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Abstract. Humans and animals often choose between options with dif-
ferent qualities. When the decisions are not determined by one or a few
individuals leading a group, a collective can achieve a consensus through
repeated interactions among the individuals. Collective decision-making
is widely studied in the context of opinion dynamics, showing that indi-
vidual mechanisms of option selection and the underlying social network
affect the outcome. Mathematical techniques, such as the heterogeneous
mean-field (HMF) theory, have been developed to systematically analyse
the collective behaviour of interconnected agents. Based on the HMF the-
ory, we propose a mathematical model that looks at the combined effects
of multiple elements bearing upon the collective decision dynamics, such
as the individuals’ cognitive load, the difference in the quality of the
options, the network topology, and the location of the zealots in the net-
work. The results of this study show that, in scale-free networks, when
individuals employ specific opinion selection mechanisms, characterised
by a low cognitive load, the zealots have the ability to steer the con-
sensus towards the option with the lowest quality or to group indecision.
This result is reversed when the interaction network is sparsely connected
and quite homogeneous – that is, most nodes have few neighbours – and
cognitively simple individuals make accurate collective decisions, mostly
unaffected by zealots voting for the option with the lowest quality.

Keywords: Opinion dynamics · Best-of-n Problem · Zealots ·
Heterogeneous mean-field

1 Introduction

Human beings are every day faced with the problem of choosing among different
options. Limited information or noisy conditions can make such decisions even
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Villani et al. (Eds.): WIVACE 2023, CCIS 1977, pp. 339–351, 2024.
https://doi.org/10.1007/978-3-031-57430-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57430-6_26&domain=pdf
http://orcid.org/0000-0001-7706-7674
http://orcid.org/0000-0003-2596-4503
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0001-7345-671X
https://doi.org/10.1007/978-3-031-57430-6_26


340 T. Njougouo et al.

more difficult; a possible way to overcome the issue is to exploit social interaction.
Collective decision-making (CDM) is hence characterised by the fact that once
the decision is made it is no longer attributable to any individual of the group.
Achieving a consensus is the result of multiple interactions in which individuals
choose an option according to some opinion formation mechanisms that can be
relatively simple. For example, a general agreement can be reached using social
feedback, by which consensus emerges among individuals that select an option
by copying the preferences of one or more group mates.

CDM is not exclusive to humans but is also observed in other social
species [6]. For example, groups of baboons collectively decide in which direction
to move [27]; flocks of birds collectively decide their motion direction [3]; and
swarms of bees collectively decide where to build a new nest site [21,25]. Inves-
tigating CDM is important for understanding the behaviour of many biological
systems, and for enabling autonomy in artificial systems such as robots [20].
For example, swarms of robots are programmed with collective decision-making
algorithms to cooperatively perform a variety of tasks [13,24,28,30]. Therefore
we can conclude that different scientific disciplines are interested in investigating
CDM and unveiling the elements that influence and contribute to determining
the outcome of various decision-making processes.

CDM problems have been studied with different methods such as experi-
mental methods [6,7], computational modelling and simulation methods [12],
and social network analysis [4,18]. These studies have focused on different issues
such as: i) the effect of different individual opinion selection mechanisms, each
of which is associated with different cognitive costs (e.g., linked to memory, per-
ception, attention) [10,22]; ii) the effect of the homogeneity/heterogeneity in the
group behaviour (i.e. individuals have equal/different behaviours) [8,23]); iii) the
effects of different topologies of the interaction network between the individu-
als [14,26]; iv) the effects of the cost/benefit trade-off associated to the selection
of each option (e.g., the quality of the chosen option and the time spent selecting
it) [17,19].

