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Abstract

To efficiently predict the crack propagation in thin-walled structures, a global–local approach for phase field modeling
sing large-deformation solid shell finite elements considering the enhanced assumed strain (EAS) and the assumed natural
train (ANS) methods for the alleviation of locking effects is developed in this work. Aiming at tackling the poor convergence
erformance of standard Newton schemes, a quasi-Newton (QN) scheme is proposed for the solution of coupled governing
quations stemming from the enhanced assumed strain shell formulation in a monolithic manner. The excellent convergence
erformance of this QN monolithic scheme for the multi-field shell formulation is demonstrated through several paradigmatic
oundary value problems, including single edge notched tension and shear, fracture of cylindrical structure under mixed loading
nd fatigue induced crack growth. Compared with the popular alternating minimization (AM) or staggered solution scheme, it
s also found that the QN monolithic solution scheme for the phase field modeling using enhanced strain shell formulation is
ery efficient without the loss of robustness, and significant computational gains are observed in all the numerical examples.
n addition, to further reduce the computational cost in fracture modeling of large-scale thin-walled structures, a specific
lobal–local phase field approach for solid shell elements in the 3D setting is proposed, in which the full displacement-phase
eld problem is considered at the local level, while addressing only the elastic problem at the global level. Its capability is
emonstrated by the modeling of a cylindrical structure subjected to both static and fatigue cyclic loading conditions, which
an be appealing to industrial applications.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Global–local approach; Phase field fracture; Solid shell element; Quasi-Newton scheme

1. Introduction

Thin-walled structures are widely employed in various industrial fields, and components of a large number
f engineering systems are shell-like structures, such as photovoltaic modules [1,2], fiber-reinforced composite
tructures in the fields of astronautics and aeronautics [3,4], laminated glass structures of high-speed trains [5],
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among many other applications. The prediction of crack events in thin-walled structures has received a great deal
of attention in the past decades due to its significant importance. As a consequence of complex interaction between
kinematics, large deformation constitutive law and fracture description, computational fracture modeling of shell-
like thin-walled structures is quite challenging and a great deal of research has been focused on the development
of reliable numerical methods to deal with.

With regard to computational methods for fracture and damage modeling of solids, several formulations have
een developed based on different numerical techniques in the past decades [6–9]. Specifically for fracture modeling
f thin-walled structures, the partition of unity concept has been proposed in [10], and most formulations assume the
lassic Kirchhoff–Love and Reissner–Mindlin shell models for the description of kinematics [11,12]. Besides, the
o-called phantom node method was proposed in [13,14] to model arbitrary through-thickness cracks normal to the
id-surface of the element. Some other contributions [7,15] considered the use of non-local or gradient enhanced

chemes to alleviate mesh dependence pathologies. Following this kind of scheme, the continuous kinematic
ormulation was incorporated into the solid shell formulation and embodied an extra degree of freedom in the
enter of the shell element in [16]. Though these techniques have been successfully applied for modeling of specific
racture events, their applicability for brittle fracture is generally limited.

To overcome these limitations, the phase field approach proposed in [17,18] has emerged as a promising
ramework for brittle fracture modeling of solids. This methodology is established on the basis of the classical
riffith fracture criterion [19], in which failure occurs when the critical energy-release rate criterion is met. The

ssence of the phase field approach is to introduce a characteristic length scale within the variational formulation and
dealize the sharp crack into a diffusive crack topology. Consequently, some complex fracture patterns such as crack
ranching and multiple crack coalescence can be captured through the finite element modeling in a natural way. This
pproach can also be categorized into the gradient damage methods since the discontinuities for the description of
eometric and kinematic fields do not need to be considered explicitly due to the smeared representation of crack.
t is worth mentioning that a thermo-dynamically consistent framework for phase field approach is established
n [20,21], which provides an efficient solution scheme for treatment of diffusive crack. Further investigations
xploit the extension of this approach to multi-physics [22,23], cracking in laminated structures [24] and dynamic
nalyses [25], demonstrating the great potential and advantages of this methodology in fracture modeling. Recently,
he variational phase field methods have also been successfully extended to the prediction of fatigue crack growth.
he J-integral law was combined with the phase field theory in [26] to capture the crack growth behavior under

atigue loadings. By the introduction of a fatigue function to degrade the material toughness, Carrara et al. [27]
roposed a phase field framework to capture the fatigue behavior of brittle materials. This framework was recently
xtended to simulate the fatigue failure of a NiTi stent with the consideration of phase transformation [28], as well
s hydrogen assisted fatigue [29]. Besides the fatigue analysis of linear elastic materials, the phase field methods
ave also been used to predict fatigue crack growth in elastic–plastic solids, see [30–32], among others.

For the use of phase field approach combined with shell kinematics, first attempts have been proposed in [33]
o model geometrically linear fracture problems, in which the developments are limited to standard finite elements
ccording to Reissner–Mindlin theory. Another investigation in this regard is proposed in [34], which adopted Local
aximum-Entropy approximations and C1-continuous basis functions, making it hard to be adapted to standard

nite element packages. The theory of performing tension–compression split through the thickness of shell and
hen integrating the energy contribution along the integration points has been proposed by Paul et al. [35] and
iendl et al. [36], and later extended to the isogeometric analysis of multipatch structures [37,38]. Recently, this

pproach has been adopted by Kikis et al. [39] for phase field modeling of brittle fracture in Reissner–Mindlin
hells and plates. A similar phase field formulation has also been developed by Pillai et al. [40] for brittle fracture
odeling in a MITC4+ Reissner–Mindlin degenerated shell element. Alternative formulations have been proposed

n combination of phase field approach with solid shell and Kirchhoff–Love formulation to model brittle and ductile
racture [41–44].

In the phase field research, great efforts have been devoted so far to the efficient solution of the coupled phase
eld-displacement governing equations. Due to the non-convexity of potential energy functional with respect to the
isplacement field and phase field, the Jacobian matrix in the Newton solution technique may become indefinite,
eading to the convergence issues in the monolithic scheme, in which kinematic variables are solved simultaneously.
o address this drawback, different solution methods have been developed, like line search algorithms [45], modified

ewton method [46], and error-oriented Newton method [47]. Although good results have been obtained, the
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convergence issues for the monolithic solution of phase field approach are still quite challenging as pointed out
in [46]. On the other hand, a robust staggered scheme on the basis of alternating minimization has received much
attention [48]. By fixing either the displacement field or the phase field, the functional will be convex with respect to
the other kinematic variable. However, this staggered scheme is very computationally expensive, and convergence at
critical loading increments requires a lot of iterations [45]. Besides, this approach is not unconditionally stable, and
thus it is essential to apply very small increment step to ensure the accuracy of equilibrium solution [49]. To address
the drawbacks of both staggered or AM and conventional Newton schemes, the robustness and performance of
quasi-Newton methods in dealing with non-convex minimization problems have also been investigated, see [50,51].
The first attempt to study the feasibility of the quasi-Newton method in phase field analyses is proposed in [52] to
solve the so-called unified phase field theory [53], showing the potential of this scheme in the context of phase field
regularization of the cohesive zone model [54]. Recently, the quasi-Newton method is extended to the analysis of
standard phase field formulation in the cases of different nature, which further emphasizes the power and promise
of this scheme for the solution of coupled displacement-phase field problems [55].

