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Abstract— We evaluate the robustness of agents’ traffic
equilibria in randomized routing games characterized by an
uncertain network demand with a possibly unknown probability
distribution. Specifically, we extend the so-called hose model by
considering a traffic equilibrium model where the uncertain net-
work demand configuration belongs to a polyhedral set, whose
shape is itself a-priori unknown. By exploiting available data,
we apply the scenario approach theory to establish distribution-
free feasibility guarantees for agents’ traffic equilibria of the
uncertain routing game without the need to know an explicit
characterization of such set. A numerical example on a traffic
network testbed corroborates the proposed theoretical results.

I. INTRODUCTION

Tracing back to the 70s, traffic routing problems essen-
tially consist of carrying traffic from origins to destinations
by making use of the (typically limited) network resources
[1], [2]. Additionally, the routing pattern shall also satisfy
some quality of service constraints, as well as intrinsic
physical limitations of the communication infrastructures.

In this framework, congestion is a recurring phenomenon
observed in several domains, spanning from large urban
areas [3], [4] to telecommunication networks [5], [6]. The
circulation flow associated to congested networks is pop-
ularly described in a static fashion by means of traffic
equilibrium models or nonatomic routing games, where the
number of users is assumed to be large, each one control-
ling an infinitesimal amount of flow in the network (with
a slight abuse of terminology, we will make use of the
two models interchangeably). Here, an equilibrium typically
emerges as a steady-state from the adaptive behaviour of
selfish agents, which strive to minimize their own travel
time or transportation cost, while sharing the limited network
resources. A widely diffused stationarity notion, i.e., the
Wardrop equilibrium [7], establishes that origin-destination
paths with non-zero flow have the least cost among all the
possible alternatives, thus enabling the equivalence between
path flow equilibria and solutions to the variational inequality
(VI) associated with the routing game [4, Th. 3.14].

Congestion models can then be adopted to forecast flows,
in order to evaluate either the overall network performance
under different scenarios of demand, or alternative traffic
management policies. In real-life, however, path flows and
network travel demands are often variable over time in a
non-regular and unpredictable manner. Such an uncertainty
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can not only be caused by a particular hour of the day,
but also by sudden accidents or maintenance works. These
reasons essentially motivate the need for uncertain traffic and
network models, as thoroughly described in, e.g., [8]–[18].

Following such a literature body, this paper considers a
routing problem where a certain source of uncertainty affects
the network traffic demands, and studies the uncertain VI
that equivalently expresses the Wardrop equilibrium con-
ditions. Specifically, to capture the traffic variations that
typically generate an a-priori unpredictable network demand,
we adopt the approach proposed in [9], thus constraining the
admissible traffic configurations to fall into a traffic demand
polyhedron. Allowing one to bypass traditional probabilistic
assumptions on the network demand as postulated in, e.g.,
[10], [15]–[17], such a traffic demand polyhedron generalizes
the so-called hose model [8], and has been largely adopted
in both static and dynamic routing problems [11]–[14].
However, since making a-priori traffic predictions is quite
challenging, we note that it might be unlikely to have avail-
able an explicit collection of deterministic linear inequalities
describing all of the relevant traffic demand configurations.

For this reason, we accommodate a certain degree of
uncertainty on the actual shape of the traffic demand poly-
hedron by parametrizing such a set with a random variable.
In this way, we implicitly extend the approach in [9] by
providing an additional degree of freedom in evaluating the
network performance under different demand scenarios or
traffic management policies. We then investigate a random-
ized approach to a-posteriori quantify the feasibility risk as-
sociated to any agents’ traffic equilibrium of the randomized
routing game against unseen realizations of the uncertain
parameter. Specifically, we leverage the equivalence between
routing games and VIs [4, Th. 3.14] to rely on recent results
bridging the realm of the VIs with the scenario approach
paradigm [19], [20], with the twofold benefit of enabling
for a tractable reformulation of the uncertain routing game,
and establishing quantifiable robustness properties for any
of the agents’ traffic equilibria in a distribution-free fashion.
That is, the proposed robustness certificates characterizing
randomized optimal routing patterns hold regardless of the
probability distribution of the parameter that encodes the
uncertainty on the shape of the traffic demand polyhedron.

The paper is organized as follows: in §II, we introduce
the notation and recall some concepts of graph theory and
VIs, while we describe in detail the uncertain traffic model
adopted in §III. In §IV, we formalize the scenario-based traf-
fic equilibrium problem, and in §V we provide the robustness
certificates for traffic equilibria. Finally, we corroborate our
theoretical findings through a numerical example in §VI.
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II. NOTATION AND PRELIMINARIES

We start by introducing the notation and some key ingre-
dients of graph theory and VIs adopted throughout the paper.

