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Abstract

We consider the ferromagnetic q-state Potts model on a finite grid with non-zero exter-
nal field and periodic boundary conditions. The system evolves according to Glauber-type
dynamics described by the Metropolis algorithm, and we focus on the low temperature
asymptotic regime. We analyze the case of negative external magnetic field. In this sce-
nario there are q−1 stable configurations and a unique metastable state. We describe the
asymptotic behavior of the first hitting time from the metastable state to the set of the
stable states as β → ∞ in probability, in expectation, and in distribution. We also identify
the exponent of the mixing time and find an upper and a lower bound for the spectral
gap. We identify the minimal gates for the transition from the metastable state to the
set of the stable states and for the transition from the metastable state to a fixed stable
state. Furthermore, we identify the tube of typical trajectories for these two transitions.
The detailed description of the energy landscape that we develop allows us to give precise
asymptotics for the expected transition time from the unique metastable state to the set
of the stable configurations.
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1 Introduction

Metastability is a phenomenon that is observed when a physical system is close to a first–order
phase transition. When a physical system lies close to its phase coexistence line, it may remain
stuck for a long time in a state which is different from the equilibrium state. The former is
known as the metastable state. After a long (random) time, the system may perform a sudden
transition from the metastable state to the stable state. When the system lies exactly on
the phase coexistence line, it is of interest to understand precisely the tunneling transition
between two or more stable states. Many models for metastable behavior have been developed
throughout the years. In these models a suitable stochastic dynamics is chosen and typically
three main issues are investigated. The first is the study of the first hitting time of the stable
state(s) for the process started in the metastable state. The second issue is the study of the
critical configurations visited by the process with probability close to one during the transition
from the metastable state to the stable state(s). The final issue is the study of the tube of
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typical paths of the process during the transition from the metastable state to the stable state(s).
When a system lies on the phase coexistence line the same three issues above are investigated
for the transition between any two stable states.

In this paper we study the metastable behavior of the q-state Potts model with non-zero
external magnetic field on a finite two-dimensional discrete torus Λ. Each site i of Λ lies a
spin with value σ(i) ∈ {1, . . . , q}, hence the q-state Potts model is an extension of the classical
Ising model from q = 2 to an arbitrary number q of spins with q > 2. To each configuration σ
is associated an energy H(σ) that depends on the ferromagnetic interaction between nearest-
neighbor spins, and on an external magnetic field h which favors to a specific spin value. We
focus on the regime of large inverse temperature β → ∞. The stochastic evolution is described
by a Glauber-type dynamics, which is a Markov chain, given by the Metropolis algorithm, that
only allows single spin flip updates. This dynamics is reversible with respect to the Gibbs
measure µβ, see (2.2).

Our analysis focuses on the case of negative external magnetic field. In this scenario there
are one metastable state and q − 1 stable states. Without loss of generality, in the metastable
configuration all spins are equal to 1. The remaining constant configurations are stable states.
We focus our attention on the transition from the metastable state to the set of stable configu-
rations and from the metastable state to some fixed stable state. When there is more than one
stable state, these transitions are quite different because there may be intermediate transitions
between different stable states.

The goal of this paper is to investigate all the three issues of metastability introduced
above for the q-state Potts model with negative external magnetic field. We focus on two
classes of transitions: from the metastable state to the set of stable states (briefly denoted
1 → X s

neg) and from the metastable state to any fixed stable state (briefly denoted 1 → s).
For both transitions, we investigate transition time, the minimal gates and the tube of typical
trajectories. Finally, we identify the prefactor of the expected transition time.

Let us now briefly describe our approach. First we prove that the only metastable configu-
ration is the configuration with all spins equal to 1. For the transition 1 → X s

neg, we are able
to obtain the expected value and distribution of the transition time. This is more complicated
for the transition 1 → s. Indeed, in this case with probability strictly positive the optimal path
visits a stable state different from s before hitting s. We prove that the energy barrier between
two stable states is strictly larger than the energy barrier between a stable state and any other
(non–stable) state. In view of this, we prove that the lower and the upper asymptotic bounds
for the transition time have different exponents, see Remark 3.1. Moreover, we characterize
the behavior of the mixing time in the low-temperature regime and give an estimate of the
spectral gap, see (3.16) and (3.17) for the formal definitions. Next, we identify the set of all
minimal gates. In particular, we prove that this set is given by those configurations in which all
spins are 1 except those, which are s ∈ {2, . . . , q}, in a quasi-square with a unit protuberance
on one of the longest sides. The process hits the set of the stable configurations in any stable
state with the same probability, thus it follows a uniform distribution over {2, . . . , q}. Using
the so-called potential theoretic approach, we give sharp estimates on the expected transition
time by computing the so-called prefactor explicitly. This requires a detailed knowledge of
the critical configurations and the configurations connected to them. Finally, we give a geo-
metric characterizationof the configurations that belong to the tube of typical paths for both
transitions.

Literature on the Potts model All grouped citations here and henceforth are in chrono-
logical order of publication. The Potts model is one of the most studied statistical physics
models, as the vast literature on the subject, both on the mathematics side and the physics
side, attests. The study of the equilibrium properties of the Potts model and their dependence
on q, have been investigated on the square lattice Z

d in [8, 7], on the triangular lattice in [9, 41]
and on the Bethe lattice in [2, 34, 38]. The mean-field version of the Potts model has been
studied in [32, 39, 40, 44, 62]. Furthermore, the tunneling behaviour for the Potts model with
zero external magnetic field has been studied in [54, 12, 49]. In this energy landscape there are
q stable states and there is not any relevant metastable state. In [54], the authors derive the
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asymptotic behavior of the first hitting time for the transition between stable configurations,
and give results in probability, in expectation and in distribution. They also characterize the
behavior of the mixing time and give a lower and an upper bound for the spectral gap. In
[12], the authors study the tunneling from a stable state to the other stable configurations and
between two stable states. In both cases, they geometrically identify the union of all minimal
gates and the tube of typical trajectories. Finally, in [49], the authors study the model in
dimensions two and three. They give a description of the so-called gateway configurations in
order to compute the prefactor. These gateway configurations are quite different from the min-
imal gates in [12]. The q-Potts model with positive external magnetic field has been studied in
[14]. In this scenario there are q− 1 multiple degenerate metastable states and a unique stable
configuration. The authors answer all the three issues of the metastability introduced above
for the transition from any metastable to the stable state.

Literature on metastability In this paper we adopt the framework known as pathwise
approach, which was initiated in 1984 by Cassandro, Galves, Olivieri, Vares in [22] and it was
further developed in [58, 59, 60] and independently in [23]. The pathwise approach requires
a detailed knowledge of the energy landscape to give quantitative answers to the three issues
of metastability in the form of ad hoc large deviations estimates. This approach was further
developed in [51, 26, 27, 55, 42, 43] by separating the study of the transition time and of
critical configurations from that of the tube of typical trajectories. Indeed, it was recognized
that the latter requires more detailed model-dependant inputs. The pathwise approach has
been used in [4, 24, 31, 50, 53, 56, 57, 60] to tackle the three issues for Ising-like models with
Glauber dynamics. Moreover, it was also used in [47, 35, 46, 3, 55, 63] to study the transition
time and the gates for Ising-like and hard-core models with Kawasaki and Glauber dynamics.
Finally, this method was applied to probabilistic cellular automata (parallel dynamics) in [25,
28, 29, 61, 33]. The so-called potential-theoretical approach exploits a suitable Dirichlet form
and spectral properties of the transition matrix to give sharp asymptotics for the hitting time.
More precisely, this method estimates the leading order of the expected value of the transition
time including its prefactor, see [19, 20, 17, 30]. The potential theoretical approach was applied
to find the prefactor for Ising-like models and the hard-core model in [6, 21, 30, 18, 36, 48, 37]
for Glauber and Kawasaki dynamics and in [52, 15] for parallel dynamics. Recently, other
approaches have been formulated in [10, 11, 45] and in [16] and they are particularly adapted
to estimate the pre-factor when dealing with the tunnelling between two or more stable states.

Outline In Section 2 we define the ferromagnetic q-state Potts model and the associated
Hamiltonian. We state our main results in Section 3. In Section 4 we analyse the energy
landscape and give the proofs of some useful model-dependent results that are used throughout
all the next sections. In Subsections 5.2 and 5.3 we give the explicit proofs of the main results
on the critical configurations and on the tube of typical paths, respectively. Finally, in Section
6 we compute the prefactor and refine the estimate on the expected transition time. We omit
thoose proofs which are technically straightforward, but nevertheless lengthy. We refer the
interested reader to [13].

2 Model description

In the q-state Potts model each spin lies on a vertex of a finite two-dimensional rectangular
lattice Λ = (V,E), where V = {0, . . . ,K−1}×{0, . . . , L−1} is the vertex set and E is the edge
set, namely the set of the pairs of vertices whose spins interact with each other. We identify
each pair of vertices lying on opposite sides of the rectangular lattice, so that we obtain a
two-dimensional torus. We denote by S the set of spin values, i.e., S := {1, . . . , q} and assume
q > 2. To each vertex v ∈ V is associated a spin value σ(v) ∈ S, and X := SV denotes the set
of spin configurations.

We denote by 1, . . . ,q ∈ X those configurations in which all the vertices have spin value
1, . . . , q, respectively.
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To each configuration σ ∈ X we associate the energy H(σ) given by

H(σ) = −J
∑

(v,w)∈E

1{σ(v)=σ(w)} + h
∑

u∈V

1{σ(u)=1}, (2.1)

where J is the coupling or interation constant and h is the negative external magnetic field. We
call h negative since there is a minus in front of H . In this paper we consider the ferromagnetic
Potts model and set J = 1.

The Gibbs measure for the q-state Potts model on Λ is a probability distribution on the
state space X given by

µβ(σ) :=
e−βHneg(σ)

Z
, (2.2)

where β > 0 is the inverse temperature and where Z :=
∑

σ′∈X e−βH(σ′).
The spin system evolves according to a Glauber-type dynamics. This dynamics is described

by a single-spin update Markov chain {Xβ
t }t∈N on the state space X with the following transi-

tion probabilities: for σ, σ′ ∈ X ,

Pβ(σ, σ
′) :=

{
Q(σ, σ′)e−β[Hneg(σ

′)−Hneg(σ)]
+

, if σ 6= σ′,

1−∑
η 6=σ Pβ(σ, η), if σ = σ′,

(2.3)

where [n]+ := max{0, n} is the positive part of n and

Q(σ, σ′) :=

{
1

q|V | , if |{v ∈ V : σ(v) 6= σ′(v)}| = 1,

0, if |{v ∈ V : σ(v) 6= σ′(v)}| > 1,
(2.4)

for any σ, σ′ ∈ X . Q is the so-called connectivity matrix and it is symmetric and irreducible,
i.e., for all σ, σ′ ∈ X , there exists a finite sequence of configurations ω1, . . . , ωn ∈ X such that
ω1 = σ, ωn = σ′ and Q(ωi, ωi+1) > 0 for i = 1, . . . , n − 1. Hence, the resulting stochastic
dynamics defined by (2.3) is reversible with respect to the Gibbs measure (2.2). The triplet
(X , H,Q) is called the energy landscape. The dynamics defined above belongs to the class
of Metropolis dynamics. In particular, at each step the update of vertex v depends on the
neighboring spins of v and on the following energy difference

Hneg(σ
v,s)−Hneg(σ) =





∑
w∼v(1{σ(v)=σ(w)} − 1{σ(w)=s})− h, if σ(v) = 1, s 6= 1,∑
w∼v(1{σ(v)=σ(w)} − 1{σ(w)=s}), if σ(v) 6= 1, s 6= 1,∑
w∼v(1{σ(v)=σ(w)} − 1{σ(w)=s}) + h, if σ(v) 6= 1, s = 1,

(2.5)

where σv,s is the configuration obtained from σ by updating the spin in the vertex v to s, i.e.,
σv,s(w) = σ(w) if w 6= v, σv,s(w) = s if w = v.

3 Main results on the q-state Potts model with negative

external magnetic field

In this section we state our main results. Note that we give the proof of the main results by
considering the condition L ≥ K ≥ 3ℓ∗, where ℓ∗ :=

⌈
2
h

⌉
is the critical length. It is possible

to extend the results to the case K > L by interchanging the role of rows and columns in the
proof.

In order to state our main results on the Potts model with Hamiltonian as in (2.1), we have
the following assumption.

Assumption 3.1. We assume that the following conditions are verified:
(i) the magnetic field h is such that 0 < h < 1;
(ii) 2/h is not integer.
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3.1 Energy landscape

The first result that we give is the identification of the set of the global minima of the Hamil-
tonian 2.1. This follows by simple algebraic calculations.

Proposition 3.1 (Identification of X s
neg). If the external magnetic field is negative, then the

set of the global minima X s
neg of the Hamiltonian (2.1) is given by X s

neg = {2, . . . ,q}.

Next, we prove that the q-state Potts model with Hamiltonian Hneg defined in (2.1) has
only one metastable state and we give an estimate of the stability level of this configuration.
Formally, we call path a finite sequence ω of configurations ω0, . . . , ωn ∈ X , n ∈ N, such that
Q(ωi, ωi+1) > 0 for i = 0, . . . , n− 1. Let Ωσ,σ′ be the set of all paths between σ and σ′. Given
a path ω = (ω0, . . . , ωn), we define the height of ω as

Φω := max
i=0,...,n

H(ωi). (3.1)

For any pair σ, σ′ ∈ X , the communication height Φ(σ, σ′) between σ and σ′ is the minimal
energy across all paths ω : σ → σ′, i.e.,

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
η∈ω

H(η). (3.2)

We define the set of optimal paths between σ, σ′ ∈ X as

Ωopt
σ,σ′ := {ω ∈ Ωσ,σ′ : max

η∈ω
H(η) = Φ(σ, σ′)}. (3.3)

For any σ ∈ X , let Iσ := {η ∈ X : H(η) < H(σ)} be the set of states with energy strictly
smaller than H(σ). We define stability level of σ the energy barrier

Vσ := Φ(σ, Iσ)−H(σ). (3.4)

If Iσ = ∅, we set Vσ := ∞. Finally, we define the set of metastable states as

Xm := {η ∈ X : Vη = max
σ∈X\X s

Vσ}. (3.5)

Furthermore, for any σ ∈ X and any ∅ 6= A ⊂ X , we set Γ(σ,A) := Φ(σ,A) −H(σ).
We refer to Figure 1 for an illustration of the 4-Potts model.
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Φneg(1,X s
neg)

Φneg(s,X s
neg\{s})

B̄1
ℓ∗−1,ℓ∗(1, 2)

B̄1
ℓ∗−1,ℓ∗(1, 4)

B̄1
ℓ∗−1,ℓ∗(1, 3)

Figure 1: Schematic picture of the energy landscape below Φneg(1,X s
neg) of the 4-state Potts

model with negative external magnetic field with S = {1, 2, 3, 4}, X s
neg = {2,3,4}. We have

not represented the cycles (valleys) that contain configurations with stability level smaller than
or equal to 2 (see Proposition 3.2).