To model brittle fracture in thin-walled structures, in this research, a phase field approach incorporated into the
olid shell formulation with assumed strain methods to alleviate locking effects is developed. With regard to the
olid shell formulations, the parametrization adopted in this work is based on the 6-parameter shell model proposed
n [56]. The kinematics of solid shell element is described through parametrization of the top and bottom surfaces of
he body with the displacement interpolation scheme, which features a similar discretization to the standard 8-node
rick element [57,58]. Solid shell elements are widely used to discretize thin-walled structures owning to the several
dvantages over the conventional shell elements. For instance, only translational degrees of freedom are required to
escribe the kinematics, which circumvents the difficulties concerning nodal rotations in the element formulation,
nd consequently, it is very straightforward to incorporate any three-dimensional constitutive law and deliver more
ccurate strain and stress fields through the thickness direction [59,60]. To reduce effects of the locking pathologies,
wo numerical techniques, EAS [61] and ANS [62], are adopted in the solid shell formulation. In line with many
hell formulations, the EAS method that considers the Hu–Washizu multi-field variational principle as departure
oint for its derivation is used herein to tackle volumetric and Poisson thickness locking effects, while the ANS
ethod is applied to overcome transverse shear and trapezoidal deficiencies.
This work aims at presenting a global–local phase field approach for large-deformation solid shells with the

N monolithic solution so as to provide a very efficient modeling framework for the prediction of local crack
ropagation in large-scale thin-walled structures. The two main innovative aspects of this work are: (i) the coupling
f phase field approach for fracture modeling with solid shell formulation considering the EAS and ANS methods
or the alleviation of locking effects, and its efficient and robust quasi-Newton monolithic implementation into the
ommercial finite element code ABAQUS, which was comprehensively evaluated by comparison with the standard

staggered Newton scheme through different benchmark examples, including single edge notched tension and shear,
fracture of cylindrical structure under mixed bending and tension, and computationally demanding fatigue induced
crack growth; (ii) a specific global–local approach in the 3D setting tailored for phase field modeling with solid
shell elements is proposed here to save computational cost in fracture modeling of large-scale thin-walled structures,
and its capability was demonstrated by simulating the local crack growth of cylindrical structure under both static
and fatigue cyclic loadings.

2. Phase field approach of brittle fracture

In this section, a thermodynamically consistent phase field approach of brittle fracture, which is based on the
Griffith and Irwin fracture theory recalling [20,21]. In the three-dimensional setting, let B0 ⊂ R3 and Bt ⊂ R3

denote the reference configuration and current configuration, and the corresponding position vectors are represented
by X and x, respectively. The body motion denoted by ϕ(X, t) : B0 × [0, t] → R3 maps the material point X
in the reference configuration onto its corresponding point x in the current configuration during the time interval
[0, t]. Deformation gradient is defined as Fu

:= ∂Xϕ(X, t), where ∂X denotes the partial derivative with respect
to the reference position, and its determinant J u

= det[Fu] is the Jacobian of deformation. The essence of phase
field approach to model brittle fracture is the regularization of sharp crack topology within a diffusive crack zone
characterized by the scalar-valued function d : B0 × [0, t]→ [0, 1]. This parameter smears out the sharp crack by
a diffusive crack area of width l, as shown in Fig. 1. Note that the width of regularization region depends on the
length scale l, which controls the transition between intact and broken parts. In this phase field modeling framework,
3
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Fig. 1. Schematic representation of solid body with (a) sharp crack topology, and (b) phase field approximation of diffusive crack.

Fig. 2. Definition of the cracking shell body in both the reference and current configurations with the solid shell concept and phase field
pproach for fracture modeling.

is defined as a smooth function of (X, t) in the reference configuration, and d = 0 and d = 1 represent the intact
and cracked states, respectively. According to [63], the phase field equations are given by

d− l2∆d = 0 in B0 and ∇Xd · n = 0 in ∂B0 (1)

where ∆d is the Laplacian of phase field variable, and ∇Xd stands for the gradient of phase field in the reference
configuration. The weak form reads∫

B0

(
1
l
δd+ l∇X(δd) · ∇Xd

)
dΩ = 0, ∀δd ∈ Vd (2)

here Vo
=

{
δd ∈ H1 (B0) | δd = 0 on Γc} is the admission space of the phase field variable. To represent the

patial variation of total cracked surface, a crack surface density functional γ (d,∇Xd) is defined as

Γc(d) :=
∫
B0

γ (d,∇Xd) dΩ (3)

It should be pointed out that Γc(d) converges to the sharp crack surface when the value of characteristic length l
pproaches zero [17,18,64]. The crack surface density per unit volume of body γ (d,∇Xd) reads

γ (d,∇Xd) =
1
2l
d2
+

l
2
|∇Xd|

2 (4)

In this regard, the crack energy integral defined on the sharp crack surface can be approximated by volume integrals,∫
Γc

Gc dΓ ≈
∫
B0

Gcγ (d,∇Xd) dΩ (5)

here G represents the fracture toughness of the body material based on the Griffith fracture theory.
c
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3. Kinematics of solid shell and variational formulation

3.1. Solid shell formulation and kinematics

In the solid shell concept, the position vector X in the reference configuration, the position vector x in the current
configuration and phase field variable d of any material point can be approximated by the corresponding vectors of
material points on the bottom and top surfaces of shell element, and their representations take the form as follows

X
(
ξ 1, ξ 2, ξ 3)

=
1
2

(
1+ ξ 3) Xt

(
ξ 1, ξ 2)

+
1
2

(
1− ξ 3) Xb

(
ξ 1, ξ 2) (6a)

x
(
ξ 1, ξ 2, ξ 3)

=
1
2

(
1+ ξ 3) xt

(
ξ 1, ξ 2)

+
1
2

(
1− ξ 3) xb

(
ξ 1, ξ 2) (6b)

d
(
ξ 1, ξ 2, ξ 3)

=
1
2

(
1+ ξ 3) dt

(
ξ 1, ξ 2)

+
1
2

(
1− ξ 3) db

(
ξ 1, ξ 2) (6c)

here the parametric space is identified as: A :=
{
ξ =

(
ξ 1, ξ 2, ξ 3

)
∈ R3

| −1 ≤ ξ i
≤ +1; i = 1, 2, 3

}
, the

ubscripts t and b represent top and bottom surfaces, respectively, and
(
ξ 1, ξ 2, ξ 3

)
denote coordinates in three

ifferent directions of the parametric space, see Fig. 2.
The kinematics of solid shell are described using the convective curvilinear coordinates, which is necessary due

o the ANS interpolation for the transverse normal and shear strain components. The covariant tangent vectors Gi (ξ )
n the reference configuration and gi (ξ ) in the current configuration are defined as the partial derivatives of position
ectors with respect to the convective coordinates ξ i

Gi (ξ ) :=
∂X(ξ )
∂ξ i

, gi (ξ ) :=
∂x(ξ )
∂ξ i

, i = 1, 2, 3 (7)

he contravariant basis vectors can be defined in a standard manner by Gi ·G j
= δ

j
i and gi · g j

= δ
j
i , and metric

ensors are defined as G = G i j Gi
⊗G j

= G i j Gi ⊗G j , g = gi j gi
⊗ g j

= gi j gi ⊗ g j .
In curvilinear setting, the deformation gradient Fu is defined as

Fu
=

∂x
∂X
= gi ⊗Gi (8)

here the Einstein summation convention on repeated indices is assumed. With the definition of metric tensor
omponents G i j = Gi · G j and gi j = gi · g j in the reference and current configuration, the displacement derived
reen–Lagrange strain tensor reads

Eu
:=

1
2

[(
Fu)T Fu

− I2

]
=

1
2

[
gi j − G i j

]
Gi
⊗G j (9)

here I2 is the second-order identity tensor. The energetically conjugated second Piola–Kirchhoff stress is given
y

S = Si j Gi ⊗G j (10)

here Si j represent the contravariant components.

