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Gravity models of networks: Integrating maximum-entropy and econometric approaches
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The World Trade Web (WTW) is the network of international trade relationships among world countries.
Characterizing both the local link weights (observed trade volumes) and the global network structure (large-scale
topology) of the WTW via a single model is still an open issue. While the traditional Gravity Model (GM)
successfully replicates the observed trade volumes by employing macroeconomic properties such as GDP and
geographic distance, it unfortunately predicts a fully connected network, returning a completely unrealistic
topology of the WTW. To overcome this problem, two different classes of models have been introduced in
econometrics and statistical physics. Econometric approaches interpret the traditional GM as the expected value
of a probability distribution that can be chosen largely arbitrarily and tested against alternative distributions.
Statistical physics approaches construct maximum-entropy probability distributions of (weighted) graphs from
a chosen set of measurable, structural constraints and test distributions resulting from different constraints.
Here we compare and integrate the two approaches by considering a class of maximum-entropy models that
can incorporate macroeconomic properties used in standard econometric models. We find that the integrated
approach achieves an overall better performance than the purely econometric one. These results suggest that the
maximum-entropy construction can serve as a viable econometric framework wherein extensive and intensive
margins can be separately controlled for, by combining topological constraints and dyadic macroeconomic
variables.
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I. INTRODUCTION

The World Trade Web (WTW), formed by the
import/export relationships between world countries, has
received a lot of attention both in traditional economic
studies and in more recent investigations. Indeed, as recent
crises have clearly pointed out, “network effects matter” [1]:
Trade linkages are, in fact, the most important channels of
interaction between world countries, directly transmitting
economic shocks [2–4] or indirectly transmitting financial
ones [5–9]). It therefore comes with no surprise that many
contributions have focused on the analysis of the network
properties of the WTW. Indeed, the (ever-increasing) data
availability over the last years has motivated researchers
(coming from disciplines as different as economics, network
science, and social sciences) to explore the architecture of the
WTW from an empirical point of view, complementing the
traditional theoretical knowledge in classical trade economics.

These efforts have produced a large wealth of literature
characterizing various stylized facts of the WTW architecture
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[1,5,10–19]. A first stream of contributions has focused on
the purely binary properties of the WTW, i.e., the structural
features that require the knowledge of only the presence
of connections (trade relationships) between countries, irre-
spective of their intensity. These studies have highlighted a
large (compared with most of the other real-world networks)
density, a right-skewed and heavy-tailed degree distribution,
disassortative mixing by degree (indicating that countries
having many trade partners are, on average, connected with
countries having few partners), a hierarchical organization
(indicating that partners of well-connected countries are less
interconnected than those of poorly-connected ones), the pres-
ence of a core of countries trading with almost everyone
else, and finally the presence of (a sort of) bow-tie struc-
ture [14,15,17,19,20]. A second stream of contributions has
focused on the weighted properties of the WTW, where the
weight attached to each link represents the volume of the
corresponding trade relationship and the strength (sum of all
link weights) of each node represents the overall trade volume
of the corresponding country. These studies have highlighted
right-skewed and heavy-tailed (generally log-normal) weight
and strength distributions (indicating that few intense trade
connections coexist with a majority of low-intensity ones),
disassortative mixing by strength (indicating that countries
whose trade volume is large are, on average, connected
with countries whose trade volume is small), and a large
weighted clustering coefficient (indicating that the trade vol-
ume of the partners of well-connected countries is larger
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than the trade volume of the partners of poorly connected
ones) [18].

From the modeling side, two broad classes of models
of the international trade system can be roughly identified:
econometric models and network models (the latter mainly
rooted into statistical physics). Both can be traced back to the
earliest model of international trade, proposed in 1962 by the
physics-educated Dutch economist Jan Tinbergen (considered
the founding father of econometrics together with Ragnar
Frisch). Tinbergen modelled the import/export flows between
countries via a relationship that is formally analogous to the
law of gravity, where the “masses” of countries are replaced
by GDPs and the intercountry distances are replaced by suit-
ably defined geographic distances [21]. This is the celebrated
gravity model (GM) and can be shown to reproduce the pos-
itive trade volumes quite accurately [22–25]. Although our
focus here is on international trade, it is worth mentioning that
the GM has been used successfully to describe the positive
link weights associated to processes relevant to many other
networks as well, including migration flows [26,27] (which
actually represent the earliest [26] application of the GM),
mobility and traffic patterns [28–30], communication streams
[31], and spreading phenomena [32,33]. Despite its success,
the most evident limitation of the GM consists in predicting
that each country establishes a trading relationship with every
other country, a result that is in stark contrast with empirical
data, where “missing” trade relationships are actually found
to be a significant proportion (up to one half) of the number
of all possible pairs of countries. Since systematically over-
estimating the number of connections is known to lead to a
significant miscalculation of network effects [1], one should
avoid the use of the pure GM as a reliable network model of
the WTW [23].

From the sixties on, a lot of work has been done in econo-
metrics to overcome the aforementioned limitation. Initially,
Eaton and Tamura [34] and Martin and Pham [35] suggested
to employ a tobit-like estimation procedure, by rounding to
zero the trade flows below a certain threshold. Later, the
serious conceptual problem posed by the arbitrariness of the
chosen threshold motivated Helpman, Melitz, and Rubinstein
[36] to propose a two-step estimation procedure: First, a probit
model is employed to estimate the probability of observing a
trade relationship between any two nodes; subsequently, the
corresponding trade flow is estimated via an ordinary-least-
squares (OLS) regression whose parameters are tuned on the
entire set of positive weights. An alternative algorithm is the
one proposed by Silva and Tenreyro [37], who estimated the
gravity equation in a multiplicative—rather than additive—
fashion by employing a Poisson pseudo-maximum likelihood
(PPML) method and obtained good estimates of trade flows,
robust to heteroskedasticity. In the following years, PPML
has been proven to be very sensitive to the “excess zeros” of
the dependent variables. Hence, a different class of two-step
estimation procedures has been devised, i.e., the so-called
“zero-inflated” (ZI) methods [38,39]: These models are de-
fined by a logit estimation, aimed at establishing the presence
of a link, followed by either a Poisson (ZIP) or a negative
binomial (ZINB) regression, aimed at estimating the corre-
sponding trade volume. Later in 2011, Dueñas and Fagiolo
[40] proved that the weighted structure of the WTW is well

predicted by GMs if and only if its topological structure is
specified as well. This result marks an important shift from a
perspective whose only focus use to be the prediction of trade
flows to a perspective where the topological structure of the
network becomes one of the reconstruction targets.

Coming to the physics-inspired approaches to international
trade, the majority of proposed models are maximum-entropy
models of networks [23,41–46]. The maximum-entropy (ME)
framework [41,43,47–51] allows for purely structural network
properties to be constrained in order to derive the maximally
unbiased probability distribution compatible with those prop-
erties. A series of publications over the years [14,23,44,45,
52–54] has showed that fixing the degree sequence of world
countries is enough to successfully reproduce higher-order bi-
nary properties such as the average nearest-neighbour degree
and the clustering coefficient. By contrast, this result is no
longer retrieved when the analysis is reformulated within a
purely weighted framework: for instance, it turns out that the
strength sequence is not an effective constraint in reproduc-
ing the average nearest-neighbour strength and the weighted
clustering coefficient [41,55]. In fact, accuracy in the re-
construction of weighted properties is recovered only if the
degrees and the strengths are constrained jointly [56–58].

Econometric and network approaches have mostly pro-
ceeded along parallel tracks, with little interaction so far. The
only line of research that has systematically looked for the
possibility of an integration between the two approaches is
the one reformulating maximum-entropy network ensembles
as hidden variable (or fitness [59]) models [14,15,23,60,61].
In this approach, the maximum-entropy construction of the
network ensemble is formally preserved, but the Lagrange
multipliers usually viewed as free parameters tuned in order
to enforce the chosen constraints are instead identified with
empirical macroeconomic factors, most notably the GDP of
countries. Building on those results, as well as on the success
of physics-inspired models in reconstructing various kinds of
socioeconomic and financial systems [52,62], here we explore
the potential of the maximum-entropy formalism to provide a
viable framework for econometrics too.

The rest of the paper is organized as follows. Section II
reviews the traditional GM and its performance in reproducing
the positive WTW weights. Section III is devoted to the de-
scription of purely econometric models and their application
to the analysis of trade (networks). Section IV is devoted to the
description of maximum-entropy network models and their
application to the WTW. Section V illustrates the main results
of the paper, i.e., the integration of purely econometric and
physics-inspired models. Section VI concludes and presents
an outlook on possible future extensions.

