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a b s t r a c t

This paper is concerned with tube-based model predictive control (MPC) for both linear and nonlinear,
input-affine continuous-time dynamic systems that are affected by time-varying disturbances.We derive
a min–max differential inequality describing the support function of positive robust forward invariant
tubes, which can be used to construct a variety of tube-based model predictive controllers. These
constructions are conservative, but computationally tractable and their complexity scales linearly with
the length of the prediction horizon. In contrast to many existing tube-based MPC implementations, the
proposed framework does not involve discretizing the control policy and, therefore, the conservatism of
the predicted tube depends solely on the accuracy of the set parameterization. The proposed approach is
thenused to construct a robustMPC schemebased on tubeswith ellipsoidal cross-sections. This ellipsoidal
MPC scheme is based on solving an optimal control problem under linear matrix inequality constraints.
We illustrate these results with the numerical case study of a spring–mass–damper system.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Model predictive control (MPC) refers to a class of feedback
controllers, which proceed by solving, at each time step, an optimal
control problem predicting the future behavior of a dynamic
system on a finite, receding time-horizon, using the current
state estimate as initial condition (Rawlings & Mayne, 2015). The
predicted optimal control trajectory is applied to the actual system
until the next measurement becomes available, and the process
is then repeated. The implementation of such controllers is based
on a certainty-equivalence principle, whereby the future of the
system is optimized as if neither external disturbances nor model
mismatchwerepresent, despite the fact that suchdisturbances and
mismatch are the reason why feedback is needed in the first place.

The main advantage of certainty-equivalence in MPC is that the
resulting optimization problems can often be solved efficiently, in
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real time (Diehl, Ferreau, & Haverbeke, 2009; Houska, Ferreau, &
Diehl, 2011). This approach works well in many practical applica-
tions, and it often exhibits a certain robustness due to its inher-
ent ability to reject disturbances (Pannocchia, Rawlings, & Wright,
2011; Yu, Reble, Chen, & Allgöwer, 2014). However, the constraints
may become violated when large disturbances occur, since uncer-
tainty is not taken into account in optimizing the predicted state
trajectories. In such cases, robust MPC schemes can be used to
mitigate these optimistic, certainty-equivalence-based predictions
(Rawlings & Mayne, 2015). Nonetheless, a rigorous formulation of
robust MPC calls for the solution, at each sampling time, of an op-
timization problem whose decision variables are the future con-
trol policies, that is, functions mapping the state measurements
onto the control actions. Such optimization problems are hard to
solve in general, and brute-force approximations, e.g. based on sce-
nario trees (Dadhe & Engell, 2008; Engell, 2009), can currently only
be used for very short time-horizons. Because scenario-tree ap-
proaches scale exponentially with the length of the time-horizon,
they may even be worse than robust dynamic programming ap-
proaches (Bertsekas, 2005; Diehl & Björnberg, 2004; Rawlings &
Mayne, 2015), which scale linearly with the length of the predic-
tion horizon, yet exponentially with the state dimension.

Convex formulations of robust MPC have been derived for
certain classes of problems, for instance when the dynamic
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system is jointly affine in the state, control and uncertainty
and the feedback control law is itself affine in the disturbance
(Goulart &Kerrigan, 2007;Goulart, Kerrigan, &Maciejowski, 2006).
There, the number of the (matrix-valued) optimization variables
scales quadratically with the length of the prediction horizon.
The conservatism introduced by an affine parameterization of
the control law is discussed in Van Parys, Goulart, and Morari
(2013). In this context, we also refer to Zeilinger, Raimondo,
Domahidi, Morari, and Jones (2014), where real-time variants of
robust MPC based on certain affine feedback laws are analyzed.
Other convex formulations can be obtained by reformulating the
semi-infinite constraints arising in robust MPC as linear matrix
inequalities (LMIs). One such LMI reformulation for bounding
the worst-case performance of linear systems under additive
bounded uncertainty using constant state-feedback control laws
was derived in Kothare, Balakrishnan, and Manfred (1996).
Another approach was presented in Li and Xi (2010), where the
future model variations are bounded by a family of polytopes
expressed as LMI constraints.

Other state-of-the-art approaches in robust MPC adopt a set-
theoretic perspective. These methods find their origins in viability
theory (Aubin, 1991; Kurzhanski & Filippova, 1993; Kurzhanski
& Vályi, 1997) or, more specifically, in set-theoretic methods
for control (Blanchini, 1999; Blanchini & Miani, 2008). Robust
MPC schemes based on these parametric set-propagationmethods
are also known collectively under the name tube-based MPC.
There, the predicted trajectory is replaced by a robust forward
invariant tube (RFIT) in the state-space, namely a tube that
encloses all possible state trajectories under a given feedback
control law, which is independent of the uncertainty realization
(Langson, Chryssochoos, V Raković, & Mayne, 2004). Tube-based
approaches are typically analyzed under the assumption that exact
state measurements are available (Raković, Kerrigan, Kouramas,
& Mayne, 2005), or that the equations of a parameterized state
estimator, e.g. a linear filter, can be added to the system dynamics
so that standard tube-based methods transfer readily (Mayne,
Raković, Findeisen, & Allgöwer, 2009).

A parameterized tube-based MPC formulation for linear
discrete-time systems with affine uncertainty has been proposed
in Raković, Kouvaritakis, Cannon, Panos, and Findeisen (2012). This
formulation allows for the simultaneous optimization of tubes
and control laws that are nonlinear in the state measurements,
resulting in a computationally tractable, linear programming
(LP) formulation, whose decision variables and constraints scale
quadratically with the prediction horizon. A generalization
handling more general cost functions is considered in Raković,
Kouvaritakis, Cannon, and Panos (2012), and a way of reducing the
online complexity of this approach to linear complexity via offline
computations is further presented in Raković, Munoz-Carpintero,
Cannon, and Kouvaritakis (2012). Tube-based methods have also
been developed for linear systemswithmultiplicative uncertainty,
for example by using polytopic tubes with quadratic cost, which
leads to a quadratic programming (QP) formulation (Evans, Can-
non, & Kouvaritakis, 2012). Regarding nonlinear dynamics, a pos-
sible tube-based approach involves linearizing the system around
a feasible, but suboptimal, trajectory and computing the tube by re-
garding the linearization errors as additional uncertainty. This idea
was used in Lee, Kouvaritakis, and Cannon (2002) with polytopic
tubes and affine feedback laws. A similar approach was developed
by Cannon, Buerger, Kouvaritakis, and Raković (2011) in the case of
quadratic cost terms and ellipsoidal tubes. A tube-based approach
for nonlinear continuous-time systems was proposed in Yu, Maier,
Chen, and Allgöwer (2013), where the feedback control laws are
affinely parameterized and computed offline.