1) Notation: N, R, R>0 and R≥0 denote the set of natural,
real, positive real, nonnegative real numbers, respectively.
N0 := N ∪ {0}. 1 (0) denotes vectors of appropriate
dimensions with elements all equal to 1 (0). Given a matrix
A ∈ Rm×n, its (i, j) entry is denoted by ai,j , A> denotes its
transpose. For a set X ⊆ Rn, |X | represents its cardinality.
int(X ) and bdry(X ) denote its topological interior and
boundary, respectively; aff(X ) denotes its affine hull, i.e., the
smallest affine set containing X . The mapping T : X → Rn

is monotone if (T (x)−T (y))>(x−y) ≥ 0 for all x, y ∈ X . If
X is nonempty and convex, the normal cone of X evaluated
at x is the multi-valued mapping NX : Rn ⇒ Rn, defined
as NX (x) := {d ∈ Rn | d>(y− x) ≤ 0, ∀y ∈ X} if x ∈ X ,
NX (x) := ∅ otherwise. The operator col(·) stacks in column
vectors or matrices of compatible dimensions, while avg(·)
returns the average among the elements in the argument.

2) Graph theory ([21]): A directed graph (or digraph) is
a pair G := (V, E), where V denotes the finite set of nodes
(or vertices), while E ⊆ V × V the set of edges (or arcs),
and (i, j) ∈ E if there exists an oriented edge from node i to
j. A directed path is a sequence of distinct nodes such that
any two subsequent nodes form a directed edge. A digraph is
strongly connected if, for every pair of vertices, there exists
a directed path between them. A source is a node with no
incoming edge, while a sink is a node with no outgoing edge.

3) Variational inequality ([22]): Formally, a VI is defined
by means of a feasible set X ⊆ Rn, and a mapping F : X →
Rn. We denote by VI(X , F ) the problem of finding some
vector x? ∈ X such that (y − x?)>F (x?) ≥ 0, for all y ∈
X . Such an x? is therefore called a solution to VI(X , F ),
and the associated set of solutions is denoted as S ⊆ X .

III. MODEL DESCRIPTION

Inspired by [9], [11], [12], [14], [16], [17], we first
introduce the uncertain traffic model adopted, and then we
describe the robust decision-making problem that follows.

A. Routing games with uncertain traffic demand

A traffic network can be formally described through a
directed, strongly connected graph G := (V, E), in which we
denote L ⊆ V × V as the set indexing all origin-destination
(OD) pairs among the nodes of the network, ` := |L|.
Specifically, origin and destination nodes coincide with the
sources and sinks in the network, respectively. In view of
the strong connectivity of G, each OD pair is connected by
at least one path, and we therefore denote with M the set
indexing all the paths in the network, with m := |M|.

We assume that a large number of agents aims at crossing
the network in a noncooperative manner. Specifically, we
suppose each agent being associated with an OD pair, and it
is allowed to select any path r ∈M connecting such a pair.
This framework is modelled as a nonatomic routing game
where each individual agent’s action has an infinitesimal

impact on the aggregate traffic flow. As a consequence, the
flow on the i-th edge, fi ≥ 0, i ∈ E , is a continuous variable.

The arc-path incidence matrix B ∈ Re×m, e := |E|,
associated with G allows us to describe the edge structure
of the paths. In fact, for all (i, j) ∈ E ×M, we have that

bi,j :=

{
1 if arc i ∈ E belongs to path j ∈M,
0 otherwise.

(1)

Then, it follows that to each path r ∈ M corresponds
a nonnegative flow pr ≥ 0, stacked together in p :=
col((pr)r∈M) ∈ Rm

≥0, which is confined in some set P . In
particular, the constraint set P rules out the unrealistic case
that each path can have either negative or infinite capacity,
and it is hence typically formalized as P := {p ∈ Rm | p ∈
[0,pmax]}, for some given pmax > 0. Note that the flow fi
on the i-th edge is equal to the sum of the path flows on the
paths that contain the i-th edge, so that we have f = Bp.