The objective of this study is to develop a mathematical model to analyse the
combined effects of multiple factors (i.e., the cognitive load, the option qualities,
the network topology, and the location in the network of zealots voting for the
inferior option) bearing upon the opinion dynamics. More precisely, we model
an asymmetrical binary collective decision-making process in which both options
have equal costs, but one option has better quality than the other. Moreover, we
model the exchange of information among agents as happening on a finite-size
network composed of N nodes and L undirected edges, i.e., each node repre-
sents an agent and an edge the interaction existing among two agents. We also
consider that certain individuals use conformism rules through which they agree
with the opinion of their peers (which we call susceptible agents), and the rest
never change their opinion and are normally called zealots [8,23] or stubborn
agents [17]. In our study, we only consider zealots with an opinion in favour of
the inferior option, with the lower quality. Finally, we study different behaviours
of the susceptible agents with respect to their cognitive load, that in our model
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translates into different pooling errors when an agent processes the opinions of
her neighbours. The cognitive load is considered relatively low when an indi-
vidual simply copies the preference of a randomly selected neighbour among
the agents within her first connections, this behaviour corresponds to the voter
model [26]. The cognitive load progressively increases for social feedback mecha-
nisms in which each agent has to sample a progressively higher number of peers
within her network of connections in order to select an option, e.g., to apply the
local majority rule [11].

The original contribution of this study is to illustrate how the interactions
between i) the agents’ cognitive load, ii) the interaction network topology, and
iii) the location of zealots in the network, influence the decision-making process,
i.e., consensus, or not, for the opinion with the best quality. Given the asymmetry
in quality (i.e., one option is better than the other and therefore is shared more
often [29]), we study under which conditions, the zealots (who only share opin-
ions for the inferior option) manage to counterbalance the difference in qualities
and drive the population toward a consensus on the lowest quality option. Our
study shows that when the susceptible agents follow a simple behaviour with
relatively high pooling errors, the zealots voting for the inferior option lead the
population into either an indecision state or a consensus for the inferior option.
However, our results also show that this result can be reversed when connectivity
and heterogeneity of the interaction (social) network reduce (i.e., the network
becomes more homogeneous with most nodes with few neighbours).

2 Method and Methodology

The aim of this section is to introduce the basic rules upon which the agents
possibly update their opinion and then to build a mathematical model based
on the heterogeneous mean-field assumption to unravel the role of some main
model parameters, namely the fraction of zealots present in the population, their
location in the network and the network topology.

2.1 Model Description

Let us thus consider a group of N agents interacting in an undirected scale-free
network [1,16], where the probability for an agent to have k neighbours is given
by pk ∼ 1/kγ , with γ > 2. Let us recall that the closer γ is to 2 the more hetero-
geneous the degree distribution is, indeed nodes with a very large degree can be
present because 〈k2〉 is unbounded; on the other hand, if γ � 3 very high degree
nodes are very rare and the degree spread is well described by finite variance
of the degree distribution. Assume also the network to be connected, to avoid
to consider the trivial case of a population split into several non-communicating
groups, and simple, namely among every couple of agents there is at most one
communication channel. The network topology is thus encoded by the N × N
adjacency matrix, M, whose entries satisfy Mij = Mji = 1 if and only if agents
i and j can exchange opinion, and 0 otherwise.
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We classify agents, i.e., the nodes of the network into susceptible and zealots,
the former change their opinion over time in response to social interactions while
the latter are inflexible and never change their initial choice. In this work, we
consider the scenario of the best-of-2 problem where each node holds an opinion
that can take one of two different values, A or B, modelling the choice between
two beliefs on a particular issue or topic. We also associate to each opinion the
corresponding quality, i.e., QA > 0 and QB > 0. The quality defines the strength
or the probability that the option is communicated to the neighbours [8,23,29].
Without lack of generality, for the rest of the work, we assume QA = 1, QB ≤ QA

and hence Q = QB/QA ≤ 1. We only consider the scenario where zealots hold an
opinion in favour of the opinion with the lower quality (i.e., opinion B). In fact,
it is less interesting to introduce zealots voting for the option with the highest
quality (option A) because the group already votes more frequently for options
with better quality and its is more frequently selected by the group. Here, we
study the ability of the group to select the best option despite the presence of
zealots voting for the inferior option.

To specify how a susceptible individual updates her belief based on the
weighted opinions of her neighbours, we consider the model (1) from [22] which
we display in Fig. 1 for some representative values of the parameter α ∈ [0, 1.5].

Pα(x) =

{
1
2 − 1

2 (1 − 2x)α if 0 ≤ x ≤ 1
2

1
2 + 1

2 (2x − 1)α if 1
2 < x ≤ 1.