.2. Variational formulation

In this section, the mixed Hu–Washizu variational principle incorporating the EAS and ANS methods to alleviate
he locking pathologies is derived in combination with phase field model using solid shell element formulation. It is
orth mentioning that the EAS method is adopted here to remedy volumetric and Poisson thickness locking, while

he membrane and in-plane locking effects are alleviated by the ANS method [61,62]. In the large deformation
etting with the consideration of enhancement based on EAS method, the Green–Lagrange strain is composed of
isplacement derived compatible strain Eu and incompatible strain Ẽ following the approach proposed in [56], and

its complete form reads: E = Eu
+ Ẽ.

The multi-field Hu–Washizu variational functional of potential cracked body is given by

Π (S, Ẽ, u, d) =
∫

g(d)Ψ
(

Eu, Ẽ
)

dΩ +
∫ Gcl

(
d2

2 +
|∇Xd|

2
)

dΩ −Πext (11)

B0 B0 2 l

5
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where Ψ represents the intact free energy function, g(d) = (1−d)2
+K stands for the monotonic degradation function,

K ≈ 0 is a positive parameter to ensure numerical stability in case of fully material degradation, and Πext identifies
the external contribution. It is worth noting that the displacement u, the phase field variable d, and incompatible
strain Ẽ are the independent variables. Given the orthogonality condition between the second Piola–Kirchhoff stress
and Green–Lagrange strain, the stress field is neglected here following the previous work [65]. The first variation
of Eq. (11) with respect to the independent fields reads

Ru(u, δu, Ẽ, d) =
∫
B0

g(d)
[
∂Ψ

∂E
:

∂Eu

∂u
δu

]
dΩ − δΠext(u) = 0, ∀δu ∈ Vu (12a)

RẼ (u, Ẽ, δẼ, d) =
∫
B0

g(d)
[
∂Ψ

∂E
: δẼ

]
dΩ = 0, ∀δẼ ∈ VẼ (12b)

Rd(u, Ẽ, o, δd) =
∫
B0

−2(1− d)δdΨdΩ +
∫
B0

Gcl
[

1
l2 dδd+∇Xd · ∇X(δd)

]
dΩ = 0, ∀δd ∈ Vd (12c)

here Vu , VẼ and Vd are the admissible spaces of displacement, incompatible strain and phase field variable,
espectively.

. Finite element implementation

.1. Finite element interpolation

By means of isoparametric concept, the approximations of position vectors X and x, displacement vector u and
ts variation δu on the solid shell element level are given by

X = NX̃ (13a)

x = Nx̃ (13b)

u = Nd, δu = Nδd (13c)

here X̃ and x̃ denote the nodal position vectors in the reference and current configurations, respectively, and d
epresents the nodal displacement vector. The shape function matrix N is defined as

N = [N1, N2, N3, N4, N5, N6, N7, N8] (14)

here NI = diag [NI, NI, NI] with I = 1, 2, . . . , 8, and its component NI is given by

NI =
1
8

(
1+ ξ 1

I ξ 1) (
1+ ξ 2

I ξ 2) (
1+ ξ 3

I ξ 3) (15)

with ξ 1
I , ξ 2

I , ξ 3
I = ±1.

In a similar manner, the phase field variable d and its variation δd are interpolated as

d = Ndd̄, δd = Ndδd̄ (16)

here d̄ represents the nodal phase field vector, and the shape function matrix Nd for interpolation of phase field
is given by

Nd
= [N1, N2, N3, N4, N5, N6, N7, N8] (17)

he material gradient of phase field ∇Xd and its variation ∇Xδd are interpolated as

∇Xd = G−T
∇ξ d̄ = Bd(ξ )d̄, ∇Xδd = G−T

∇ξδd̄ = Bd(ξ )δd̄ (18)

here ∇ξ represents the gradient with respect to the natural coordinates in the curvilinear setting, and Bd is the
radient interpolation matrix of phase field variable.

The Green–Lagrange strain vector in this work is given by E = [E11, 2E12, 2E13, E22, 2E23, E33]T. To overcome
he deficiency of curvature thickness locking, the ANS interpolation proposed in [66] to modify transverse normal

train components E33 is adopted. This ANS method considers four collocation points defined in convective

6
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Fig. 3. Position of collocation points in the element parametric space for the ANS method to alleviate the transverse shear locking and
trapezoidal locking, respectively.

coordinates ξCi as ξC1 = (−1,−1, 0), ξC2 = (1,−1, 0), ξC3 = (1, 1, 0), and ξC4 = (−1, 1, 0), see Fig. 3. Besides,
to prevent transverse shear locking in case of distorted element geometry, the ANS interpolation method proposed
in [62] is also employed in this work. The four collocation points for the treatment of transverse shear strain
components are ξA1 = (0,−1, 0), ξA2 = (0, 1, 0), ξB1 = (−1, 0, 0), and ξB2 = (1, 0, 0), see Fig. 3. With respect to
the ANS interpolations, the approximation of strain vector is expressed as

Eu
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 (g11 − G11)

(g12 − G12)(
1− ξ 2

) (
gA1

13 − GA1
13

)
+

(
1+ ξ 2

) (
gA2

13 − GA2
13

)
1
2 (g22 − G22)(

1− ξ 1
) (

gB1
23 − GB1

23

)
+

(
1+ ξ 1

) (
gB2

23 − GB2
23

)
∑4

i=1
1
4

(
1+ ξ 1

i ξ 1
) (

1+ ξ 2
i ξ 2

) 1
2

(
gCi

33 − GCi
33

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

here the superscripts A1, A2, B1, B2, and Ci with i = 1, 2, 3, 4 denote the values at the corresponding collocation
oints.

The approximation of virtual strain is given by

δEu
= Bδd with B = [B1, B2, B3, B4, B5, B6, B7, B8] (20)

here the matrix for each node I considering ANS interpolation is defined as

BI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI,1
(
gT

1

)
NI,1

(
gT

2

)
+ NI,2

(
gT

1

)(
1− ξ 2

) (
NA1

I,1

(
gA1

3

)T
+ NA1

I,3

(
gA1

1

)T
)
+

(
1+ ξ 2

) (
NA2

I,1

(
gA2

3

)T
+ NA2

I,3

(
gA2

1

)T
)

NI,2
(
gT

2

)(
1− ξ 1

) (
NB1

I,2

(
gB1

3

)T
+ NB1

I,3

(
gB1

2

)T
)
+

(
1+ ξ 1

) (
NB2

I,2

(
gB2

3

)T
+ NB2

I,3

(
gB2

2

)T
)

∑4
i=1

1
4

(
1+ ξ 1

i ξ 1
) (

1+ ξ 2
i ξ 2

)
NI,3

(
gi

3

)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

ith NI,1, NI,2 and NI,3 defined as the derivatives of shape function NI with respect to the parametric variables ξ 1,
2, and ξ 3, respectively.