II. MODELLING POSITIVE WEIGHTS

From a merely econometric point of view, the simplest
exercise is that of reproducing the realized (positive) trade
volumes (link weights) of the WTW. To this aim, we have
considered two different datasets. The first one is curated
by Gleditsch [63] and includes yearly trade volumes, yearly
GDP values (both reported in millions of US dollars) and the
(time-independent) matrix of geographic distances between
capital cities of all countries in the data. The second one
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FIG. 1. Scatter plot of the entire set of positive WTW weights wi j vs the values predicted by different specifications of the GM: (1) GM
with ρ = β = 1 and γ = 0, depicted in ; (2) GM with β = 1, γ = 0 and ρ tuned by requiring that the total weight is reproduced, i.e.,
W = ∑

i< j wi j = ∑
i< j〈wi j〉GM = 〈W 〉GM, depicted in ; (3) GM with β = 1, γ = −1 and ρ tuned as above, depicted in ; (4) full GM where

all parameters are tuned as described in Appendix A, depicted in . While moving from a parameter-free model to a single-parameter model
largely improves the goodness-of-fit, see (a), the net effect of rising the number of explanatory variables is that of decreasing the dispersion
around the identity, see (b). Further rising the number parameters, instead, does not add much to the picture provided by the third specification
of the GM, see (c). Results refer to the year 2000 of the dataset curated by Gleditsch [63].

is the BACI dataset, a detailed description of which can be
found in [64,65]. For both datasets we have selected and an-
alyzed eleven years: 1990–2000 for the Gleditsch dataset and
2007–2017 for the BACI one. The year 2000 of the Gleditsch
dataset—i.e., the one with the largest number of countries
(176)—is the snapshot we have selected to graphically illus-
trate all the results of our analyses. We have always considered
the undirected (symmetrized) version of the weighted trade
matrix, whose generic entry reads wi j = expi j+exp ji

2 , i.e., wi j

is the bilateral trade volume defined as the arithmetic mean
of the export volume from country i to country j and of the
export volume from country j to country i.

Our econometric exercise is carried out by comparing the
empirical, positive weights of the WTW, in the year 2000,
with four different specifications of the following econometric
function:

〈wi j〉GM = f (ωi, ω j, di j |θ ) = ρ(ωiω j )
βdγ

i j (1)

where ωi = GDPi

GDP
is the GDP of country i divided by the

arithmetic mean of GDPs, di j is the geographic distance be-
tween the capitals of countries i and j and θ = (ρ, β, γ ).
The first specification of the model above is characterized by
the assignment ρ = β = 1 and γ = 0 and its performance in
reproducing the positive weights of the WTW is shown in
Fig. 1(a). The overall poor performance of this version of the
GM signals the presence of both a scaling problem—estimates
are positively correlated with observations, only shifted to the
right—and of a dimensional problem—in fact, pure numbers
appear on the right-hand side while the WTW weights are
measured in (multiples of) dollars.

A second specification of the GM solves both problems
at once. This specification is characterized by the assignment
β = 1 and γ = 0 while ρ is treated as a free parameter,
tuned by requiring that the total weight is reproduced, i.e.,
that W = ∑

i< j wi j = ∑
i< j〈wi j〉GM = 〈W 〉GM: the fit is, now,

much more accurate, as shown in Fig. 1(b). The model can
be further enriched by adding dyadic factors such as the ge-
ographic distances between capitals: some more accuracy in
the description of the empirical data is indeed gained, as the
reduced dispersion of the cloud of points around the identity
witness. Quite remarkably, the picture does not change much
if, now, we let the entire set of parameters to be tuned as
described in Appendix A [see Fig. 1(c)].

Although the GM leads to a good prediction of the positive
weights, its intrinsic limitation is that it does not allow the
topological structure of the WTW to be correctly recovered.
In fact, by outputting only positive weights, it induces a trivial,
fully-connected structure: upon defining ai j = �[〈wi j〉GM],
∀ i < j, it is evident that ai j = 1, ∀ i < j. In order to over-
come such a limitation, one can “refine” the plain gravity
model by “dressing” it with a probability distribution capable
of accounting for the null entries as well.

In very general terms, we need to define a statistical net-
work model, i.e., a set of mathematical relationships between
the random variables that are of interest for our network de-
scription. Two broad classes of such models can be identified,
i.e., the econometric ones and the ones rooted into statistical
physics. In what follows, we will deal with (either economet-
ric or physics-rooted) discrete statistical models.

III. STATISTICAL NETWORK MODELS - I:
ECONOMETRIC MODELS

Let us start with the description of some of the most repre-
sentative members of the econometric class of models.

A. Poisson model

The simplest model in this class prescribes to consider
〈wi j〉GM = ρ(ωiω j )βdγ

i j as the expected value of a Poisson
probability mass function:

qPois
i j (wi j ) = z

wi j

i j e−zi j

wi j!
; (2)

since 〈wi j〉Pois = zi j , the explanatory power of the GM is re-
tained upon requiring that 〈wi j〉Pois = 〈wi j〉GM, i.e., by posing

zi j = ρ(ωiω j )
βdγ

i j . (3)

The expected topology of the network is determined by
the expected adjacency matrix entries implied by the model,
which is captured by the expression 〈ai j〉Pois = pPois

i j = 1 −
qPois

i j (0) = 1 − e−zi j (see Appendix B for a detailed description
of the procedure to estimate the parameters of the Poisson
model).
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B. Negative binomial model

The main drawback of the Poisson model is that of pre-
dicting a variance of the weights that is necessarily equal to
their average value. In general, this may be different from
what empirical analyses suggest. In order to overcome this
problem, econometricians have considered a different proba-
bility mass function, namely the negative binomial one with
the introduction of an overdispersion [66] parameter α = m−1

[67]:

qNB
i j (wi j ) =

(
m + wi j − 1

wi j

)(
1

1 + αzi j

)m(
αzi j

1 + αzi j

)wi j

.

(4)
One finds that 〈wi j〉NB = mαzi j = zi j . The requirement

that the expected value of the negative binomial distribu-
tion coincides with the prediction coming from the GM,
i.e., 〈wi j〉NB = 〈wi j〉GM, can be, again, realized by posing
zi j = ρ(ωiω j )βdγ

i j . Predictions about the topology are, now,
carried out via the expression 〈ai j〉NB = pNB

i j = 1 − qNB
i j (0) =

1 − ( 1
1+αzi j

)m (see Appendix B for a detailed description of the
procedure to estimate the parameters of the negative binomial
model).

C. Zero-inflated Poisson model

The main drawback of the econometric models above is
that of failing in reproducing the link density of the WTW. For
instance, the latter equals c = 2L

N (N−1) � 0.63 in year 2000.
It turns out that, while the Poisson model overestimates this
quantity, the negative binomial one underestimates it, i.e.,

〈c〉NB < c < 〈c〉Pois (5)

where 〈c〉Pois = ∑
i< j pPois

i j � 0.68 and 〈c〉NB
∑

i< j pNB
i j �

0.60. For this reason, econometricians have defined the so-
called zero-inflated (ZI) models, i.e., two-step recipes whose
general form reads

Q(W) =
∏
i< j

qi j (wi j )

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j · qi j (wi j |ai j )

= P(A)Q(W|A), (6)

a relationship indicating that the probability of the (network
represented by the) weighted adjacency matrix W can be
obtained as the product of the probability P(A) of observing
the purely binary adjacency matrix A and the conditional
probability Q(W|A), where, for consistency, A = �[W], i.e.,
ai j = �[wi j], ∀ i < j, the position ai j = �[wi j] meaning that
ai j = 1 whenever wi j > 0 and ai j = 0 if and only if wi j = 0.

The simplest ZI model is the Poisson one, defined by the
positions

pZIP
i j = Gi j

1 + Gi j
(1 − e−zi j ), (7)

qZIP
i j (wi j |ai j = 1) =

{
z
wi j
i j e−zi j

(1−e−zi j )wi j !
, wi j > 0

0, wi j � 0
. (8)

Notice that 1 − pZIP
i j = 1

1+Gi j
+ Gi j

1+Gi j
e−zi j , i.e., the connection

between nodes i and j can be missing either because a link
is not there (with probability 1

1+Gi j
) or because a link is there

but has zero weight (with probability Gi j

1+Gi j
e−zi j ). Consistently,

i and j are connected because the weight is not zero (with
probability 1 − e−zi j ). In order to “dress” the GM, we need to
identify some of the parameters of the Poisson model with the
usual econometric function. Since

〈wi j〉ZIP = pZIP
i j 〈wi j |ai j〉ZIP

= pZIP
i j

zi j

1 − e−zi j
= Gi j

1 + Gi j
zi j, (9)

we can make the identification zi j = ρ(ωiω j )βdγ
i j . Upon do-

ing so, we are treating zi j as an “effective” conditional
weight: In fact, Eq. (9) can be understood as describing an
aleatory experiment that combines a logit with a full Poisson
step. According to this interpretation, zi j would represent a
Poisson-like expected weight, conditional to the success of the
logit step, i.e., zi j = 〈wi j〉ZIP

plogit
i j

, with plogit
i j = Gi j

1+Gi j
.

A second econometric identification is, however, needed:
We will proceed by imposing

Gi j = δωiω j (10)

(see Appendix B for a detailed description of the procedure to
estimate the parameters of the ZIP model).