Associated with the set of OD pairs L, and therefore with
the route choice of all the agents, an aggregate traffic demand
is given that shall satisfy the overall network demand.
Specifically, in view of its a-priori unpredictability, such a
network demand is here modelled through an (uncertain)
traffic demand polyhedron [9]. Let us now introduce H ∈
R`×m as the OD pair-path incidence matrix whose generic
entry hi,j is equal to 1 if the path j ∈M connects the pair
i ∈ L, 0 otherwise. Then, the aggregate traffic demand Hp ∈
R`
≥0 shall belong to the following uncertain polyhedral set,

which is parametrized by a random variable ω ∈ Rd,

Pω := {p ∈ Rm | A(ω)H p ≤ b(ω)} ∩ P, ω ∈ Ω, (2)

where A : Rd → Rs×` and b : Rd → Rs. We assume
the uncertain parameter ω defined over the probability space
(Ω,D,P), where Ω ⊆ Rd represents the set of values that ω
can take, D is the associated σ-algebra and P is a (possibly
unknown) probability measure over D. The parameter ω re-
flects the fact that making a-priori traffic predictions is quite
challenging, and hence it might be difficult to have available
a collection of deterministic linear inequalities describing all
of the relevant traffic demand configurations as postulated,
e.g., in [9], [11], [12], [14]. With the relation in (2), indeed,
we not only assume that the traffic demand is uncertain, thus
belonging to a (possibly unbounded) polyhedral set, but also
the shape of such a set is a-priori unknown. This latter source
of uncertainty is hence encoded by the random parameter ω.

We now introduce the unit cost of going through the edge
i ∈ E as a nonnegative function ci : Rm

≥0 → R≥0 of the
overall flows on the network, so that c : Rm

≥0 → Re
≥0, defined

as c(Bp) := col((ci(Bp))i∈E) denotes the arc cost vector of
the network. Here, every function ci(·) is usually associated
with the travel time or transportation cost on every edge.

Standing Assumption 1: The mapping c : Rm
≥0 → Re

≥0 is
continuous and monotone. �

Standing Assumption 1 limits the design of each ci(·) to
the set of continuous costs that guarantees the monotonicity
of the operator obtained by stacking each ci(·), i ∈ E .
Analogously, one can define a cost on the paths as C(p) :=



col((Cr(p))r∈M), where every Cr(·) is typically computed
as the sum of the costs on the edges generating that path,
i.e., Cr(p) :=

∑
i∈E bi,rci(Bp). Note that Cr(·) amounts to

the cost experienced by each agent for choosing the path
r ∈M. Then, the mapping C : Rm

≥0 → Rm
≥0 turns out to be

C(p) = B>c(Bp). (3)

Thus, by collecting all the introduced elements, it follows
that a routing game (or traffic problem) with uncertain
demand is formalized as the tuple (G,L, C,Pω,Ω,P).

B. Robust decisions in uncertain routing games

The goal of an uncertain traffic problem is then to seek
for some robust path flow vector p ∈ Pω , ω ∈ Ω, which
guarantees a “reasonable” overall network cost (we give a
rigorous definition of what “reasonable” means in Defini-
tion 1). In a fully deterministic setting, such a problem is
typically formalized as a nonlinear complementarity problem
(NCP) once assumed that each agent crossing the network
chooses its path according to the minimum cost between
every OD pair (Wardrop behavioural axiom [7]). The set of
solutions to the NCP happens to correspond to the set of
agents’ traffic equilibria, where the feasible paths that are
used will have an identical cost, while the paths with costs
higher than the minimum will have no flow. We formalize
these concepts in the definition given next.

Definition 1: A network flow p? is an agents’ traffic
equilibrium of the traffic problem with uncertain demand
(G,L, C,Pω,Ω,P) if, i) p? ∈ Pω , for all ω ∈ Ω, and ii) for
all OD pair i ∈ L, and for all pair of paths (r, s) ∈M×M
connecting the i-th pair,

Cr(p?) > Cs(p
?) =⇒ p?r = 0. (4)

�

As a static assignment problem affected by an uncertain
traffic demand, it follows from [4, Th. 3.14] that, for the
considered model, a network flow vector p ∈ Pω , ω ∈ Ω,
satisfies the set of conditions in (4) if and only if it solves
the uncertain VI problem associated with the traffic problem
(G,L, C,Pω,Ω,P), denoted as VI(Pω, C), ω ∈ Ω, which
coincides with the structure of uncertain VIs analysed in [19],
[20]. Specifically, a network flow p? ∈ Pω , for all ω ∈ Ω,
amounts to an agents’ traffic equilibrium if it satisfies

(r − p?)>C(p?) ≥ 0, for all r ∈ Pω, ω ∈ Ω. (5)

However, the uncertain nature of the network demand,
encoded by the random parameter ω in (2), drastically limits
the possibilities to compute a feasible solution to such a VI.
In fact, i) the set Ω may be a-priori unknown and the only
information available may come via scenarios for ω; ii) even
if Ω is known, it might be a set with infinite cardinality,
thereby giving rise to an infinite set of constraints in (5); iii)
it may happen that also the probability distribution P can
be a-priori unavailable. These reasons make the computation
of an agents’ traffic equilibrium prohibitive, and motivate us
to investigate a data-driven approach by exploiting available

realizations of the uncertain parameter ω, thus looking at
probabilistic feasibility certificates for traffic equilibria.