The enhancing strain field is interpolated by the operator M(ξ ) that will be defined in Section 4.3 and it also
epends on the number of enhancing modes ζ taken into account as pointed out in [58,67]. The interpolations of
ncompatible strain vector Ẽ and its variation δẼ are given by

Ẽ ≈M(ξ )ζ , δẼ ≈M(ξ )δζ (22)

Inserting the discretization formulae into Eqs. (12), the discrete form of residual equations can be expressed as

Rd (d, δd, d̄, ζ ) =
∫

g(d)B(d)TS dΩ − Rd
ext (23a)
B0

7
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Rζ (d, d̄, ζ , δζ ) =
∫
B0

g(d)M(ξ )TS dΩ (23b)

Rd(d, d, δd, ζ ) =
∫
B0

−2(1− d)N(ξ )TΨ (d, ζ )dΩ +
∫
B0

Gcl
[(

Bd(ξ )
)T
∇Xd+

1
l2 N(ξ )Td

]
dΩ (23c)

Considering the irreversible growth of the fracture process, a history variable H is introduced to modify the
corresponding phase field residual vector Rd [68], which reads

Rd
=

∫
B0

−2(1− d)N(ξ )T HdΩ +
∫
B0

Gcl
[(

Bd(ξ )
)T
∇Xd+

1
l2 N(ξ )Td

]
dΩ (24)

n order to ensure the irreversibility of phase field variable, the history variable H should comply with the
uhn–Tucker conditions

Ψ+ − H ⩽ 0, Ḣ ⩾ 0, Ḣ (Ψ+ − H) = 0 (25)

here Ψ+ is the decomposed strain energy density corresponding to tension according to the spectral split method
nd hybrid approach proposed in [21,48]. At the certain time t , the history variable can be written as

H = max
τ∈[0,t]

Ψ+(τ ) (26)

.2. Approximation of the weak form and linearization

For the multi-field problem, an iterative scheme is adopted to solve the set of nonlinear residual equations given
y Eqs. (23). The consistent linearization of this system obtained from the concept of Gateaux directional derivative
n matrix form can be written as⎡⎣ kdd kdζ 0

kζd kζ ζ 0
0 0 kdd

⎤⎦ ⎡⎣ ∆d
∆ζ

∆d̄

⎤⎦ =
⎡⎣ Rd

ext
0
0

⎤⎦−
⎡⎣ Rd

Rζ

Rd

⎤⎦ (27)

he different components of the stiffness matrix are defined as

kdd =

∫
B0

[
(1− d)2

+K
] [

Q+ B(d)TCB(d)
]

dΩ (28a)

kdζ =

∫
B0

[
(1− d)2

+K
]

B(d)TCM(ξ ) dΩ (28b)

kζd =

∫
B0

[
(1− d)2

+K
]

M(ξ )TCB(d) dΩ (28c)

kζ ζ =

∫
B0

[
(1− d)2

+K
]

M(ξ )TCM(ξ ) dΩ (28d)

kdd =

∫
B0

[
Gc

l
+ 2H

]
N(ξ )TN(ξ )dΩ +

∫
B0

Gcl
(
Bd(ξ )

)T Bd(ξ ) dΩ (28e)

The derivative of B with respect to d in Eq. (28a) appears in order to compute ∆δEu
: S, where ∆δEu is the

inearized virtual strain tensor, and the matrix form is given by

Q =
∂B(d)T

∂d
S =

⎡⎢⎢⎢⎣
Q11 Q12 · · · Q18
Q21 Q22 · · · Q28
...

...
. . .

...

⎤⎥⎥⎥⎦ (29)
Q81 Q82 · · · Q88

8
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where QIJ is defined as QIJ = diag
[
QIJ, QIJ, QIJ

]
for the combination of node I and J, and the scalar QIJ reads

QIJ = ST

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI,1NJ,1
NI,1NJ,2 + NI,2NJ,1(

1− ξ 2
) (

NA1
I,1NA1

J,3 + NA1
I,3NA1

J,1

)
+

(
1+ ξ 2

) (
NA2

I,1NA2
J,3 + NA2

I,3NA2
J,1

)
NI,2NJ,2(

1− ξ 1
) (

NB1
I,2NB1

J,3 + NB1
I,3NB1

J,2

)
+

(
1+ ξ 1

) (
NB2

I,2NB2
J,3 + NB2

I,3NB2
J,2

)
∑4

i=1
1
4

(
1+ ξ 1

i ξ 1
) (

1+ ξ 2
i ξ 2

)
NI,3NJ,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

where S is the approximate stress field, which is organized in matrix form as S =
[
S11, S12, S13, S22, S23, S33]T

.
The isotropic Kirchhoff–Saint-Venant constitutive model is considered in this study, and the tangent material

stiffness tensor C in the convective curvilinear setting can be expressed as

C =
[
λG i j Gkl

+ µ
(
G ik G jl

+ G il G jk)] Gi ⊗G j ⊗Gk ⊗Gl (31)

where λ and µ are the Lame parameters. The matrix form of stiffness C is given by

C =

⎡⎢⎢⎢⎢⎢⎢⎣
C1111 C1112 C1113 C1122 C1123 C1133

C1212 C1213 C1222 C1223 C1233

C1313 C1322 C1323 C1333

C2222 C2223 C2233

sym. C2323 C2333

C3333

⎤⎥⎥⎥⎥⎥⎥⎦ (32)

Since inter-element continuity is not required, the enhanced strain term can be condensed out in the element
evel [56], and the system of equations that couples the kinematics with phase field is given by[

k∗dd 0
0 kdd

] [
∆d
∆d

]
=

[
Rd

ext
0

]
−

[
Rd∗

Rd

]
(33)

here components of modified stiffness matrix and residual vector are defined as

k∗dd = kdd − kdζ k−1
ζ ζ kζd (34a)

Rd∗
= Rd

− kdζ k−1
ζ ζ Rζ (34b)

.3. Interpolation of the assumed strain field

To alleviate volumetric and Poisson thickness lockings, the EAS method is incorporated into the solid shell
ormulation and briefly summarized in the following. It should be pointed out that the number of enhancing
odes in the EAS method greatly influence the numerical efficiency of the formulation. In [67], seven enhancing
odes are adopted to simulate the out-of-plane and membrane bending, and it is found that volumetric locking

or incompressible analysis and Poisson thickness locking phenomena are effectively reduced, which is also
omprehensively discussed in [58,69] with regard to the different enhancing schemes. Following this enhancing
trategy, the interpolation matrix M̃(ξ ) of the enhancing modes defined in the parametric space takes the form

M̃(ξ ) =

⎡⎢⎢⎢⎢⎢⎢⎣
ξ 1 0 0 0 0 0 0
0 ξ 2 0 0 0 0 0
0 0 ξ 3 ξ 1ξ 3 ξ 2ξ 3 0 0
0 0 0 0 0 ξ 1 ξ 2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (35)

Given the consistency constraint of incompatible strain with respect to the stress field, the interpolation matrix
(ξ ) defined in Eq. (22) is given by

M(ξ ) =
[

det J0
]

T−T
0 M̃(ξ ) (36)
det J
9
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where J = [G1, G2, G3]T, J0 is its evaluation at the element center
(
ξ 1
= 0, ξ 2

= 0, ξ 3
= 0

)
, and the transformation

atrix T0 takes the form

T0 =

⎡⎢⎢⎢⎢⎢⎢⎣

J 2
110

J 2
210

J 2
310

2J110 J210 2J110 J310 2J210 J310

J 2
120

J 2
220

J 2
320

2J120 J220 2J120 J320 2J220 J320

J 2
130

J 2
230

J 2
330

2J130 J230 2J130 J330 2J230 J330

J110 J120 J210 J220 J310 J320 J110 J220 + J210 J120 J110 J320 + J310 J120 J210 J320 + J310 J220
J110 J130 J210 J230 J310 J330 J110 J230 + J210 J130 J110 J330 + J310 J130 J210 J330 + J310 J230
J120 J130 J220 J230 J320 J330 J120 J230 + J22 J130 J120 J330 + J320 J130 J220 J330 + J320 J230

⎤⎥⎥⎥⎥⎥⎥⎦
(37)

here Jij0 with i, j = 1, 2, 3 are the components of J0.