Theorem 3.1 (Identification of Xm
neg). If the external magnetic field is negative, then Xm

neg =
{1} and

Γm
neg = Γneg(1,X s

neg) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1). (3.6)
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Proof. To prove this, we apply [26, Theorem 2.4]. The first assumption on the identification
of the communication height follows by Proposition 4.1 and Proposition 4.2. The second
assumption, the estimate of the stability level of any σ ∈ X\{1, . . . ,q}, is proved in Proposition
3.2.

In the following proposition, which we prove in Subsection 4.2, we give a uniform estimate
of the stability level for any configuration η ∈ X\{1, . . . ,q}.

Proposition 3.2 (Estimate on the stability level). If the external magnetic field is negative,
then for any η ∈ X\{1, . . . ,q}, V neg

η ≤ 2 < Γneg(1,X s
neg).

We define metastable set at level V the set of all the configurations with stability level larger
than V , i.e.,

XV := {σ ∈ X : Vσ > V }. (3.7)

Moreover, given a non-empty subset A ⊂ X and a configuration σ ∈ X , we define

τσA := inf{t > 0 : Xβ
t ∈ A} (3.8)

as the first hitting time of the subset A for the Markov chain {Xβ
t }t∈N starting from σ at time

t = 0. Exploiting the estimate of the stability level in Proposition 3.2, we obtain the following
result on a recurrence property to metastable and stable states, i.e., {1, . . . ,q}.

Theorem 3.2 (Recurrence property). If the external magnetic field is negative, then for any
σ ∈ X and for any ǫ > 0 there exists k > 0 such that for β sufficiently large

P(τσ{1,...,q} > eβ(2+ǫ)) ≤ e−ekβ

. (3.9)

Proof. Apply [51, Theorem 3.1] with V = 2 and use (3.7) and Proposition 3.2 to get
X2 = {1, . . . ,q} = X s

neg∪Xm
neg, where the last equality follows by Proposition 3.1 and Theorem

3.1.
From Theorem 3.2 follows that the function β → f(β) := P(τσ{1,...,q} > eβ(2+ǫ)) satisfies

limβ→∞
log f(β)

β = −∞ and such a function is known as super-exponentially small.

From Proposition 3.1, we have that when q > 2 the energy landscape (X , Hneg, Q) has
multiple stable states. We are interested in studying the transition from the metastable state
1 to X s

neg and also the transition from 1 to a fixed stable configuration s ∈ X s
neg. To this end,

it is useful to compare the communication energy between two different stable states and the
communication energy between the metastable state and a stable configuration. Furthermore,
for any s ∈ X s

neg in order to find the asymptotic upper bound in probability for τ1s , we estimate
the maximum energy barrier that the process started from r ∈ X s

neg\{s} has to overcome so
as to reach s (in Theorem 3.4). These are the goals of the following theorem, for whose proof
we refer to [13, Theorem 4.3].

In order to state the next result, we need some further definitions. A non-empty subset
C ⊂ X is called cycle if it is either a singleton or a connected set such that

max
σ∈C

H(σ) < H(F (∂C)). (3.10)

When C is a singleton, it is said to be a trivial cycle. Let C (X ) be the set of cycles of X .
The depth of a cycle C is given by

Γ(C) := H(F (∂C))−H(F (C)). (3.11)

If C is a trivial cycle we set Γ(C) = 0.
Given a non-empty set A ⊂ X , we denote by M(A) the collection of maximal cycles A, i.e.,
M(A) := {C ∈ C (X )| C maximal by inclusion under constraint C ⊆ A}. For any A ⊂ X , we
define the maximum depth of A as the maximum depth of a cycle contained in A, i.e.,

Γ̃(A) := max
C∈M(A)

Γ(C). (3.12)
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Φneg(1,X s
neg)

Φneg(s,X s
neg\{s}) Γneg(s,X s

neg\{s})

Γm
neg

2

1

3

B̄1
ℓ∗−1,ℓ∗(1, 3)B̄1

ℓ∗−1,ℓ∗(1, 2)

3

42

1

B̄1
ℓ∗−1,ℓ∗(1, 2) B̄1

ℓ∗−1,ℓ∗(1, 4)

B̄1
ℓ∗−1,ℓ∗(1, 3)

Figure 2: On the left, we give a side view (vertical section) of the energy landscape depicted
in Figure 1. We colour light gray the initial cycle C1

X s
neg

(Γm
neg). On the right, viewpoint from

above of the energy landscape depicted in Figure 1 cut to the energy level Φneg(1, s), for some
s ∈ X s

neg. The dashed part denotes the energy landscape whose energy value is smaller than
Φneg(1, s). The cycles whose bottom is a stable state are deeper than the cycle C1

X s
neg

(Γm
neg) of

the metastable state, hence we depict them with circles whose diameter is larger than the one
related to the metastable state 1.

In [55, Lemma 3.6] the authors give an alternative characterization of (3.12) as the maximum
initial energy barrier that the process started from a configuration η ∈ A possibly has to
overcome to exit from A, i.e., Γ̃(A) = maxη∈A Γ(η,X\A).
Finally, for any σ ∈ X , if A is a non-empty target set, we define the initial cycle for the
transition from σ to A as Cσ

A(Γ) := {σ} ∪ {η ∈ X : Φ(σ, η) −H(σ) < Γ = Φ(σ,A) −H(σ)}.
Note that if σ /∈ A, then Cσ

A(Γ) ∩ A = ∅.

Theorem 3.3. Consider the q-state Potts model on a K × L grid Λ, with periodic boundary
conditions and with negative external magnetic field. For any s ∈ X s

neg, we have

Φneg(1,X s
neg) > Φneg(s,X s

neg\{s}), (3.13)

Γneg(1,X s
neg) < Γneg(s,X s

neg\{s}), (3.14)

Γ̃neg(X\{s}) = Γneg(r,X s
neg\{r}), with r ∈ X s

neg. (3.15)

We refer to Figure 1 and Figure 2 for a schematic representation of the energy landscape
and of the quantities of Theorem 3.3 for the 4-state Potts model with negative magnetic field.

3.2 Asymptotic behavior of τ1

X s

neg

and τ1

s
and mixing time

In the following theorem we give asymptotic bounds in probability for both τ1

X s
neg

and τ1

s ,

identify the order of magnitude of the expected value of τ1

X s
neg

and prove that the asymptotic

rescaled distibution of τ1

X s
neg

is exponential. Furthermore, we also identify the mixing time and

give an upper and a lower bound for the spectral gap. Formally, let {Xβ
t }t∈N be the Markov

chain with transition probabilities (2.3) and stationary distribution (2.2). For every ǫ ∈ (0, 1),
we define the mixing time tmix

β (ǫ) by

tmix
β (ǫ) := min{n ≥ 0| max

σ∈X
||Pn

β (σ, ·) − µβ(·)||TV ≤ ǫ}, (3.16)

where the total variance distance is defined by ||ν − ν′||TV := 1
2

∑
σ∈X |ν(σ)− ν′(σ)| for every

two probability distribution ν, ν′ on X . Furthermore, we define spectral gap as

ρβ := 1− λ
(2)
β , (3.17)

where 1 = λ
(1)
β > λ

(2)
β ≥ · · · ≥ λ

(|X |)
β ≥ −1 are the eigenvalues of the matrix Pβ(σ, η))σ,η∈X .

Theorem 3.4 (Asymptotic behavior of τ1

X s
neg

and τ1

s and mixing time). If the external magnetic

field is negative, then for any s ∈ X s
neg, the following statements hold:

7



(a) for any ǫ > 0, limβ→∞ Pβ(e
β(Γm

neg−ǫ) < τ1X s
neg

< eβ(Γ
m
neg+ǫ)) = 1;

(b) for any ǫ > 0, limβ→∞ Pβ(e
β(Γm

neg−ǫ) < τ1s < eβ(Γneg(s,X
s
neg\{s})+ǫ)) = 1;

(c) limβ→∞
1
β logE[τ1X s

neg
] = Γm

neg;

(d)
τ1

Xs
neg

E[τ1

Xs
neg

]

d−→ Exp(1);

(e) for every ǫ ∈ (0, 1) and s ∈ X s
neg, limβ→∞

1
β log tmix

β (ǫ) = Γneg(s,X s
neg\{s}) and there

exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that, for any β > 0,
c1e

−βΓneg(s,X
s
neg\{s}) ≤ ρβ ≤ c2e

−βΓneg(s,X
s
neg\{s}).

Proof. Item (a) holds in view of Theorem 3.1 and [51, Theorem 4.1]. The lower bound of
item (b) follows by Theorem 3.1 and [55, Propositions 3.4], while the upper bound by (3.15) and
[55, Propositions 3.7]. Item (c) follows from Theorem 3.1 and [51, Theorem 4.9]. Lastly, item
(d), i.e., the asymptotic exponentiality of τ1X s

neg
, follows from Theorem 3.15 and [51, Theorem

4.15]. For this last item, we refer also to [55, Theorem 3.19, Example 3]. Item (e) follows by
(3.15) and by [55, Proposition 3.24].

Remark 3.1. Note that the lower and upper bounds for τ1s in item (b) have different exponents.
Indeed, the presence of a subset of the optimal paths, that the process follows with probability
strictly positive, going from 1 to s without crossing X s

neg\{s}, implies that the lower bound
is sharp. Moreover, the presence of a subset of the optimal paths going from 1 to s crossing
X s

neg\{s}, ensures that the process, with probability strictly positive, enters at least a cycle
Cr
s(Γneg(r, s)) for any given r ∈ X s

neg\{s} which is deeper than the initial cycle C1
s (Γ

m
neg). This

implies that the maximum depth of the cycles crossed by these paths is Γneg(r, s), thus the
upper is sharp. Finally, we remark that in [14, Theorem 4.3] items (a) and (b) coincide since
in that scenario there is a unique stable state.

3.3 Minimal gates for the metastable transitions

We also identify the set of minimal gates for the transition 1 → X s
neg and also for the transition

1 → s for some fixed s ∈ X s
neg. To this end, we need some further definitions. The set of

minimal saddles between σ, σ′ ∈ X is defined as

S(σ, σ′) := {ξ ∈ X : ∃ω ∈ Ωopt
σ,σ′ , ξ ∈ ω : max

η∈ω
H(η) = H(ξ)}. (3.18)

We say that η ∈ S(σ, σ′) is an essential saddle if there exists ω ∈ Ωopt
σ,σ′ such that either

• {arg maxωH} = {η} or

• {arg maxωH} ⊃ {η} and {arg maxω′H} 6⊆ {arg maxωH}\{η} for all ω′ ∈ Ωopt
σ,σ′ .

A saddle η ∈ S(σ, σ′) that is not essential is said to be unessential.
Given σ, σ′ ∈ X , we say that W(σ, σ′) is a gate for the transition from σ to σ′ if W(σ, σ′) ⊆
S(σ, σ′) and ω∩W(σ, σ′) 6= ∅ for all ω ∈ Ωopt

σ,σ′ . We say that W(σ, σ′) is a minimal gate for the
transition from σ to σ′ if it is a minimal (by inclusion) subset of S(σ, σ′) that is visited by all
optimal paths. More in detail, it is a gate and for any W ′ ⊂ W(σ, σ′) there exists ω′ ∈ Ωopt

σ,σ′

such that ω′ ∩ W ′ = ∅. We denote by G = G(σ, σ′) the union of all minimal gates for the
transition σ → σ′.
In our scenario, we define

Wneg(1,X s
neg) :=

q⋃

t=2

B̄1
ℓ∗−1,ℓ∗(1, t) and W ′

neg(1,X s
neg) :=

q⋃

t=2

B̄1
ℓ∗,ℓ∗−1(1, t), (3.19)

where B̄l
a,b(r, s) denotes the set of those configurations in which all the vertices have spins r,

except those, which have spins s, in a rectangle a × b with a bar 1 × l adjacent to one of the
sides of length b, with 1 ≤ l ≤ b− 1.
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We refer to Figure 16(b)–(c) for an example of configurations belonging respectively to W ′
neg(1,X s

neg)
and to Wneg(1,X s

neg). These sets are investigated in Subsection 5.1 where we study the gate
for the transition from the metastable state 1 to X s

neg. Similarly to the Ising Model, see for
instance [51, Section 5.4], [60, Section 7.4], if the Assumption 3.1(ii) holds, then there exists
only one minimal gate.

Theorem 3.5 (Minimal gates for the transition 1 → X s
neg). If the external magnetic field is

negative, then Wneg(1,X s
neg) is a minimal gate for the transition from the metastable state 1

to X s
neg. Moreover,

Gneg(1,X s
neg) = Wneg(1,X s

neg). (3.20)

The proof of the theorem above is given in Subsection 5.2. We refer to Figures 1 and 2 for
illustrations of the set Wneg(1,X s

neg) when q = 4.
Finally, in Theorem 3.6 we establish the set of all minimal gates for the transition from

the metastable state 1 to a fixed stable configuration s ∈ X s
neg. In particular, starting from 1

the process may visit some stable states in X s
neg\{s} before hitting s. Thanks to Theorem 3.3,

we get that along any optimal path between two different stable states the process only visits
states with energy value lower than Φneg(1,X s

neg) and so it does not visit any other gate. See for
instance Figure 1 and Figure 2, where we indicate with a dashed gray line the communication
energy among the stable states.