IV. SCENARIO-BASED TRAFFIC EQUILIBRIUM PROBLEMS

In this section, we describe the scenario-based traffic
equilibrium problem associated with the routing game with
uncertain demand (G,L, C,Pω,Ω,P). Successively, we for-
malize the data-driven decision-making problem addressed.

We thus consider a K-multisample ωK := {ω(i)}i∈K =
{ω(1), . . . , ω(K)} ∈ ΩK , K := {1, 2, . . . ,K}, as a finite
collection of K ∈ N independent and identically distributed
(i.i.d.) observations of ω. Here, every K-multisample is
defined over the probability space (ΩK ,DK ,PK), resulting
from the K-fold Cartesian product of the original probability
space (Ω,D,P). Each sample ω(i) ∈ ωK introduces a
set of linear inequalities as in (2) described by the pair
(A(ω(i)), b(ω(i))), and we denote with PωK

:= ∩i∈KPω(i)

the feasible set of the randomized (or scenario-based) routing
game, formally defined by the tuple (G,L, C,PωK

, ωK).

Standing Assumption 2: For any K ∈ N0, PωK
is a

nonempty set, for all ωK ∈ ΩK . �

Consequently, given any ωK , the scenario-based traffic
problem (G,L, C,PωK

, ωK) turns out to be a deterministic
equilibrium problem revolving around the following notion.

Definition 2: Let ωK ∈ ΩK be a given K-multisample.
A network flow p? is an agents’ traffic equilibrium of the
scenario-based traffic problem (G,L, C,PωK

, ωK) if, i) p? ∈
PωK

, and ii) and for all pair of paths (r, s) ∈ M × M
connecting the i-th pair, the relation in (4) hold true. �

Note that, given the dependency on the K realizations ωK ,
any agents’ traffic equilibrium p? is a random variable. Then,
according to Definition 2 and exploiting the scenario-based
counterpart of (5), we characterize the set of traffic equilibria
in terms of solution to a deterministic VI as follows

SωK
:= {p ∈ PωK

| (r − p)>C(p) ≥ 0, ∀r ∈ PωK
}. (6)

Specifically, after observing K realizations of ω, the set SωK

contains all those network path flows that are feasible and
fulfil the conditions in (4). For the case K = 0, we assume
a set of nominal, deterministic constraints P0 is available to
linearly bound the network demand, i.e., Pω0

= P0∩P in (2),
and hence no uncertainty is present. Specifically, the set P0

is formally represented by the pair (A0, b0), for some A0 ∈
Rs×`, b0 ∈ R`. We characterize next the set of scenario-
based agents’ traffic equilibria SωK

for a generic K ∈ N.

Lemma 1: For all K ∈ N0 and ωK ∈ ΩK , SωK
is a

nonempty, compact and convex set. �

Proof: See Appendix.

Thus, given any ωK , we wish to evaluate the robustness of
any agents’ traffic equilibrium lying in SωK

in (6) to unseen
realizations of the uncertain parameter ω. By denoting with
Sω ⊆ Rm the set of equilibria induced by a generic
realization ω ∈ Ω, we introduce the following key notion.



Definition 3: ([20]) The violation probability associated
to a set S is defined as

V (S) := P{ω ∈ Ω | S 6⊆ Sω}. (7)

�

Roughly speaking, the condition S 6⊆ Sω in (7) means that,
once ω is drawn, at least one solution in S is lost. Therefore,
the function V : 2R

m → [0, 1] measures the violation of
robustness of the set S to any unseen realization of ω. For
some reliability parameter ε ∈ (0, 1), indeed, we say that
S is ε-robust if V (S) ≤ ε. Thus, given a K-multisample
ωK ∈ ΩK , we investigate the distribution of V (SωK

) to find
a confidence bound 1 − β, for some given β ∈ (0, 1), that
certifies the ε-robustness of SωK

, i.e., V (SωK
) ≤ ε.