(1)

Let us observe that α is negatively correlated to the cognitive load: as α
increases the agents makes more pooling error. More precisely, for α = 0, the
function P0 models agents that make no errors and change their opinion based
on the weighted average of all their neighbours, i.e., agents adopt a majority
rule. This requires a larger cognitive load than when α > 0 in which case agents
make errors. In the case of α = 1, the function P1 models agents that update
their opinion by copying the one of a randomly selected neighbour, namely this
behaviour is the (weighted) voter model. Our model generalises thus two promi-
nent models of opinion dynamics, the (weighted) voter model [26,29] and the
(weighted) majority model [2,11,12]. For generic values of α > 0 and α �= 1,
the proposed model allows us to explore behaviours with intermediate levels of
cognitive cost and pooling error.

The system evolves asynchronously: each time step an agent i is randomly
selected with a uniform probability and makes a social interaction. If the agent
is a zealot nothing happens; otherwise if the selected agent is susceptible, she
updates her opinion as a function of the weighted fractions of local opinions

n#
i,A =

QAni,A

QAni,A + QBni,B
and n#

i,B =
QBni,B

QAni,A + QBni,B
, (2)

which are based on the number of i’s neighbours ni,A and ni,B , with opinion A
and B, respectively, and the options qualities QA and QB . Note that we trivially
have n#

i,A + n#
i,B = 1, ∀i.
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Fig. 1. The function Pα(x) for several values of α.

Let ki be the degree of node i, namely the number of agent i’s neighbours,
thus ni,A + ni,B = ki. Then by recalling Q = QB/QA we can rewrite Eq. (2) as

n#
i,A =

ni,A/ki

(1 − Q)ni,A/ki + Q
and n#

i,B = 1 − n#
i,A . (3)

Assume the selected i-th agent holds opinion A (resp. opinion B), then with
probability Pα(n

#
i,B) (resp. Pα(n

#
i,A)), she can change her opinion to B (resp.

A). Let us also observe that because of the functional form of (1) and because
n#

i,A + n#
i,B = 1, we can conclude that Pα(n

#
i,A) + Pα(n

#
i,B) = 1. The process

continues by iteratively selecting one agent at a time and by updating its opinion;
eventually the system reaches a stationary state.

2.2 A Mathematical Model with Option’s Quality and Zealots

The objective of this subsection is to propose a simple mathematical model
defined by an ordinary differential equation (ODE) allowing us to study the evo-
lution of group opinion, but also to unravel the role of the involved parameters,
the cognitive load, the ratio of the opinion qualities Q = QB/QA, the fraction
of zealots, and the network topology γ.

To make some analytical progress we rely on the heterogeneous mean-field
assumption (HMF) [5,15], namely we hypothesise that nodes with the same
degree are dynamically equivalent and their evolution can be described by using
the degree conditional probability p(k′|k), namely the probability that a node
with degree k is connected to another node of degree k′. Therefore, nodes are
grouped into degree classes, more precisely we define Ak (resp. Bk), as the num-
ber of nodes with degree k and opinion A (resp. opinion B). To distinguish
between susceptible agents with opinion B and zealots, let us introduce Zk to
denote the number of zealots with opinion B and degree k. Therefore, letting
Nk to denote the total number of nodes with degree k, we have:

Ak + Zk + Sk = Nk, (4)
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where Sk denotes the number of susceptible agents having opinion B and degree
k. Eventually we introduce the fraction of agents having opinion A and degree
k, ak = Ak/Nk, and similarly the fraction of susceptible having opinion B with
degree k by bk = Sk/Nk and by ζk = Zk/Nk the fraction of zealots with degree
k. Therefore, for all k,

ak + bk + ζk = 1. (5)