.4. Quasi-Newton monolithic solution scheme

Given the highly nonlinearity of residual equations with respect to the kinematic variables, two schemes are
idely adopted to address the coupled phase field-displacement problem, including the monolithic scheme in which

he displacement and phase field variables are solved simultaneously and the AM scheme in which the independent
ariables are solved separately as sequentially staggered field. Monolithic scheme retains unconditional stability and
onsequently large time increments are allowed, but the poor performance in achieving convergence has hindered its
ide application. With regard to the staggered scheme, it is very robust and can overcome the convergence issues.
owever, sufficiently small increments must be employed to prevent the solution deviating from the equilibrium,

nd thus computational cost is very high. In the following, the quasi-Newton monolithic scheme with improved
erformance over conventional Newton schemes in terms of both convergence and computational efficiency is
ntroduced into the numerical implementation of phase field solid shell formulation.

Within the time increment
[
tn, t (k)

n+1

]
, where tn and t (k)

n+1 represent the previous converged increment and prospec-
ive current increment at iteration k, respectively, given the data {dn, ζ n, d̄n} at the previous converged increment, the
nal solution at the next increment requires Newton iterations around the intermediate state {d(k)

n+1, ζ
(k)
n+1, d̄

(k)
n+1} due

o nonlinearity. Note that {dn, ζ n, d̄n} and {d(k)
n+1, ζ

(k)
n+1, d̄

(k)
n+1} denote the nodal displacement vector, incompatible

nhancing vector, and nodal phase field vector at the previous converged increment and prospective current
ncrement at iteration k, respectively. According to the static condensation procedure in Section 4.2, the nodal phase
eld and displacement vectors are defined as unknowns in the element level, and the increment of enhancing vector
t the next time increment of iteration k, which is denoted as ∆ζ

(k)
n+1, should be determined for the computational

rocedure. Based on the process described in [70], the increment ∆ζ
(k)
n+1 is given by

∆ζ
(k)
n+1 = −

[
kζ ζ,n

]−1
[
Rζ

int,n + kζd,n∆d(k)
n+1

]
(38)

t should be pointed out that the increments ∆d(k)
n+1 and ∆d̄

(k)
n+1 are provided by the solver, while the element matrices

t the previous increment
[
kζ ζ,n

]−1, Rζ

int,n , kζd,n , and ζ n are all stored as internal variables.
In contrast to standard Newton methods, the stiffness in the quasi-Newton method is not updated after each

teration, and instead, it is approximated after a certain number of iterations without achieving convergence [52].
pecifically, the approximated stiffness matrix must satisfy the following equation

K̃δz = δR (39)

or the residual δz := zt+∆t−zt , in which the kinematic variable vector is defined as z = [d, d̄]T, and the correction
R := Rt+∆t − Rt , respectively. In the quasi-Newton method, the approximated stiffness matrix K̃ is given by

K̃ = K̃t −

(
K̃tδz

) (
K̃tδz

)T

δzTK̃tδz
+

δRδRT

δzTδR
(40)

In addition, as pointed out in [71], the updated stiffness matrix in case of symmetry can be written in its inverse
form

K̃−1
=

(
I−

δzδRT

T

)
K̃−1

t

(
I−

δzδRT

T

)T

+
δzδzT

T (41)

δz δR δz δR δz δR

10
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Accordingly, it can be easily implemented into the finite element code, and significant computational cost can be
saved. The initial guess of the stiffness K̃(0) is defined as

K̃(0)
=

[
K∗dd 0

0 Kdd

]
(42)

Note that, though it is not fully coupled, the subsequent approximation of the stiffness matrix couples the phase
field and displacement, see Eq. (40). The quasi-Newton stiffness will be reformed whenever the number of iterations
exceed 8 without obtaining the convergent solution in this work. The computational procedure for the quasi-Newton
monolithic implementation of phase field solid shell formulation is outlined in Algorithm 1.

Algorithm 1: Numerical algorithm for the QN implementation of phase field solid shell formulation

Data: dn , d̄n , ∆d(k)
n+1, ∆d̄

(k)
n+1

esult: dn+1, d̄n+1

nitialization of ζ n , Rζ

int,n , kζd,n ,
[
kζ ζ,n

]−1;
hile ||R∗d || > tolerance do

Compute ∆ζ
(k)
n+1 = −

[
kζ ζ,n

]−1
[
Rζ

int,n + kζd,n∆d(k)
n+1

]
;

Update the enhancing vector ζ
(k)
n+1 = ζ n +∆ζ

(k)
n+1;

for n ← 1 to N integration points do
Compute the curvilinear basis G(k)

n+1 and g(k)
n+1;

Compute the B matrices B(k)
n+1 and Bd(k)

n+1;
Modify the B(k)

n+1 matrix according to the ANS method;
Compute C(k)

n+1, S(k)
n+1, Ψ (k)

n+1, and H (k)
n+1;

Compute the EAS operator M(k)
n+1;

end
Compute the element stiffness matrices k(k)

dd,n+1, k(k)
dζ,n+1, k(k)

ζd,n+1, k(k)
ζ ζ,n+1, and k(k)

dd,n+1;
Compute the internal force vectors Rd(k)

int,n+1, Rζ (k)
int,n+1, and Rd(k)

int,n+1;
Perform the static condensation in the element level;
Do the final assembly;

nd

5. The global–local fracture submodeling approach

The global–local modeling approach has been widely employed in a variety of technical applications, such as
-integral calculation in fracture problems [72], three-dimensional stress analysis [73,74] and computation of stress
ntensity factors [75]. Generally, a global finite element model with coarse mesh is used to calculate the displacement
eld and determine the size and location of the critical region with low computational cost. Subsequently, the
isplacement output obtained from the global-scale calculation will be employed to interpolate the boundary
ondition of the local model, which is a fine scale representation of the critical area with more detailed mechanical
egradation to achieve a greater accuracy [76]. However, very limited work has been focused on the global local
pproach for phase field fracture modeling, see [77–79], among others.

To further reduce the computational cost in fracture modeling of large-scale thin-walled structures, a specific
lobal–local submodeling approach in the 3D setting tailored for phase field modeling using solid shell formulation
s proposed. The submodeling technique is a computational strategy frequently employed in fiber-reinforced
omposites for modeling with two different length scales, such as macro scale and meso scale of the laminate.
he global and local models are solved sequentially in the submodeling approach, in which the global model is
olved firstly, and subsequently its results are taken as boundary conditions to drive the local model. As a result,
oth global and local models are analyzed separately, and local model has no influence on the global model. In this
ork, this approach is introduced for phase field fracture modeling of shell structures to improve computational

fficiency when the crack in the local region has minor effect on the global stiffness. For instance, it is pointed out
11
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in [76,80] that the stiffness of the global photovoltaic module is hardly degraded by the cracks in the local solar cells,
and in this case, it is viable to apply the submodeling technique uncoupling the global linear elastic finite element
analysis of photovoltaic module from the local fracture modeling of solar cell. To simulate the realistic loading
condition driving the crack propagation of brittle silicon solar cell, it is essential to model the whole photovoltaic
laminate, and on the other hand, for the prediction of cracking phenomena at the cell level, phase field approach
can be employed with very refined mesh for the local model.