Remark 1: We do not address the computation of network
traffic equilibria, as it is per se an interesting question beyond
the scope of the current paper – see, e.g., [10], [23]–[26]. �

V. PROBABILISTIC FEASIBILITY CERTIFICATES
OF OPTIMAL ROUTE CHOICE

We recall now some key notions of the scenario approach
theory that are instrumental to successively provide bounds
on the violation probability related to the set of network flows
of the scenario-based traffic problem (G,L, C,PωK

, ωK).

A. Scenario approach for randomized routing games

Recent developments in the literature of the scenario
theory, originally conceived to bound the out-of-sample
feasibility guarantees associated with the solution to an
uncertain convex optimization problem [27], [28], provided
a-posteriori probabilistic feasibility certificates for abstract
decision-making problems characterized by a solution θ?ωK

,
computed after observing K realizations of the uncertain
parameter. In particular, [29, Th. 1] provides a distribution-
free probabilistic bound 1 − β, for some arbitrarily fixed
β ∈ (0, 1), which guarantees that V (θ?ωK

) ≤ ε holds. Such
a result is rooted into the two following key assumptions:

(i) For all K ∈ N0 and all ωK ∈ ΩK , θ?ωK
is the unique

solution to the considered decision-making problem;
(ii) The decision taken after observing K realizations shall

be consistent with all the collected scenarios k ∈ K.
Since the randomized routing game (G,L, C,PωK

, ωK) is
a decision-making problem, we wish to extend the conditions
above to encompass the scenario-based traffic equilibrium
problem described in §IV, and thereby apply the distribution-
free, probabilistic feasibility bound in [29, Th. 1] to any given
agents’ traffic equilibrium within the set SωK

. Along this
direction, the traditional scenario approach has been recently
investigated from a set-oriented perspective. In particular, by
focusing on a family of uncertain VIs as specific class of
decision-making problems, the works in [20], [30] extended
[29, Th. 1] to a set-oriented framework. As a main result,
they provided a-posteriori robustness certificates for the en-
tire set of solutions to uncertain VIs of the form VI(Pω, C),
ω ∈ Ω. Therefore, given the variational nature of the con-
sidered scenario-based traffic problem (G,L, C,PωK

, ωK),

and by letting coincides our decision to the entire set of
equilibria, SωK

, we aim to pave the way for applying such
certificates, and, specifically, [20, Th. 1], to the route choice
in traffic problems. We briefly discuss next the key points
that allow one to apply the scenario theory to a set-oriented
framework, thus emphasizing how to translate items (i)–(ii)
above to set of traffic equilibria SωK

for (G,L, C,PωK
, ωK).

1) Uniqueness of the set of decisions: We define ΘK :
ΩK ⇒ P as the mapping that, given a set of realizations
ωK , returns the set of agents’ traffic equilibria, i.e.,

ΘK(ω(1), . . . , ω(K)) = ΘK(ωK) := SωK
. (8)

When K = 0, we assume that Θ0 returns the set of equilibria
Sω0

. In view of item (i), the uniqueness of the solution
returned by ΘK holds by definition since, for any ωK ∈ ΩK ,
there is naturally a single set of traffic equilibria that is
nonempty, compact and convex [22, Th. 2.3.5].

2) Consistency of the set of decisions: To address item
(ii), which essentially coincides with [29, Ass. 1], we in-
troduce a consistency property for the set of agents’ traffic
equilibria SωK

as follows.
Definition 4: ([20, Def. 4]) Given any K ∈ N and ωK ∈

ΩK , the set of traffic equilibria of the scenario-based traffic
equilibrium problem (G,L, C,PωK

, ωK) is consistent with
the collected scenarios if ΘK(ωK) = SωK

⊆ Pω(i) , for all
i ∈ K. �

Specifically, Definition 4 establishes that the set of agents’
traffic equilibria, SωK

, which is based on K scenarios, should
be feasible for each of the sets Pω(i) , i ∈ K, corresponding to
each of the K realizations of the uncertain parameter. Note
that, for any K ∈ N and associated ωK ∈ ΩK , we have
ΘK(ωK) := SωK

⊆ ∩i∈KPω(i) , which on the other hand
implies that ΘK(ωK) ⊆ Pω(i) , for all i ∈ K, thus falling
within Definition 4. It therefore holds by definition that the
mapping ΘK(·) is consistent with the realizations observed
in the randomized routing game (G,L, C,PωK

, ωK).
Now, given some K ∈ N, let SωK+1

:= SωK∪{ω(K+1)} be
the set of agents’ traffic equilibria to the randomized routing
game (G,L, C,PωK+1