Theorem 3.6 (Minimal gates for the transition 1 → s ∈ X s
neg). If the external magnetic

field is negative, then for any s ∈ X s
neg, Wneg(1, s) ≡ Wneg(1,X s

neg) is a minimal gate for the
transition from the metastable state 1 to s and

Gneg(1, s) ≡ Gneg(1,X s
neg). (3.21)

We defer to Subsection 5.2 for the proof of the theorem above. Finally, in the next corollary
we prove that in both the transitions, i.e., 1 → X s

neg and 1 → s ∈ X s
neg, the process typically

intersects the gates.

Corollary 3.1. If the external magnetic field is negative, then for any s ∈ X s
neg,

(a) limβ→∞ Pβ(τ
1
Wneg(1,X s

neg)
< τ1X s

neg
) = 1;

(b) limβ→∞ Pβ(τ
1
Wneg(1,s)

< τ1s ) = 1.

Proof. The corollary follows from Theorems 3.5 and 3.6 and from [51, Theorem 5.4].

Finally, we remark that in [14, Theorem 4.5] the authors identify the union of all minimal
gates for the metastable transition for the q-Potts model with positive external magnetic field.
These minimal gates have the same geometric definition of those of our scenario, the main
difference is that in the positive scenario the spins inside the quasi-square union a unit protu-
berance and in the sea are fixed, while in the negative case we have to take the union on all
t ∈ S\{1}, see (3.19).

3.4 Sharp estimate on the mean transition time

Exploiting the model-dependent results given in Subsections 3.1 and 3.3 and some model-
independent results by [19, 17] and from [5], in Subsection 6.1 we prove the following theorem
in which we refine the result of Theorem 3.4(c) by identifying the precise scaling of the prefactor
multipling the exponential.

Theorem 3.7 (Mean crossover time). If the external magnetic field is negative, then there
exists a constant Kneg ∈ (0,∞) such that

lim
β→∞

e−βΓm
negE1(τX s

neg
) = Kneg. (3.22)

9



In particular, the constant Kneg is the so-called prefactor and it is given by

Kneg =
3

4

1

2ℓ∗ − 1

1

q − 1

1

|Λ| . (3.23)

Remark 3.2. In order to prove Theorem 3.4(c) the only model-independent inputs are the
identification of Xm

neg, the recurrence property given in Theorem 3.2, and the computation
of the energy barrier Γneg(1,X s

neg) for the transition from the metastable state to the stable
configurations, see (3.6). On the other hand, in order to prove Theorem 3.7 we need of a more
accurate knowledge of the energy landscape. Indeed, it is necessary to know the geometrical
identification of the critical configurations and of the configurations connected to them by a
single step of the dynamics for the transition 1 → X s

neg, that we give in Theorem 3.5.

3.5 Tube of typical trajectories of the metastable transitions

In this subsection we give the results on the tube of typical trajectories TX s
neg

(1) and Ts(1)
for both the transitions 1 → X s

neg and 1 → s for any fixed s ∈ X s
neg. The tube TX s

neg
(1) (resp.

Ts(1)) can be characterized, and indeed identified, by only relying on the geometrical structure
of the energy landscape. Once this is done it follows from standard model-independent consid-
erations [60, 55] that the dynamics leaves TX s

neg
(1) (resp. Ts(1)) through its non-principal

boundary before reaching 1 with exponentially small probability. In particular, the non-
principal boundary are all those configurations on the boundary that do not minimize the
energy. From this follows that TX s

neg
(1) (resp. Ts(1)) contains those configurations which are

visited with positive probability before hitting X s
neg (resp. s) as β → ∞. Formally, for any

C ∈ C (X ), we define as

B(C) :=
{

F (∂C) if C is a non-trivial cycle,

{η ∈ ∂C : H(η) < H(σ)} if C = {σ} is a trivial cycle,
(3.24)

the principal boundary of C. Furthermore, let ∂npC be the non-principal boundary of C, i.e.,
∂npC := ∂C\B(C).

The tube is defined in terms of unions of B̄l
a,b(r, s), defined below Theorem 3.19, and of the

following sets.
- R̄a,b(r, s) denotes the set of those configurations in which all the vertices have spins equal to
r, except those, which have spins s, in a rectangle a×b. Note that when either a = L or b = K,
R̄a,b(r, s) contains those configurations which have an r-strip and an s-strip. In particular, a
configuration σ has an s-strip if it has a cluster of spins s which is a rectangle that wraps
around Λ. For any r, s ∈ S, we say that an s-strip is adjacent to an r-strip if they are at lattice
distance one from each other. For instance, in Figure 11(a) there are depicted vertical adjacent
strips.
- For any s 6= 1, we define

S
v
neg(1, s):={σ∈X (1, s):σ has a vertical s-strip of thickness at least ℓ∗ with

possibly a bar of length l=1,...,K on one of the two vertical edges}, (3.25)

S
h
neg(1, s):={σ∈X (1, s):σ has a horizontal s-strip of thickness at least ℓ∗

with possibly a bar of length l=1,...,Lon one of the two horizontal edges}, (3.26)

where X (r, s) = {σ ∈ X : σ(v) ∈ {r, s} for any v ∈ V }.

Theorem 3.8 (Tube of typical paths for the transition 1 → X s
neg). If the external magnetic
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field is negative, then the tube of typical trajectories for the transition 1 → X s
neg is

TX s
neg

(1):=

q⋃

s=2

[ ℓ∗−1⋃

ℓ=1

R̄ℓ−1,ℓ(1, s)∪
ℓ∗⋃

ℓ=1

R̄ℓ−1,ℓ−1(1, s)∪
ℓ∗−1⋃

ℓ=1

ℓ−1⋃

l=1

B̄l
ℓ−1,ℓ(1, s)∪

ℓ∗⋃

ℓ=1

ℓ−2⋃

l=1

B̄l
ℓ−1,ℓ−1(1, s)∪B̄1

ℓ∗−1,ℓ∗(1, s)∪
K−1⋃

ℓ1=ℓ∗

K−1⋃

ℓ2=ℓ∗

R̄ℓ1,ℓ2(1, s)∪
K−1⋃

ℓ1=ℓ∗

K−1⋃

ℓ2=ℓ∗

ℓ2−1⋃

l=1

B̄l
ℓ1,ℓ2(1, s)

∪
L−1⋃

ℓ1=ℓ∗

L−1⋃

ℓ2=ℓ∗

R̄ℓ1,ℓ2(1, s)∪
L−1⋃

ℓ1=ℓ∗

L−1⋃

ℓ2=ℓ∗

ℓ2−1⋃

l=1

B̄l
ℓ1,ℓ2(1, s)∪S

v
neg(1, s) ∪ S

h
neg(1, s)

]
. (3.27)

Furthermore, there exists k > 0 such that for β sufficiently large

Pβ(τ
1
∂npTXs

neg
(1) ≤ τ1X s

neg
) ≤ e−kβ . (3.28)

Note that in [14, Theorem 4.7] the authors identify the tube of typical trajectories for the
metastable transition for the q-Potts model with positive external magnetic field. This tube
has the a similar geometric definition of the tube (3.27) of our scenario, the main difference is
that in this negative scenario we have to take the union on all t ∈ S\{1}.

Remark 3.3. In [12] the authors study the q-state Potts model with zero external magnetic
field. Since in this energy landscape there are q stable configurations and no relevant metastable
states, the authors study the transitions between stable states. More precisely, they identify
the union of all minimal gates and the tube of typical paths for the transition between two
fixed stable states and these results hold also in the current scenario for the transition r → s

for any r, s ∈ X s
neg, r 6= s. Indeed, the communication height computed in Subsection 4.3 is

equal to the one given in [54] and its value is strictly lower than Φneg(1,X s
neg) as we prove in

Theorem 3.3. It follows that for any r, s ∈ X s
neg, r 6= s, any optimal path for the transition

r → s does not visit the metastable state 1 and for this type of transition the identification of
the union of all minimal gates and of the tube of typical trajectories is given by [12, Theorem
3.6] and [12, Theorem 4.3], respectively.

Using Remark 3.3, the tube of typical paths for the transition from the metastable to any
fixed stable state is

Ts(1) := TX s
neg

(1) ∪
⋃

r∈X s
neg\{s}

T
zero
s (r), (3.29)

where T
zero
s (r) is given by [12, Equation 4.23].

Theorem 3.9 (Tube of typical paths for the transition 1 → s). If the external magnetic field
is negative, then for any s ∈ X s

neg the tube of typical trajectories for the transition 1 → s is by
(3.29). Furthermore, there exists k > 0 such that for β sufficiently large

Pβ(τ
1
∂npTs(1)

≤ τ1s ) ≤ e−kβ . (3.30)

We defer the explicit proof of Theorem 3.30 in Subsection 5.3.

4 Energy landscape analysis

We devote this section to analyse the energy landscape of the q-state Potts model with negative
external magnetic field.

4.1 Disagreeing edges, bridges and crosses

In the following list we introduce the notions of disagreeing edges, bridges and crosses of a
Potts configuration on a grid-graph Λ. These definitions are taken from [54].

11



c2 c10

(a) Two vertical bridges

on columns c2 and c10.

r2

(b) An horizontal bridge
on row r2.

r6

c4

(c) A cross on column c4

and on row r6.

Figure 3: Example of configurations on a 8 × 11 grid graph displaying a vertical s-bridge (a),
a horizontal s-bridge (b) and a s-cross (c). We color black the spins s.

- We call e = (v, w) ∈ E a disagreeing edge if it connects two vertices with different spin values,
i.e., σ(v) 6= σ(w).
- For any i = 0, . . . ,K − 1, let

dri(σ) :=
∑

(v,w)∈ri

1{σ(v) 6=σ(w)} (4.1)

be the total number of disagreeing horizontal edges on row ri. Furthermore, for any j =
0, . . . , L− 1 let

dcj (σ) :=
∑

(v,w)∈cj

1{σ(v) 6=σ(w)}, (4.2)

be the total number of disagreeing vertical edges on column cj .
- We define dh(σ) as the total number of disagreeing horizontal edges and dv(σ) as the total
number of disagreeing vertical edges.
Since we may partition the edge set E in the two subsets of horizontal edges Eh and of vertical
edges Ev, such that Eh ∩Ev = ∅, the total number of disagreeing edges is given by

∑

(v,w)∈Ev

1{σ(v) 6=σ(w)} +
∑

(v,w)∈Eh

1{σ(v) 6=σ(w)} = dv(σ) + dh(σ). (4.3)

- We say that σ has a horizontal bridge on row r if dr(σ) = 0.
- We say that σ has a vertical bridge on column c if dc(σ) = 0.
- We say that σ ∈ X has a cross if it has at least one vertical and one horizontal bridge. If σ
has a bridge of spins s ∈ S, then we say that σ has an s-bridge. Similarly, if σ has a cross of
spins s, we say that σ has an s-cross.
- For any s ∈ S, the total number of s-bridges of the configuration σ is denoted by Bs(σ). Note
that if a configuration σ ∈ X has an s-cross, then Bs(σ) is at least 2.

4.2 Metastable state and stability level of the metastable state

In this subsection we find the unique metastable state and we compute its stability level.
Furthermore, we find the set of the local minima and the set of the stable plateaux of the
Hamiltonian (2.1). First we define a reference path from 1 to s, for any s ∈ X s

neg. The energy
value of any configuration σ in this path, using (4.3) can be computed as

Hneg(σ)−Hneg(1) = dv(σ) + dh(σ)− h
∑

u∈V

1{σ(u) 6=1}, (4.4)

We say that a path ω ∈ Ωσ,σ′ is the concatenation of the L paths ω(i) = (ω
(i)
0 , . . . , ω

(i)
ni ), for

some ni ∈ N, i = 1, . . . , L if ω = (ω
(1)
0 = σ, . . . , ω

(1)
n1 , ω

(2)
0 , . . . , ω

(2)
n2 , . . . , ω

(L)
0 , . . . , ω

(L)
nL = σ′).

Definition 4.1 (Reference path). For any s ∈ X s
neg, we define a reference path ω̂ : 1 → s,

ω̂ := (ω̂0, . . . , ω̂KL) as the concatenation of the two paths ω̂(1) := (1 = ω̂0, . . . , ω̂(K−1)2) and

ω̂(2) := (ω̂(K−1)2+1, . . . , s = ω̂KL). The path ω̂(1) is defined as follows. We set ω̂0 := 1. Then,

we set ω̂1 := ω̂
(i,j),s
0 where (i, j) is any vertex in Λ. Sequentially, we flip clockwise from 1 to
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s all the vertices that sourround (i, j) in order to construct a 3 × 3 square. We iterate this
construction until we get ω̂(K−1)2 ∈ R̄K−1,K−1(1, s). See Figure 4(a). The path ω̂(2) is defined
as follows. Without loss of generality, assume that ω̂(K−1)2 ∈ R̄K−1,K−1(1, s) has the cluster of
spin s in the first c0, . . . , cK−2 columns, see Figure 4(b). We define ω̂(K−1)2+1, . . . , ω̂(K−1)2+K−1

as a sequence of configurations in which the cluster of spins s grows gradually by flipping the
spins 1 on the vertices (K − 1, j), for j = 0, . . . ,K − 2. Thus, ω̂(K−1)2+K−1 ∈ R̄K−1,K(1, s)
as depicted in Figure 4(c). Finally, we define the configurations ω̂(K−1)2+K , . . . , ω̂KL as a
sequence of states in which the cluster of spin s grows gradually column by column. More
precisely, starting from ω̂(K−1)2+K−1 ∈ R̄K−1,K(1, s), ω̂(2) passes through configurations in
which the spins 1 on columns cK , . . . , cL−1 become s. The procedure ends with ω̂KL = s. Note
that the energy value of the configurations in the reference path is independent of the first
flipped spin (i, j).

v

(a) (b) (c)

Figure 4: (a) First steps of path ω̂(2) on a 10 × 12 grid Λ starting from the vertex v = (3, 3).
We color white the vertices with spin 1, black those with spin s. The arrow indicates the
order in which the spins are flipped from 1 to s. (b) Illustration of ω̂(K−1)2 . (c) Illustration of
ω̂(K−1)2+K−1.