Algorithm 2: Numerical algorithm for displacement projection from global model to local model

for t ← 1 to T time increments do
Impose boundary conditions on the global model;
Solve the nodal displacements of global model using Newton–Raphson scheme;
for i ← 1 to S solid shells of the local model do

for j ← 1 to N exterior facets of the local model do
for k ← 1 to M edges (M=2, upper and bottom edges) do

Find the two closest nodes P1 and P2 belonging to the same edge and facet in the global model;
Interpolate the nodal displacement uk = N1u1 + N2u2, where u1 and u2 are the nodal
displacement vector of P1 and P2, N1 and N2 are linear shape functions.

end
end

end
nd

To efficiently model thin-walled global structures like photovoltaic modules, a solid-like continuum solid shell
lement is employed to simulate the structural response under complex loading conditions with relatively coarse
esh to save computational cost. Compared with Kirchhoff–Love shell elements and solid elements in thin-walled

tructure modeling [1], it is preferred since three dimensional constitutive laws are allowed and accuracy can
e ensured with only one ply of element required through thickness of the global model. After obtaining the
isplacements of global coarse-scale model in the different directions by linear elastic finite element analysis, the
oundary conditions applied to the nodes belonging to the edges of local fine-scale model can be determined by
inear interpolation of global results. It is worth mentioning that the finite element discretization of the local model
s not required to comply with the one of the global finite element model, and a projection scheme can be used
o map the displacement results from computation of global model onto the edge nodes of local model. In doing
o, the mesh of local model can be more refined to perform the appropriate phase field fracture simulation. From
he viewpoint of algorithm, since there is only one ply of solid shell element through the thickness direction, it is
onvenient to distinguish the nodes of exterior element facets belonging to the local model into upper and bottom
dge nodes, see Fig. 4. For each node of local model on the exterior facets, the displacement boundary conditions
re obtained by linear interpolation between the displacement values of two closest nodes of global model on the
ame upper or bottom edge. The projection scheme is illustrated in Algorithm 2.

. Numerical examples

In this section, to investigate the performance of quasi-Newton monolithic solution scheme in phase field
odeling using solid shell formulation, four different numerical tests, including single edge notched tension, single

dge notched shear, cylindrical structure under mixed tension and bending, and fatigue induced crack propagation,
re conducted. The performance in attaining convergence and computational efficiency is assessed by comparison
ith that of the widely adopted staggered scheme through the different types of boundary value problems. Finally,

he proposed global–local approach to further reduce the computational cost in phase field modeling is demonstrated
y the numerical tests of cylindrical structure subjected to both constant and cyclic fatigue loading conditions.

.1. Single edge notched tension

The first numerical case is the mode I fracture of single edge notched specimen under monotonic loading,

s indicated in Fig. 5(a). It is a very popular benchmark example for verification of phase field approach and

12
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Fig. 4. The sketch of solid shell elements from both global and local models.

Fig. 5. (a) Sketch of the single edge notched tension and (b) finite element mesh of the specimen.

challenging for the numerical algorithms used to solve the coupled governing equations [20]. Specimen dimensions
and boundary conditions are shown in Fig. 5(a). The geometry is a square plate with unit lateral size of 1 mm
and thickness of 0.001 mm. Note that there is an initial sharp crack with the length of 0.5 mm in the middle of
the specimen. The degrees of freedom at the bottom edges of specimen are constrained, while the displacement
boundary condition is imposed on the upper edges in the vertical direction, leading to a symmetric loading at the
crack tip of specimen and subsequent mode I crack propagation. The Young’s modulus and Poisson’s ratio are
equal to 210 GPa and 0.3, respectively, and regarding the fracture properties, the fracture toughness and phase field
length scale are set to 2.7 N/mm and 0.024 mm, respectively. The model is discretized with solid shell elements, see
Fig. 5(b), and notably, the characteristic elements along the potential crack path are refined to a size of 0.004 mm,
being 6 times smaller than the length scale. The total number of elements is 7222. The contour plots of phase field
values during the crack propagation are shown in Fig. 6.

The constrained force versus loading displacement curves are shown in Fig. 7. The numerical results obtained
from the conventional staggered or AM scheme with different numbers of time increments are also presented here
for comparison. It can be seen that the staggered scheme is very sensitive to the time increment size, and with the
increase of the number of increments, the obtained force versus displacement curve will gradually coincide with that
solved by the quasi-Newton monolithic scheme, which requires only 100 time increments. Both the quasi-Newton
monolithic scheme and staggered scheme require a lot of iterations at the critical time increment when the crack
starts to propagate. The total number of iterations versus loading displacement curves for the staggered schemes with
different increment size and quasi-Newton monolithic scheme are shown in Fig. 8. Results indicate that reproducing

the numerical result obtained by the quasi-Newton monolithic scheme through the staggered scheme requires at

13
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c

Fig. 6. The contour plots of phase field values at the loading displacements equal to 0.0055 mm, 0.0057 mm, and 0.006 mm during the
rack propagation in the single edge notched tension.

Fig. 7. The force versus displacement curves obtained from both the quasi-Newton monolithic and staggered schemes for the phase field
modeling of single edge notched tension using solid shell formulation.

Table 1
Computation times for different schemes in the single edge notched tension.

AM 103 inc. AM 2×103 inc. AM 104 inc. QN 102 inc.

CPU hours (h) 0.87 1.55 7.38 0.52

least around ten thousand iterations. It is also shown that the number of iterations by the staggered scheme with
one thousand time increments is almost the same as that required by the quasi-Newton monolithic scheme, but
its deviation from the convergent solution reaches around 20%. The computational cost for two different solution
schemes is listed in Table 1. Note that the quasi-Newton monolithic scheme is roughly 15 times more efficient than
the staggered scheme for the phase field modeling of this single edge notched tension using enhanced assumed
strain shell formulation. The significant differences in computational cost are mainly due to the greatly reduced

number of iterations in the quasi-Newton monolithic solution.

14
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i

Fig. 8. The total number of iterations versus loading displacement curves obtained from both the quasi-Newton monolithic and staggered
schemes for the phase field modeling of single edge notched tension using solid shell formulation.

Fig. 9. (a) Sketch of the single edge notched shear and (b) finite element mesh of the specimen.

6.2. Single edge notched shear

In this section, the performance of the proposed quasi-Newton monolithic scheme in phase field modeling using
solid shell element formulation is assessed in the context of mode II fracture of single edge notched specimen. The
same material properties and specimen dimensions as the previous single edge notched tension are adopted but the
shear loading is applied to the upper edges of specimen, see Fig. 9(a). The shear-dominated crack conditions lead
to crack propagation towards the right bottom part of the specimen, which is discretized with uniform solid shell
elements. The contour plots of phase field values during the crack propagation in the single edge notched shear
test are shown in Fig. 10, and it can be seen that the predicted crack trajectory agrees with results in the literature,
see [20].

The constrained force versus displacement curves obtained from both the quasi-Newton and staggered schemes
with different increment sizes are shown in Fig. 11. It can also be seen that reproducing the quasi-Newton monolithic
result with staggered scheme requires the use of 104 number of increments. When using the less number of total
ncrements, such as 103 or 2×103, the resultant curve deviates from the predicted quasi-Newton one, see Fig. 11. The
15
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Fig. 10. The contour plots of phase field values at the loading displacements 0.0085 mm, 0.010 mm, and 0.0135 mm during the crack
propagation in the single edge notched shear.