This paper presents a novel numerical approach for addressing
tube-based MPC problems. In contrast to existing methods which
parameterize the control law, our approach introduces a min–max
differential inequality exploiting the properties on the boundary
of RFITs. These min–max differential inequalities yield a non-
trivial generalization of differential inequalities (Lakshmikantham
& Leela, 1969; Scott & Barton, 2013; Villanueva, Houska, &
Chachuat, 2015; Walter, 1970) and provide sufficient conditions
for a time-varying convex-set-valued function to be a RFIT for
a class of continuous-time nonlinear control systems. We show
that these (on the first view) rather abstract concepts can be used
to derive practical implementations of tube-based MPC, which
(i) scale linearly with the length of the prediction horizon, and
(ii) do not rely on a particular parameterization of the control law.
In principle, this approach can achieve arbitrary precision, insofar
as the tubes are represented with sufficient accuracy.

The rest of the paper is organized as follows. The problem
formulation is described in Section 2. The main theoretical
framework for characterizing RFITs for nonlinear input-affine
systems is developed in Section 3 and its application to RFITs
with ellipsoidal cross-sections is presented in Section 4. A practical
implementation of tube-based MPC based on these results is
discussed in Section 5 and illustrated with a numerical case study
in Section 6. Finally, Section 7 concludes the paper.
Notation and preliminaries The sets of real and positive real
numbers are denoted by R and R++. The sets of compact and
compact convex subsets of Rn are denoted by Kn and Kn

C ,
respectively. The support function V [Z] : Rn

→ R of a set Z ∈ Kn
C

is defined as

∀c ∈ Rn, V [Z](c) := max
z

{cTz|z ∈ Z}.

Moreover, bd Z denotes the boundary of Z and Π(Z) its power set.
The Hausdorff distance betweenW , Z ∈ Kn

C is given by

dH(W , Z) := max

max
w∈W

min
z∈Z

∥w − z∥2 , max
z∈Z

min
w∈W

∥w − z∥2


.

A set Z ∈ Kn
C is said to be strictly convex if each of its supporting

hyperplanes meets bd Z at exactly one point z ∈ bd Z , and it is
called a smooth set if bd Z is itself a smooth submanifold of Rn.
Moreover, there exists a C∞-smooth convex function g : Rn

→ R
such that

bd Z := {z ∈ Rn
| g(z) = 0}, (1)

as discussed in Azagra and Ferrera (2002).
Let Sn−1 denote the unit sphere in Rn. Given a smooth set Z ∈

Kn
C , the Gauss map GZ : bd Z → Sn−1 is a continuous function

assigning to every boundary point z ∈ bd Z its unique outward
normal. It is defined as

∀ζ ∈ bd Z, GZ (ζ ) :=

 ∂g
∂ζ

(ζ )

−1

2

∂g
∂ζ

(ζ ),

for any continuously-differentiable and convex function g satisfy-
ing (1). The differential ∂GZ/∂ζ (ζ ) defines a linear operator from
Tζ Z , the tangent space of bd Z at ζ , onto itself. The set Z is said to
have positive curvature at ζ ∈ bd Z if

∀w ∈ Tζ Z \ {0}, wT ∂GZ

∂ζ
(ζ ) w > 0.

In particular, any smooth set Z with positive curvature everywhere
is also strictly convex. Moreover, if Z is both smooth and strictly
convex, then GZ has a continuous inverse G−1

Z , called the inverse
Gauss map. In other words, bd Z is homeomorphic to Sn−1

through GZ .
The set of n-dimensional Lebesgue-integrable functions on the

interval I ⊆ R is denoted by L(I)n, or simply Ln if I = R. Unless
otherwise stated, Lebesgue integration is understood with respect
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to the time variable. The abbreviation a. e. is used to indicate that
a property holds almost everywhere.

The sets of n × n symmetric positive semi-definite and
symmetric positive definite matrices are denoted by Sn

+
and Sn

++
,

respectively. Ellipsoids inRn with center q ∈ Rn and positive semi-
definite shape matrix Q ∈ Sn

+
are defined as

E(q,Q ) :=


q + Q

1
2 v | vTv ≤ 1


,

with Q
1
2 being the symmetric positive semidefinite square-root

of Q . By a small abuse of notation, E(Q ) denotes the ellipsoid
with shape matrix Q and centered at zero. The (Moore–Penrose)
pseudoinverse of a matrix A ∈ Rm×n is denoted by AĎ, and its
Frobenius norm by ∥A∥F :=

√
Tr(ATA).

2. Problem formulation

Consider a nonlinear control system in the form:

ẋ(t) = f (x(t), w(t)) + G(x(t))u(t)
=: g(x(t), u(t), w(t)), (2)

where f : Rnx × Rnw → Rnx , G : Rnx → Rnx×nu and g : Rnx ×

Rnu × Rnw → Rnx are potentially nonlinear functions, for which
regularity assumptions will be stated later on, as necessary; the
state trajectory is denoted by x ∈ Lnx ; u ∈ U := {u ∈ Lnu | ∀t ∈ R,
u(t) ∈ U ⊆ Rnu} denotes the control; and w ∈ W := {w ∈ Lnw |

∀t ∈ R, w(t) ∈ W ⊆ Rnw } denotes the exogenous disturbance.
The class of nonlinear control systems (2) is affine in the control

function u. Although the reasons for this assumption will become
apparent later on, it is important to note that it is not as restrictive
as it may seem. In engineering practice, many physical systems
possess such an affine control structure. Moreover, any nonlinear
control systemmay be reformulated into the desired form under a
stronger assumption on u (Houska & Chachuat, 2014); for instance,
under the assumption that u is at least locally Lipschitz continuous,
an integrable control v can be introduced such that u is now
regarded as a auxiliary state satisfying the differential equation
u̇(t) = v(t).

Assumption 1. The sets U ⊆ Rnu and W ⊆ Rnw are compact and
convex, i.e. U ∈ Knu

C and W ∈ Knw
C . Furthermore, U has a non-

empty interior.

Definition 1. The set-valued function Y : [t1, t2] → Π(Rnx) is
called a RFIT for (2) on [t1, t2], if there exists an integrable feedback
control law µ : [t1, t2] × Rnx → U such that any solution of the
controlled system

∀t ∈ [t1, t2], ẋ(t) = f (x(t), w(t)) + G(x(t))µ(t, x(t)),

with x(t) ∈ Y (t), satisfies x(t ′) ∈ Y (t ′) for all t, t ′ ∈ [t1, t2] with
t ′ ≥ t and all w ∈ W.