D. Zero-inflated negative binomial model

The ZI version of the negative binomial model, instead, is
defined by

pZINB
i j = Gi j

1 + Gi j
(1 − τi j ), (11)

qZINB
i j (wi j |ai j = 1)

=
{(m+wi j−1

wi j

)(
1

1−τi j

)(
1

1+αzi j

)m( αzi j

1+αzi j

)wi j
, wi j > 0

0, wi j � 0

(12)

where, as the for the plain negative binomial model, α = m−1

and τi j = ( 1
1+αzi j

)m. Moreover, as for the zero-inflated Poisson

(ZIP) model, 1 − pZINB
i j = 1

1+Gi j
+ Gi j

1+Gi j
τi j , i.e., the connec-

tion between nodes i and j can be missing either because a
link is not there (with probability 1

1+Gi j
) or because a link is

there but has zero weight (with probability Gi j

1+Gi j
τi j); consis-

tently, i and j are connected because the weight is not zero
(with probability 1 − τi j). In order to “dress” the GM, we need
to identify some of the parameters of the negative binomial
model with the usual econometric function. Upon considering
that

〈wi j〉ZINB = pZINB
i j 〈wi j |ai j〉ZINB

= pZINB
i j

zi j

1 − τi j
= Gi j

1 + Gi j
zi j, (13)

we can make the identification zi j = ρ(ωiω j )βdγ

i j and
Gi j = δωiω j .
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As for the ZIP case, we are treating zi j as a negative
binomial-like expected weight, conditional to the success
of a logit step, i.e., zi j = 〈wi j〉ZINB

plogit
i j

, with plogit
i j = Gi j

1+Gi j
(see

Appendix B for a detailed description of the procedure to
estimate the parameters of the ZINB model).

Let us notice that, while the ZIP model provides a better
estimation of the link density than the Poisson model, the
ZINB and the negative binomial ones basically perform in the
same way. In fact,

〈c〉ZINB < c � 〈c〉ZIP (14)

since c = 2L
N (N−1) � 0.63, 〈c〉ZIP = ∑

i< j pZIP
i j � 0.63, and

〈c〉ZINB = ∑
i< j pZINB

i j � 0.60, a result suggesting that both
variants of the negative binomial model will perform poorly
in reproducing the binary properties of the WTW.

IV. STATISTICAL NETWORK MODELS - II:
MAXIMUM-ENTROPY MODELS

The members of the second class of network models are
the ones defined within the framework of traditional statis-
tical mechanics. All of them can be derived by performing
a constrained maximization of Shannon entropy [54] where
the constraints represent the available information about the
system at hand.

The simplest, yet nontrivial, ME model that can be con-
sidered comes from the maximization of the binary Shannon
functional

S = −
∑

A

P(A) ln P(A) (15)

constrained to reproduce the entire degree sequence,
{ki(A)}N

i=1, of the network. This model is known under the
name of undirected binary configuration model (UBCM) and
has been shown to accurately reproduce many (binary) prop-
erties of a wide spectrum of real-world systems [44].

The UBCM is described by the probability mass function

P(A) =
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j , (16)

which is factorized into the product of Bernoulli probability
mass functions (one for each pair of nodes) with

pUBCM
i j = xix j

1 + xix j
(17)

(where xi is the Lagrange multiplier controlling for the degree
of node i). Importantly, the logit model admitting the presence
of a single global constant can be derived from entropy max-
imization upon reparametrizing the Lagrange multipliers of
the UBCM and imposing the total number of links as the only
constraint [62]). The identification xi ≡ √

δωi, in fact, leads to

plogit
i j = Gi j

1 + Gi j
= δωiω j

1 + δωiω j
. (18)

Although the functional form above is not the most general
one (for instance, dyadic factors such as geographic distances
could be added as well), it is the form we will adopt in what
follows.

In the network literature, the logit model (in its formulation
above) has been popularized [14] as one particular case of
the so-called fitness model [59] and as the so-called density-
corrected gravity model (dcGM) [68] and has been proven
to perform remarkably well for the task of reconstructing the
topology of networks from partial information [62].

Since we are interested in reproducing the structural
properties of weighted networks, we need to complement
the purely binary step above with a recipe for reconstruct-
ing weights. The entropy-based framework handles such a
requirement via the maximization of conditional Shannon
functionals allowing the specification of P(A) to be disentan-
gled from that of Q(W|A) [51].

When discrete weighted models are considered, a useful
quantity is the conditional Shannon entropy

S(W |A ) = −
∑
A∈A

P(A)
∑
WA

Q(W|A) log Q(W|A) (19)

where the first sum runs over all binary configurations within
the ensemble A and the second sum runs over all weighted
configurations that are compatible with each specific binary
structure represented by the adjacency matrix A, i.e., such that
WA = {W : �[W] = A}.

Conditional maximization proceeds by specifying a set of
weighted constraints that, in the discrete case, reads

1 =
∑
WA

P(W|A), ∀ A ∈ A (20)

〈Cα〉 =
∑
A∈A

P(A)
∑
WA

Q(W|A)Cα (W), ∀ α (21)

the first condition ensuring the normalization of the con-
ditional probability mass function and the vector {Cα (W)}
representing the “proper” set of weighted constraints. Dif-
ferentiating the corresponding Lagrangean functional with
respect to Q(W|A) and equating the result to zero leads to

Q(W|A) =
{

e−H (W)

ZA
, W ∈ WA

0, W /∈ WA
(22)

where H (W) = ∑
α ψαCα is the so-called Hamiltonian,

listing the constrained, weighted quantities, and ZA =∑
WA

e−H (W) is the partition function for fixed A. The explicit
functional form of Q(W|A) can be obtained only once the
functional form of the constraints has been specified as well.

To this aim, let us consider the Hamiltonian

H (W) =
∑
i< j

φi jwi j, (23)

where weights are modelled as nonnegative integer vari-
ables, i.e., wi j ∈ N, ∀ i < j. This choice induces a conditional
probability mass function reading

Q(W|A) =
∏
i< j

qi j (wi j |ai j ) =
∏
i< j

y
wi j−ai j

i j (1 − yi j )
ai j (24)

(with e−ψi j = e−φi j = yi j). Let us now turn the model above
into a proper econometric one. To this aim, let us proceed
by analogy. All zero-inflated econometric recipes identify
zi j with a conditional expected weight, a prescription that
in our case, would translate into its identification with
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〈wi j |ai j〉 = 1
1−yi j

. This choice, however, would lead to an
inconsistency, since zi j > 0 is a positive real number while
〈wi j |ai j〉 must necessarily exceed 1, as it represents the ex-
pected weight conditional to the existence of a connection.
An alternative, consistent econometric identification is

1

1 − yi j
= 1 + zi j, (25)

which, in turn, induces a conditional probability mass function

Q(W|A) =
∏
i< j

qi j (wi j |ai j )

=
∏
i< j

(
zi j

1 + zi j

)wi j−ai j
(

1

1 + zi j

)ai j

. (26)

Models of the kind are known as hurdle models: Quite
remarkably, entropy maximization allows us to recover them
in a fully principled way, i.e., by eliminating the (otherwise
unavoidable) ambiguity that accompanies the choice of the
distribution (supposedly) describing the positive values of an
economic system.

The hurdle-geometric model derived above, however, suf-
fers from a number of limitations, the most relevant of which
is that of failing in reproducing basic network quantities
such as the WTW total weight. As an illustrative example,
while W = ∑

i< j wi j � 109, in the year 2000, we find that
〈W 〉h-g � 105. In order to overcome such a limitation, we have
considered the conditional probability mass function induced
by the Hamiltonian

H (W) =
∑
i< j

(φ0 + φi j )wi j = φ0W +
∑
i< j

φi jwi j . (27)

Identifying e−φ0 = y0 and e−φi j = yi j = zi j

1+zi j
[see Eq. (25)],

we arrive at the modified econometric model

qi j (wi j |ai j ) =
(

y0zi j

1 + zi j

)wi j−ai j
(

1 + zi j − y0zi j

1 + zi j

)ai j

. (28)

We are now ready to fully specify the suite of discrete
entropy-models that we will compare with the aforemen-
tioned, purely econometric ones. To this aim, we need to fully
specify the functional form

Q(W) =
∏
i< j

qi j (wi j )

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j · qi j (wi j |ai j )

= P(A)Q(W|A); (29)

the two most obvious choices are represented by the models

QTSF(W) = Plogit(A)Q(W|A)

=
∏
i< j

(
plogit

i j

)ai j
(
1 − plogit

i j

)1−ai j · qi j (wi j |ai j ) (30)

and

QTS(W) = PUBCM(A)Q(W|A)

=
∏
i< j

(
pUBCM

i j

)ai j
(
1 − pUBCM

i j

)1−ai j · qi j (wi j |ai j ) (31)

that combine the weighted, conditional step induced by the
Hamiltonian defined in Eq. (27) with the purely binary logit
model and with the undirected binary configuration model,
respectively. The acronyms stand for “two-step fitness” model
and “two-step” model and recall the names originally used to
define them [15,61].

Less trivial choices are represented by models whose both
binary and weighted portions are jointly determined by the
constraints. They can all be recovered as specifications of the
generic Hamiltonian

H (W) =
∑
i< j

[θi jai j + (φ0 + φi j )wi j]

=
∑
i< j

θi jai j + φ0W +
∑
i< j

φi jwi j ; (32)

in what follows, we will consider two different instances of
such a function, defined by the choices θi j = θ0 and θi j =
θi + θ j . In other words, while we let the weighted parts of
these models coincide and read as in Eq. (28), we allow for
the binary part to vary, either constraining the total number of
links L, or the entire degree sequence {ki(A)}N

i=1. In the first
case, our Hamiltonian reads

H(1)(W) = θ0L + φ0W +
∑
i< j

φi jwi j (33)

and instances the model in Eq. (29) with

p(1)
i j = xy0zi j

1 + zi j − y0zi j + xy0zi j
(34)

q(1)
i j (wi j |ai j ) =

(
y0zi j

1 + zi j

)wi j−ai j
(

1 + zi j − y0zi j

1 + zi j

)ai j

(35)

(having posed e−θ0 = x, e−φ0 = y0 and e−φi j = yi j = zi j

1+zi j
); in

the second case, it reads

H(2)(W) =
∑

i

θiki + ψ0W +
∑
i< j

ψi jwi j (36)

and instances the model in Eq. (29) with

p(2)
i j = xix jy0zi j

1 + zi j − y0zi j + xix jy0zi j
(37)

q(2)
i j (wi j |ai j ) =

(
y0zi j

1 + zi j

)wi j−ai j
(

1 + zi j − y0zi j

1 + zi j

)ai j

(38)

(having posed e−θi = xi, e−φ0 = y0, and e−φi j = yi j = zi j

1+zi j
).