, ωK ∪ {ω(K+1)}) after observing the
(K+1)-th realization of ω. We show next a result that links
the sets SωK

and SωK+1
across the samples scenarios, thus

establishing the set-oriented counterpart of [29, Ass. 1].
Lemma 2: If for all K ∈ N0 and ωK ∈ ΩK , aff(SωK

) =
aff(Sω0), then it holds that SωK+1

= SωK
∩ Pω(K+1) . �

Proof: See Appendix.
The assumption in Lemma 2 essentially rules out the

scenario that an observed realization of the K-multisample
ωK reduces the set of agents’ traffic equilibria SωK

to one
of lower dimension compared to the set collecting those
flows in Pω0 that satisfy the conditions in (4), i.e., Sω0 .
Specifically, it has been identified as one of the weakest
conditions allowing proof of consistency of a set SωK

by
relying on known results available in the literature. Following
the discussion in [31, §8], it appears that the non-degeneracy
assumption postulated in similar works (e.g., [19], [31]) is
definitely not easier to verify than, for all K ∈ N0 and
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Fig. 1: Schematic two dimensional interpretation of
Lemma 2. In this case, PωK

coincides with the convex hull of
the orange dots, while the set of agent’s traffic equilibria SωK

(green region) associated to the randomized routing game
(G,L, C,PωK

, ωK) can be “shaped” by the set of linear
constraints modelling uncertain traffic demand configurations
(dashed blue lines). According to Definition 5, the dashed or-
ange lines still denote linear constraints modelling uncertain
traffic demands, which however are not of support.

ωK ∈ ΩK , aff(SωK
) = aff(Sω0). Additionally, this latter

has a clear geometrical interpretation reflecting onto the
probability space Ω (see [20, §3.2] for additional details).
The pictorial interpretation of Lemma 2 in Fig. 1 shows that
generating samples gives rise to uncertain traffic polyhedra
that “shape” the set of agents’ traffic equilibria SωK

. As an
immediate consequence, we have that the inclusions Θ0 :=
Sω0
⊇ Sω1

⊇ . . . ⊇ SωK
=: ΘK(ωK) intrinsically hold.

B. Probabilistic feasibility guarantees for traffic equilibria

Before stating the main result, we recall the following
definition from [29, Def. 2], which is at the core of the
scenario approach theory and our subsequent derivation.

Definition 5: Given any K ∈ N and associated
K-multisample, ωK ∈ ΩK , a support subsample
{ω(i1), . . . , ω(ip)} ⊆ ωK is a p-tuple of unique elements
of ωK , i1 < . . . < ip, that satisfies Θp(ω(i1), . . . , ω(ip)) =
ΘK(ω(1), . . . , ω(K)), i.e., it gives the same set of agents’
traffic equilibria as the original sample. �

Then, let ΥK : ΩK ⇒ K be any algorithm returning a p-
tuple {i1, . . . , ip}, i1 < . . . < ip, such that {ω(i1), . . . , ω(ip)}
is a support subsample for ωK , and let ιK := |ΥK(ωK)|.
With the postulated assumptions, examples of efficient algo-
rithms ΥK(·) that accomplish this task are represented by
[20, Alg. 1] and [29, §II]. Note that ιK is itself a random
variable, as it depends on ωK . Our main result, which follows
directly from [20], characterizes the violation probability of
SωK

, i.e., any agents’ traffic equilibrium of the randomized
routing game (G,L, C,PωK

, ωK), as stated next.

Fig. 2: Traffic network digraph. The green dots denote the
origin nodes, while the red dots the destination ones.

Proposition 1: Fix β ∈ (0, 1), and let ε : K∪{0} → [0, 1]
be a function such that

ε(K) = 1,
K−1∑
h=0

(
K
h

)
(1− ε(h))K−h = β.

(9)

If for all K ∈ N0 and ωK ∈ ΩK , aff(SωK
) = aff(Sω0), then

for any mappings ΘK , ΥK and distribution P, it holds that

PK{ωK ∈ ΩK | V (SωK
) > ε(ιK)} ≤ β. (10)

�

Proof: The proof follows immediately by noting that
the scenario-based traffic problem (G,L, C,PωK

, ωK) satis-
fies all the assumptions required by [20, Th. 1].

Some considerations following Proposition 1 are in order.
First, we remark that Proposition 1 is a distribution-free
result, i.e., one does not need to know P to rely on the
bound in (10). Essentially, it implies that the probability that
SωK∪{ω} differs from SωK

is at most equal to ε(ιK), with
confidence at least 1− β, for an arbitrarily small β ∈ (0, 1).
In addition, we remark that the probabilistic bound in (10)
is an a-posteriori statement, as ιK depends on the observed
K-multisample ωK . Finally, as evident from (10), to certify
the robustness of any agents’ traffic equilibrium in SωK

, one
does not need a full characterization of SωK

itself, but rather
the number of support subsamples, according to Definition 5.