Our focus throughout the paper is on a tube-based robust
MPC approach, whereby the following optimization problems are
solved in a receding horizon manner:

inf
Y∈Y

 t+T

t
ℓ(Y (τ )) dτ

s.t. ∀τ ∈ [t, t + T ], Y (τ ) ⊆ Fx
Y (t) = {x̂t},

(3)

where Y denotes the set of all RFITs for (2) on [t, t + T ]; ℓ :

Π(Rnx) → R is the objective of the MPC controller; the feasibility
set Fx is a subset of Rnx ; and x̂t is the state measurement at t ,
assumed to be noise free.

Observe that optimizing over the tube Y in problem (3) is
equivalent to optimizing over a feedback control policy µ, since
every Y is generated by at least one µ according to Definition 1.
This also makes the link with standard MPC formulations, where
the optimization is over the (open-loop) control trajectory.

The following analysis aims to develop a tractable computa-
tional approach to addressing the tube-based robust MPC prob-
lem (3). For simplicity, computational delays are not taken into
account in this analysis. Specifically, given any feedback control
policyµ(t, x) keeping the response x in an optimal RFIT Y ∗—e.g., as
found from the repeated solution of (3) in a receding horizon
manner—we assume that the control u(t) = µ(t, x̂t) is fed back
into the system instantaneously.

3. Characterization of robust forward invariant tubes

This section presents sufficient conditions for a convex tube to
be a RFIT for the nonlinear input-affine control system (2), under
the following generic assumption:

Assumption 2. The function f is jointly continuous in x, w and
locally Lipschitz-continuous in x. Moreover, the function G is
continuously differentiable.

The derivation builds upon a recent result for computing
enclosures of the reachable set of uncertain ODEs (Villanueva et al.,
2015). For a given control u ∈ U and a given set of initial states
X1 ∈ Knx

C at t1, we denote the reachable set of (2) at t2 > t1 as:

X(t2) :=

ξ ∈ Rnx


∃x ∈ Lnx , ∃w ∈ W :

a. e. t ∈ [t1, t2],
ẋ(t) = g(x(t), u(t), w(t))
x(t1) ∈ X1, x(t2) = ξ

 .

For notational convenience, we also define the set-valued function
Γg : Rnu × Rnx × Knx

C → Knx associated with the right-hand-side
function g in (2) as:

Γg(ν, c, Z) :=

g(ξ , ν, ω)


cTξ = V [Z](c)

ξ ∈ Z
ω ∈ W

 .

The following theorem is adapted from Villanueva et al. (2015,
Theorem3&Remark 2) for the class of controlled dynamic systems
of interest.

Theorem 1. Consider the uncertain dynamic system (2) with initial
condition x(t1) ∈ X1, with X1 ∈ Knx

C , and a given control u ∈ U, and
let Assumptions 1 and 2 hold. Let Y : [t1, t2] → Knx

C be a set-valued
function such that

(1) the function V [Y (·)](c) is, for all c ∈ Rnx , Lipschitz-continuous
on [t1, t2], and

(2) the set-valued function Y satisfies, for all c ∈ Rnx , the differential
inequality

a. e. t ∈ [t1, t2],

V̇ [Y (t)](c) ≥ V [Γg(u(t), c, Y (t))](c)
with V [Y (t1)](c) ≥ V [X1](c).

Then, Y is an enclosure of the reachable tube of (2), i.e. Y (t) ⊇ X(t)
for all t ∈ [t1, t2].

The following theorem sets the basis for the tube-based MPC
methods that are proposed in the paper. Unlike Theorem 1, the
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control policy u is not given, but chosen in the set U of admissible
controllers in order to reduce the cross-section of the tube,
while accounting for every possible realization of the exogenous
disturbance w ∈ W. These sufficient conditions come in the
form of amin–max differential inequality (DI), which describes the
convex cross-sections of a RFIT in terms of their support functions.

Theorem 2. Consider the uncertain dynamic system (2), and let As-
sumptions 1 and 2 hold. Let Y : [t1, t2] → Knx

C be a set-valued func-
tion such that

(1) the function V [Y (·)](c) is, for all c ∈ Rnx , Lipschitz-continuous
on [t1, t2], and

(2) the set-valued function Y satisfies, for all c ∈ Rnx , the differential
inequality

a. e. t ∈ [t1, t2],
V̇ [Y (t)](c) ≥ min

ν∈U
V [Γg(ν, c, Y (t))](c). (4)

Then, Y is a RFIT for all t ∈ [t1, t2].

Proof. See Appendix A.

The following corollary is a direct side-product of the proof of
Theorem 2.

Corollary 3. Let the set-valued function Y : [t1, t2] → Knx
C

satisfy the conditions of Theorem 2. Under the additional regularity
conditions that the set of admissible controls U and the tube cross-
sections Y (t), for all t ∈ [t1, t2], are smooth and their boundaries
have positive curvature everywhere, an explicit feedback control law
keeping the uncertain system trajectories within the RFIT is

µ(t, ξ) = µ∗

t


GY (t)(ξ)


, (5a)

with µ∗

t (c) : = argmin
ν∈U

cTG

G−1
Y (t)(c)


ν, (5b)

and the inverse Gauss map G−1
Y (t) of Y (t) is given by

G−1
Y (t)(c) = argmax

ξ∈Y (t)
cTξ .

Remark 1. The feedback control law given by Eqs. (5) is not
necessarily unique.

Remark 2. It is clear from Eq. (A.1) in Appendix A, that the
construction of the feedback control law (5) relies heavily on the
assumption of a control-affine structure for g aswell as the absence
of uncertain inputs w in the matrix-valued function G.

Although heavily inspired by set-theoretic methods for the
synthesis of model predictive controllers (see Raković, 2009 for
an introduction), Theorem 2 also provides a constructive approach
for nonlinear feedback control laws by exploiting properties at the
boundaries of RFITs. This approach has not been exploited so far in
the robust MPC literature.

Checking the sufficient conditions provided by Theorem 2 for
an arbitrary convex set-valued function may prove computation-
ally challenging in general. Nevertheless, themin–max differential
inequality can be checked constructively for certain parameteriza-
tions of the tube cross-sections, as shown for ellipsoidal tubes next.

4. Ellipsoidal robust forward invariant tubes

This section derives computationally tractable conditions for
checking whether a particular set-valued function Y is a RFIT for
the dynamic system (2). The focus is on tubes with ellipsoidal
cross-sections, given by

Y (t) = E(qx(t),Qx(t)), (6)

where qx(t) ∈ Rnx and Qx(t) ∈ Snx
+ denote the center and shape

matrix of the tube, pointwise in time. Moreover, we make the
following additional assumptions:

Assumption 3. There exist pairs (qw,Qw) ∈ Rnw × Snw
+ and

(qu,Qu) ∈ Rnu ×Snu
+ such that E(qw,Qw) ⊇ W and E(qu,Qu) ⊆ U .