Next we show that any configuration belonging to
⋃q

t=2 R̄ℓ∗−1,ℓ∗(1, t) is connected to the
metastable configuration 1 by a path that does not overcome the energy value 4ℓ∗ − h(ℓ∗(ℓ∗ −
1) + 1) +Hneg(1). For any s ∈ S, we define as

Ns(σ) := |{v ∈ V : σ(v) = s}| (4.5)

the number of vertices with spin s in σ ∈ X .

Lemma 4.1. If the external magnetic field is negative, then for any σ ∈ ⋃q
t=2 R̄ℓ∗−1,ℓ∗(1, t)

there exists a path γ : σ → 1 such that the maximum energy along γ is bounded as

max
ξ∈γ

Hneg(ξ) < 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) +Hneg(1). (4.6)

Proof. Let σ ∈
⋃q

t=2 R̄ℓ∗−1,ℓ∗(1, t). Hence, there exists s ∈ {2, . . . , q} such that σ ∈
R̄ℓ∗−1,ℓ∗(1, s). Consider the reference path of Definition 4.1 and note that for any i = 0, . . . ,KL,
Ns(ω̂i) = i. The reference path may be constructed in such a way that ω̂ℓ∗(ℓ∗−1) := σ.
Let γ := (ω̂ℓ∗(ℓ∗−1) = σ, ω̂ℓ∗(ℓ∗−1)−1, . . . , ω̂1, ω̂0 = 1) be the time reversal of the subpath
(ω̂0, . . . , ω̂ℓ∗(ℓ∗−1)) of ω̂. We claim that maxξ∈γ Hneg(ξ) < 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) + Hneg(1).
Indeed, note that ω̂ℓ∗(ℓ∗−1) = σ, . . . , ω̂1 is a sequence of configurations in which all the spins are
equal to 1 except those, which are s, in either a quasi-square ℓ×(ℓ−1) or a square (ℓ−1)×(ℓ−1)
possibly with one of the longest sides not completely filled. For any ℓ = ℓ∗, . . . , 2, the path γ
moves from R̄ℓ,ℓ−1(1, s) to R̄ℓ−1,ℓ−1(1, s) by flipping the ℓ−1 spins s on one of the shortest sides
of the s-cluster. In particular, ω̂ℓ(ℓ−1)−1 is obtained by ω̂ℓ(ℓ−1) ∈ R̄ℓ,ℓ−1(1, s) by flipping the
spin on a corner of the quasi-square from s to 1 and this increases the energy by h. The next
ℓ− 3 steps are defined by flipping the spins on the incomplete shortest side from s to 1 where
each step increases the energy by h. Finally, ω̂(ℓ−1)2 ∈ R̄ℓ−1,ℓ−1(1, s) is defined by flipping the
last spin s to 1 and this decreases the energy by 2− h. For any ℓ = ℓ∗, . . . , 2, h(ℓ− 2) < 2− h.
Indeed, ℓ∗ =

⌈
2
h

⌉
and from Assumption 3.1, we have 2 − h > h(ℓ∗ − 2) ≥ h(ℓ − 2). Hence,

maxξ∈γ Hneg(ξ) = Hneg(σ) = 4ℓ∗−h(ℓ∗(ℓ∗−1)+1)−(2−h)+Hneg(1) and the claim is verified.

In the next lemma we prove that any configuration in
⋃q

t=2 B̄
2
ℓ∗−1,ℓ∗(1, t) is connected to

the stable set X s
neg by a path that does not overcome the energy value 4ℓ∗−h(ℓ∗(ℓ∗− 1)+1)+

Hneg(1).
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Lemma 4.2. If the external magnetic field is negative, then for any σ ∈ B̄2
ℓ∗−1,ℓ∗(1, s), then

there exists a path γ : σ → s such that the maximum energy along γ is bounded as

max
ξ∈γ

Hneg(ξ) < 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) +Hneg(1). (4.7)

Proof. Consider the reference path of Definition 4.1 and assume that this path is constructed
in such a way that ω̂ℓ∗(ℓ∗−1)+2 := σ. Let γ := (ω̂ℓ∗(ℓ∗−1)+2 = σ, ω̂ℓ∗(ℓ∗−1)+3, . . . , ω̂KL−1, s). We
claim that maxξ∈γ Hneg(ξ) < 4ℓ∗−h(ℓ∗(ℓ∗−1)+1)+Hneg(1). Since γ is defined as a subpath of
ω̂, we prove this claim by showing that maxξ∈ω̂ Hneg(ξ) = 4ℓ∗−h(ℓ∗(ℓ∗−1)+1)+Hneg(1) and
that γ does not intersect the unique configuration in which this maximum is reached. Indeed,
for ℓ ≤ K − 2, note that the path ω̂(1) is defined by a sequence of configurations in which all
the spins are equal to 1 except those, which are s, in either a square ℓ × ℓ or a quasi-square
ℓ × (ℓ − 1) possibly with one of the longest sides not completely filled. For some ℓ ≤ K − 2,
if ω̂ℓ(ℓ−1) ∈ R̄ℓ−1,ℓ(1, s) and ω̂ℓ2 ∈ R̄ℓ,ℓ(1, s), then maxσ∈{ω̂ℓ(ℓ−1),ω̂ℓ(ℓ−1)+1,...,ω̂ℓ2}

Hneg(σ) =

Hneg(ω̂ℓ(ℓ−1)+1) = 4ℓ−hℓ2+hℓ−h+Hneg(1). Otherwise, if ω̂j := ω̂ℓ2 ∈ R̄ℓ,ℓ(1, s) and ω̂ℓ(ℓ+1) ∈
R̄ℓ,ℓ+1(1, s), then maxσ∈{ω̂ℓ2 ,ω̂ℓ2+1,...,ω̂ℓ(ℓ+1)} Hneg(σ) = Hneg(ω̂ℓ2+1) = 4ℓ−hℓ2+2−h+Hneg(1).

Let k∗ := ℓ∗(ℓ∗−1)+1. By recalling the condition 2
h /∈ N of Assumption 3.1(ii) and by studying

the maxima of Hneg as a function of ℓ, we have arg maxω̂(1)Hneg = {ω̂k∗}.
Let us now study the maximum energy value reached along ω̂(2). This path is constructed by
a sequence of configurations whose clusters of spins s wrap around Λ. Moreover the maximum
of the energy is reached by the first configuration, see Figure 5 for a qualitative representation
of the energy of the configurations in ω̂(2). Indeed, using (2.5), we have

Hneg(ω̂(K−1)2+j)−Hneg(ω̂(K−1)2+j−1) = −2− h, j = 2, . . . ,K − 1,

Hneg(ω̂(K−1)2+K)−Hneg(ω̂(K−1)2+K−1) = 2− h,

Hneg(ω̂(K−1)2+j)−Hneg(ω̂(K−1)2+j−1) = −h, j = K + 1, . . . , 2K − 1,

Hneg(ω̂(K−1)2+2K)−Hneg(ω̂(K−1)2+2K−1) = 2− h.

Using K ≥ 3ℓ∗ > 3, note that Hneg(ω̂(K−1)2+1)−Hneg(ω̂(K−1)2+K) = 2K − 6 + h(K − 1) > 0.
Moreover, Hneg(ω̂(K−1)2+K)−Hneg(ω̂(K−1)2+2K) = 2K+2−h((K−1)2+K)−(2K+2−h((K−
1)2 + 2K)) = hK > 0. By iterating the analysis of the energy gap between two consecutive
configurations along ω̂(2), we conclude that arg maxω̂(2)Hneg = {ω̂(K−1)2+1}. In particular,

Hneg(ω̂(K−1)2+1) < Hneg(ω̂k∗) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) +Hneg(1) (4.8)

and, we refer to to Appendix A.1 for the explicit calculation. Hence, arg maxω̂Hneg = {ω̂k∗}.
Since γ is defined as the subpath of ω̂ which goes from ω̂ℓ∗(ℓ∗−1)+2 = σ to s, γ does not visit
the configuration ω̂k∗ . Hence, maxξ∈γ Hneg(ξ) < 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) + Hneg(1) and the
claim is proved.

Hneg(ω̂(K−1)2+1)

Hneg(ω̂(K−1)2+K−1)
Hneg(ω̂(K−1)2+K)

Hneg(ω̂(K−1)2+2K−1)
Hneg(ω̂(K−1)2+2K)

Hneg(s)

Figure 5: Qualitative illustration of the energy of the configurations belonging to ω̂(2).

Next, we give an upper and a lower bound for Φneg(1,X s
neg)−Hneg(1).

Proposition 4.1 (Upper bound for the communication height). If the external magnetic field
is negative, then

Φneg(1,X s
neg)−Hneg(1) ≤ 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1). (4.9)
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Proof. The upper bound (4.9) follows by the proof of Lemma 4.2, where we proved that
maxξ∈ω̂ Hneg(ξ) = Hneg(ω̂k∗) = 4ℓ∗−h(ℓ∗(ℓ∗− 1)+1)+Hneg(1) where ω̂ is the reference path
of Definition 4.1.

Proposition 4.2 (Lower bound for the communication height). If the external magnetic field
is negative, then

Φneg(1,X s
neg)−Hneg(1) ≥ 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1). (4.10)

Proof. For any σ ∈ X , we set N(σ) :=
∑q

t=2 Nt(σ), where Nt(σ) is defined in (4.5).
Moreover, for all k = 1, . . . , |V |, we define Vk := {σ ∈ X : N(σ) = k}. Note that every path
ω ∈ Ω1,X s

neg
has to cross Vk for every k = 0, . . . , |V |. In particular it has to intersect the set

Vk∗ with k∗ := ℓ∗(ℓ∗ − 1) + 1. We prove the lower bound given in (4.10) by computing that
Hneg(F (Vk∗ )) = 4ℓ∗− h(ℓ∗(ℓ∗ − 1)+ 1)+Hneg(1). Note that beacuse of the definition of Hneg

and of (4.4), the presence of disagreeing edges increases the energy. Thus, in order to describe
the bottom F (Vk∗) we have to consider those configurations in which the k∗ spins different
from 1 belong to a unique s-cluster for some s 6= 1 inside a sea of spins 1. Hence, consider the
reference path ω̂ of Definition 4.1 whose configurations satisfy this characterization. Note that
ω̂ ∩ Vk∗ = {ω̂k∗} with ω̂ ∈ B̄1

ℓ∗−1,ℓ∗(1, s). In particular,

Hneg(ω̂k∗)−Hneg(1) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1), (4.11)

where 4ℓ∗ represents the perimeter of the cluster of spins different from 1. Our goal is to
prove that it is not possible to find a configuration with k∗ spins different from 1 in a cluster
of perimeter smaller than 4ℓ∗. Since the perimeter is an even integer, we assume that there
exists a configuration belonging in Vk∗ such that for some s ∈ S\{1} the s-cluster has perimeter
4ℓ∗−2. Since 4ℓ∗−2 < 4

√
k∗, where

√
k∗ is the side-length of the square

√
k∗×

√
k∗ of minimal

perimeter among those of area k∗ in R
2, and since the square is the figure that minimizes the

perimeter for a given area, we conclude that there does not exist a configuration with k∗ spins
different from 1 in a cluster with perimeter strictly smaller than 4ℓ∗. Hence, ω̂k∗ ∈ F (Vk∗ )
and (4.10) is satisfied thanks to (4.11).

Lemma 4.3. If the external magnetic field is negative, then any ω ∈ Ωopt
1,X s

neg
is such that

ω ∩⋃q
t=2 R̄ℓ∗−1,ℓ∗(1, t) 6= ∅.

Proof. At the beginning of the proof of Proposition 4.2 we note that any path ω : 1 → X s
neg

has to visit Vk at least once for every k = 0, . . . , |V |. Consider Vℓ∗(ℓ∗−1). From [1, Theorem 2.6]
we get the unique configuration of minimal energy in Vℓ∗(ℓ∗−1) is the one in which all spins are
1 except those that are s, for some s ∈ {2, . . . , q}, in a quasi-square ℓ∗× (ℓ∗ − 1). In particular,
this configuration has energy Φneg(1,X s

neg)− (2− h) = 4ℓ∗ − 2− hℓ∗(ℓ∗ − 1) +Hneg(1). Note
that 4ℓ∗ − 2 is the perimeter of its s-cluster, s 6= 1. Since the perimeter is an even integer,
we have that the other configurations belonging to Vℓ∗(ℓ∗−1) have energy that is larger than
or equal to 4ℓ∗ − hℓ∗(ℓ∗ − 1) + Hneg(1). Thus, they are not visited by any optimal path.
Indeed, 4ℓ∗ − hℓ∗(ℓ∗ − 1) + Hneg(1) > Φneg(1,X s

neg). Hence, we conclude that every optimal

path intersects Vℓ∗(ℓ∗−1) in a configuration belonging to
⋃q

t=2 R̄ℓ∗−1,ℓ∗(1, t).
Let σ ∈ X and let v ∈ V . We define the tile centered in v, denoted by v-tile, as the set of

five sites consisting of v and its four nearest neighbors. See for instance Figure 6. A v-tile is
said to be stable for σ if by flipping the spin on vertex v from σ(v) to any s ∈ S the energy
difference Hneg(σ

v,s)−Hneg(σ) is greater than or equal to zero.
Our next aim is to prove a recurrence property in Proposition 3.2, which will be useful to
prove that 1 ∈ Xm

neg as stated in Theorem 3.1. In order to do this, in Lemma 4.4 for any
configuration σ ∈ X we describe all the possible stable v-tiles induced by the Hamiltonian (2.1)
and we exploit this result to prove Proposition 4.3. For any σ ∈ X , v ∈ V and s ∈ S, we define
ns(v) as the number of nearest neighbors to v with spin s in σ, i.e.,

ns(v) := |{w ∈ V : w ∼ v, σ(w) = s}|. (4.12)
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Lemma 4.4 (Characterization of stable v-tiles for a configuration σ). Let σ ∈ X and let v ∈ V .
If the external magnetic field is negative, then the tile centered in v is stable for σ if and only
if it satisfies one of the following conditions.