The goal of the HMF is to derive an ODE ruling the evolution of ak and
bk. By starting from an idea recently developed in [22], we improve it with the
addition of zealots to eventually obtain

d〈a〉
dt

= −〈a〉 +
∑

k

qk(1 − ζk+1)

k+1∑

�=0

(
k + 1

�

)
〈a〉k+1−� (1 − 〈a〉)� Pα

(
k + 1 − �

k + 1 − � + �Q

)
,

(6)
where we defined 〈a〉 = ∑

k qkak+1, being qk the probability for a node to have
an excess degree k, namely

qk =
(k + 1) pk+1

〈k〉 ∀k ≥ 0,

with 〈k〉 =
∑

k kpk the average node degree. Equation (6) contains the rele-
vant parameters of the model, the zealots (ζk), the model of opinion dynamics
(Pα), the opinion quality (Q) and the network topology (qk). The aim of the
next section is to determine the equilibria of such equation and determine their
stability, hence the system fate. Before to do this let us observe that knowing
〈a〉(t) from (6) one can obtain the evolution of ak for all k by using the following
equation [22]:

dak

dt
= −ak + (1 − ζk)

k−1∑
l=0

(
k
l

)
〈a〉k−l (1 − 〈a〉)l Pα

(
k − l

k − l + lQ

)
.

2.3 Equilibria and Stability of the Analytical Model

The equilibria of the system are obtained by setting to zero the right hand side
of (6). Let us thus define the function

fα(x) := −x+
∑

k

qk(1−ζk+1)

k+1∑

�=0

(
k + 1

�

)
xk+1−� (1 − x)� Pα

(
k + 1 − �

k + 1 − � + �Q

)
, (7)

hence by denoting 〈a∗〉 a system equilibrium, we have by definition

fα(〈a∗〉) = 0.

A direct inspection of (7) allows to prove that fα(0) = 0, hence 〈a∗〉 = 0, i.e.,
absence of agents with opinion A, is an equilibrium of the system. On the other
hand, fα(1) = −∑

k qkζk+1 �= 0, hence the presence of zealots (with opinion B)
prevents the system from converging to a population where only agents A will
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exist. Finally the existence of nontrivial solution 0 < 〈a∗〉 < 1 to the equation
f(〈a∗〉) = 0 will determine a coexistence of opinions A and B in the network.

The stability of the above-mentioned equilibria can be determined by looking
at the derivative of the function fα evaluated on the same equilibria. Such anal-
ysis will be presented in the following section where we also discuss the impact
of the main model parameters.

3 Results

In this section, we present the results obtained for the analytical model described
in Sect. 2.2. As already mentioned, we focus on the impact of the parameter α,
the network topology, hereby summarised into the exponent γ of the power
law, and the social influence of the zealots. More precisely, regarding the zealot
analysis, we are interested in both their relative abundance and their position in
the network, namely if they sit onto high-degree (hubs) or small-degree (leaves)
nodes. To place zealots in hubs, we set ζk = 1 for all k ≥ kM , for some sufficiently
large kM , this accounts to add into the model an average number of zealots equal
to Ztot =

∑
k≥kM

Nk ∼ ∑
k≥kM

Ncγ/kγ , where cγ is a normalisation constant
such that

∑
k pk = 1 and N is the total number of nodes in the network. When

we assume zealots to lie on leaves nodes and to fair compare this condition with
the previous one, we consider the same number of zealots, that we set into the
hubs by assuming ζkmin

= Ztot/Nkmin
, where kmin is a small enough degree;

more precisely:

ζkmin
=

Ztot

Nkmin

∼ Ztot

Npkmin

= kγ
min

∑
k≥kM

1
kγ

∼ kM

γ − 1

(
kmin

kM

)γ

.

Note that the above strategy does not imply adding an infinite number of zealots,
indeed in any network realisation, e.g., by using the configuration model, there
is a finite number of nodes with a degree larger than kM and thus Ztot is also a
finite quantity. These finite-size effects can be studied in future research.

Figure 2 summarises our main results. We fix the values of Q = QB/QA =
0.9, the power law exponent γ, and the zealot location in the network, and we
numerically compute the zeros of the function fα for values of α ∈ [0, 2] to obtain
the equilibria of the system. Once the equilibria have been found, we evaluate the
derivative of fα and we determine its sign, if f ′

α(〈a∗〉) > 0 then the equilibrium
〈a∗〉 is unstable and marked with a red points in Fig. 2, on the other hand if
f ′

α(〈a∗〉) < 0 then the equilibrium 〈a∗〉 is stable and we represent it in green.
The three top panels refer to the strategy consisting of setting the zealots in
the leaves (here kmin = 1), and the three bottom panels refer to the opposite
strategy with the zealots in the hubs, kM = 100. Moving from left to right we
increase γ, passing from γ = 2.5 (left panels a) and d)), γ = 3.0 (middle panels
b) and e)) and γ = 3.5 (right panels c) and f)).

