Mixed-ROM model are less than 3.5
% for several different modal truncation order for velocity, pressure, supremizers and eddy viscosity.

A final numerical test is aimed at assessing the accuracy of the Mixed-ROM model for higher Reynolds
value. The inlet velocity parameter sample considered in this case is U;, = 11.75 m/s. The time interval
considered for the reduced order simulations is ¢ € [0, 10] s which contains around 27 solution cycles. The
results reported for this case are relative to the lift coefficient history, the L? relative error value for Cj, the
C) peaks error and the approximated time period by the Mixed-ROM.

The Mixed-ROM dynamical system is solved with time step equal to 0.00025 s. The Mixed-ROM fields
were reproduced using 12 modes for velocity and 10 for each of pressure, supremizers and eddy viscosity.
The C; curves obtained with the FOM solver and the Mixed-ROM model are presented in The
results in prove that the Mixed-ROM was successful in reducing the problem with satisfactory
accuracy. The L? relative error between FOM and Mixed-ROM solution is in fact 1.9654%. As for the
relative peak error, the highest value detected in the [0,10] s time interval is 2.0672%. Finally the average
time period computed in by the FOM solver is about 0.3641 s, while the average time period computed by
the Mixed-ROM is roughly 0.3642 s. The corresponding 0.2% relative error suggests that the main source
of error in the ROM predictions is due to the amplitude inaccuracies rather then to incorrect frequency
reconstructions.

The final test in this section is meant to assess one of the main objectives of this work, that is to test
the presented reduction approach for the variance of the FOM turbulence model. We considered the non-
parametrized case of Re = 10°, the FOM was run for both k¥ — € and SST k — w models. After having
reached the fully periodic regime, snapshots were taken for the first 1.2 s and 1.6 s for K — e and SST k —w
models, respectively. The reduction was done extrapolating in time, where the Mixed-ROM simulations
were run for 8 s. The lift coefficient curves are shown in [Figure 24] where one can see both FOM C} signals
for the two different turbulence models and their reduced counterparts. It is evident from the graph that
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Figure 23: Lift coefficients curves for the cross validation test done for the parameter value U;,, = 11.75 m/s for the time range
[0,10] s, the figure shows the FOM and the Mixed-ROM lift coefficients histories : (a) the full range is shown (b) the last 3 s
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Figure 24: The lift coefficient curves obtained using both £ — € and SST k — w turbulence models and the Mixed-ROM ones.
The case considered is a non-parametrized one with U;;, = 10 m/s corresponding to Re = 10°. The plot is for the time range
€ [6, 8], the Mixed-ROM achieved relative L? errors (over the range ¢ € [0,8]) which are less than 5 % in both cases.

the Mixed-ROM proves sensitive to the specific turbulence model used in the FOM solver, although no
additional PDEs for the turbulent quantities are solved at the reduced level.

5. Conclusions and Outlook

This work presents a hybrid data-driven/projection-based approach to reduce turbulent flows. The
approach developed in this work called Mixed-ROM is based on introducing a non-intrusive reduced order
version of the eddy viscosity field to the formulation of the reduced order model. The Mixed-ROM employs
interpolation using radial basis function in the online stage for the computation of the reduced order eddy
viscosity coefficients. This interpolation can be done with the independent variable being the combined
time-parameter vector or the combined vector of the velocity L? projection coefficients and their vector
time derivatives. The Mixed-ROM proved to be accurate in reconstructing the fluid dynamics fields in
both cases of steady and unsteady flows with a Reynolds number on the order of 10°. In the unsteady
case considered in this work which is the flow around a circular cylinder, the Mixed-ROM showed that it
is capable of reconstructing an important variable of interest that is the lift coefficient time history which
mainly depends on local flow features around the cylinder. In that same example, the Mixed-ROM gives
satisfactory results when it comes to the extrapolation in time. The Mixed-ROM has been able to obtain
accurate predictions with an acceptable computational cost, showing with a speed up of SU = 10 in the
unsteady case and around SU = 1000 in the steady case.

As for potential future work, data-driven techniques can be used in building reduced order models and
other methodologies could help in approximating certain maps which are needed for the ultimate goal of
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reducing CFD problems. Such methodologies include the Artificial Neural Networks (ANN) with which one
could potentially improve the accuracy of the approximation of the eddy viscosity coefficients conducted in
this work. Another idea is to use DMD for the extrapolation problem for the unsteady flows. In addition,
there is a need to find stabilization techniques for the long time integration problem for unsteady flows [23]
and for multi-physics problems [100] 1011 [102] [103].
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Appendix A. List of abbreviations and symbols

Nomenclature

Abbreviations \ & divergence operator

EVM Eddy Viscosity Models oL The matrix of the lifting functions ¢r; ;
FEM Finite Element Methods b; i-th POD basis function for velocity
FVM Finite Volume Methods (7] a matrix calculated in the offline stage

that represents the contribution of pres-

Mixed-ROM The mixed projection/data-driven ; .
sure forces acting on a surface in the do-

based reduced order model developed in

this work mairt
POD Proper Orthogonal Decomposition a reduced vector of unknowns for velocity
RANS Reynolds Average Navier-Stokes Br ROM diffusion turbulent matrix
. . . ROM diffusi tri
RBF Radial Basis Functions b 1 dl Hsion nf1a r;x ;
reduced vector of unknowns for pressure
RB Reduced Basis v W p
ROM Reduced Order Model c* correlation matrix of the velocity field
educed Lrder Mode snapshot matrix
Symbols Cri ROM turbulent tensor
(Vu);  the gradient of u at the faces Cro ROM turbulent tensor
X Cartesian product C ROM convection tensor
4 a matrix calculated in th.e oinne stage Dk a vector in the penalty method for treat-
that represents.the contribution _Of vis- ment of the boundary conditions at re-
cous .forces acting on a surface in the duced order level, that contains the val-
domain ues of the L? norms of the velocity
AY eigenvalues matrix of the correlation ma- POD modes at the I'p;, in the Dirich-
trix of the velocity field snapshot matrix let boundary
P homogenized pressure snapshots matrix EF a matrix in the penalty method for treat-
u homogenized velocity snapshots matrix ment of the boundary ConlelonS at re-
. ] duced order level, that contains the val-
u The sa.mple par@meter introduced to the ues of the L2 scalar products of the ve-
ROM in the online stage locity POD modes at the I'p; in the
v gradient operator Dirichlet boundary
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CRERE