(1) If σ(v) = s 6= 1, v has at least two nearest neighbors with spin s, see Figure 6(a),(c),(d),(f)–
(i),(m)–(o), (q), or one nearest neighbor s and three nearest neighbors with spin r, t, z ∈
S\{s}, different from each other, see Figure 6(r)–(s).

(2) If σ(v) = 1, v has either at least three nearest neighbors with spin 1 or two nearest
neighbors with spin 1 and two nearest neighbors with spin r, s 6= 1, r 6= s, see Figure
6(b),(e),(l), (p).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

s s s s s s s
s s s

s s s s s s s s s s s s s s1 1 1 1 1 1
1 1 1 1

1 1 1s r r r r r

r t

(l) (m) (n) (o) (p) (q) (r) (s)

1 1 1 1 1 1 1 1
1

1
s s s s s s s s s s s

s s s s s s s

r r r r r r r
rt t tz

Figure 6: Stable tiles centered in any v ∈ V for a q-Potts configuration σ on Λ for any
r, s, t, z ∈ S\{1} different from each other. The tiles are depicted up to a rotation of απ

2 ,
α ∈ Z.

In particular, if σ(v) = s, then

Hneg(σ
v,r)−Hneg(σ) = ns(v) − nr(v) − h1{s=1} + h1{r=1}. (4.13)

Proof. Let σ ∈ X and let v ∈ V . Assume that σ(v) = s, for some s ∈ S. To find if a v-tile
is stable for σ we reduce ourselves to flip the spin on vertex v from s to a spin r such that v
has at least one nearest neighbor r, i.e., nr(v) > 1. Indeed, otherwise the energy difference
(2.5) is for sure strictly positive. Let us divide the proof in several cases.
Case 1. Assume that ns(v) = 0 in σ. Then the corresponding v-tile is not stable for σ. Indeed,
in view of the energy difference (2.5), if r 6= 1, by flipping the spin on vertex v from s to r we
have

Hneg(σ
v,r)−Hneg(σ) = −nr(v) − h1{s=1}. (4.14)

Furthermore, for any s 6= 1, by flipping the spin on vertex v from s to 1 we have

Hneg(σ
v,1)−Hneg(σ) = −n1(v) + h. (4.15)

Hence, for any s ∈ S, if v has spin s and it has four nearest neighbors with spins different from
s, i.e., ns(v) = 0, then the tile centered in v is not stable for σ.
Case 2. Assume that v ∈ V has three nearest neighbors with spin value different from s in σ,
i.e., ns(v) = 1. Then, in view of the energy difference (2.5), for any s ∈ S and r /∈ {1, s}, by
flipping the spin on vertex v from s to r we have

Hneg(σ
v,r)−Hneg(σ) = 1− nr(v)− h1{s=1}. (4.16)

Moreover, by flipping the spin on vertex v from s 6= 1 to 1 we have

Hneg(σ
v,1)−Hneg(σ) = 1− n1(v) + h. (4.17)

Hence, for any s ∈ S, if v has only one nearest neighbor with spin s, a tile centered in v is
stable for σ only if s 6= 1 and v has nearest neighbors with spins different from each other, see
Figure 6(r) and (s).
Case 3. Assume that v ∈ V has two nearest neighbors with spin s, i.e., ns(v) = 2. Then, in
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view of the energy difference (2.5), for any s ∈ S and r /∈ {1, s}, by flipping the spin on vertex
v from s to r we have

Hneg(σ
v,r)−Hneg(σ) = 2− nr(v)− h1{s=1}. (4.18)

Moreover, by flipping the spin on vertex v from s 6= 1 to 1 we get

Hneg(σ
v,1)−Hneg(σ) = 2− n1(v) + h. (4.19)

Hence, for any s ∈ S, if v has two nearest neighbors with spin s in σ, a v-tile is stable for σ if
v has the other two nearest neighbors with different spin, see Figure 6(m)–(q). Furthermore,
if s 6= 1, a v-tile is stable for σ even if v has two nearest neighbors with spin s and the other
two nearest neighbors with the same spin, see Figure 6(f)–(i).
Case 4. Assume that v ∈ V has three nearest neighbors with spin s in σ, i.e., ns(v) = 3, and
that the fourth nearest neighbor has spin r 6= s. Then, for any s ∈ S and r /∈ {1, s}, we have

Hneg(σ
v,r)−Hneg(σ) = 2− h1{s=1}. (4.20)

Furthermore, by flipping the spin on vertex v from s 6= 1 to 1 we get

Hneg(σ
v,1)−Hneg(σ) = 2 + h. (4.21)

Case 5. Assume that v ∈ V has four nearest neighbors with spin s in σ, i.e., ns(v) = 4. Then,
for any s ∈ S and r /∈ {1, s}, we have

Hneg(σ
v,r)−Hneg(σ) = 4− h1{s=1}. (4.22)

Furthermore, by flipping the spin on vertex v from s 6= 1 to 1 we get

Hneg(σ
v,1)−Hneg(σ) = 4 + h. (4.23)

From Case 4 and Case 5, for any s ∈ S, we get that a v-tile is stable for σ if v has at least
three nearest neighbors with spin s, see Figure 6(a)–(e). Finally, note that (4.13) is satisfied
in all the cases 1–5 above thanks to (4.14)–(4.23).

We define the set Cs(σ) ⊆ R
2 as the union of unit closed squares centered at the vertices v ∈

V such that σ(v) = s. We define s-clusters the maximal connected components Cs
1 , . . . , C

s
n, n ∈

N, of Cs(σ).
For any s ∈ S, we say that a configuration σ ∈ X has an s-rectangle if it has a rectangular
cluster in which all the vertices have spin s.
Let R1 an r-rectangle and R2 an s-rectangle. They are said to be interacting if either they
intersect (when r = s) or are disjoint but there exists a site v /∈ R1 ∪R2 such that σ(v) 6= r, s
and v has two nearest-neighbor w, u lying inside R1, R2 respectively. For instance, in Figure
11(b) the gray rectangles are not interacting. Furthermore, we say that R1 and R2 are adjacent
when they are at lattice distance one from each other, see for instance Figure 11(c) and (e).
We are now able to describe precisely the set of the local minima Mneg and the set of the
stable plateaux M̄neg of the energy function (2.1). More precisely, the set of local minima
Mneg is the set of stable points, i.e., Mneg := {σ ∈ X : Hneg(F (∂{σ})) > Hneg(σ)}. While, a
plateau D ⊂ X , namely a maximal connected set of equal energy states, is said to be stable if
Hneg(F (∂D)) > Hneg(D). Note that Mneg ∪ M̄neg ⊂ X̂neg := {σ ∈ X : for any v ∈ V the tile
centered in v is stable} ⊂ X . In Proposition 4.3, we prove that Mneg ∪ M̄neg is given by the
union of the following sets. See also Figure 11.
M 1

neg := {1,2, . . . ,q};
M 2

neg := {σ ∈ X̂neg : σ has strips of any spin s ∈ S of thickness larger than or equal to one
such that for any s an s-strip of thickness one is in between strips of spins different from each
other};
M 3

neg := {σ ∈ X̂neg : σ has one or more s-rectangles for some s 6= 1, with minimum side-length
larger than or equal to two, either in a sea of spins 1 or inside a 1-strip such that rectangles
with the same spins are not interacting};
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M 4
neg := {σ ∈ X̂neg : σ has one or more s-rectangles for some r, s 6= 1, with minimum

side-length larger than or equal to two, inside a 1-strip adjacent to an r-strip} ∪ {σ ∈ X̂neg :
σ is covered by interacting s-rectangles such that each spin on the corners has outside the
rectangle two nearest neighbors with different spins from each other and from the one inside
the rectangle}
M̄ 1

neg := {σ ∈ X̂neg: for any r, s 6= 1, σ has an s-cluster with two consecutive sides next either
to a connected r-cluster or to two r-cluster and the sides on the interfaces are of different
length}.

Remark 4.1. The set M̄ 1
neg is defined by fixing a representative configuration σ and implicitly

it includes also all the configurations connected to σ via a path along which the energy is
constant, see Figure 8.

A path ω = (ω0, . . . , ωn) is said to be downhill (strictly downhill) if H(ωi+1) ≤ H(ωi)
(H(ωi+1) < H(ωi)) for i = 0, . . . , n− 1.

Proposition 4.3 (Sets of local minima and of stable plateaux). If the external magnetic field
is negative, then

Mneg ∪ M̄neg = M
1
neg ∪ M

2
neg ∪ M

3
neg ∪ M

4
neg ∪ M̄

1
neg. (4.24)

Proof. A configuration σ ∈ X is a local minimum when, for any v ∈ V and s ∈ S, the
energy difference (2.5) is strictly positive. On the other hand, σ belongs to a stable plateau
when, for any v ∈ V and s ∈ S, the energy difference (2.5) is larger than or equal to zero.
Since a local minimum and a stable plateau are the union of stable tiles, we obtain all the local
minima and all the stable plateaux by considering all the possible ways in which the stable
tiles may be combined. We do this in various steps. First we consider all configurations which
can be obtained from combining tiles (a)–(b). Then, we progressively add more tile types
and construct all the possible resulting configurations. To refer to a tile type, we will use its
corresponding lett in Figure 6.

Step 1. If σ has only stable tiles as in Figure 6(a) and (b), then there are no interfaces
and σ ∈ M 1

neg.
Step 2. Let us assume now that the only stable tiles in σ are (a)–(l). Note that if σ

contains a tile of type (f), then σ does not belong to Mneg ∪ M̄neg. Indeed, if σ contains at
least an (f) tile, then it also contains an s-strip of thickness one in between two r-strips and
there exists a downhill path of two steps. First, flip from s to r the central spin s and this
does not change the energy, then flip from s to r a spin, which, has now three spin r neighbor.
This flip reduces the energy by 2. On the other hand, any spin update on the central vertex of
the tiles (a)–(e) and (g)–(l) strictly increases the energy of σ. By considering these, we obtain
that σ may contain horizontal (resp. vertical) interfaces of length L (resp. K). In particular,
for any s ∈ S, an s-strip of thickness one must be either in between strips with different spins,
using (h)–(l) tiles, or in between two 1-strips if s 6= 1, using (g) tiles. We conclude that if σ is
obtained by a combination of the stable tiles (a)–(l), then σ ∈ M 1

neg ∪ M 2
neg, see Figure 11(a).

Step 3. Next we consider those σ that are defined as the combination of the stable tiles
(a)–(e), (g)–(p). Any spin update on the central vertex of the tiles (m)–(p). Since the central
spin s 6= 1 of these tiles has at least two nearest neighbors with the same spin, the admissible
shapes of an s-cluster are either strips or rectangles. It follows that the local minima containing
only tiles (a)–(p) may additionally contain the following shapes.
(i) One or more s-rectangles (s 6= 1) with minimum side length two either in a sea of spins 1
or inside a 1-strip under the condition that rectangles with the same spins are not interacting,
see Figure 11(b).
(ii) One or more s-rectangles (s 6= 1) with minimum side length two, inside a 1-strip, with a
side adjacent to an r-strip (r 6= 1), see Figure 11(d).
(iii) Alternatively, σ is covered by interacting rectangles under the condition that each spin on
the corners is the centre of a tile of type (n)–(o), see Figure 11(e).

We conclude that if σ is defined by the combination of the stable tiles as in Figure 6(a)–(p),
then σ ∈ M 1

neg ∪ M 2
neg ∪ M 3

neg ∪ M 4
neg.
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Figure 7: Illustration of an s-rectangle, that we color black, adjacent to two r-rectangles, that
we color light gray. Furthermore, we color gray those t-rectangles with t ∈ S\{r, s}.

Step 4. Next we consider those σ that are obtained as the combination of the stable tiles
(a)–(e), (g)–(q). Combining the tiles of type (q) with all the previous ones, we obtain that for
any r, s 6= 1, r 6= s, an s-cluster may have two consecutive sides adjacent either to a connected
cluster or to two clusters with spins r and the sides on the interface may have either the same
or different length, see Figure 7. We claim that in a stable configuration σ these are no clusters
as in Figure 7(a)–(b), in which an r-cluster has a side longer than or equal to the side of the
the s-cluster on the interface. Indeed, the path (ω1 = σ, . . . , ωℓ) that flips from s to r all
the spins s on the interface of length ℓ visits states ω1, . . . , ωℓ−1 with constant energy and
Hneg(ωℓ) < Hneg(ωℓ−1).

Let us now focus on the case in Figure 7(c), and let σ be a configuration with such clusters.
We prove that σ ∈ M̄neg. In particular, all configurations connected to σ via a path along
which the energy does not change also belong to M̄neg. In order to see this, consider the path
which flips from s to r the spins s adjacent to an r-rectangle (see for instance the path depicted
in Figure 8). Note that at any step the energy does not change. Hence, combining all the stable
tiles (a)–(q), we conclude that σ ∈ M 1

neg ∪ M 2
neg ∪ M 3

neg ∪ M 4
neg ∪ M̄ 1

neg.
Step 5. Finally, assume that σ may be obtained by a combination of tiles (a)–(s).
For this step, we refer to Figure 9, where we represent r, s, t, z respectively by , , ,

and where we take r, t /∈ {s, 1} and z 6= s. Let us assume that this type of tile belongs to a
configuration σ and consider the following cases.

Step 5.1. If ns(v1) = 4, then σ(w1) = σ(w2) = s. If both the v2-tile and v4-tile are of
type (m), then v3 would be the central vertex of a unstable tile. Thus, at least one of them is
of type (q). Proceeding as in Step 4 we show that σ is either unstable or it belongs to a stable
plateau.

Step 5.2. Assume ns(v1) = 3. If σ(w1) = σ(w2) = s, then again σ is either unstable or
belongs to a stable plateau. If σ(w1) = s and σ(w2) 6= s, then v1 must be the central vertex of
a tile of type (q) and again σ is either unstable or belongs to a stable plateau. Otherwise, v3
would be the central vertex of a unstable tile.

Step 5.3. We now consider the case ns(v1) = 1. This will be useful to study the case
ns(v1) = 2 in the next step. Along the path ω := (σ, σv,r , (σv,r)v1,r) the energy decreases.
Indeed,

Hneg(σ
v,r)−Hneg(σ) = 0, (4.25)

Hneg((σ
v,r)v1,r)−Hneg(σ

v,r)=





−2, if nr(v1) = 1;

−3, if nr(v1) = 2;

−4, if nr(v1) = 3.