Fig. 11. The force versus displacement curves obtained from both the quasi-Newton monolithic and staggered schemes for the phase field
modeling of single edge notched shear using solid shell formulation.

Table 2
Computation times for different schemes in the single edge notched shear.

AM 103 inc. AM 2X103 inc. AM 104 inc. QN 102 inc.

CPU hours (h) 1.50 2.83 14.02 1.08

total number of iterations versus displacement curves obtained from both the quasi-Newton monolithic and staggered
schemes for the phase field modeling of single edge notched shear test using solid shell element formulation are
shown in Fig. 12. Difference of total number of iterations between the two solution schemes is smaller compared
with the previous single edge notched tension, but remains significant in this case. To obtain the same result as the
quasi-Newton monolithic solution, the required total number of time increments for the staggered scheme is still
one order larger than the former scheme. The computational cost for the two different solution schemes is listed in
Table 2. It can be concluded that the quasi-Newton monolithic scheme in the single edge notched shear is also much
more efficient as its computational cost is around ten times smaller than that required in the staggered solution with
104 number of increments.
16
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Fig. 12. The total number of iterations versus loading displacement curves obtained from both the quasi-Newton monolithic and staggered
chemes for the phase field modeling of single edge notched shear using solid shell formulation.

Fig. 13. (a) Sketch of the cylindrical structure under mixed tension and bending and (b) finite element mesh of the specimen.

6.3. Cylindrical structure under mixed tension and bending

The performance of the quasi-Newton monolithic scheme for phase field modeling using enhanced assumed strain
hell formulation is further assessed in capturing fracture events of thin-walled structure with curved geometry under
ixed tension and bending. In this section, we consider a quarter of cylindrical structure with an initial crack notch

n the middle of the specimen, see Fig. 13(a). The dimensions of the specimen are as follows: the length is equal to
40 mm, the internal radius is 100 mm, the external radius is 100.1 mm, the width of the initial notch is 3 mm and
ts length is 6 mm. To comply with the symmetric boundary conditions, the translational degrees of freedom at the

= 0 side of the specimen are constrained in the X direction, and the Y = 0 side is constrained in the translational
ertical direction Y. Besides, the translational degree of freedom in the Z direction at the back of the specimen is
onstrained, while the displacement condition δZ is applied to the front edges and the displacement condition δY

is applied to the notch edges, as shown in Fig. 13(a). The same material properties as in the previous cases are
used here. Regarding the fracture properties, the phase field length scale is set to 4 mm and fracture toughness
is 2.7 N/mm. The specimen is discretized using 8474 solid shell elements with refinement in the potential crack
propagation region, see Fig. 13(b). The contour plots of phase field and displacement during the crack propagation
are shown in Fig. 14, which agrees well with the fracture pattern predicted by an alternate formulation proposed
in [42].
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Fig. 14. The contour plots of (a) phase field and (b) axial displacement at the loading displacements δZ equal to 0.14 mm, 0.145 mm, and
0.155 mm during the crack propagation in the fracture modeling of cylindrical structure under mixed tension and bending.

The force versus displacement curves obtained from both the quasi-Newton monolithic and staggered schemes
with different increment sizes are shown in Fig. 15. As with the previous single edge notched tension and shear
cases, reproducing the exact numerical result from the quasi-Newton monolithic solution requires a large number
of time increments for the staggered scheme. For the phase field fracture modeling of cylindrical structure under
mixed tension and bending, the resultant curve obtained from the staggered scheme with 104 time increments agrees
perfectly well with that solved by quasi-Newton monolithic scheme that requires only 100 time increments. The
total number of iterations versus loading displacement curves obtained from both the quasi-Newton monolithic and
staggered schemes are shown in Fig. 16. The same conclusion as the previous two cases can be drawn that the
total number of iterations to obtain the same numerical result for the staggered scheme is 100 times larger than that
required by the quasi-Newton monolithic scheme. Computation times for the two different schemes with different
time increment sizes are shown in Table 3. It takes approximately 12 times longer using the staggered scheme
with 104 time increments than that solved by the quasi-Newton monolithic scheme. It should be pointed out that
the quasi-Newton scheme is very robust and efficient for the phase field modeling with solid shell formulation
considering both EAS and ANS compared with the conventional Newton solution schemes.

6.4. Phase field fatigue modeling using solid shell formulation

In this section, the quasi-Newton monolithic scheme for phase field modeling with solid shell formulation is

employed to address fatigue problems. The framework presented in [27] has been adopted and implemented into
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Fig. 15. The force versus displacement curves obtained from both the quasi-Newton monolithic and staggered schemes for the phase field
modeling of cylindrical structure under mixed tension and bending using solid shell formulation.

Fig. 16. The total number of iterations versus displacement curves obtained from both the quasi-Newton monolithic and staggered schemes
for the phase field modeling of cylindrical structure under mixed tension and bending using solid shell formulation.

Table 3
Computation times for different schemes in the fracture modeling of cylindrical structure.

AM 103 inc. AM 2X103 inc. AM 104 inc. QN 102 inc.

CPU hours (h) 1.22 2.79 11.31 0.89

the phase field solid shell formulation. Firstly, a history variable ᾱ that governs the accumulation of fatigue is
defined and the crack propagation is driven by a fatigue function f (ᾱ), which is employed to lower the fracture
energy around the vicinity of crack. The governing equation for the phase field fracture driven by fatigue is given
by

Rd
=

∫
−2(1− d)δdΨdΩ +

∫
f (ᾱ)Gcl

[
1
2 dδd+∇Xd · ∇X(δd)

]
dΩ = 0 (43)
B0 B0 l
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Fig. 17. (a) Sketch of the single edge notched fatigue and (b) finite element mesh of specimen.

Fig. 18. Cyclic fatigue loading with equal tension and compression for the single edge notched specimen.

he history variable ᾱ should be independent of the unloading process and takes the form

ᾱ(t) =
∫ t

0
θ (αα̇)|α̇|dτ (44)

where θ (αα̇) is the Heaviside function and τ is the pseudo time. Note that the fatigue history variable ᾱ is a
calar variable depending on the loading history of material, which is defined as α = g(φ)Ψ . The function f (ᾱ)
haracterizing the relationship between the degradation of fracture energy and the number of cycles in the fatigue
oading is expressed as

f (ᾱ(t)) =
{

1 if ᾱ(t) ≤ αT
2αT

ᾱ(t)+αT
if ᾱ(t) ≥ αT

(45)

where αT is the threshold value of the fatigue variable, below which the fracture energy will not be influenced by
fatigue loading, and its expression is given by

αT =
GC

12l
(46)
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Fig. 19. The curves of crack length versus number of cycles obtained from both the quasi-Newton monolithic and staggered schemes for
the phase field fracture modeling under fatigue loading.

Table 4
Computation times for different schemes in the fatigue induced fracture modeling.

(inc. per cycle) AM 16 AM 32 AM 80 AM 200 QN 16
CPU hours (h) 1.15 1.5 5.38 8.67 1.5

The sketch of the single edge notched fatigue is shown in Fig. 17(a). The geometry and dimensions of specimen
re all the same as those of the previous single edge notched tension and shear except the shape of initial notch.
o avoid contact between the upper and lower faces during compression, a V-shaped notch is adopted here, see
ig. 17(a). The finite element mesh with refinement in the potential crack region is shown in Fig. 17(b), and the

otal number of solid shell elements is 4878. The material and fracture properties are also the same as the previous
tudy. The cyclic loading with equal tension and compression is applied to the upper surface of the specimen, and
he amplitude and cycle are 0.002 mm and 0.002 s, respectively, see Fig. 18.