G

BC

uyf

unN

up

Vu

3
ot

Y

reduced vector of unknowns for eddy vis-
cosity

ROM pressure gradient matrix

ROM mass matrix

outward normal vector

ROM divergence matrix

the vector of non-zero boundary veloc-
ity values which are imposed as non-
homogeneous Dirichlet conditions at the
Dirichlet boundary

velocity field

fluctuating velocity field in RANS equa-
tions

the velocity vector evaluated at the cen-
tre of each face of the control volume

the velocity at the centre of one neigh-
boring cell

the velocity at the centre of one neigh-
boring cell

eigenvectors matrix of the correlation
matrix of the velocity field snapshot ma-
trix

i-th member of X,,

the vector of observed outputs (the L2
projection coefficients of the L-th viscos-
ity mode onto the snapshots) for the in-
terpolation procedure

The generic parameter-time
which lives in R?*!

The sample parameter combined with
the time instant at which Mixed-ROM
solution is desired in the online stage

vector

snapshots matrix for the pressure field
snapshots matrix for the velocity field

snapshots matrix for the eddy viscosity
field

The velocity lifting function that has
unitary value in its ¢-th component at
I'p

i-th POD basis function for pressure

J

turbulent dissipation

the L? relative error between the FOM
velocity field and a reduced order pres-
sure field
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€u

€Cp

i

Vpop

Pum

Vvt

®

gl

Gij

Gy

Nl

the L? relative error between the FOM
velocity field and a reduced order veloc-
ity field

the L? relative error between the FOM
lift coefficient time signal and the re-
duced order reconstructed one

i-th POD basis function for eddy viscos-
ity

POD space for velocity

parameter space of dimension g

training set in the parameter space P
with cardinality of M

eddy viscosity field

specific turbulent dissipation rate
Tensor product

mean velocity field in RANS equations

The penalization factor in the penalty
boundary treatment method

The RBF functions used in interpolat-
ing the i-th eddy viscosity coefficient in
the expansion and centered at the j-th
element of X, ;

the lift coefficient which corresponds to
the force component in the lift direction
L

turbulence kinetic energy

The component that is parallel to the
lift direction of the force which acts on
a certain surface

number of modes used in the online
phase for pressure

number of modes used in the online
phase for the supremizer

total number of snapshots

number of modes used in the online
phase for velocity

number of modes used in the online
phase for eddy viscosity

The number of scalar non-zero boundary
conditions needed to be set at reduced
order level

the dimension of the parameter space P
final time

control volume in the mesh



r boundary of €2
Wig The weight of the j-th RBF used in in- v dimensionless kinematic viscosit,
terpolating the i-th eddy viscosity coef- Y
ficient in the expansion. Q bounded domain
Xut the combined set of samples and time M nur.nl.)er of parameter samples in the
instants at which snapshots are taken training set Pas
h
(-, ')L?(Q) inner product in L2(€) N, nuénb?r of1 unknowns for pressure at full-
order leve
r the physical walls boundary part of T’
FO - P '};h e of the b y;) ) NP number of unknowns for velocity at full-
Dj € j-th part of the boundary where order level
Dirichlet conditions are imposed lebt number of unknowns for eddy viscosity
T, the inlet boundary part of " at full-order level
Tout the outlet boundary part of I’ P pressure field

Appendix B. Lift and drag forces offline/online computations

This section introduces the computations done in both the offline and the online stages for obtaining the
surface forces acting on a part of the domain called 0.
The total viscous and pressure forces F' acting on 0€2f are given by the following integral:

F = (2uVu — pI)nds. (B.1)
oy

In many application in fluid dynamics it is very important to efficiently compute the forces acting on certain
objects inside the domain. For instance the problem of flow past a circular cylinder considered in this work
is one of them. One should avoid resorting to the full order mesh for computing the integral above because
this makes the approach not entirely a reduced one.

The first step in developing an offline/online decoupling approach for computing the forces is to insert
the approximation into , this yields the following:

. N,
F = o (ZMV(Z a;(t; )i (x Z (t; ) x: I )nds, (B.2)

s i=1 i=1

Ny
F:f 20> ailts 1) Vil nds—J Zb b p)yinds, (B.3)
My =1 MRy =1

Ny, Np

F = Z i(t; p,)f 2uVi(x)nds — Z bi(t; u)J xinds. (B.4)
i=1 oKy i=1 oKy

After reaching this point one can define the following quantities

é; = J 2uV ;(x)nds, for i=1,..,N,, (B.5)
6, = J xjnds, for j=1,..,N,, (B.6)
Q5

where each term of V¢;(x) and x; can be seen as velocity and pressure field, respectively. This will make
the computations of (B.5]) and possible in the offline stage and they will be stored in order to be later
used in the online stage.
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In the online stage when a new time-parameter vector z

* is introduced, the forces are computed as

follows:
F* = J 2uVu(z*,z) — p(z*, z)I)nds, (B.7)
o9y
which simplify to
Nu NP
F* = Y a;(2%)8; — )] b;(2*)6;. (B.8)
i=1 j=1
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