Assumption 4. The functions f and G are twice continuously
differentiable in all of their arguments.

The following construction of ellipsoidal tubes is based on
Theorem 2 and uses the same ideas as the construction of
ellipsoidal bounds for uncertain ODEs based on Theorem 1; see,
e.g., Houska, Logist, Van Impe, and Diehl (2012), Kurzhanski and
Filippova (1993) and Villanueva et al. (2015). The control u,
disturbance w and state x are decomposed into their nominal and
perturbed components as

u(t) = qu + δu(t), w(t) = qw + δw(t), and x(t) = qx(t) + δx(t),

where qx satisfies the ODE

q̇x(t) = f (qx(t), qw) + G(qx(t)) ux(t),

for a reference control ux(t) ∈ E(qu,Qu). It follows that the
perturbed state component δx satisfies the ODE

δ̇x(t) = A(qx(t))δx(t) + B(qx(t))δw(t)
+G(qx(t) + δx(t))δu(t)
+ n(t, δx(t), δw(t), δu(t)). (7)

Here, the function n : R × Rnx × Rnw × Rnu → Rnx is defined
in such a way that (7) is equivalent to (2) and

A(qx(t)) :=
∂ f
∂x

(qx(t), qw) +
∂G
∂x

(qx(t))ux(t),

B(qx(t)) :=
∂ f
∂w

(qx(t), qw) .

A number of remarks are in order. Since the central path qx
corresponds to the nominal state, ux can be understood as the
control input thatwould be applied if no uncertaintywere affecting
the system. Moreover, the decomposition of the right-hand side
per (7) is valid with any integrable functions A and B of suitable
dimensions, as long as n is chosen in an appropriate manner.
For instance, if A and B are constructed through a first-order
Taylor expansion, n is given by the remainder function per Taylor’s
theorem.

The present tube construction relies on the existence of an
inner approximation of E(qu,Qu) centered at ux(t), as given by the
following lemma.

Lemma 4. For any reference control ux(t) ∈ E(qu,Qu), any function
γ : R → (0, 1], and any matrix-valued function Ru : R → Snu

+ such
that Ru(t) ≽ 0 and

Ru(t) = [1 − γ (t)]Qu +

1 − γ (t)−1

[ux(t) − qu][ux(t) − qu]T (8)

we have E(ux(t), Ru(t)) ⊆ E(qu,Qu) for all t ∈ R.

Proof. See Appendix C.

We also introduce the following technical assumptions regard-
ing the control constraint set and thenonlinearities in the functions
G and n.
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Assumption 5. There exists a nonlinearity bounder Ωn : Rnx ×

Snx
+ → Snx

+ for the function n such that

n(t, ξ , ω, ν) ∈ E(Ωn(qx(t),Qx(t))),

for all t ∈ [t1, t2], all ξ ∈ E(Qx(t)), all ω ∈ E(Qw), and all
ν ∈ E(Qu).

Assumption 6. There exists a nonlinearity bounder ΩG : Rnx ×

Snx
+ × Snu

+ × Rnx×nu → Snx
+ such that

ΩG(qx(t),Qx(t), Ru(t), S0) ≽ Q
1
2
x (t)S0R

1
2
u (t)G(ξ)T + G(ξ)R

1
2
u (t)ST

0Q
1
2
x (t)

−Q
1
2
x (t)S0R

1
2
u (t)G(qx(t))T − G(qx(t))R

1
2
u (t)ST

0Q
1
2
x (t),

for all t ∈ [t1, t2], all ξ ∈ E(qx(t),Qx(t)) and all S0 ∈ Rnx×nu

with S0ST
0 ≼ I , where Ru is constructed as in Lemma 4 such that

E(ux(t), Ru(t)) ⊆ E(qu,Qu).

Sufficient conditions for a tube with ellipsoidal cross-section to
be a RFIT for system (2) are stated in the following theorem. For
notational convenience, we introduce the matrix-valued function
Φg : Rnx × Snx

+ × Rnx×nu × Snu
+ × R++ × R++ → Snx

+ associated
with the right-hand-side function g in (2) as:

Φg(qx(t),Qx(t), S0, Ru(t), λ0, κ0) := A(qx(t))Qx(t)

+Qx(t)A(qx(t))T + Q
1
2
x (t)S0R

1
2
u (t)G(qx(t))T

+G(qx(t))R
1
2
u (t)ST

0Q
1
2
x (t) +


1
λ0

+
1
κ0


Qx(t)

+ΩG(qx(t),Qx(t), Ru(t), S0)
+λ0B(qx(t))QwB(qx(t))T + κ0Ωn(qx(t),Qx(t)).

Theorem 5. Consider the uncertain dynamic system (2), and let
Assumptions 3–6 hold for a given reference control ux ∈ U and let
Ru be constructed as in Lemma 4. If the functions Qx : [t1, t2] → Snx

+

and qx : [t1, t2] → Rnx satisfy

q̇x(t) = f (qx(t), qw) + G(qx(t))ux(t) (9)

Q̇x(t) ≽ Φg(qx(t),Qx(t), S(t), Ru(t), λ(t), κ(t)), (10)

for some functions λ, κ : [t1, t2] → R++ and S : [t1, t2] → Rnx×nu

with S(t)S(t)T ≼ I , then Y (t) := E(qx(t),Qx(t)) describes a RFIT
for (2) on [t1, t2].

Proof. See Appendix B.

The following corollary is an immediate consequence of the
proofs of Theorem 2 (Step S1) and Theorem 5.

Corollary 6. Let the set-valued function Y : [t1, t2] → Knx
C with

Y (t) := E(qx(t),Qx(t)) satisfy the conditions of Theorem 5. Then, an
explicit feedback law associated with this RFIT is given by

µ(t, ξ) =


µ∗

t (GY (t)(ξ)) if ξ ∈ bd Y (t)
ux(t) otherwise, (11)

where GY (t) and G−1
Y (t) denote the Gauss map of E(qx(t),Qx(t)) and

its inverse respectively, i.e.

GY (t)(ξ) =
Q Ď
x (t)(ξ − qx(t))Q Ď
x (t)(ξ − qx(t))


2

, G−1
Y (t)(c) = qx(t) +

Qx(t)c
√
cTQx(t)c

,

and µ∗
t is given by

µ∗

t (c) = ux(t) −

Ru(t)G

G−1
Y (t)(c)

T
cR 1

2
u (t)G


G−1
Y (t)(c)

T
c

2

.

Remark 3. Another feedback law can be obtained by extending
the domain of the Gauss map of an ellipsoid from bd E(q,Q ) to
E(q,Q ) \ {q}, and replacing the condition ξ ∈ bd Y (t) with ξ ≠ qx
in the feedback law (11).