Appendix C provides a detailed description of the procedure
we have adopted to estimate the parameters entering into the
definition of our basket of discrete ME models.

So far, we have turned entropy-based models into econo-
metric ones via a suitable econometric transformation of the
Lagrange multipliers defining the proper “physical” models.
The entropy-based formalism, however, also offers the op-
portunity to define statistical models in a fully data-driven
fashion. To this aim, let us consider the Hamiltonian

HUECM(W) =
∑

i

[θiki + φisi]

=
∑
i< j

[(θi + θ j )ai j + (φi + φ j )wi j] (39)
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that constrains both degrees and strengths. The model induced
by the latter ones is called undirected enhanced configuration
model (UECM) and represents the best-performing one for the
task of network reconstruction in presence of full information
about the constraints [46,57].

Remarkably, all models considered in the previous sec-
tion can be compactly derived by combining a logit-like
probability mass function describing the binary network struc-
ture with the conditional expression defined in Eq. (28). To
prove this, it is enough to notice that all the Bernoulli-like
probability mass functions characterizing our model can be
compactly rewritten as

pi j = x′
ix

′
j

1 + x′
ix

′
j

(40)

where

(x′
ix

′
j )

logit = δωiω j, (41)

(x′
ix

′
j )

UBCM = xix j, (42)

(x′
ix

′
j )

(1) = xy0zi j

1 + zi j − y0zi j
, (43)

(x′
ix

′
j )

(2) = xix jy0zi j

1 + zi j − y0zi j
, (44)

(x′
ix

′
j )

UECM = xix jyiy j

1 − yiy j
. (45)

V. RESULTS

Let us now test and compare the performance of our two
broad classes of models in reproducing the topological prop-
erties of the World Trade Web. To this aim, let us consider both
the local properties, such as the degrees and the strengths, and
the higher-order ones such as the average nearest neighbors
degree (ANND) and the clustering coefficient (BCC), i.e.,

knn
i =

∑
j( 
=i) ai jk j

ki
, (46)

ci =
∑

j( 
=i,k)

∑
k( 
=i) ai ja jkaki

ki(ki − 1)
; (47)

we will also consider their weighted counterparts, i.e., the
average nearest-neighbors strength (ANNS) and the weighted
clustering coefficient (WCC), defined as

snn
i =

∑
j( 
=i) ai js j

ki
, (48)

cw
i =

∑
j( 
=i,k)

∑
k( 
=i) wi jw jkwki

ki(ki − 1)
. (49)

We will also test the accuracy of the reconstruction pro-
vided by the methods in our basket by considering properties
like the true positive rate (TPR)

〈T PR〉 = 〈T P〉
L

=
∑

i< j ai j pi j

L
, (50)

i.e., the percentage of links correctly recovered by a given
reconstruction method, the specificity (SPC)

〈SPC〉 = 〈T N〉(N
2

) − L
=

∑
i< j (1 − ai j )(1 − pi j )(N

2

) − L
, (51)

i.e., the percentage of zeros correctly recovered by a given
reconstruction method, the positive predictive value (PPV)

〈PPV 〉 = 〈T P〉
〈L〉 =

∑
i< j ai j pi j

〈L〉 , (52)

i.e., the percentage of links correctly recovered by a given
reconstruction method with respect to the total number of
predicted links and the accuracy (ACC)

〈ACC〉 = 〈T P〉 + 〈T N〉(N
2

) (53)

measuring the overall performance of a given reconstruction
method in correctly placing both links and zeros.

Figure 2 sums up the comparisons carried out between
the econometric models and the ME ones. The comparison
between the empirical cumulative density function (CDF) of
the degrees and the ones output by the econometric models
reveals the latter ones to be able to predict an overall similar
functional form [see Figs. 2(a) and 2(b)]; still, the prediction
obtained by any of the ME models is much closer to the
empirical trend. More quantitatively, one can implement the
Kolmogorov-Smirnov (KS) test to check the goodness of any
of the models considered in the present work to replicate
the empirical degrees: while any of the ME models provides
estimates of the degrees that are compatible with the empirical
CDF (at the significance level of 5%), only the ZIP model
predicts degrees that are compatible with the empirical ones:
in fact, the p-values of the ME models read p(1) � 0.06,
p(2) � 0.99, pTS � 0.99, pTSF � 0.32 while the p-values of
the econometric models read pPois � 0.001, pNB � 0.0008,
pZIP � 0.63, pZINB � 0.001.

Coming to the higher-order properties, it is evident that the
majority of the econometric models fails to overlap with the
empirical cloud of points [see Fig. 2(b)]: the one providing
the best prediction is the ZIP model, whose performance rep-
resents quite an improvement with respect to the one provided
by the “plain” Poisson model. While this is quite evident for
what concerns the prediction of the ANND values, the perfor-
mances of the ZIP and of the “plain” Poisson model become
less different when tested on the BCC values. On the contrary,
the performance of the ZINB model closely resembles that of
the negative binomial one when tested both on the ANND and
on the BCC. As for the local properties, the KS test reveals
that the only model outputting predictions compatible with
the empirical values (at the significance level of 5%) is the
ZIP one: in fact, pANND

ZIP � 0.38, pBCC
ZIP � 0.08).

For what concerns ME models, the ones performing best
are those constraining the degrees, i.e., the model induced by
H(2) and its two-step counterpart, whose topological estima-
tion step is carried out by employing pUBCM

i j . The evidence that
their performances in reproducing the purely binary structure
of a network are very similar lets us suspect that p(2)

i j � pUBCM
i j

and conclude that the purely econometric information en-
coded into p(2)

i j does not add much to what is already conveyed
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FIG. 2. Performance of econometric models (top row) vs the performance of ME models (bottom row) in reproducing: [(a),(d)] the degrees;
[(b), (e)] the ANND; and [(c), (f)] the BCC. Empirical points are indicated as ; econometric and ME models are indicated as follows: -
Poisson; - Negative Binomial; - ZIP; - ZINB; - H(1); - H(2); - TS; - TSF. Results refer to the year 2000 of the dataset curated by
Gleditsch [63].

by the purely topological one. On the other hand, ME mod-
els not constraining the degrees provide predictions differing
from the empirical trends to quite a large extent. As the KS test
reveals, the only ME model outputting predictions that are not
compatible with the empirical values (at the significance level
of 5%) is the one induced by H(1).

The overall accuracy of our models in reproducing a net-
work topology can be proxied by the index L = |〈L〉 − L|/L
amounting at Pois

L � NB
L = ZINB

L � 6% while ZIP
L �

0.5% and ME
L = 0 for each ME model. This is confirmed by

our analysis of single link statistics: In fact, 〈ACC〉(2) � 0.83
attains the largest value, followed by 〈ACC〉TS � 0.81 and
〈ACC〉ZIP � 0.77. Remarkably, 〈PPV 〉(2) � 0.86 attains the
largest value, indicating that the ME model induced by H(2)

is the one placing links best among all the models in our
basket.

Let us now consider the weighted properties (see Fig. 3).
Overall, the distribution of the strengths is reproduced quite
well by all models considered here, although no one explic-
itly constrains them. This seems to indicate that the purely
econometric information “feeded” into our models indeed
plays a role, which, however, is limited to ensure that the
intensive margins (and the related properties, as we will see)
are accurately predicted. The larger explanatory power of
econometric models becomes now evident: All of them out-
put predictions that are compatible with the empirical values.
Although the same result holds true for ME models, the latter
ones are outperformed by purely econometric models—the
best performing ones in predicting the strengths being the
Poisson-like ones.

Coming to the higher-order properties, let us notice that
the best performing econometric models in reproducing the
ANNS values are the ZIP and the “plain” Poisson ones whose
performances differ less than in the ANND case, although the

KS test lets the ZIP model win. On the other hand, the ZINB
and the negative binomial models (whose performances are,
again, very similar) completely fail in capturing the empirical
values. All predictions from ME models overlap with the
empirical ANNS values: As the KS test reveals, the only ME
model outputting predictions that are not compatible with the
empirical values (at the significance level of 1%) is the one
induced by H(1). For what concerns the values of the WCC,
both the econometric and the ME models perform quite sat-
isfactorily in capturing its rising trend. However, the KS test
reveals that only the econometric models and the TS model
output predictions compatible with the WCC empirical values
(at the significance level of 1%).

To proxy the accuracy of our models in reproducing the
weighted network structure, we have considered the index
W = |〈W 〉 − W |/W amounting at ZINB

W � 95%, NB
W =

60%, ZIP
W � 0.3% and Pois

W � 0 while ME
W = 0 for the

ME models constraining the total weight and TS
W � TSF

W �
0.2% for the ME two-step ones.