VI. NUMERICAL EXAMPLE

We support our theoretical findings with a numerical
example borrowed from [32] and, specifically, Network 26.
The simulations are run in Matlab on a laptop with a Quad-
Core Intel Core i5 2.4 GHz CPU and 8 Gb RAM. As depicted
in Fig. 2, we consider a traffic network digraph consisting
of 22 nodes and 36 edges, with OD pairs specified in L =
{(1, 6), (1, 7), (1, 8), (2, 5), (2, 7), (2, 8), (3, 5), (3, 6), (3, 8),
(4, 5), (4, 6), (4, 7)}, and hence ` = 12. By enumerating all



Fig. 3: Normalized cardinality of the set S̃ωK
, averaged over

10 numerical experiments, as a function of the samples K
(solid line). The shaded area denotes the standard deviation.

Fig. 4: Path flows connecting the OD pair (2, 5). According
to Definition 2, out of a total of 13 paths, only three of them
have nonnull flows (violet, yellow and red edges).

possible paths connecting each OD pair in L, it turns out
that the considered traffic network is characterized by a total
of m = 124 path flows with pmax = 50 × 1124. Moreover,
the pair (A0, b0), which describes the deterministic, nominal
set P0, coincides with the hyperplane representation of
the polytope originated by the convex hull of 15 random
points sampled in HP = [0, Hpmax], thus resulting in
s = 136 linear inequalities. Starting from the nominal pair
(A0, b0), we assume the uncertainty affects additively the
vector b(·) only, i.e., b(ω) = b0 + ω and A(ω) = A0, for
all ω ∈ Ω = b0 × [−0.5, 0.5] ⊆ R136, with ω following
a uniform probability distribution on Ω. Note that the
uncertainty set supports modelling errors in the nominal
“offset” b0 of the linear constraints up to the 50%.

Then, to numerically corroborate Lemma 2, we run an
extragradient algorithm [26] with fixed step-size α = 0.3

TABLE I: Path flows connecting the OD pair (2, 5).

Path # Node sequence (2→ ...→ 5) Value

p30 10 50
p31 10 → 12 → 13 → 15 → 16 → 14 → 11 0
p32 10 → 12 → 13 → 15 → 16 → 20 → 22 → 17 → 11 0
p33 10 → 12 → 13 → 20 → 22 → 17 → 11 0
p34 10 → 12 → 18 → 21 → 19 → 14 → 11 0
p35 10 → 12 → 18 → 21 → 19 → 15 → 16 → 14 → 11 0
p36 10 → 12 → 18 → 21 → 19 → 15 → 16 → 20 → 22 →

17 → 11
0

p37 16 → 14 → 11 50
p38 16 → 14 → 18 → 21 → 19 → 15 → 10 36.32
p39 16 → 14 → 18 → 21 → 19 → 15 → 10 → 12 → 13 →

20 → 22 → 17 → 11
0

p40 16 → 20 → 22 → 17 → 11 0
p41 16 → 20 → 22 → 17 → 13 → 15 → 10 0
p42 16 → 20 → 22 → 17 → 13 → 15 → 10 → 12 → 18 →

21 → 19 → 14 → 11
0

TABLE II: Robustness certificate (10) and empirical viola-
tion probability of the set of agents’ traffic equilibria for the
randomized routing game (G,L, C,PωK

, ωK).

K ι?K ε(ι?K) Vmax(S̃ωK ) avg(Vmax(S̃ωK ))

102 8 0.38 21× 10−3 16× 10−3

103 19 0.10 6.7× 10−3 4.2× 10−3

104 27 20×10−3 1.4× 10−3 0.7× 10−3

from 104 initial points, randomly sampled in P0, to estimate
the “nominal” set of agents’ traffic equilibria Sω0 , thus
obtaining S̃ω0 . As illustrated in Fig. 3, the average number of
traffic equilibria for the randomized routing game gathered in
S̃ωK

over 10 numerical experiments, normalized w.r.t. S̃ω0
,

shrinks as K grows. In addition, as the number of samples
K increases, the standard deviation of ω narrows around the
average: this fact is mainly due because of the structure of
the support set Ω, as well as of the type of uncertainty we
consider. An example of path flows connecting the OD pair
(2, 5) is shown in Fig. 4 and Table I where, according to the
Wardrop behavioural axiom and Definition 2, only few paths
have non-zero flow, i.e., those ones guaranteeing an overall
minimal cost, while the remaining paths have no flow.