(4.26)

It follows that the tiles as (r)–(s) with ns(v1) = 1 do not belong to any configuration in

v

ω0 := σ ω1

v

ω2

v . . .

ωj

v . . .

ωn

v

Figure 8: Example of a path ω := (ω0, . . . , ωn) started in a configuration ω0 := σ with a cluster
as the one depicted in Figure 7(c) and such that Hneg(ωi) = Hneg(ωj), for any i, j = 0, . . . , n.
Since all the configurations depicted have the same energy value and they are connected by
means a path, they belong to a stable plateau.
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vv1 v3

v2

v4w2

w1

Figure 9: Example of a v-tile equal to the one depicted in Figure 6(r)–(s). We do not color the
vertices w1 and w2 since in the proof they assume different value in different steps.

Mneg ∪ M̄neg.
Step 5.4. Lastly, let us consider the case ns(v1) = 2. Without loss of generality, assume

that the spin s nearest neighbors of v1 lie on the same row. Consider the following two cases:
- v1 has at least one nearest neighbor with a spin among r, t, z /∈ {1, s}, say r, then along

the path (σ, σv,r , (σv,r)v1,r) the energy decreases. Indeed, we have

Hneg(σ
v,r)−Hneg(σ) = 0 and Hneg((σ

v,r)v1,r)−Hneg(σ
v,r) ≤ −1. (4.27)

Thus, there are no such tiles in configurations in Mneg ∪ M̄neg.
- v1 has two nearest neighbors with spin s on vertices v and v5 and two nearest neighbors

with spins r′1, r
′
2 /∈ {r, t, z}. If r′1 = r′2 = r, then the path (σ, σv,r , (σv,r)v1,r

′

) is downhill.
Indeed, Hneg(σ

v,r)−Hneg(σ) = 0 and Hneg((σ
v,r)v1,r

′

)−Hneg(σ
v,r) = −1 + h1{r′=1}.

vv1 v3

v2

v4

v5

(a)

vv1 v3

v2

v4

v5v6

(b)

vv1 v3

v2

v4

v5u vn

. . .

. . .

(c)

Figure 10: Illustration of the Step 5.4.

Assume now that r′1 6= r′2, as in Figure 10(a) where we represent r′1 by and r′2 by .
We may repeat the discussion above by considering the tile centered in v1, and performing, if
possible, another zero-cost flip, and so on. This procedure necessarily ends, see, e.g., Figure
10(c). Note that the vertex u may coincide with v3. This concludes the proof of Step 5.4.
Finally, in view of the discussion above, the stable tiles (h) and (i) belong to a stable configu-
ration only when they belong to a strip of thickness one and the stable tiles of type (f) does
not belong to any stable configuration.

We are now ready to prove Proposition 3.2.
Proof of Proposition 3.2(Estimate on the stability level). In order to prove the recurrence

property it is enough to focus on the configurations belonging to M̃neg := (Mneg\{1, . . . ,q})∪
M̄neg. For any η ∈ M̃neg we prove that V neg

η is smaller than or equal to V ∗ := 2 < Γneg(1,X s
neg).

(a) (b) (c) (d) (e)

Figure 11: Examples of local minima of the Hamiltonian (2.1). We color white the vertices
with spin 1 and we use the other colors to denote the other spins 2, . . . , q.

Let us first give an outline of the proof. First, we estimate of the stability level of those

configurations in M̃neg that have at least two adjacent strips of different spins, see Figure 11(a)

and (d). Second, we estimate the stability level of those configurations in M̃neg that have at
least an s-rectangle (s 6= 1) either in a sea of spins 1 or inside a cluster of spins 1, as well as
those configurations in which there is at least an s-rectangle (s 6= 1) having a side such that
on the corners there are stable tiles of type (m) and elsewhere there are stable tiles of type
(d). See Figure 11(b),(c) and (d). Third, we consider those local minima in which at least
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an r-cluster has a side completely adjacent to a side of an s-cluster, see for instance Figure
11(c)–(e) and Figure 13. Finally, we focus on those local minima that do not belong to any of
the cases above, that is, those local minima with at least an s-rectangle with each side adjacent
both to an r-cluster (r 6= s) and to a 1-rectangle, see for instance 11(e).

Case 1. Let us begin by assuming that η has either at least two horizontal or vertical strips.
Consider the case depicted in Figure 11(a). Assume that η has an r-strip a×K adjacent to an s-
strip b×K, a, b ∈ Z, a, b ≥ 1. Assume that r, s ∈ S, s 6= 1. Let η̄ be the configuration obtained
from η by flipping from r to s all the spins r belonging to the r-strip. We define a path ω : η → η̄
as the concatenation of a paths ω(1), . . . , ω(a). Let ω : η → η̄ be the path that flips the spins in
the r-strip to s, column by column, starting from the column adjacent to the s-strip. Number

the columns of the r-strip in order of flipping, and let ω(i) := (ω
(i)
0 = ηi−1, ω

(i)
1 , . . . , ω

(i)
K = ηi)

be the path that flips the r spins in the i-th column. Then, for i = 1, . . . , a− 1,

Hneg(ω
(i)
j )−Hneg(ω

(i)
j−1) =





2− h1{r=1}, if j = 1;

−h1{r=1}, if j = 2, . . . ,K − 1;

−2− h1{r=1}, if j = K.

(4.28)

For any i = 1, . . . , a − 1, the maximum energy value along ω(i) is reached at the first step.
Computing the energy values along the sub-path ω(a), that flips the last r-column, requires
more care. Denoting by vi the vertex whose spin is flipping at the step i,

Hneg(ω
(a)
1 )−Hneg(ω

(a−1)
K−1 ) =

{
1− h1{r=1}, if ns(v1) = 1,

−h1{r=1} if ns(v1) = 2,
(4.29)

and, if i = 2, . . . ,K,

Hneg(ω
(a)
i )−Hneg(ω

(a)
i−1) =

{
−1− h1{r=1}, if ns(vi) = 2,

−2− h1{r=1}, if ns(vi) = 3.
(4.30)

In view of the above construction, Hneg(η) > Hneg(η̄) and, by comparing (4.28)–(4.30), V neg
η ≤

2 = V ∗.
Case 2. Let us now consider η characterized by a sea of spins 1 with some no-nteracting

s-rectangles (s 6= 1). We distinguish the following cases:
(i) η has at least a rectangle Rℓ1×ℓ2 of spins s, for some s ∈ {2, . . . , q}, with its minimum

side of length ℓ := min{ℓ1, ℓ2} larger than or equal to ℓ∗;
(ii) η has only rectangles Rℓ1×ℓ2 of spins s, for some s ∈ {2, . . . , q}, with a side of length ℓ

smaller than ℓ∗.
In case (i), we construct a path ω = (ω0, . . . , ωℓ−1), where ω0 = η and ωℓ−1 =: η̃, that flips
consecutively from 1 to s those spins adjacent to a side of length ℓ ≥ ℓ∗. We have

Hneg(ω1)−Hneg(η) = 2− h, (4.31)

Hneg(ωi)−Hneg(ωi−1) = −h, for i = 2, . . . , ℓ− 2. (4.32)

It follows that Hneg(η̃) − Hneg(η) = 2 − hℓ. If ℓ > ℓ∗ =
⌈
2
h

⌉
, then 2 − hℓ < 0. Therefore

the maximum energy is reached at the first step and by (4.31) we get V neg
η = 2 − h < V ∗.

Otherwise, if η has only rectangles Rℓ∗×ℓ∗ of spins s, then η̃ has a rectangle Rℓ∗×(ℓ∗+1) of
spins s. Now, either this s-rectangle does not interact with the other rectangles of η̃ or it
interacts with another rectangle R̂. In the former case we conclude by arguing as previously
since ℓ∗ + 1 > ℓ∗. In the latter case, we have the following two possibilities

(1) R̂ is an s-rectangle,

(2) R̂ is an r-rectangle with r /∈ {1, s}.
In case (1), we define a configuration η̂ from η̃ by flipping a spin 1 to s in the interaction
interface. In particular,

Hneg(η̂)−Hneg(η̃) = h. (4.33)

21



Hence, the maximum energy along (η, ω1, . . . , ωℓ−2, η̃, η̂) is reached at the first step and we
conclude that V neg

η = 2− h < V ∗.
Let us now focus on case (2). We have to consider the two cases depicted in Figure 12. Let
v1, . . . , vℓ∗+1 be the vertices next to the side of length ℓ∗ + 1 of the s-rectangle such that v1
has two nearest neighbors with spin 1, one nearest neighbor s and one nearest neighbor inside
the r-rectangle R̂.

(a) (b)

v6 v6

v5 v5

v4 v4

v3 v3

v2 v2

v1 v1

Figure 12: Examples of interacting rectangles in η̃ when ℓ∗ = 5. We color gray the r-rectangle
R̂ and black the s-rectangle.

In the case depicted in Figure 12(a), we define η̂1 := η̃(v1,s) and η̂2 := η̂
(v2,s)
1 . In particular,

Hneg(η̂1)−Hneg(η̃) = 1− h, (4.34)

Hneg(η̂2)−Hneg(η̂1) = −1− h. (4.35)

Hence, from (4.31)–(4.32) and (4.34)–(4.35), we have that Hneg(η̂2)−Hneg(η) = 2−h(ℓ∗+2) <
2 − hℓ∗ ≤ 0. Moreover, in view of (4.31) and (4.34), along the path (η, ω1, . . . , ωℓ−2, η̃, η̂1, η̂2),
we get that the maximum energy is reached at the first step. Hence, V neg

η = 2− h < V ∗.

On the other hand, in the case depicted in Figure 12(b) we define η̂1 := η̃(v1,s) and η̂i := η̂
(vi,s)
i−1

for any i = 2, . . . , ℓ∗ + 1. Note that

Hneg(η̂1)−Hneg(η̃) = 1− h, (4.36)

Hneg(η̂i+1)−Hneg(η̂i) = −h, i = 1, . . . , ℓ∗. (4.37)

Hence, from (4.31), (4.32), (4.36) and (4.37), we have Hneg(η̂ℓ∗+1)−Hneg(η) = 3−h(2ℓ∗+1) < 0.
Moreover, by comparing (4.31) and (4.36) along the path (η, ω1, . . . , ωℓ−2, η̃, η̂1, . . . , η̂ℓ∗+1) the
maximum energy is reached at the first step. Hence, V neg

η = 2− h < V ∗.
Now, we focus on the case (ii). We define a path ω = (ω0, . . . , ωℓ−1) that flips consecutively
from s to 1 those spins s next to a side of length ℓ < ℓ∗. We get:

Hneg(ωi)−Hneg(ωi−1) = h, for i = 1, . . . , ℓ− 2; (4.38)

Hneg(ωℓ−1)−Hneg(ωℓ−2) = −(2− h). (4.39)

Hence the maximum energy is achieved after ℓ−1 steps and Hneg(ωℓ−1)−Hneg(ω0) = h(ℓ−1) <
2− h < V ∗.

Case 3. Let us now assume that η has an s-rectangle R̄ := Ra×b and an r-rectangle
R̃ := Rc×d such that R̄ has a side of length a adjacent to a side of R̃ of length c ≥ a, see
for instance Figure 11(e). The case c < a may be studied by interchanging the role of spins
s and r. Given η̄ the configuration obtained from η by flipping to r all the spins s belonging
to R̄, we construct a path ω : η → η̄ as the concatenation of b paths ω(1), . . . , ω(b). Let
ω : η → η̄ be the path that flips the spins in the r-rectangle R̃ to s, side by side, starting
from the side adjacent to the s-rectangle R̄. Number the sides of R̃ in order of flipping, and

let ω(i) := (ω
(i)
0 = ηi−1, ω

(i)
1 , . . . , ω

(i)
a = ηi) be the path that flips the r spins in the i-th side.

Then, for i = 1, . . . , b− 1,

Hneg(ω
(i)
j )−Hneg(ω

(i)
j−1) =





1, if j = 1;

0, if j = 2, . . . , a− 1;

−1, if j = a.

(4.40)
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Figure 13: Local minimum on a 30× 20 grid graph in which there are not any s-rectangle with
at least a side neither completely adjacent to an r-cluster nor completely sourrounded by spins
1.

For any i = 1, . . . , b − 1, Hneg(η) = Hneg(ηi) and the maximum energy value along ω(i) is
reached at the first step. Computing the energy values along the sub-path ω(b), that flips the
last r-side of the initial R̃, requires more care. Denoting by vi the vertex whose spin is flipping
at the step i

Hneg(ω
(b)
1 )−Hneg(ηb−1) =

{
0, if nr(v1) = 1,

−1, if nr(v1) = 2,
(4.41)

Hneg(ω
(b)
i )−Hneg(ω

(b)
i−1) =

{
−1, if nr(vi) = 2,

−2, if nr(vi) = 3,
(4.42)

for all i = 2, . . . , a. In view of the above construction, Φneg
ω = Hneg(η) + 1. Furthermore since

a ≥ 2, Hneg(η) > Hneg(η̄) and, by comparing (4.40)–(4.42) we have V neg
η = 1 < V ∗.

Case 4 Finally, let us consider η with at least an s-rectangle, say R̂, with each side adjacent
both to an r-cluster, r 6= s, and to a 1-rectangle. Let ℓ be the length of the interface between
R̂ and the 1-rectangle and let ω = (ω0 = η, . . . , ωℓ) be the path that flips from 1 to s all the
spins 1 on the ℓ vertices that lie on the interaface between R̂ and the 1-rectangle. We have
that

Hneg(ωi)−Hneg(ωi−1) =





1− h, if i = 1;

−h, if i = 2, . . . , ℓ− 1;

−1− h, if i = ℓ.

(4.43)

Since Hneg(ωℓ)−Hneg(η) = −hℓ < 0 and Φneg
ω = Hneg(η) + 1 − h, we get V neg = 1− h < V ∗.