In order to understand if the conclusions above can be
generalized, let us calculate the accuracy of all models in our
basket, for all years constituting our two datasets. The results,
summed up in Table I, confirm that model H(2) systematically
outperforms all competing models. As an additional test, we
have calculated the percentage of times the empirical values
of our network statistics are compatible with their ensemble
distributions, via KS tests at the significance level of 5%: the
results, shown in Fig. 4, point out that ME models are the ones
for which compatibility is largest.

Let us now ask ourselves if a criterion exist to carry out
a principled comparison of the performance of the models
considered in the present paper. The answer is positive and
lays in the adoption of the popular Akaike information crite-
rion and Bayesian information criterion, respectively defined
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FIG. 3. Performance of econometric models (top row) vs the performance of ME models (bottom row) in reproducing: [(a), (d)] the
strengths; [(b), (e)] the ANNS; and [(c), (f)] the WCC. Empirical points are indicated as ; econometric and ME models are indicated as
follows: - Poisson; - Negative Binomial; - ZIP; - ZINB; - H(1); - H(2); - TS; - TSF. Results refer to the year 2000 of the dataset
curated by Gleditsch [63].

as

AIC = 2K − 2L (54)

and

BIC = K ln n − 2L (55)

where L is the log-likelihood of the tested model evaluated in
its maximum, K is the number of parameters characterizing
the model itself and n is the cardinality of the set of observa-
tions, estimated as N (N−1)

2 for undirected network data. Model
selection based on these criteria prescribes to rank models
according to (either) their AIC or BIC value and choose the

TABLE I. Accuracy of ME and econometric models in reconstructing both the Gleditsch and the BACI dataset. The best performing
models are H(2) and TS.

Dataset H(1) H(2) TSF TS Poisson ZIP Negative binomial ZINB

Gleditsch90 0.72 0.81 0.73 0.79 0.75 0.75 0.68 0.70
Gleditsch91 0.69 0.78 0.70 0.77 0.73 0.73 0.65 0.68
Gleditsch92 0.70 0.79 0.71 0.77 0.73 0.73 0.65 0.68
Gleditsch93 0.70 0.79 0.71 0.78 0.74 0.74 0.66 0.69
Gleditsch94 0.70 0.79 0.72 0.78 0.75 0.75 0.66 0.69
Gleditsch95 0.70 0.80 0.72 0.80 0.75 0.76 0.68 0.69
Gleditsch96 0.72 0.81 0.73 0.81 0.76 0.77 0.68 0.69
Gleditsch97 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch98 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch99 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.72
Gleditsch00 0.74 0.82 0.74 0.81 0.78 0.77 0.70 0.72

BACI07 0.83 0.88 0.83 0.87 0.84 0.84 0.76 0.77
BACI08 0.83 0.88 0.83 0.87 0.85 0.84 0.76 0.77
BACI09 0.84 0.88 0.84 0.87 0.84 0.84 0.76 0.77
BACI10 0.85 0.89 0.85 0.88 0.85 0.85 0.77 0.78
BACI11 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI12 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI13 0.85 0.90 0.85 0.89 0.86 0.86 0.77 0.78
BACI14 0.85 0.90 0.85 0.89 0.86 0.85 0.77 0.78
BACI15 0.85 0.90 0.85 0.89 0.85 0.84 0.77 0.78
BACI16 0.84 0.90 0.84 0.89 0.85 0.84 0.76 0.78
BACI17 0.85 0.90 0.85 0.89 0.85 0.85 0.77 0.78
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FIG. 4. Percentage of times the empirical value of a given network statistics is compatible with its ensemble distribution, according to a
KS test at the significance level of 5% (left, for the Gleditsch dataset; right, for the BACI dataset): A value of 1 means that the given network
statistic is compatible with the model-induced ensemble distribution across all years of the considered dataset. Generally speaking, ME models
are the ones for which compatibility is largest—although econometric models are characterized by a compatibility, which is large as well
whenever weighted measures are considered.

one minimizing it. Table II shows both the AIC and the BIC
values for all the models considered here.

Quite surprisingly, the negative binomial model is the
favoured one among the econometric models, followed by its
zero-inflated version; however, its bad performance in repro-
ducing the empirical trends makes the choice of including
it among the most suitable models for modeling trade data
highly questionable. On the other hand, the ZIP model per-
forms much better in reconstructing the trends of both local

and higher-order properties although being much less parsi-
monious than both versions of the negative binomial model.
Apparently, then, the question about which model to prefer—
the favoured one by information criteria or the best performing
one in reproducing trends?—cannot be properly answered by
just considering purely econometric models. On the other
hand, such a question can be unambiguously answered as soon
as one switches to the class of maximum-entropy models:
now, both the AIC- and the BIC-based rankings favour the

TABLE II. Selection of ME and econometric models, according to the AIC and BIC values. While the negative binomial model is the
favoured one among the econometric models, it performs badly in reproducing both local and higher-order topological properties; on the
other hand, the ZIP model reproduces the higher-order statistics quite accurately but is disfavoured by both AIC and BIC. The solution to
this dilemma comes from considering a different class of reconstruction models, i.e., the maximum-entropy ones: Beside being the favoured
one by information criteria, the H(2) model achieves a very good reconstruction of both binary and weighted network properties (since L =
|〈L〉 − L|/L and W = |〈W 〉 − W |/W , the symbol 0∗ indicates that the model exactly reproduces the corresponding constraint). Results refer
to the year 2000 of the dataset curated by Gleditsch [63].

Model L W AIC BIC

Poisson �0.07 0∗ �5088080.1 �5088105.1
ZI Poisson �4.5 × 10−3 �3.3 × 10−3 �5052767.3 �5052800.6
Negative binomial �0.06 �0.59 �175693.2 �175726.6
ZI Negative binomial �0.06 �0.95 �176071.4 �176113.1
ME model H(1) 0∗ 0∗ �182909.5 �182951.2
ME model H(2) 0∗ 0∗ �174050.0 �175550.4
TS 0∗ �6.8 × 10−3 �176129.1 �177629.5
TSF 0∗ �2.2 × 10−3 �185940.2 �185981.8
UECM 0∗ 0∗ �186602.8 �189536.8
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model described by the Hamiltonian H(2)—the one encod-
ing the information about the degree sequence and the total
weight, plus admitting a tunable function of the weights—i.e.,
precisely the most accurate in replicating many (if not all)
empirical trends.

For the sake of comparison, we have included into the
basket of maximum-entropy models the undirected enhanced
configuration model (UECM), i.e., the model performing best
in presence of complete information about the constraints—
degrees and strengths, in the specific case—of a given
networked system: as evident from the table, it is disfavoured
with respect to the model described by the Hamiltonian H(2),
an evidence signaling that while the information encoded into
the degrees is essential (i.e., the latter ones must be explicitly
constrained), the one carried by the strengths appears to be
“less fundamental” since providing a good approximation of
them is enough to obtain an overall good reconstruction.

In order to understand if the conclusions above can be
generalized, let us calculate the Akaike weights for the models
in our basket M. The Akaike weight for the ith model is
defined as

wi = e−i/2∑
m e−m/2

, (56)

with i = AICi − min{AICm}m∈M. Results on the dataset
curated by Gleditsch show that the negative binomial and
the H(2) models “compete”, in the sense that H(2) performs
best (i.e., wH(2) � 1) in the (bunches of) years 1990–1993 and
1997–2000 while the negative binomial model performs best
(i.e., wNB � 1) in the (bunch of) years 1994–1996. For what
concerns the BACI dataset, instead, the competing models
are three: In fact, while H(2) performs best in the (bunches
of) years 2007, 2009, and 2015–2017, the negative binomial
outperforms the others in the (bunches of) years 2008 and
2010–2014; however, the ZINB model has a positive, non-
negligible Akaike weight in the years 2008, 2012, and 2014,
hence performing as well as the negative binomial one.

Let us now consider a couple of additional exercises, car-
ried out on both datasets considered in the present paper.
The first one concerns link prediction and was carried out by
following the reference [69]. Specifically, we have approached
link prediction from a temporal perspective, inspecting the
accuracy achieved by our reconstruction models at time t + 1
given the knowledge about the network topology (for the
maximum-entropy models) and of the other exogenous vari-
ables (for the purely econometric models) at time t . In other
words, we opted for a one-lagged link prediction, calculating
the log-likelihood

L1l = ln

[∏
i< j

(
p(t )

i j

)a(t+1)
i j

(
1 − p(t )

i j

)1−a(t+1)
i j

]
(57)

for each statistical model in our basket, the coefficients
{p(t )

i j }N
i, j=1 being the probabilities output by any model at time

t and the coefficients {a(t+1)
i j }N

i, j=1 being the entries of the ad-
jacency matrix at time t + 1. When carried out on the pairs of
years 1993–1994, 1994–1995, 1995–1996, 1996–1997, 1997–
1998, 1998–1999, and 1999–2000 of the dataset curated by
Gleditsch and on the pairs of years 2008–2009, 2009–2010,
2010–2011, 2013–2014, 2014–2015,2015–2016, and 2016–

2017 of the BACI dataset, the exercise above shows H(2) to
outperform not only the entire class of econometric models
but also the purely binary, maximum-entropy ones—as con-
firmed by the Akaike weights induced by the log-likelihood
above.