Several conclusions can be drawn from those results. For large enough α, the
system always sets into a state where opinions A and B coexist, the closer to
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Fig. 2. Bifurcation diagrams of the HMF model. We report the equilibria 〈a∗〉 of Eq. (6)
as a function of α; stable equilibria, i.e., associated to f ′

α(〈a∗〉) < 0, are coloured in
green while unstable ones, i.e., associated to f ′

α(〈a∗〉) > 0, in drawn red. The top panels
correspond to zealots set into leaves nodes while the bottom panels to the strategy of
placing the zealots into the hubs. Panels a) and d) correspond to γ = 2.5, panels b)
and e) γ = 3.0, panels c) and f) to γ = 3.5. The remaining parameters have been fixed
to kmin = 1, kM = 100 and Q = 0.9.

0.5 the larger α; this behaviour is independent of where the zealots are placed
in the network or the network topology, i.e., γ. Hence a too-large pooling error
α by the agents (which corresponds to a very small cognitive load) prevents the
group from choosing the opinion with the highest quality.

For intermediate values of the pooling error, e.g., close to α = 1, the impact
that zealots have on the opinion dynamics depends on the interaction network
topology. For scale-free networks with strong degree heterogeneity, e.g., γ = 2.5,
the location where zealots are placed has a strong impact on the system fate.
Putting the zealots into the leaves does not prevent the groups from selecting
the best option (Fig. 2a), instead when zealots sit in the hubs, the susceptible
agents are unable to make consensus decisions and remain polarised between the
two options (in Fig. 2d the system for α ≈ 1 converges to the stable equilibrium
〈a∗〉 ∼ 0.5). The situation changes when the network heterogeneity decreases
(i.e. for higher γ). Here, regardless of the location of the zealots in the network
(leaves or hubs), the stable equilibrium is 〈a∗〉 ∼ 1, representing a consensus
decision for the best option. This can be further appreciated by comparing the
grey rectangles in the top and bottom panels of Fig. 2, which have the same
horizontal size. The cause of this effect – to be investigated in future research –
can be due to the rare presence of hubs in networks with large γ.
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We also observe a strong impact of γ on the system outcome for small pool-
ing error α, however having zealots in different locations (leaves or hubs) does
not impact the system’s equilibria. Indeed for α ≈ 0 we can observe that the
unstable equilibrium branch (red dots) is below 0.5, this means that an initial
population with few A agents, e.g., 40% of A and 60% of B, is capable to con-
verge to a consensus toward A, and this result holds true despite the presence
of zealots and their placement. This effect amplifies with increasing γ, e.g., for
γ = 3.0 the faction of A can be as small as ∼30%, and for large enough γ, i.e.,
scale-free networks with a relatively homogeneous degree distribution, any initial
arbitrarily small fraction of agents with opinion A will be able to prevail and
spread in the whole population (see the tiny dashed rectangles in panels c and f
associated to γ = 3.5, where the equilibrium 〈a∗〉 = 0 is unstable and thus the
system converges to the only remaining possible equilibrium 〈a∗〉 ∼ 1).