4.3 Communication height between stable configurations

In order to study the hitting time τ1s of a stable configuration s ∈ X s
neg, we first estimate the

communication height Φneg(r, s) between two stable configurations r, s ∈ X s
neg, r 6= s. Indeed,

during the transition 1 → s, the process may visit a stable state r 6= s before hitting s. Using
(4.3), the energy difference between any σ ∈ X and any s ∈ X s

neg reads

Hneg(σ)−Hneg(s) = dv(σ) + dh(σ) + h
∑

u∈V

1{σ(u)=1}. (4.44)

In [54, Proposition 2.4] the authors define the so-called expansion algorithm. We rewrite this
procedure in the proof of the next proposition by adapting it to our scenario. Indeed, it is
different from [54] since in our setting there is a non-zero external magnetic field.

Proposition 4.4 (Expansion algorithm). If the external magnetic field is negative and if
σ ∈ X has a t-bridge for some t ∈ {2, . . . , q}, then there exists a path ω : σ → t such that
Φneg

ω −Hneg(σ) ≤ 2.

Proof. Without loss of generality we assume that the first column c0 is the t-bridge. Fol-
lowing an iterative procedure, we define a path ω : σ → t that flips all spins to t column-by-
column starting with column c0. Formally, ω is the concatenation of L paths ω(1), . . . , ω(L) with
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ω(i) := (ω
(i)
0 = σi−1, . . . , ω

(i)
K = σi) and ω

(i)
j := (ω

(i)
j−1)

(u,t), for u := (i, j − 1) and j = 1, . . . ,K.
In particular, σ0 := σ, σL := t and the configurations σi, i = 0, . . . , L, are given by

σi(v) :=

{
t if v ∈ ⋃i

j=0 cj ,

σ(v) if v ∈ V \⋃i
j=0 cj .

(4.45)

See Figure 14 for an illustration of the construction above.

ω
(1)
0 = σ0 ω

(1)
1 ω

(1)
2

. . . . . .

ω
(2)
0 = σ1 ω

(5)
3

ω
(5)
4

. . .

ω
(8)
0 = σ7

. . .

ω
(8)
0 = t

Figure 14: Illustration of some particular configurations belonging to the path ω : σ → t of
Proposition 4.4. We color black those vertices whose spin is t.

Let us now study the energy difference Hneg(ω
(i)
j ) − Hneg(ω

(i)
j−1) for j = 1, . . . ,K. It is

immediate to see that if σ(u) = t, then Hneg(ω
(i)
j ) − Hneg(ω

(i)
j−1) = 0. Hence, assume that

σ(u) 6= t. Using (2.5) and counting the number of spins s neighbors of u, we get

Hneg(ω
(i)
j )−Hneg(ω

(i)
j−1) ≤





2− h1
{ω

(i)
j−1(v)=1}

, if j = 1;

−h1
{ω

(i)
j−1(v)=1}

, if 1 < j < K;

−2− h1
{ω

(i)
j−1(v)=1}

, if j = K.

(4.46)

For every i = 1, . . . , L−1, the inequalities (4.46) imply that Φneg

ω(i) −Hneg(σi−1) ≤ 2. Hence,
the path ω : σ → t is such that Φneg

ω −Hneg(σ) ≤ 2.
Thanks to Proposition 4.4 we are able to obtain an upper bound on Γneg(r, s) := Φneg(r, s)−

Hneg(r), for any r, s ∈ X s
neg, r 6= s.

Proposition 4.5 (Upper bound for the stability level between two stable configurations). If
the external magnetic field is negative, then for any r, s ∈ X s

neg, r 6= s, we have

Φneg(r, s)−Hneg(r) ≤ 2min{K,L}+ 2. (4.47)

Proof. The proof is analogous to the one of [54, Proposition 2.5] by replacing the role of
[54, Proposition 2.4] with Proposition 4.4. For the details we refer to the Appendix A.2.

Now let us estimate a lower bound for Γneg(r, s), for any r, s ∈ X s
neg, r 6= s. The following

proposition is an adaptation of [54, Proposition 2.7] to the case of Potts model with external
magnetic field. Recall that Bs(σ) denotes the total number of vertical and horizontal s-bridges
in σ ∈ X , see Subsection 4.1.

Proposition 4.6 (Lower bound for the stability level between two stable configurations). If
the external magnetic field is negative, then for every r, s ∈ X s

neg, the following inequality holds

Φneg(r, s)−Hneg(r) ≥ 2min{K,L}+ 2. (4.48)

Proof. We show that along every path ω : r → s in X there exists a configuration η such
that Hneg(η) −Hneg(r) ≥ 2K + 2. Consider a path ω = (ω1, . . . , ωn) with ω1 = r and ωn = s.
Obviously, Bs(r) = 0 and Bs(s) = K + L. Let ωk̄ be the configuration along the path ω that
is the first to have at least two s-bridges, i.e., k̄ := min{k ≤ n| Bs(ωk) ≥ 2}. We claim that
the configuration ωk̄−1 is such that

Hneg(ωk̄−1)−Hneg(r) ≥ 2K + 2. (4.49)

Let us prove this claim by studying separately the following three cases:

24



(i) ωk̄ has only vertical s-bridges,

(ii) ωk̄ has only horizontal s-bridges,

(iii) ωk̄ has at least one s-cross.

We study scenarios (i) and (iii), since scenario (ii) may be studied similarly as (i). Let us
begin by assuming that (i) holds. From the definition of k̄, it follows that Bs(ωk̄−1) = 1 and
Bs(ωk̄) = 2. Otherwise ωk̄ would have an s-cross in view of [54, Lemma 2.6] and it would be
a contradiction with (i). Let us assume that ωk̄ has the two vertical s-bridges on columns c
and ĉ and, without loss of generality, ωk̄−1 has only one s-bridge on column c. In particular,
in ωk̄−1 all spins in ĉ are s, except one which is different from s. Thus, in view of [54, Lemma
2.3(d)] we have

dĉ(ωk̄−1) = 2. (4.50)

Moreover, it is easy to see that there are no horizontal bridges. Thanks to this fact and to [54,
Lemma 2.3(c)], we have dri(ωk̄−1) ≥ 2 for every row ri, i = 0, . . . ,K − 1. Then,

dh(ωk̄−1) =
K−1∑

i=0

dri(ωk̄−1) ≥ 2K. (4.51)

From (4.44), (4.50) and (4.51) we get that

Hneg(ωk̄−1)−Hneg(r) ≥ 2 + 2K + h
∑

u∈V

1{ωk̄−1(u)=1} ≥ 2 + 2K. (4.52)

Let us now focus on (iii). In this case ωk̄ has at least one s-cross and, by definition of k̄,
Bs(ωk̄−1) is either 0 or 1 and we study these two cases separately.

Assume Bs(ωk̄−1) = 0. ωk̄−1 has no s-bridges, then, by [54, Lemma 2.6], Bs(ωk̄) = 2 and
ωk̄ has exactly one s-cross. Let us assume that this s-cross lies on row r̂ and on column ĉ.
The horizontal and vertical s-bridges of ωk̄ must have then been created simultaneously by
updating the spin on the vertex v̂ := r̂ ∩ ĉ. Hence, we have ωk̄−1(v̂) 6= s, ωk̄−1(v) = s, for
all v ∈ r̂ ∪ ĉ, v 6= v̂, and ωk̄(v̂) = s. Since there is a spin equal to s in every row and in
every column, ωk̄−1 has no t-bridges (t 6= s). Since by assumption Bs(ωk̄−1) = 0, ωk̄−1 has no
bridges of any spin. Therefore, from [54, Lemma 2.3(c)–(d)] follows that

dh(ωk̄−1) =

K−1∑

i=0

dri(ωk̄−1) ≥ 2K and dv(ωk̄−1) =

L−1∑

j=0

dcj (ωk̄−1) ≥ 2L. (4.53)

Plugging (4.53) in (4.44), we conclude that

Hneg(ωk̄−1)−Hneg(r) ≥ 2L+ 2K > 2min{K,L}+ 2 = 2K + 2. (4.54)

Assume now Bs(ωk̄−1) = 1. In this case, ωk̄−1 has an unique s-bridge and we assume
that such a bridge is vertical and lies on column c̃. In view of [54, Lemma 2.2], there are no
horizontal t-bridges in ωk̄−1 (t 6= s). Hence, ωk̄−1 has no horizontal bridges and by [54, Lemma
2.3(c)] we get

dh(ωk̄−1) =

K−1∑

i=0

dri(ωk̄−1) ≥ 2K. (4.55)

Moreover, ωk̄ has a unique horizontal s-bridge, say on row r̂. Hence, if v̂ is the vertex where
ωk̄−1 and ωk̄ differ, v̂ must lie in r̂ and ωk̄−1(v̂) 6= s and ωk̄−1(v) = s, ∀v ∈ r̂, v 6= v̂, and
ωk̄(v̂) = s. Let ĉ be the column where v̂ lies. [54, Lemma 2.3(d)] implies that dc(ωk̄−1) ≥ 2 for
any column c 6= c̃, ĉ. Then,

dv(ωk̄−1) =

L−1∑

j=0

dcj (ωk̄−1) ≥ 2L− 4. (4.56)
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In view of (4.44), (4.55) and (4.56) it follows that

Hneg(ωk̄−1)−Hneg(r) ≥ 2L+ 2K − 4 > 2min{K,L}+ 2 = 2K + 2, (4.57)

where the second inequality holds because L ≥ K ≥ 3ℓ∗ > 3.

4.4 Energy landscape: proof of the main results

We are now able to prove Theorem 3.3.
Proof of Theorem 3.3. Let us begin by recalling that for any r, s ∈ X s

neg, r 6= s, from Theorem
3.1 we have

Γneg(1,X s
neg) = Φneg(1,X s

neg)−Hneg(1) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1), (4.58)

and, from Proposition 4.5 and Proposition 4.6,

Γneg(r, s) = Φneg(r, s)−Hneg(r) = 2min{K,L}+ 2. (4.59)

For any r, s ∈ X s
neg, r 6= s, first we show that Γneg(1,X s

neg) < Γneg(s, r). Indeed, given 0 < h < 1
and L ≥ K ≥ 3ℓ∗, we have

Γneg(1,X s
neg)− Γneg(r, s) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1)− (2K + 2)

≤ 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1)− 6ℓ∗ − 2 < −2ℓ∗ − h(ℓ∗)2 + ℓ∗ − h− 2 < 0 =⇒ (3.14).

Furthermore, by Assumption 3.1, Φneg(r, s) is smaller than or equal to Φneg(1, s), for any
r, s ∈ X s

neg, r 6= s. Indeed, since |V | = KL,

Φneg(r, s)− Φneg(1, s) = 2K + 2 +Hneg(r) − 4ℓ∗ + h(ℓ∗)2 − hℓ∗ + h−Hneg(1)

= 2K + 2− |E| − 4ℓ∗ + h(ℓ∗)2 − hℓ∗ + h+ |E| − h|V |
= 2K + 2− 4ℓ∗ + h(ℓ∗)2 − hℓ∗ + h− hKL (4.60)

for any r, s ∈ X s
neg, r 6= s. Since ℓ∗ =

⌈
2
h

⌉
, we can write ℓ∗ = 2

h + 1 − δ where 0 < δ < 1
denotes the fractional part of 2/h, that is not integer in view of Assumption 3.1(ii). Assume
by contradiction that (3.13) is false, i.e.,

Φneg(r, s) ≥ Φneg(1, s). (4.61)

Using (4.60), we have that (4.61) is verified if and only if

2K + 2− 4ℓ∗ + h(ℓ∗)2 − hℓ∗ + h ≥ hKL

⇐⇒ 2K + 2− 4(
2

h
+ 1− δ) + h(

2

h
+ 1− δ)2 − h(

2

h
+ 1− δ) + h ≥ hKL

⇐⇒ 2

h
K +

2

h
− 4

h
(
2

h
+ 1− δ) + (

2

h
+ 1− δ)2 − 2

h
− 1 + δ + 1 ≥ KL

⇐⇒ 2

h
K +

2

h
− 8

h2
− 4

h
+

4

h
δ +

4

h2
+ 1 + δ2 +

4

h
− 4

h
δ − 2δ − 2

h
− 1 + δ + 1 ≥ KL

⇐⇒ 2

h
K − 4

h2
+ 1 + δ2 − δ ≥ KL. (4.62)

Since L ≥ K ≥ 3ℓ∗ and since 0 < δ < 1, we have that

KL ≥ 3Kℓ∗ = 3K(
2

h
+ 1− δ) =

6

h
K + 3K − 3Kδ >

6

h
K. (4.63)

Moreover, since 0 < δ < 1 implies that δ2 − δ < 0, we have that

2

h
K − 4

h2
+ 1 + δ2 − δ <

2

h
K − 4

h2
+ 1. (4.64)
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Combining (4.62), (4.63) and (4.64), since 0 < δ < 1, approximately we get that (4.61) is
satisfied if and only if

2

h
K − 4

h2
+ 1 >

6

h
K ⇐⇒ − 4

h
K − 4

h2
+ 1 > 0, (4.65)

that is a contradiction. Indeed, the l.h.s. of (4.65) is strictly negative since Assumption 3.1(i),
i.e., 0 < h < 1, implies that − 4

h2 + 1 < 0. Hence, we conclude that (3.13) is satisfied.

Finally, we prove (3.15). By [55, Lemma 3.6] we get that Γ̃neg(X\{s}) is the maximum energy
that the process started in η ∈ X\{s} has to overcome in order to arrive in s, i.e.

Γ̃neg(X\{s}) = max
η∈X\{s}

Γneg(η, s). (4.66)

For any η ∈ X\(X s
neg ∪ {1}) we have that

Γneg(η, s) = Γneg(η,X s
neg) = Φneg(η,X s

neg)−Hneg(η)

≤ Φneg(1,X s
neg)−Hneg(1) = Γneg(1,X s

neg),

where the inequality follows by the fact that 1 is the unique metastable configuration and
this means that starting from η ∈ X\X s

neg there are not initial cycles Cη
{s}(Γneg(η, s)) deeper

than C1
{s}(Γ

m
neg). Note that this fact holds since we are in the metastability scenario as in

the [55, Subsection 3.5, Example 1]. Thus, using (3.14), since for any r ∈ X s
neg\{s} we have

Γneg(r, s) = Γneg(X s
neg\{s}, s), we conclude that

max
η∈X\{s}

Γneg(η, s)=max{ max
η∈X\(X s

neg\{s})
Γneg(η, s), max

η∈X s
neg\{s}

Γneg(η, s)}=Γneg(r, s).