To provide a more refined picture of the performance of the
models in our basket in providing one-lagged predictions, we
have also calculated their one-lagged accuracy, defined as

〈ACC〉1l = 〈T P〉1l + 〈T N〉1l(N
2

) (58)

with 〈T P〉1l = ∑
i< j a(t+1)

i j p(t )
i j and 〈T N〉1l = ∑

i< j (1 −
a(t+1)

i j )(1 − p(t )
i j ). The results are reported in Table III and

confirm what has been previously said: H(2) is the one
performing best.

As a second exercise, we have tested the accuracy of our
models in estimating link-specific weights—hence, carrying
out what we have called a “weight prediction” exercise. To
this aim, we have considered each expected weight and cal-
culated the confidence interval enclosing the 95% of total
probability around it. On the practical side, we have sam-
pled 1000 configurations from the ensemble induced by each
model in our basket and calculated the (ensemble-induced)
2.5 and 97.5 percentiles for each specific weight; then, we
have calculated the percentage of empirical weights “falling”
within the corresponding CIs—now treated as error bars “ac-
companying” the point-estimate of each weight. The results
of this exercise are reported in in Table IV: as it can be
appreciated, maximum-entropy models compete with both the
negative binomial and the ZINB ones—although the latter
(slightly) outperform the former.

VI. DISCUSSION

In the present paper, we have compared the performance
of two broad classes of statistical models, i.e., the ones rooted
into economic theory and the ones rooted into statistical
physics (in particular, the ones derived from the maximum-
entropy principle) in reconstructing both the binary and the
weighted network properties of an economic system such as
the WTW.

Although the case study is the same, the two classes of
models “reflect” the languages of two disciplines that are still
deeply different: While econometricians have traditionally
focused on bilateral trade volumes between countries—
emphasizing the role played by common borders, language,
religion, the presence of regional trade agreements, etc. on
trade relationships—network scientists have, instead, paid
more attention to the structural and dynamical aspects of
network formation, emphasizing the role played by purely
structural information in determining the topology itself. The
2008 global financial crisis has dramatically clarified that
bilateral trade relationships can explain only a small fraction
of the impact that an economic shock, originating in a given
country, can have on another country, which is not a direct
trade partner, urging researchers in economics to adopt a
network-aware perspective. This, in turn, has motivated us to
carry out a methodological comparison on real-world cases,
with the aim of clarifying pros and cons of both approaches.
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TABLE III. One-lagged accuracy, quantifying the performance of ME and econometric models in providing one-lagged predictions on
both the Gleditsch and the BACI datasets. H(2) and TS are systematically the best performing models.

Dataset H(1) H(2) TSF TS Poisson ZIP Negative binomial ZINB

Gleditsch94 0.70 0.79 0.72 0.77 0.75 0.74 0.66 0.69
Gleditsch95 0.71 0.80 0.72 0.78 0.75 0.75 0.66 0.69
Gleditsch96 0.72 0.80 0.73 0.80 0.76 0.76 0.67 0.70
Gleditsch97 0.73 0.82 0.74 0.80 0.77 0.77 0.67 0.70
Gleditsch98 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch99 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71
Gleditsch00 0.73 0.82 0.74 0.81 0.77 0.77 0.69 0.71

BACI09 0.84 0.88 0.84 0.87 0.85 0.84 0.76 0.77
BACI10 0.84 0.88 0.84 0.87 0.85 0.84 0.76 0.77
BACI11 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI14 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI15 0.85 0.89 0.85 0.88 0.86 0.85 0.77 0.78
BACI16 0.84 0.88 0.84 0.88 0.85 0.84 0.77 0.78
BACI17 0.85 0.89 0.85 0.88 0.85 0.84 0.77 0.78

Researchers in economics have dealt with the issue of
reconstructing network topology by approaching the simpler
problem of reproducing the number of missing connections—
or, equivalently, the link density. For instance, as we see from
the year 2000 snapshot of the dataset curated by Gleditsch
[63], although the error of the Poisson model in reproduc-
ing L is overall small (amounting at Pois

L � 7%), it can be
further reduced by adopting the zero-inflated version of it.
On the contrary, inflating zeros does not improve the per-
formance of the negative binomial model in reproducing the

link density since it already underestimates L. The ability
of a model in reproducing a global quantity such as the
link density proxies its ability in providing a good estima-
tion of local as well as higher-order topological properties
(i.e., the degrees, the ANND and the BCC): From this point
of view, the zero-inflated Poisson model is the one per-
forming best among the econometric models. However, it is
largely disfavoured by information criteria such as AIC and
BIC, a result suggesting that it may be not parsimonious
enough.

TABLE IV. Performance of ME and econometric models in providing accurate predictions of weights, on both the Gleditsch and the BACI
datasets, quantified by calculating the percentage of empirical weights falling within the confidence interval enclosing the 95% probability
around the corresponding expected value. Our maximum-entropy models compete with both the negative binomial and the ZINB ones—
although the latter (slightly) outperform the former.

Dataset H(1) H(2) TSF TS Poisson ZIP Negative binomial ZINB

Gleditsch90 0.96 0.96 0.94 0.96 0.62 0.67 0.98 0.97
Gleditsch91 0.96 0.96 0.94 0.96 0.63 0.71 0.98 0.97
Gleditsch92 0.96 0.96 0.94 0.96 0.63 0.70 0.98 0.97
Gleditsch93 0.96 0.96 0.94 0.96 0.64 0.69 0.98 0.97
Gleditsch94 0.96 0.96 0.94 0.96 0.64 0.67 0.98 0.97
Gleditsch95 0.96 0.96 0.94 0.96 0.61 0.68 0.98 0.97
Gleditsch96 0.96 0.96 0.94 0.96 0.60 0.65 0.98 0.97
Gleditsch97 0.96 0.96 0.94 0.96 0.60 0.63 0.98 0.97
Gleditsch98 0.96 0.96 0.94 0.96 0.61 0.63 0.98 0.97
Gleditsch99 0.96 0.96 0.94 0.96 0.61 0.62 0.98 0.97
Gleditsch00 0.96 0.96 0.95 0.96 0.60 0.63 0.97 0.97

BACI07 0.93 0.95 0.92 0.95 0.43 0.43 0.97 0.97
BACI08 0.92 0.94 0.91 0.94 0.40 0.40 0.97 0.97
BACI09 0.93 0.95 0.92 0.95 0.43 0.43 0.97 0.97
BACI10 0.92 0.94 0.91 0.95 0.41 0.41 0.97 0.97
BACI11 0.92 0.94 0.90 0.94 0.38 0.39 0.97 0.97
BACI12 0.91 0.94 0.90 0.94 0.38 0.38 0.97 0.97
BACI13 0.91 0.93 0.90 0.93 0.37 0.38 0.97 0.97
BACI14 0.91 0.93 0.90 0.94 0.38 0.39 0.97 0.97
BACI15 0.91 0.94 0.91 0.94 0.41 0.41 0.97 0.97
BACI16 0.92 0.94 0.91 0.94 0.40 0.41 0.97 0.97
BACI17 0.91 0.94 0.91 0.94 0.39 0.39 0.97 0.97
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FIG. 5. Performance of the negative binomial model vs the performance of the ME model described by the Hamiltonian H(2), in
reproducing: (a) the degree distribution; (b) the ANND; (c) the BCC; (d) the strength distribution; (e) the ANNS; and (f) the WCC. While
a look at Table II suggests the negative binomial to be the econometric model performing best, this is definitely not the case as explicitly
plotting its predictions against the empirical trends reveals. Notice that in (d) the distributions of strength induced by H(2) and by the negative
binomial model overlap for a large range of values whereas, for other statistics, H(2) produces the best fit—confirming the importance of a
good topological estimation. Empirical points are indicated ; econometric and ME models are indicated as follows: - Negative Binomial;
- H(2). Results refer to the year 2000 of the dataset curated by Gleditsch [63].

Some of the problems of purely econometric models
are solved by looking at a different class of statistical
models, i.e., the physics-inspired ones. In particular, the
model described by the Hamiltonian H(2) = ∑

i θiki + ψ0W +∑
i< j ψi jwi j provides a very accurate reconstruction while

being favoured by information criteria. Remarkably, although
it is defined by N + 1 purely topological constraints, both AIC
and BIC reveal that the latter are “irreducible”, i.e., necessary
to provide a satisfactory explanation of the network generating
process. For the sake of comparison, Fig. 5 explicitly shows
the performance of the models favoured by the adopted in-
formation criteria (i.e., the negative binomial model and its
zero-inflated version) with that of the ME model described by
H(2): It is evident that the ME model outperforms the purely
econometric ones, still achieving a good ranking.

Looking at the class of ME models in more detail, our
analysis indicates that the information carried by the strengths
is not as “fundamental” as the one carried by the degrees:
This is evident upon considering that (1) the UECM is always
disfavoured with respect to the models just constraining the
degrees, (2) the second best performing ME model is (always)
the two step one, defined by a first purely topological step,
accounting for the degrees, followed by an econometric-wise
estimation of the weights. On top of that, we explicitly notice
that structural topological information (e.g., the one provided
by the link density or the degree sequence) usually correlates
with node-specific economic covariates; hence, excluding
such information from the model may lead to the so-called
“omitted variable” bias. As proved by AIC and BIC, ME mod-
els represent the best compromise between goodness-of-fit
and parsimony: In fact, they allow for structural information
to be included, keeping the aforementioned type of bias low

while leading to a better description of economic systems than
that provided by traditional econometric models.