Depending on the problem at hand, the required nonlinear bound-
ers in Assumptions 5 and 6 may be constructed either symboli-
cally, as proposed in Houska et al. (2012), or numerically, e.g. using
tools from interval analysis (Villanueva et al., 2015). A difficulty
with the latter approach, however, is that operations performed
using usual interval arithmetic are Lipschitz continuous, yet typ-
ically nonsmooth. This would impair the use of gradient-based
methods for solving the optimization problems. Instead of apply-
ing interval analysis directly, Lemma 7 in Appendix D presents a
way of constructing a smooth nonlinearity bounder for any twice
continuously-differentiable function.

5. Robust tube-based MPC based on Min–Max differential
inequalities

This sectiondiscusses how thedevelopments in Sections 3 and4
can be used in the context of robust MPC. Using Theorem 2, any
solution to the following optimization problem turns out to also
be a feasible solution to the tube-based MPC problem (3), in the
case of RFITs with convex cross-sections:

inf
Y

 t+T

t
ℓ(Y (τ ))dτ

s.t. a. e. τ ∈ [t, t + T ], ∀c ∈ Rnx ,

V̇ [Y (τ )](c) ≥ min
ν∈U

V [Γg(ν, c, Y (τ ))](c)

∀τ ∈ [t, t + T ], Y (τ ) ⊆ Fx
Y (t) = {x̂t}.

(12)

Notice that (12) is not a standard optimal control problem, as it
embeds semi-infinite differential inequality constraints. However,
discretizing this problem leads to a band-structured optimization
problem whose complexity scales linearly with respect to the
length of the time horizon.

With the results from Theorem 5, Problem (12) can be further
specialized to the case of tubes with ellipsoidal cross-sections as:

inf
Qx,Ru,S,
qx,ux,γ ,

λ,κ

 t+T

t
ℓ(E(qx(τ ),Qx(τ )))dτ

s.t. a. e. τ ∈ [t, t + T ],
q̇x(τ ) = f (qx(τ ), qw) + G(qx(τ ))ux(τ ),

Q̇x(τ ) = Φg(qx(τ ),Qx(τ ), S(τ ),
Ru(τ ), λ(τ ), κ(τ )),

Ru(τ ) = [1 − γ (τ)]Qu

+[1 − γ (τ)−1
][ux(τ ) − qu][ux(τ ) − qu]T,

qx(t) = x̂t , Qx(t) = 0,
∀τ ∈ [t, t + T ],

Qx(τ ) ≽ 0, Ru(τ ) ≽ 0, S(τ )S(τ )T ≼ I,
κ(τ ) > 0, λ(τ ) > 0, 0 < γ (τ) < 1,
E(qx(τ ),Qx(τ )) ⊆ Fx, ux(τ ) ∈ E(qu,Qu).

(13)

Observe that (13) now yields a standard optimal control
problem with linear matrix inequality (LMI) constraints. A
solution to this problem provides a RFIT in the form Y (τ ) =

E(qx(τ ),Qx(τ )), from which an explicit feedback control law can
be derived by applying Corollary 6.

A practical implementation of this tube-based MPC scheme
calls for the specification of the performance criterion ℓ and the
feasibility set Fx. In the case of tracking control, wemay use the so-
called generalized rotational inertia of the set Y (t) with respect to



316 M.E. Villanueva et al. / Automatica 77 (2017) 311–321
a given reference xref (Houska, Mohammadi, & Diehl, submitted for
publication), defined by:

ℓ(Y (t)) :=


Y (t)(x − xref)TD(x − xref)dx

Y (t) 1dx
, (14)

where D ∈ Snx
++ is any weighting matrix. In the ellipsoidal case,

Y (t) := E(qx(t),Qx(t)), we have (Villanueva, 2016, Appendix C)

ℓ(E(qx(t),Qx(t))) = (qx(t) − xref)TD(qx(t) − xref) +
Tr(DQx(t))
nx + 2

.

Regarding the feasible set, wemay consider linear state constraints
of the form

Fx :=

x ∈ Rnx

 hT
i x ≤ ηi, i = 1, . . . , nh


,

with hi ∈ Rnx and ηi ∈ R. In the ellipsoidal case, the feasibility
constraint E(qx(τ ),Qx(τ )) ⊆ Fx can be rewritten as Kurzhanski
and Vályi (1997):

∀τ ∈ [t, t + T ], hT
i qx(τ ) +


hT
i Qx(τ )hi ≤ ηi.

One of the main issues in robust MPC is ensuring recursive
feasibility, namely the ability to find, for every possible initial state,
a feasible state at every time along the closed-loop trajectory. This
requirement can be addressed by adding the following constraint
to the optimization problem (13):

Y (t + T ) ⊆ Yref, (15)

where Yref ⊆ Fx is a robust forward invariant set, i.e. a time-
invariant RFIT. If Yref satisfies Definition 1 on any time interval,
then the sets {µ(t + T , x(t + T ))|x(t + T ) ∈ Y (t + T )} ∈ U
will remain non-empty by construction, and the MPC procedure
discussed previously is indeed recursively feasible. This recursive
feasibility condition is satisfied, if

Φg(xref,Qref, Sref,Qu, λref, κref) ≼ 0

for some scalar λref, κref ∈ R++ and some matrix Sref ∈ Rnx×nu

with SrefST
ref ≼ I . For instance, one such matrix Qref can be found by

solving the following optimization problem:

inf
Qref,λref,
κref,Sref

Tr (Qref)

s.t. Φg(xref,Qref, Sref,Qu, λref, κref) ≼ 0
Qref ∈ Snx

+ , λref, κref > 0, SrefST
ref ≼ I.

(16)

The following section presents an application of the ellipsoidal
approach of tube-based MPC on a numerical case-study.

6. Numerical case study

We consider a spring–mass–damper system (Rubagotti, Rai-
mondo, Ferrara, & Magni, 2009) given by
ẋ1(t)
ẋ2(t)


  

ẋ(t)

=


x2(t) + w1(t)

−
k(x)x1(t)

M
−

hdx2(t)
M

+
w2(t)
M


  

f (x(t),w(t))

+


0
1
M


  
G(x(t))

u(t),

where x1 and x2 denote the displacement of the cart with respect
to the equilibrium position [m] and its velocity [m/s], respectively;
M = 1 kg is the mass of the cart; k(x) := k0 exp(−x1), with
k0 = 0.33 N/m, the stiffness of the spring; and hd = 1.1 Ns/m,
the damping factor. Bounds for the disturbance and the control
sets are given by the ellipsoids E(Qw) ∈ K2

C and E(Qu) ∈ KC ,
with Qw = diag(10−2 m2/s2, 0.25 N2) and Qu = 36 N2. The
control problem consists in steering the state x to the origin (0, 0)T,
Fig. 1. Comparison of the robust (ellipsoidal) tube-based controller with a
certainty-equivalent model predictive controller. The plot shows the optimal
ellipsoidal RFIT (gray area) for x̂t = xstart as well as a nominal trajectory (red
line) and a disturbed closed-loop trajectory (green line) for the certainty-equivalent
controller. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

from the initial position/velocity xstart = (0.7 m, 0.7 m/s)T, while
satisfying the path constraint x(t) ∈ Fx := {ξ | ξ1 ≤ 0.85}.