Next, we obtain the analytic expression of the function
ε(·) by splitting β = 10−6 evenly among the K terms
within the summation in (9). In this way, by adopting [20,
Alg. 1] to enumerate the support subsamples w.r.t. SωK

,
Table II compares the maximum and the average value of
the empirical violation probability of the traffic equilibria
S̃ω0 ∩ PωK

computed against 102, 103 and 104 unobserved
samples. The empirical violation probability, as expected, is
lower than the theoretical bound in Proposition 1.

VII. CONCLUSION

In the realm of uncertain routing games, making a-priori
traffic predictions on the basis of available data may not
be trivial, and therefore assuming some kind of uncertainty
associated to the traffic demand configurations provides a
key degree of freedom for the practitioners. In this context,



the scenario approach paradigm enables one to assess the
robustness properties of the entire set of agents’ traffic equi-
libria. We have shown that the proposed certificates merely
require one to enumerate the active constraints that intersect
such set, without requiring an explicit characterization of it.

APPENDIX

Proof of Lemma 1: First, we note that PωK
is a nonempty,

compact and convex set. Specifically, for any K ∈ N0 and
ωK ∈ ΩK , nonemptiness follows in view of Standing As-
sumption 2, while compactness and convexity from the fact
that, according to (2), PωK

is given as the finite intersection
between a set of nonnegative box-constraints lying in the
positive orthant of Rm, P , which is compact and convex,
and a collection of linear inequalities A(ω(i))H p ≤ b(ω(i)),
i ∈ K, which are closed and convex as well [33]. Moreover,
we note that the mapping C(·) is continuous in view of its
own definition in (3), as it is a positive combination (see
(1)) of the nonnegative elements of the continuous mapping
c(·) (Standing Assumption 1). In addition, C(·) is also a
monotone mapping since, for all p, r ∈ Rm

≥0, it holds that:

(C(p)− C(r))>(p− r) = (B>(c(Bp)− c(Br)))>(p− r)

= (c(Bp)− c(Br))>B(p− r)

= (c(Bp)− c(Br))>(Bp−Br)

≥ 0,

where the last inequality is entailed by the monotonicity of
c(·) (Standing Assumption 1). Then, the statement follows
by combining the results in [22, Cor. 2.2.5, Th. 2.3.5]. �

Proof of Lemma 2 (sketch): Once proved that, for all K ∈
N0 and associated K-multisample ωK , the feasible set PωK

is a nonempty, compact and convex set (Lemma 1), with
the condition in the statement of Lemma 2 the proof is a
verbatim copy of that of [20, Lemma 4]. However, for the
sake of completeness, we give a simplified sketch below.

Since the uncertain parameter enters in (2) only, and hence
it does not affect the mapping C(·), in view of Lemma 1 and
of the convexity and compactness of the sets involved, the
inclusion SωK

∩ Pω(K+1) ⊆ SωK+1
follows immediately.

To show the reverse inclusion, i.e., SωK
∩ Pω(K+1) ⊇

SωK+1
, the condition in the statement of Lemma 2 allows

us to resort [34, Cor. 1.6.1] to treat SωK+1
, and hence SωK

,
as an m-dimensional set, i.e., such that relint(SωK+1

) =
int(SωK+1

) 6= ∅. First of all, we can exclude the case
in which there exists some p? ∈ PωK

∩ Pω(K+1) such
that p? ∈ int(SωK+1

), but p? /∈ SωK
. This follows as

a consequence of the definition of the normal cone, as
p? ∈ int(SωK+1

) ⊆ int(PωK
∩ Pω(K+1)) ⊆ int(PωK

)
if and only if −C(p?) ∈ NPωK+1

(p?) = {0}. Finally,
in case p? ∈ bdry(SωK+1

), since relint(SωK+1
) 6= ∅, it

follows from [34, Th. 6.1] that we can always construct
a convergent sequence of points {pt}t∈N such that, for all
t ∈ N, pt ∈ relint(SωK+1

) ⊆ SωK
, and {pt}t∈N → p?,

implying that p? ∈ SωK
. �
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[12] C. Lemaréchal, A. Ouorou, and G. Petrou, “Robust network design in
telecommunications under polytope demand uncertainty,” European
Journal of Operational Research, vol. 206, no. 3, pp. 634–641, 2010.

[13] A. Frangioni, F. Pascali, and M. G. Scutellà, “Static and dynamic rout-
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