Our findings may indicate a route towards reconciling
econometric and maximum-entropy network approaches, sug-
gesting how to build a model that combines the pros of both:
the importance of purely structural information (highlighted
by physics-inspired models) can be accounted for by a model
with a first step that is purely topological in nature (notice,
in fact, that the TSF model is disfavoured with respect to
the TS one) and a second step that takes care of estimating
the weighted structure. Such an estimation can rest upon
econometric considerations, driving the re-parametrization of
otherwise purely structural models.
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APPENDIX A: ESTIMATING THE GM PARAMETERS

Here, we consider two different specifications of the GM,
i.e.,

〈wi j〉(1)
GM = ρ(ωiω j )d

−1
i j (A1)
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and

〈wi j〉(2)
GM = ρ(ωiω j )

βdγ
i j . (A2)

The parameters appearing in both specifications of the GM
can be estimated by implementing a nonlinear least squares
(NLS) regression, i.e., by solving the optimization problem

arg minθ

{∑
i< j

[wi j − 〈wi j〉GM]2

}
, (A3)

which, in turn, translates into solving the equation∑
i< j

[wi j − 〈wi j〉GM]
∂〈wi j〉GM

∂θi
= 0, ∀ i. (A4)

However, such a procedure is known to produce biased esti-
mations. In fact, it leads to the set of conditions∑

i< j

[
wi j − 〈wi j〉(1)

GM

]〈wi j〉GM = 0 (A5)

for the first GM specification and∑
i< j

[
wi j − 〈wi j〉(2)

GM

]〈wi j〉GM = 0

∑
i< j

[
wi j − 〈wi j〉(2)

GM

]〈wi j〉GM ln(ωiω j ) = 0 (A6)

∑
i< j

[
wi j − 〈wi j〉(2)

GM

]〈wi j〉GM ln di j = 0

for the second GM specification. Since the conditions above
are known to “weigh” more larger weights, Silva and Tenreyro
[37] propose to employ a Poisson pseudo-maximum likeli-
hood (PPML) estimator, leading to the set of conditions∑

i< j

[
wi j − 〈wi j〉(1)

GM

] = 0 (A7)

for the first GM specification and∑
i< j

[
wi j − 〈wi j〉(2)

GM

] = 0

∑
i< j

[
wi j − 〈wi j〉(2)

GM

]
ln(ωiω j ) = 0 (A8)

∑
i< j

[
wi j − 〈wi j〉(2)

GM

]
ln di j = 0.

for the second GM specification. Remarkably, the PPML esti-
mator lets the purely topological condition W = ∑

i< j wi j =∑
i< j〈wi j〉GM = 〈W 〉GM (i.e., the preservation of the total

weight) to be recovered for both GM specifications.

APPENDIX B: ECONOMETRIC MODELS

This Appendix is devoted to the detailed description of the
econometric models considered in the present paper. When
coming to estimate the parameters entering into the definition
of any of the econometric models considered above, we in-
voke the maximum-of-the-likelihood principle, prescribing to
maximize the function

L = ln Q(W) (B1)

where the optimization is carried out with respect to the set of
parameters characterizing each specific model.

In the present contribution we have considered undirected
networks, hence the parameters associated to node-specific re-
gressors of the same economic variable (e.g., the GDPs of the
country of origin and destination) are equal. In such a frame-
work we have employed the specifications zi j = ρ(ωiω j )βdγ

i j

and Gi j = δ(ωiω j ) where ωi = GDPi

GDP
, i.e., the GDP of each

country is divided by the mean value of all GDPs. We would
also like to stress that the parameters entering into the def-
inition of zi j are equal to those employed for the standard
GM specification, i.e., zi j = eX ·θ , as evident upon taking as
regressors the natural logarithm of the GDPs and that of the
geographic distance, i.e.,

zi j = eX ·θ = eβ ln ωi+β ln ω j+γ ln di j+c = ρ(ωiω j )
βdγ

i j (B2)

having posed c = ln ρ.

1. Poisson model

The probability mass function of the Poisson model reads

qPois
i j (wi j ) = z

wi j

i j e−zi j

wi j!
, (B3)

where zi j = ρ(ωiω j )βdγ
i j . In what follows, we will substitute

wi j! with �[wi j + 1], as routinely done in the packages for
solving econometric models. Its log-likelihood reads

LPois =
∑
i< j

[wi j ln zi j − zi j − ln �[wi j + 1]] (B4)

whose optimization leads to the set of equations∑
i< j

[
wi j

zi j
− 1

]
∂zi j

∂θi
= 0, ∀ i (B5)

reading, more explicitly,∑
i< j

[wi j − 〈wi j〉Pois] = 0

∑
i< j

[wi j − 〈wi j〉Pois] ln(ωiω j ) = 0

∑
i< j

[wi j − 〈wi j〉Pois] ln di j = 0. (B6)

Notice that the set of equations above coincides with
Eqs. (A8). The Poisson model remains the most used one be-
cause it ensures that a network total weight is reproduced—a
desirable feature to correctly estimate the weights of a net-
work, as also observed for the “plain” GM.

2. Negative binomial model

The probability mass function of the negative binomial
model reads

qNB
i j (wi j ) =

(
m + wi j − 1

wi j

)(
1

1 + αzi j

)m(
αzi j

1 + αzi j

)wi j

(B7)
where α = m−1 to handle overdispersion and zi j =
ρ(ωiω j )βdγ

i j . By replacing each binomial coefficient with the
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corresponding Gamma function, one recovers the expression

LNB =
∑
i< j

[wi j ln(αzi j ) − (m + wi j ) ln(1 + αzi j )

+ ln �[m + wi j] − ln �[wi j + 1] − ln �[m]]; (B8)

its optimization leads to the set of equations

∑
i< j

[
wi j − zi j

zi j (1 + αzi j )

]
∂zi j

∂θi
= 0, ∀ i (B9)

and

∑
i< j

[
wi j − zi j

α(1 + αzi j )
− m2

(
�′[m + wi j]

�[m + wi j]
− �′[m]

�[m]

)]
= 0,

(B10)
reading, more explicitly,

∑
i< j

[
wi j − 〈wi j〉NB

VarNB[wi j]

]
= 0

∑
i< j

[
wi j − 〈wi j〉NB

VarNB[wi j]

]
ln(ωiω j ) = 0

∑
i< j

[
wi j − 〈wi j〉NB

VarNB[wi j]

]
ln di j = 0

∑
i< j

[
wi j − 〈wi j〉NB

α(1 + αzi j )
− m2

(
�′[m + wi j]

�[m + wi j]
− �′[m]

�[m]

)]
= 0.

(B11)

Notice that the negative binomial model does not constrain
the total weight of a network, whence its bad performance in
reproducing the other weighted structural properties.

3. Zero-inflated Poisson model

The zero-inflated version of the Poisson model is defined
by a functional form reading

Q(W) =
∏
i< j

qi j (wi j )

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j · qi j (wi j |ai j )

= P(A)Q(W|A) (B12)

and inducing the following log-likelihood:

L = ln Q(W) = ln P(A) + ln Q(W|A)

=
∑
i< j

[ai j ln pi j + (1 − ai j ) ln(1 − pi j )

+ ln qi j (wi j |ai j )] (B13)

where

pZIP
i j = Gi j

1 + Gi j
(1 − e−zi j ), (B14)

qZIP
i j (wi j |ai j ) =

[
z
wi j

i j e−zi j

(1 − e−zi j )wi j!

]ai j

(B15)

with zi j = ρ(ωiω j )βdγ

i j and Gi j = δωiω j ; hence,

LZIP =
∑
i< j

[ai j ln Gi j − ai j ln(1 + Gi je
−zi j )

+ ln(1 + Gi je
−zi j ) − ln(1 + Gi j )

+wi j ln zi j − ai jzi j − ai j ln �[wi j + 1]]. (B16)

Its optimization leads to the set of equations

∑
i< j

[
ai j − pZIP

i j

1 + Gi je−zi j

]
= 0

∑
i< j

[
wi j −

(
ai j + Gi je−zi j

1 + Gi je−zi j

)
zi j

]
= 0

∑
i< j

[
wi j −

(
ai j + Gi je−zi j

1 + Gi je−zi j

)
zi j

]
ln(ωiω j ) = 0

∑
i< j

[
wi j −

(
ai j + Gi je−zi j

1 + Gi je−zi j

)
zi j

]
ln di j = 0 (B17)

with a clear meaning of the symbols.