The optimization problem in the tube-based MPC controller is
based on (13) and involves minimizing the functional T

0


∥qx(t)∥2

2 +
1
4
Tr (Qx(t)) + ux(t)2


dt,

with the length of the prediction horizon set to T = 10 s. This cost
corresponds to the generalized rotational inertia, except for the
term ux(t)2 which can be interpreted as a control regularization.
The numerical solution of problem (13) is performed here using
the optimal control software ACADO (Houska et al., 2011),1 using
a piecewise constant control discretization on 40 equidistant
intervals. Moreover, all the nonlinearity bounders are constructed
using the technique in Appendix D.

Fig. 1 compares the optimal ellipsoidal RFIT (gray area) with
closed-loop trajectories for the nominal system (red line) and a
system subject to a random disturbance taking values in E(Qw)
(green line) for a certainty-equivalent MPC controller. The latter
minimizes the tracking objective T

0


∥x(t)∥2

2 + ∥u(t)∥2
2


dt,

and is implemented in ACADO using the control discretization and
prediction horizon as the robust tube-basedMPC controller above.
In the absence of uncertainty, the certainty-equivalent MPC con-
troller performs as expected—although it touches the state con-
straint, the controller is able to steer the state to a neighborhood of
the origin without violating it. Nonetheless, this controller fails in
about 50% of the uncertainty scenarios when the system is subject
to disturbances, due to a violation of the state path constraint.

The results of the tube-based MPC controller are shown in
Fig. 2. As expected, the controller steers the nominal state (center
of the RFIT) close to the origin at t = 10. In order to prevent

1 Since ACADO Toolkit does not support LMI constraints, our implementation
substitutes the LMI constraints in (13) with equivalent standard (nonlinear)
state constraints using Schur complement techniques (Boyd, El Ghaoui, Feron, &
Balakishnan, 1994).
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Fig. 2. The optimal ellipsoidal RFIT for x̂t = xstart (gray area). The red line shows the state constraint Fx = {x | x1 ≤ 0.85}. Left: Selected ellipsoidal cross-sections for
t ∈ {1/4, 3/4, 5/4, 7/4, 9/4, 10}. Right: Selected trajectories for three uncertainty realizations in dotted lines. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
violation of the path constraint against all the possible uncertainty
scenarios, the controller rotates the ellipsoidal cross-sections of
the RFIT quite drastically initially.Moreover, solving a conservative
approximation of the min–max differential inequality only has a
small adverse effect on the controller’s performance in this simple
case study.

7. Conclusions

A novel approach to tube-based robust MPC has been proposed
for control-affine nonlinear systems, which relies on a min–max
differential inequality formulation in order to provide sufficient
conditions for a time-varying convex set-valued function to be a
RFIT. Unlike other robust MPC approaches, the procedure based
on this differential inequality does not call for any particular
parameterization of the feedback control law, while benefiting
from having linear complexity with respect to the time horizon.
Another benefit of the proposed approach is that a semi-explicit
representation of a feedback control lawmay be obtained as a side-
product of the RFIT propagation under mild conditions, namely
when the RFIT cross-sections and the control sets are smooth with
positive curvature. This property has been exploited to devise a
practical implementation involving tubes with ellipsoidal cross-
sections. This ellipsoidal tube-based MPC approach was tested
for a spring–mass–damper system. In contrast to the certainty-
equivalent model predictive controller it guarantees feasibility for
all uncertainty scenarios.
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Appendix A. Proof of Theorem 2

The proof of Theorem 2 proceeds in two steps. In the first
step (S1), we establish the results under the following auxiliary
assumptions:

(A1) The set of admissible controls U is smooth with positive
curvature;

(A2) The pointwise-in-time cross-sections Y (t) of the tube Y are
smooth with positive curvatures at each t ∈ [t1, t2].

In the second step (S2), we argue that the result still holds by
removing these extra assumptions.
S1Westart bynoting that since the inequality (4) is invariant under
scaling of the directions c ∈ Rnx , it is sufficient to consider those
directions c with cTc = 1, namely c ∈ Snx−1.

It follows from Assumption A2 that the Gauss map GY (t) :

bd Y (t) → Snx−1 is a diffeomorphism (Sacksteder, 1960). For all
c ∈ Snx−1 and all t ∈ [t1, t2], the inverse Gauss map values G−1

Y (t)(c)
correspond to the elements of the singletons

Ψt(c) :=


ξ ∈ Rnx

 cTξ = V [Y (t)](c)
ξ ∈ Y (t)


= argmax

ξ∈Y (t)
cTξ .

In particular, we have

min
ν∈U

V [Γg(ν, c, Y (t))](c) = max
ξ∈Ψt (c),

ω∈W

cTf (ξ , ω) + min
ν∈U

max
ξ∈Ψt (c)

cTG(ξ)ν

= max
ω∈W

cTf (G−1
Y (t)(c), ω) + min

ν∈U
cTG(G−1

Y (t)(c))ν. (A.1)

Moreover, by Lipschitz continuity of V [Y (·)](c) on [t1, t2], the
functions G−1

Y (·)(c) : [t1, t2] → bd Y (t) are continuous for each
c ∈ Snx−1.

Next, we focus on the minimization subproblem on the
right-hand side of (A.1). By continuity of G−1

Y (t) and G (Assump-
tion 2) and by compactness of U (Assumption 1), the sets
argminν∈U cTG(G−1

Y (t)(c))ν are singletons for all c ∈ Snx−1 and all
t ∈ [t1, t2], and we can define the function µ∗

t as

µ∗

t (c) := argmin
ν∈U

cTG(G−1
Y (t)(c))ν.