To obtain a more global view of the complex interplay of the parameters,
we studied the equilibrium 〈a∗〉 as a function of α and γ for a fixed value of
Q = 0.9 (see Fig. 3). Moreover in each considered case we studied the impact of
the strategy of placing the zealots on the leaves nodes (top panels) or on the hubs
(bottom panels). In the two panels on the left, we colour-code the equilibrium
reached by the system (yellow high values of 〈a∗〉 close to 1 and blue 〈a∗〉 close to
0), starting from an initial population with half agents holding opinion A and half
opinion B. One can observe a striking difference between the top panel Fig. 3a),
where zealots sit into leaves, and the bottom panel Fig. 3b), where zealots sit
into hubs. In the first case, the equilibrium 〈a∗〉 is almost independent of γ and
the system exhibits two main behaviours: for α � 1 the whole group converges
to a consensus to A, while for α � 1 the population is deadlocked at indecision
with two similar-sized groups of agents with opinion A and B that coexist. In
the second case, when zealots are placed into the hubs (Fig. 3c): the population
converges to a consensus for the opinion with the lower quality when α ∼ 1
and γ � γ∗, where γ∗ ∼ 2.33. To better visualise this qualitative difference in
the dynamics, we report on the right panels the bifurcation diagram with the
three equilibria 〈a∗〉 as a function of the cognitive load for γ = 2.2, which is
lower than the critical γ∗ ∼ 2.33. In the top panel, Fig. 3b), with zealots set into
the leaves, the population converges to an almost consensus (large majority) for
option A for α � 1.1. On the other hand, in the bottom panel, Fig. 3d), with
zealots set into hubs, for α ∼ 1 the group chooses the opinion with the lower
quality. These results show that a population of agents using the (weighted)
voter model as decision-making behaviour can be driven to adopt the opinion
with the lower quality by zealots placed into hubs of a sufficiently heterogeneous
scale-free network, i.e., γ < γ∗.
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Fig. 3. Bifurcation diagrams of the HMF. We report the equilibrium 〈a∗〉 given by (6)
as a function of (α, γ) for a fixed value of Q = 0.9 (left panels), and the same equilibrium
where we also fix γ = 2.2 < γ∗ (right panels). Top panels correspond to zealots set
into leaves nodes while the bottom panels to the strategy of placing the zealots into
the hubs. The remaining parameters have been fixed to kmin = 1 and kM = 100.

4 Conclusion

In this paper, we presented the results of a study focused on a best-of-n col-
lective decision-making problem, with n = 2 options of different quality, and a
heterogeneous population comprising a majority of the agents that have a con-
formist behaviour and change their opinion based on the social feedback and a
minority of agents – referred to as zealots – who never change their opinion. The
interactions among the agents happen over a social network whose nodes are the
agents and the edges are the possible interaction links. We analyse the opinion
dynamics for populations of agents with voter-like behaviours. We consider a
continuum of behaviours characterised by the pooling error α that agents make
when processing social information; making more errors reduces the agent’s cog-
nitive load. Our model extends [22] and generalises through a single function a
number of known voter-like models, such as the (weighted) voter model [26,29]
and the majority model [9,11,12].

We build our mathematical model of the collective decision process using the
heterogeneous mean-field (HMF) theory. The determination of the system equi-
libria and their stability allowed us to study the combined effect of the model
parameters, characterised by the cognitive load, the opinion quality, the net-
work topology, and the location of zealots in the network. In particular, we have
studied populations of agents with a given cognitive load (pooling error α) that
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interact on a scale-free network. In our analysis, we varied both the network
topology and the location (leaves or hubs) where zealots—all holding the lowest
quality opinion—are placed. The results have shown that the combined effect
of these factors generated an articulated landscape characterised by different
outcomes of the collective decision process. In case agents employ a high level
of cognitive load, the collective decision follows the one of the majority (i.e.,
democratic decisions) with a bias for the best alternative that grows as the net-
work degree distribution becomes more homogeneous (i.e., high γ). When the
cognitive load is minimal, the group is unable to make a decision due to high
pooling errors. The most interesting outcomes are obtained when the parameter
α ∼ 1, corresponding to populations of agents employing decision-making mech-
anisms requiring a medium level of cognitive load, similar to the (weighted) voter
model. In this case, zealots placed in the hubs, i.e., nodes with a large degree,
are able to drive the entire population away from the consensus for the best
quality option and lock it into indecision or to consensus for the inferior option.
When zealots are placed in the leaves (i.e., nodes with a small degree) rather
than in hubs, the population shows different decision dynamics and zealots are
not able to interfere with the selection of the best option. This phenomenon
is amplified by the parameter γ, i.e., the one ruling the heterogeneity of the
scale-free network, in terms of node degree distribution. Large enough γ allows
the better quality opinion to spread in the whole population even if initially a
relatively small minority of agents has such opinion (Fig. 2). In the future, we
aim to generalise these results by exploring a larger range of parameters and
finding unifying patterns. In particular, we intend to study, in addition to the
location in the network, how the quantity of the zealots and the option qualities
influence the decision-making dynamics and how all these parameters interplay
with each other in determining the opinion dynamics of the population.
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