The curves of crack length driven by fatigue loading versus number of cycles for quasi-Newton monolithic and
taggered schemes with different time increment sizes are shown in Fig. 19. It is clear that extremely small time
ncrement size is required for the staggered scheme so as to obtain the same result as that of the quasi-Newton

onolithic solution, and convergence rate of the staggered scheme is quite low. The curves of total iterations versus
umber of cycles for the two solution schemes in the phase field fatigue simulation are shown in Fig. 20. Results
how that the quasi-Newton solution requires almost the same number of total iterations as the staggered solution
ith 80 time increments per cycle. However, even the staggered scheme with 200 time increments per cycle cannot

eproduce the quasi-Newton monolithic solution, and obviously more increments per cycle are required, which is
omputationally too expensive. The computation times for fatigue using both staggered and quasi-Newton monolithic
chemes are listed in Table 4. Notably, the staggered solution with 200 increments per cycle requires 6 times
ore computation times than that in the quasi-Newton monolithic analysis. It can be concluded that quasi-Newton
onolithic scheme shows the tremendous advantage over the staggered scheme in computational efficiency for

atigue problems. The contour plots of phase field values in fatigue induced fracture modeling with solid shell
ormulation solved by the quasi-Newton monolithic scheme are shown in Fig. 21. As can be clearly seen, the crack
ropagation starts from the 15th cycle of fatigue loading, and it proceeds with the increase of fatigue cycles. The
ingle edge notched specimen for fatigue modeling is fully cracked at the 50th cycle.
21
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t

Fig. 20. The curves of total iterations versus number of cycles obtained from both the quasi-Newton monolithic and staggered schemes for
he phase field fracture modeling under fatigue loading.

Fig. 21. The contour plots of phase field values in fatigue modeling using solid shell element solved by the quasi-Newton monolithic scheme.

6.5. Global–local fracture modeling of thin-walled structure with curved geometry

In this section, the global–local phase field approach using solid shells is tested through the fracture modeling
of cylindrical structure with an initial notch in the center as shown in Fig. 22(a). The dimensions of this specimen
in the global level are the same as that in Section 6.3. As shown in Fig. 22(a), the global specimen is separated into
9 different blocks in total and the initial notch lies within the central block, which is chosen as the region of local

model. To save computational cost, the global model is discretized with relatively coarse mesh using the uniform
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Fig. 22. (a) Geometry and (b) finite element mesh of the global and local models in the phase field fracture submodeling of cylindrical
structure.

size of 3 mm, while to appropriately capture the crack propagation in the phase field modeling of local region, very
refined mesh is used to discretize the potential crack area around the notch of local model. Specifically, the mesh
size around the edge of local model is 3 mm, which is the same as that of global model, and characteristic mesh
size along the potential crack path is 0.8 mm, see Fig. 22(b). The continuum solid shell is chosen for the elastic
finite element analysis of global model, and phase field modeling for solid shell using quasi-Newton monolithic
scheme is subsequently employed for the analysis of refined local model. The same material properties are adopted
for the global and local models with the Young’s modulus equal to 210 GPa and the Poisson’s ratio equal to 0.3,
and both the phase field length scale and fracture toughness of local model are the same as the previous study in
Section 6.3, which are equal to 4 mm and 2.7 N/mm, respectively.

The contour plots of phase field values of local model, displacement fields of both global and local models
olved by quasi-Newton monolithic scheme at two different time points are shown in Fig. 23. The first time point
s the time increment when the crack of local model starts to propagate under the drive of the boundary conditions
nterpolated from the displacement output of global model, while the second time point is the time increment when
he local model with curved geometry is fully cracked. This global–local approach is very computationally efficient
n fracture modeling of large thin-walled structures, since only the local region of interest needs to be modeled by
hase field approach. In the global model, the degree of freedom corresponding to phase field variable is ignored,
nd thus significant computational cost can be saved. Besides, mesh in the local fracture region of interest can be
efined with more flexibility, which is very appealing for realistic application of phase field approach in fracture
odeling of large-scale structures.
To further assess the global–local phase field approach using solid shells, the above case study is extended to

he analysis of fatigue induced crack growth by applying the cyclic loading to the frontal end of global model.
he cyclic loading is characterized by the amplitude of 0.05 mm and the cycle of 0.01 s, as shown in Fig. 24.
he time duration is 1 s, and thus there are 100 cycles in total. The phase field plots of local model in the fatigue
ubmodeling solved by quasi-Newton monolithic scheme are shown in Fig. 25. It should be pointed out that the
oundary conditions of local model are obtained by the interpolation of the displacement output from the global
nite element analysis, which is subjected to cyclic loading shown in Fig. 24. In this fatigue submodeling case, the
rack of local model starts to propagate from the 40th cycle and after 28 cycles of fatigue loading, the local model
s fully cracked along the expected crack path, which further demonstrates the capability of this global–local phase

eld approach for fracture modeling.

23



Z. Liu, J. Reinoso and M. Paggi Computer Methods in Applied Mechanics and Engineering 399 (2022) 115410

7

t
s
w
t

q
m
d
c
g

Fig. 23. The contour plot of global and local displacements as well as phase field variable in the fracture submodeling of cylindrical structure
with solid shell element formulation.

Fig. 24. Cyclic fatigue loading with equal tension and compression for the global model of the cylindrical structure.

. Conclusions

In this work, a global–local phase field approach using the enhanced assumed strain solid shell formulation with
he efficient quasi-Newton monolithic solution is proposed for the numerical prediction of crack events in thin-walled
tructures at finite deformations. The EAS method for the treatment of volumetric and Poisson thickness locking
as employed through the postulation of multi-field variational framework, and the ANS method to alleviate the

ransverse shear and trapezoidal locking effects was also taken into account in the shell formulation.
With the aim of improving the computational efficiency without the sacrifice of robustness, an efficient

uasi-Newton solution scheme is implemented within the phase field solid shell formulation in a monolithic
anner, and its performance is demonstrated by comparison with the popular staggered Newton scheme through

ifferent paradigmatic boundary value problems, including single edge notched tension and shear, fracture of
ylindrical structure under mixed bending and tension, and computationally demanding fatigue induced crack
rowth. Significant computational gains of the quasi-Newton monolithic scheme can be observed in all the numerical
24
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Fig. 25. The contour plots of phase field values of local model in fatigue submodeling solved by quasi-Newton monolithic scheme.

xamples. It is also found that this scheme is very robust, capable of solving different benchmark problems of
arying complexity without convergence issues frequently occurring in the conventional monolithic Newton solution.

Besides, in case that crack growth in the local region of interest has minor effect on the global stiffness, a
pecific global–local approach in the 3D setting tailored for the phase field modeling with solid shells is proposed
o save computational cost. Coarse mesh can be adopted for the global model while the mesh of local model can
e more refined to deal with the appropriate displacement-phase field problem. The capability of this approach was
emonstrated by simulating the crack growth of cylindrical thin-walled structure under both static and fatigue cyclic
oadings, which could open up new possibilities in tackling realistic industrial problems concerning fracture events
n large-scale thin-walled structures.
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