Since µ∗
t (c) is always attained at the boundary of U , it follows

by Assumption A1, by continuous differentiability of G−1
Y (t) and G

(Assumption 2), and from sensitivity theory (Fiacco, 1983) that
µ∗

t (·) is continuously differentiable on Snx−1, for each t ∈ [t1, t2].
Moreover, the function µ∗

(·)(c) : [t1, t2] → U is continuous for
each c ∈ Snx−1.
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The result follows from the application of Theorem 3.1 in
Villanueva et al. (2015) (see also Theorem 1 herein) to the auxiliary
ODE

ẋ(t) = f (x(t), w(t)) + G(x(t))µ(t, x(t)),

with µ(t, ξ) := µ∗
t (GY (t)(ξ)). In particular, µ provides a feedback

control law for the RFIT Y under the auxiliary Assumption A1
and A2.
S2 In the case that certain tube cross-sections Y (t) or the control
constraint setU fail to be smoothwith positive curvature on [t1, t2],
we can—due to Assumption 1—always construct a family of set-
valued functions Yϵ : [t1, t2] → Knx

C as well as a family of compact
sets Uϵ ⊆ U with smooth boundary and positive curvature such
that the following statements hold for all ϵ > 0:

(1) Yϵ(t) ⊇ Y (t) for all t ∈ [t1, t2], Uϵ ⊆ U .
(2) There exists a continuous function α : R+ → R+ with α(0) =

0 such that

dH(Yϵ(t), Y (t)) ≤ α(ϵ), dH(Uϵ,U) ≤ α(ϵ),

and V̇ [Yϵ(t)](c) ≥ V̇ [Y (t)](c) + Lα(ϵ)

for all t ∈ [t1, t2]with L :=
1

2(t2−t1)
. In particular, L can bemade

arbitrarily large by choosing t2 − t1 sufficiently small.

The existence of such outer approximations has been proven in
Villanueva et al. (2015, see Lemma1 and Lemma2 in the appendix).
This way, the result follows from the application of the procedure
in S1 above and taking the limit as ϵ → 0 by invoking a continuity
argument. In detail, we can always choose t2 > t1 so that

V̇ [Yϵ(t)](c) ≥ V̇ [Y (t)](c) + Lα(ϵ)

≥ min
ν∈U

V [Γg(ν, c, Y (t))](c) + Lα(ϵ)

≥ min
ν∈Uϵ

V [Γg(ν, c, Yϵ(t))](c) (A.2)

for a sufficiently small ϵ > 0. Thus, it follows from step S1 that Yϵ is
a RFIT for all sufficiently small ϵ > 0. The final technical difficulty
involves analyzing the limit behavior of the sequence

µϵ(t, ξ) := µ∗

t,ϵ(GYϵ (t)(ξ))

with µ∗

t,ϵ(c) := argmin
ν∈Uϵ

cTG(G−1
Yϵ (t)(c))ν,

which may fail to converge as ϵ → 0. Since µϵ(t, ξ) takes values
in Uϵ and the sets Uϵ converge in the Hausdorff sense to a compact
set U , the sequence µϵ(t, ξ) is bounded uniformly with respect
to ϵ > 0. Consequently, we can use the Bolzano–Weierstrass
theorem to establish the existence of a sequence ϵ1, ϵ2, . . . ∈ R+

with limi→∞ ϵi → 0 such that the limit

µ(t, ξ) = lim
i→∞

µϵi(t, ξ)

exists. By construction, µ(t, ξ) is a control law that generates the
limit tube Y , therefore Y is a RFIT. �

Appendix B. Proof of Theorem 5

In analogy to the proof of Theorem 2, the following proof
proceeds in two steps. In the first step (S1), we establish the results
under the following auxiliary assumption:

(A3) The shape matrices Qu and Qx(t), t1 ≤ t ≤ t2, are positive
definite.

In the second step (S2), we argue that the result still holds by
removing this extra assumption.
S1 The idea in this part of the proof is to show that the
conditions (9)–(10) imply the min–max differential inequality (4)
for Y (t) := E(qx(t),Qx(t)). Using the state decomposition into
nominal part (9) and perturbed part (7) as well as Assumption 5,
we want to show that
V̇ [E(Qx(t))](c) ≥ min

ν∈E(Ru(t))
V [Γgδx (ν, c, E(Qx(t)))](c) (B.1)

for a.e. t ∈ [t1, t2] and all c ∈ Rnx such that cTc = 1. Here, the
set-valued function Γgδx is given by

Γgδx (ν, c, E(Qx(t)))

:=


A(qx(t))ξ
+B(qx(t))ω1
+G(qx(t) + ξ)ν
+ω2


cTξ = V [E(Qx(t))](c)

ξ ∈ E(Qx(t))
ω1 ∈ E(Qw)
ω2 ∈ E(Ωn(qx(t),Qx(t)))

 .

Moreover, the controls are optimized over E(Ru(t)) in (B.1), since
the central path qx(t) in (9) is evaluated along ux(t) ∈ E(qu,Qu),
instead of the center qu of E(qu,Qu). Recall that the construction
of such an inner ellipsoid E(ux(t), Ru(t)) ⊆ E(qu,Qu) is given by
Lemma 4.

Next, consider a family of ellipsoids parameterized by the
matrix valued function Qx : [t1, t2] → Snx

++. For each t ∈ [t1, t2]
the Gauss map GEx(t) : bd E(Qx(t)) → Snx−1 is a diffeomorphism
under Assumption A3, given by:

GEx(t)(ξ) :=
Q−1
x (t)ξQ−1
x (t)ξ


2

, G−1
Ex(t)(c) =

Qx(t)c
√
cTQx(t)c

.

In particular, the right-hand side of Condition (B.1) is given by
min

ν∈E(Ru(t))
V [Γgδx (ν, c, E(Qx(t)))](c)

= cTA(qx(t))G−1
Ex(t)(c) + min

ν∈E(Ru(t))
cTG(qx(t) + G−1

Ex(t)(c))ν

+ max
ω1∈E(Qw)

cTB(qx(t))ω1 + max
ω2∈E(Ωn(qx(t),Qx(t)))

cTω2.

Since, for any matrices D ∈ Rnx×nζ and Qζ ∈ S
nζ

+ ,

max
ζ

/min
ζ


cTDζ

 ζ ∈ E(Qζ )


= ±


cTDQζDTc ,

we obtain
min

ν∈E(Ru(t))
V [Γgδx (ν, c, E(Qx(t)))](c)

= cTA(qx(t))G−1
Ex(t)(c)

−


cTG(qx(t) + G−1

Ex(t)(c))Ru(t)G(qx(t) + G−1
Ex(t)(c))c

+


cTΩn(qx(t),Qx(t))c +


cTB(qx(t))QwB(qx(t))c.