4. Zero-inflated negative binomial model

As for the ZIP model, the zero-inflated version of the
negative binomial model induces a log-likelihood reading

L = ln Q(W) = ln P(A) + ln Q(W|A)

=
∑
i< j

[ai j ln pi j + (1 − ai j ) ln(1 − pi j )

+ ln qi j (wi j |ai j )] (B18)

where

pZINB
i j = Gi j

1 + Gi j
(1 − τi j ), (B19)

qZINB
i j (wi j |ai j ) =

(
m + wi j − 1

wi j

)ai j
(

τi j

1 − τi j

)ai j
(

αzi j

1 + αzi j

)wi j

=
[(

m + wi j − 1

wi j

)(
1

1 − τi j

)(
1

1 + αzi j

)m(
αzi j

1 + αzi j

)wi j
]ai j

(B20)
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with α = m−1, τi j = ( 1
1+αzi j

)m, zi j = ρ(ωiω j )βdγ

i j and Gi j = δωiω j . Hence,

LZINB =
∑
i< j

[ai j ln Gi j − ai j ln(1 + Gi jτi j ) + ln(1 + Gi jτi j ) − ln(1 + Gi j ) + wi j ln(αzi j ) − wi j ln(1 + αzi j )

−mai j ln(1 + αzi j ) + ai j ln �[m + wi j] − ai j ln �[wi j + 1] − ai j ln �[m]] (B21)

whose optimization leads to the set of equations

∑
i< j

[
ai j − pZINB

i j

1 + Gi jτi j

]
= 0

∑
i< j

[
wi j −

(
ai j + Gi jτi j

1 + Gi jτi j

)](
zi j

1 + αzi j

)
= 0

∑
i< j

[
wi j −

(
ai j + Gi jτi j

1 + Gi jτi j

)](
zi j

1 + αzi j

)
ln(ωiω j ) = 0 (B22)

∑
i< j

[
wi j −

(
ai j + Gi jτi j

1 + Gi jτi j

)](
zi j

1 + αzi j

)
ln di j = 0

∑
i< j

[(
ai j + Gi jτi j

1 + Gi jτi j

)(
m2 ln (1 + αzi j ) − mzi j

1 + αzi j

)
+ wi j

α(1 + αzi j )
− m2ai j

(
�′[m + wi j]

�[m + wi j]
− �′[m]

�[m]

)]
= 0.

APPENDIX C: MAXIMUM-ENTROPY MODELS

This Appendix is devoted to the detailed description of the
maximum-entropy models considered in the present paper.
As for the econometric ones, the estimation of the set of
parameters defining each model is carried out by maximizing
the corresponding log-likelihood function, L = ln Q(W).

ME models are derived by maximizing Shannon entropy
under a suitable set of constraints. The generic probability
mass function reads

Q(W) =
∏
i< j

qi j (wi j )

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j · qi j (wi j |ai j )

=
∏
i< j

p
ai j

i j (1 − pi j )
1−ai j · y

wi j−ai j

i j (1 − yi j )
ai j

= P(A)Q(W|A) (C1)

and induces the log-likelihood

L = ln Q(W) = ln P(A) + ln Q(W|A)

=
∑
i< j

[ai j ln pi j + (1 − ai j ) ln(1 − pi j )

+ ln qi j (wi j |ai j )]. (C2)

In order to turn maximum-entropy models into proper
econometric ones, we have posed yi j

1−yi j
= zi j = ρ(ωiω j )βdγ

i j ,

with ωi = GDPi

GDP
.

Let us start instantiating the ME formalism by considering
the Hamiltonian

H(1)(W) = θ0L + ψ0W +
∑
i< j

ψi jwi j (C3)

that leads to

L(1) = L ln x + W ln y0

+
∑
i< j

[wi j ln zi j − wi j ln(1 + zi j ) + ln(1 + zi j − y0zi j )

− ln(1 + zi j − y0zi j + xy0zi j )] (C4)

whose optimization leads to solve the following set of equa-
tions ∑

i< j

[
ai j − p(1)

i j

] = 0

∑
i< j

[wi j − 〈wi j〉(1)] = 0

∑
i< j

[wi j − 〈wi j〉(1)]

(
1

1 + zi j

)
= 0 (C5)

∑
i< j

[wi j − 〈wi j〉(1)]

(
ln(ωiω j )

1 + zi j

)
= 0

∑
i< j

[wi j − 〈wi j〉(1)]

(
ln di j

1 + zi j

)
= 0.

The first equation guaranteeing that the total number of links
is preserved, i.e.,

L = 〈L〉 =
∑
i< j

xy0zi j

1 + zi j − y0zi j + xy0zi j
=

∑
i< j

p(1)
i j (C6)

and the second equation guaranteeing that the total weight is
preserved, i.e.,

W = 〈W 〉 =
∑
i< j

p(1)
i j (1 + zi j )

1 + zi j − y0zi j
=

∑
i< j

〈wi j〉(1). (C7)
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On the other hand, the Hamiltonian

H(2)(W) =
∑

i

θiki + ψ0W +
∑
i< j

ψi jwi j (C8)

leads to the expression

L(2) =
∑

i

ki ln xi + W ln y0

+
∑
i< j

[wi j ln zi j − wi j ln(1 + zi j ) + ln(1 + zi j − y0zi j )

− ln(1 + zi j − y0zi j + xix jy0zi j )] (C9)

whose optimization requires to solve the set of equations be-
low ∑

j( 
=i)

[
ai j − p(2)

i j

] = 0, ∀ i

∑
i< j

[wi j − 〈wi j〉(2)] = 0

∑
i< j

[wi j − 〈wi j〉(2)]

(
1

1 + zi j

)
= 0 (C10)

∑
i< j

[wi j − 〈wi j〉(2)]

(
ln(ωiω j )

1 + zi j

)
= 0

∑
i< j

[wi j − 〈wi j〉(2)]

(
ln di j

1 + zi j

)
= 0.

The first set of N equations guaranteeing that each degree is
preserved, i.e.,

ki = 〈ki〉 =
∑
j( 
=i)

xix jy0zi j

1 + zi j − y0zi j + xix jy0zi j
=

∑
j( 
=i)

p(2)
i j

(C11)

and the (N + 1)th equation guaranteeing that the total weight
is preserved, i.e.,

W = 〈W 〉 =
∑
i< j

p(2)
i j (1 + zi j )

1 + zi j − y0zi j
=

∑
i< j

〈wi j〉(2). (C12)

Writing a probability mass function in the factorized form
Q(W) = P(A)Q(W|A) allows us to design two-step mod-
els, i.e., network models whose binary estimation step can
be defined independently from the weighted one. To this
aim, let us combine the probability distribution of the undi-
rected binary configuration model, inducing a single-link
probability coefficient reading pUBCM

i j = xix j

1+xix j
, with the usual

weighted, conditional one, i.e., qi j (wi j |ai j ) = ( y0zi j

1+zi j
)wi j−ai j ·

( 1+zi j−y0zi j

1+zi j
)ai j . As a result, one obtains

LTS =
∑

i

ki ln xi + (W − L) ln y0

+
∑
i< j

[− ln(1 + xix j ) + (wi j − ai j ) ln zi j

−wi j ln(1 + zi j ) + ai j ln(1 + zi j − y0zi j )] (C13)

whose optimization requires to solve the set of equations be-
low ∑

j( 
=i)

[
ai j − pTS

i j

] = 0, ∀ i

∑
i< j

[wi j − 〈wi j〉TS] = 0

∑
i< j

[wi j − 〈wi j〉TS]

(
1

1 + zi j

)
= 0 (C14)

∑
i< j

[wi j − 〈wi j〉TS]

(
ln(ωiω j )

1 + zi j

)
= 0

∑
i< j

[wi j − 〈wi j〉TS]

(
ln di j

1 + zi j

)
= 0.

The first set of N equations guaranteeing that each degree is
preserved, i.e.,

ki = 〈ki〉 =
∑
j( 
=i)

xix j

1 + xix j
=

∑
j( 
=i)

pTS
i j =

∑
j( 
=i)

pUBCM
i j (C15)

and the (N + 1)th equation guaranteeing that the total condi-
tional weight is preserved, i.e.,

W = 〈W 〉 =
∑
i< j

ai j (1 + zi j )

1 + zi j − y0zi j
=

∑
i< j

〈wi j〉TS. (C16)

The amount of structural information to constrain can be
further reduced by imagining a two-step model whose bi-
nary estimation step encodes a larger amount of “economic”
information. To this aim, let us combine the probability dis-
tribution of the density-corrected Gravity Model, inducing a
single-link probability coefficient reading pTSF

i j = Gi j

1+Gi j
, with

the usual weighted, conditional one, i.e., qi j (wi j |ai j = 1) =
( y0zi j

1+zi j
)wi j−ai j · ( 1+zi j−y0zi j

1+zi j
)ai j . As a result, one obtains

LTSF =
∑
i< j

[ai j ln Gi j − ln(1 + Gi j ) + (W − L) ln y0

+(wi j − ai j ) ln zi j − wi j ln(1 + zi j )

+ai j ln(1 + zi j − y0zi j )] (C17)

where Gi j = δωiω j . Its optimization leads to the resolution of
the following set of equations∑

i< j

[
ai j − pTSF

i j

] = 0

∑
i< j

[wi j − 〈wi j〉TSF] = 0

∑
i< j

[wi j − 〈wi j〉TSF]

(
1

1 + zi j

)
= 0 (C18)

∑
i< j

[wi j − 〈wi j〉TSF]

(
ln(ωiω j )

1 + zi j

)
= 0

∑
i< j

[wi j − 〈wi j〉TSF]

(
ln di j

1 + zi j

)
= 0.
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The first equation guaranteeing that the total number of links
is preserved, i.e.,

L = 〈L〉 =
∑
j( 
=i)

Gi j

1 + Gi j
=

∑
j( 
=i)

pTSF
i j =

∑
j( 
=i)

pdcGM
i j (C19)

and the second equation guaranteeing that the total conditional
weight is preserved, i.e.,

W = 〈W 〉 =
∑
i< j

ai j (1 + zi j )

1 + zi j − y0zi j
=

∑
i< j

〈wi j〉TSF. (C20)
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