Using the support function of the ellipsoids E(Qx(t)),

V [E(Qx(t))](c) =


cTQx(t)c,

we thus have that condition (B.1) is equivalent to
1
2
cTQ̇x(t)c ≥ cTA(t)Qx(t)c

−

cTG(qx(t) + G−1
Ex(t)(c))R

1
2
u (t)


2

Q 1
2
x (t)c


2

+

Q 1
2
x (t)c


2

Ω 1
2
n (qx(t),Qx(t))c


2

+

Q 1
2
x (t)c


2

Q 1
2

w B(qx(t))Tc

2
, (B.2)

for a.e. t ∈ [t1, t2] and all c ∈ Rnx with cTc = 1.
At this point, we use the following identities,

∥C1y∥2∥C2y∥2 = max
S

yTCT
1 SC2y s.t. SST

≼ I

= inf
λ>0

1
2λ

yTCT
1C1y +

λ

2
yTCT

2C2y,
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in order to establish that (B.2) holds whenever there exist real-
valued functions λ, κ : [t1, t2] → R++ and a matrix-valued
function S : [t1, t2] → Rnx×nu with SST

≼ I such that

1
2
cTQ̇x(t)c ≥ cTA(t)Qx(t)c

− cTQ
1
2
x (t)S(t)R

1
2
u (t)G(qx(t) + G−1

Ex(t)(c))
T

+


1

2λ(t)
+

1
2κ(t)


cTQx(t)c

+
λ(t)
2

cTΩn(qx(t),Qx(t))c

+
κ(t)
2

cTB(qx(t))QwB(qx(t))Tc, (B.3)

for a.e. t ∈ [t1, t2] and all c ∈ Rnx with cTc = 1. In particular,
condition (10) along with Assumption 6 ensures that

Q̇x(t) ≽ A(qx(t))Qx(t) + Qx(t)A(qx(t))T

+Q
1
2
x (t)S(t)R

1
2
u (t)G(ξ)T + G(ξ)R

1
2
u (t)S(t)TQ

1
2
x (t)

+


1

λ(t)
+

1
κ(t)


Qx(t) + λ(t)B(qx(t))QwB(qx(t))T

+ κ(t) Ωn(qx(t),Qx(t)),

for a.e. t ∈ [t1, t2] and for all ξ ∈ E(qx(t),Qx(t)), which also
implies condition (B.3) since G−1

Ex(t)(c) ∈ E(Qx(t)).
The result thatE(qx(t),Qx(t))describes a RFIT on [t1, t2] follows

from Theorem 2. Moreover, a feedback control law for this tube is
given by µ(t, ξ) = µ∗

t (GEx(t)(ξ − qx(t))) with

µ∗

t (c) := argmin
ν∈E(ux(t),Ru(t))

cTG

qx(t) + G−1

Ex(t)(c)


ν

= ux(t) −

Ru(t)G

qx(t) + G−1

Ex(t)(c)
T

cR 1
2
u (t)G


qx(t) + G−1

Ex(t)(c)
T

c

2

, (B.4)

for all c ≠ 0, i.e. for ξ ∈ bd E(qx(t),Qx(t)). Finally, since any
control action u(t) ∈ E(qu,Qu) is valid for ξ in the interior of
E(qx(t),Qx(t)), and since ux(t) is the natural control action for
ξ = qx(t), we can define a feedback control associated to the
ellipsoidal tube by

µ(t, ξ) =


µ∗

t (GY (t)(ξ)) if ξ ∈ bd Y (t)
ux(t) otherwise.

S2 In order to show that the result also holds for general positive
semidefinite matrices, we can add a small regularization term ϵI
to the matrices Qw,Qu and Qx(t), and then take limits as ϵ → 0 by
invoking the exact same continuity argument as in Step S2 of the
proof of Theorem2. This process results in the feedback control law
µ(t, ξ) = µ∗

t (GEx(t)(ξ −qx(t))), withµ∗
t given by Eq. (B.4); and the

Gauss map GEx(t) given by

GEx(t)(ξ) =
Q Ď
x (t)ξQ Ď
x (t)ξ


2

,

which follows from the fact that
for all ξ ∈ bd E(Qx(t)) ⊆ span(Qx(t))

lim
ϵ→0

(Qx(t) + ϵI)−1ξ = Q Ďx(t)ξ . �
Appendix C. Proof of Lemma 4

The statement of the lemma is trivially satisfied with γ (t) = 1,
and this case is thus excluded from the following considerations.
Consider the rank-1 ellipsoid

E

qu, (ux(t) − qu)(ux(t) − qu)T


and observe that E(ux(t), Ru(t)) ⊆ E(qu,Qu) if

E

qu, (ux(t) − qu)(ux(t) − qu)T


⊕ E(Ru(t)) ⊆ E(qu,Qu). (C.1)

Using the standard formula for the ellipsoidal bounding of the
Minkowski sum of ellipsoids (Kurzhanski & Filippova, 1993), we
find that (C.1) holds if

Qu =
1

γ (t)
(ux(t) − qu)(ux(t) − qu)T +

1
1 − γ (t)

Ru(t) , (C.2)

for any γ (t) ∈ (0, 1). Solving Eq. (C.2) with respect to Ru(t) yields
the statement of Lemma 4. �

Appendix D. Smooth nonlinearity bounders for twice-
continuously-differentiable functions

Lemma 7. Consider a twice-continuously-differentiable function g :

Rny → Rny , and define the remainder function n : Rny → Rny such
that

g(y) = g(qy) +
∂g
∂y

(qy)δy + n(δy),

with δy := y − qy. Let Dy ∈ Kny and (qy,Qy) ∈ Rny × Sny
+ such that

E(qy,Qy) ⊆ Dy. Suppose that there exist constants F̄1, . . . , F̄ny ∈ R+

satisfying

∀y ∈ Dy, F̄i ≥

∂2gi
∂y2

(y) Si


F
,

for certain invertible matrices S1, . . . , Sny ∈ Rny×ny . Then, n(δy) ∈

E (Qn), for all δy ∈ E(Qy) with

Qn :=
1
4
diag


F̄ 2
i

S−1
i Qy

2
F


1≤i≤ny

.

Proof. From Taylor’s theorem, the remainder function ni corre-
sponding to gi, for each i = 1, . . . , ny, is given by

ni(δy) =
1
2
δT
y

∂2gi
∂y2

(ξi) δy,

for some ξi ∈ conv({y, qy}). Then, for all δy ∈ E(Qy), we have

ni(δy) =
1
2
Tr


∂2gi
∂y2

(ξi) SiS−1
i δyδ

T
y


≤

1
2
Tr


∂2gi
∂y2

(ξi) SiS−1
i Qy


=

1
2

∂2gi
∂y2

(ξi) Si

S−1
i Qy


F

≤
1
2

∂2gi
∂y2

(ξi) Si


F

S−1
i Qy


F

≤
1
2
F̄i
S−1

i Qy

F .

Therefore, n is bounded on E(Qy) by an ellipsoid centered at the
origin and with semi-axes of length 1

2 F̄i∥S
−1
i Qy∥F. �
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