5 Minimal gates and tube of typical trajectories

In this section we give a geometrical characterization of the critical configurations and the tube
of typical paths for both metastable transitions 1 → X s

neg and 1 → s for any fixed s ∈ X s
neg.

5.1 Identification of critical configurations for the transition from the

metastable configuration to the set of stable states

This subsection is devoted to a more accurate study of the energy landscape (X , Hneg, Q).
From a technical point of view, the proofs are a generalization of the corresponding results for
the Blume Capel model [26, Section 6].

(a) (b) (c)

Figure 15: Illustration of three examples of σ ∈ Dneg when ℓ∗ = 5. In (a) the ℓ∗(ℓ∗−1)+1 = 21
spins different from 1 have not all the same spin value and they belong to more clusters. In (b)
we consider the same number of spins with value s 6= 1 that belong to two different clusters.
In (c) we consider the same number of spins different from 1 that are different between each
other and that belong to two adjacent clusters.

Let Dneg ⊂ X be the set

Dneg := {σ ∈ X : N1(σ) = |Λ| − [ℓ∗(ℓ∗ − 1) + 1]}. (5.1)
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Furthermore, let D+
neg and D−

neg be the sets

D
+
neg := {σ ∈ X : N1(σ) > |Λ| − [ℓ∗(ℓ∗ − 1) + 1]}, (5.2)

D
−
neg := {σ ∈ X : N1(σ) < |Λ| − [ℓ∗(ℓ∗ − 1) + 1]}. (5.3)

Note that 1 ∈ D+
neg. For any σ ∈ Dneg, we remark that σ has ℓ∗(ℓ∗ − 1) + 1 spins different

from 1 and they may have all the same spin value and may belong to one or more clusters, see
Figure 15.
A two dimensional polyomino on Z

2 is a finite union of unit squares. The area of a polyomino
is the number of its unit squares, while its perimeter is the cardinality of its boundary, namely,
the number of interfaces on Z

2 between the sites inside the polyomino and those outside. The
polyominoes with minimal perimeter among those with the same area are said to be minimal
polyominoes.

Lemma 5.1. If the external magnetic field is negative, then the minimum of the energy in
Dneg is achieved by those configurations in which all the spins are equal to 1 except those, which
have the same value t 6= 1, in a unique cluster of perimeter 4ℓ∗. More precisely,

F (Dneg) =

q⋃

t=2

D
t
neg, (5.4)

where

D
t
neg :={σ ∈ Dneg : σ has all spins 1 except those in a unique cluster Ct(σ)

of spins t of perimeter 4ℓ∗}. (5.5)

Moreover,

Hneg(F (Dneg)) = Hneg(1) + Γneg(1,X s
neg) = Φneg(1,X s

neg). (5.6)

Proof. Since the presence of disagreeing edges increases the energy, in the configurations in
F (Dneg), all ℓ∗(ℓ∗ − 1) + 1 spins different from 1 are equal to t (say) and belong to a unique
cluster Ct(σ). As we have illustrated in the second part of the proof of Proposition 4.2, the
minimal perimeter of a polyomino of area ℓ∗(ℓ∗ − 1) + 1 is 4ℓ∗. Thus, (5.4) is verified and we
get that Wneg(1,X s

neg) ⊂ F (Dneg). Hence, Hneg(Wneg(1,X s
neg)) = Hneg(F (Dneg)) and, since

for any η ∈ Wneg(1,X s
neg)

Hneg(η)−Hneg(1) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1) = Γneg(1,X s
neg), (5.7)

(5.6) is satisfied.
In the next corollary we prove that F (Dneg) is a gate for the transition 1 → X s

neg.

Corollary 5.1. If the external magnetic field is negative, then for any ω ∈ Ωopt
1,X s

neg
, ω ∩

F (Dneg) 6= ∅. In other words, F (Dneg) is a gate for the transition from 1 to X s
neg.

Proof. For any path ω ∈ Ω1,X s
neg

, ω = (ω0, . . . , ωn), there exists i ∈ {0, . . . , n} such

that ωi ∈ Dneg. Indeed, given N(σ) :=
∑q

t=2 Nt(σ), any path has to pass through the set
Vk := {σ ∈ X : N(σ) = k}, for any k = 0, . . . , |V |, at least once and Vℓ∗(ℓ∗−1)+1 ≡ Dneg. Since
from (5.6) we get that the energy value of any configuration belonging to the bottom of Dneg is
equal to the min-max reached by any optimal path from 1 to X s

neg, we get that ωi ∈ F (Dneg).

In the next proposition, we show that Wneg(1,X s
neg) is a gate for the transition from 1 to

X s
neg. We define Rℓ1×ℓ2 be the set of the rectangles in R

2 with sides of length ℓ1 and ℓ2.

Proposition 5.1 (Gate for the transition from the metastable state to the stable set). If
the external magnetic field is negative, then any path ω ∈ Ωopt

1,X s
neg

visits Wneg(1,X s
neg). Hence,

Wneg(1,X s
neg) is a gate for the transition from 1 to X s

neg.
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(a) (b) (c) (d)

Figure 16: Examples of σ ∈ D̃ t
neg in (a) and of σ ∈ D̂ t

neg in (b) and (c) when ℓ∗ = 5. We
associate the color gray to the spin t, the color white to the spin 1. The dashed rectangle rep-
resents the smallest surrounding rectangle of Ct(σ). Figure (d) is an example of configuration

that does not belong to D̂ t
neg.

Proof. For any t 6= 1, let D̃ t
neg be the set of configurations σ ∈ D t

neg such that the boundary
of Ct(σ) intersects each side of the boundary of its smallest surrounding rectangle R(Ct(σ))
on a set of the dual lattice Z

2 + (1/2, 1/2) made by at least two consecutive unit segments,

see Figure 16(a). Furthermore, let D̂ t
neg be the set of configurations σ ∈ D t

neg such that the
boundary of the polyomino Ct(σ) intersects at least one side of the boundary of R(Ct(σ)) in

a single unit segment, see for instance Figure 16(b) and (c). Hence, F (Dneg) = D̃neg ∪ D̂neg,

where D̃neg :=
⋃q

t=2 D̃ t
neg and D̂neg :=

⋃q
t=2 D̂ t

neg. The proof proceeds in five steps.
Step 1. Our first aim is to prove that

D̂neg = Wneg(1,X s
neg) ∪W ′

neg(1,X s
neg). (5.8)

From (3.19), we have Wneg(1,X s
neg) ∪ W ′

neg(1,X s
neg) ⊆ D̂neg. Thus, we are left to prove the

reverse inclusion σ ∈ D̂neg. The boundary of the cluster Ct(σ) could intersect the other three
sides of the boundary of R(Ct(σ)) in proper subsets of each side, see Figure 16(d). Assume
R(Ct(σ)) ∈ R(ℓ∗+a)×(ℓ∗+b) for some a, b ∈ Z. Ct(σ) is a minimal polyomino and so it is also
convex and monotone by [26, Lemma 6.16]. Hence, the perimeter of Ct(σ) is equal to the
perimeter of R(Ct(σ)), which implies 4ℓ∗ = 4ℓ∗ + 2(a + b), and so a = −b. Now, let Ĉt(σ)
be the polyomino obtained by removing the unit protuberance from Ct(σ) and let R̂ be its
smallest surrounding rectangle. ,If Ct(σ) has the unit protuberance adjacent to a side of length
ℓ∗ + a, then R̂ is a rectangle (ℓ∗ + a)× (ℓ∗ − a− 1). Since the area of R̂ must be larger than
or equal to the area of Ĉt(σ), we have

Area(R̂)=(ℓ∗+a)(ℓ∗−a−1)≥ Area(Ĉt(σ)) = ℓ∗(ℓ∗ − 1)⇐⇒−a2 − a ≥ 0.

Since a ∈ Z, −a2 − a ≥ 0 is satisfied only if either a = 0 or a = −1. On the other hand, if the
unit protuberance of Ct(σ) is adjacent to a side of length ℓ∗ − a, the same argument gives

Area(R̂)=(ℓ∗+a−1)(ℓ∗−a)≥ Area(Ĉt(σ)) = ℓ∗(ℓ∗−1) ⇐⇒ −a2 + a ≥ 0.

Again this is satisfied only if either a = 0 or a = 1. In both cases we get that R̂ ∈ Rℓ∗×(ℓ∗−1).

Thus, if the protuberance is attached to one of the longest sides of R̂, then σ ∈ Wneg(1,X s
neg),

otherwise σ ∈ W ′
neg(1,X s

neg). Then, (5.8) is verified.

Step 2. For any ω = (ω0, . . . , ωn) ∈ Ωopt
1,X s

neg
and any t ∈ {2, . . . , q}, let

ft(ω) := {k ∈ N : ωk ∈ F (Dneg), N1(ωk−1) = |Λ| − ℓ∗(ℓ∗ − 1), Nt(ωk−1)=ℓ∗(ℓ∗ − 1)}. (5.9)

We claim that the set f(ω) :=
⋃q

t=2 ft(ω) is not empty. Let ω = (ω0, . . . , ωn) ∈ Ωopt
1,X s

neg
and

let k̄ ≤ n be the smallest integer such that (ωk̄, . . . , ωn) ∩ D+
neg = ∅. Since ωk̄−1 is the last

configuration in D+
neg along ω, it follows that ωk̄ ∈ Dneg and, by the proof of Corollary 5.1

we have that ωk̄ ∈ F (Dneg). Thus, there exists t 6= 1 such that ωk̄ ∈ D t
neg. Furthermore,

N1(ωk̄−1) = |Λ| − ℓ∗(ℓ∗ − 1) and ωk̄ is obtained from ωk̄−1 by flipping a spin 1 to s 6= 1. Note
that N1(ωk̄−1) = |Λ| − ℓ∗(ℓ∗ − 1) implies that Nt(ωk̄−1) ≤ ℓ∗(ℓ∗ − 1). Since by Lemma 5.1 we
have that Nt(ωk̄) = ℓ∗(ℓ∗−1)+1, we conclude that Nt(ωk̄−1) = ℓ∗(ℓ∗−1) since in a single spin
flip the number of spins t changes by at most one. Thus, Nt(ωk̄−1) = ℓ∗(ℓ∗ − 1) and k̄ ∈ f(ω).
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Step 3. We claim that for any path ω ∈ Ωopt
1,X s

neg
one has ωi ∈ D̂neg for all i ∈ f(ω). We

argue by contradiction. Assume that there exists i ∈ f(ω) such that ωi /∈ D̂neg and ωi ∈ D̃neg.
Since i ∈ f(ω), there exists t 6= 1, such that i ∈ ft(ω). Furthermore, ωi−1 is obtained from ωi

by flipping a spin t from t to 1. In view of the definition of D̃neg, every spin equal to t 6= 1 has
at least two nearest neighbors with spin t. Hence,

Hneg(ωi−1)−Hneg(ωi) ≥ (2− 2) + h = h > 0. (5.10)

From (5.10) we get a contradiction since

Φneg
ω ≥ Hneg(ωi−1) > Hneg(ωi) = Hneg(1) + Γneg(1,X s

neg) = Φneg(1,X s
neg),

where the first identity follows from Lemma 5.1. Then the claim is proved.
Step 4. Now we claim that for any path ω ∈ Ωopt

1,X s
neg

, ωi ∈ F (Dneg) implies ωi−1, ωi+1 /∈
Dneg. Using Corollary 5.1, there exists a positive integer i such that ωi ∈ F (Dneg). Thus,
there exists t 6= 1 such that ωi ∈ D t

neg. Assume by contradiction that ωi+1 ∈ Dneg. Then
ωi+1 must be obtained by ωi by flipping a spin t to s 6= t, since N1(ωi) = N1(ωi+1). In
particular, this spin-update increases the energy and so, using Lemma 5.1, we obtain Φneg

ω ≥
Hneg(ωi+1) > Hneg(ωi) = Hneg(1) + Γneg(1,X s

neg) = Φneg(1,X s
neg), which is a contradiction.

Hence ωi+1 /∈ Dneg and similarly we may also prove that ωi−1 /∈ Dneg.
Step 5. Our final aim is to show that for any path ω ∈ Ωopt

1,X s
neg

, we have that ω ∩
Wneg(1,X s

neg) 6= ∅. Given a path ω = (ω0, . . . , ωn) ∈ Ωopt
1,X s

neg
, assume by contradiction that

ω ∩ Wneg(1,X s
neg) = ∅. From step 4 we know that along ω the configurations which belong

to F (Dneg) are not consecutive and they are separated by a subpath which belongs either
to D+

neg or to D−
neg. Let j ∈ {1, . . . , n} be the smallest integer such that ωj ∈ F (Dneg) and

such that (ωj , . . . , ωn) ∩ D+
neg = ∅. In particular, j ∈ f(ω) since j plays the same role of k̄

in Step 2. Note that using (5.8), Step 2 and the assumption ω ∩Wneg(1,X s
neg) = ∅, we have

ωj ∈ W ′
neg(1,X s

neg). Furthermore, by (5.6) the energy along the path from ωj ∈ F (Dneg) to
ωn decreases. Let t 6= 1 be such that ωj ∈ D t

neg. Then the only moves that decrease the energy
are

(i ) flipping the spin in the unit protuberance from t to 1,
(ii) flipping a spin 1 with two nearest neighbors with spin t from 1 to t.

Since ωj+1 /∈ D+
neg, (i) is not feasible. Hence, necessarily Hneg(ωj+1) = Hneg(1)+Γneg(1,X s

neg)−
h and starting from ωj+1 we consider a spin-update that either decreases the energy or increases
the energy of at most h. Hence the only feasible moves are

(iii) flipping a spin 1, with two nearest neighbors with spin t, from 1 to t,
(iv) flipping a spin t, with two nearest neighbors with spin 1, from t to 1.

Note that by (iii) and (iv), the process reaches a configuration σ with all spins equal to 1
except those, which are t, in a polyomino Ct(σ) that is convex and such that R(Ct(σ)) =
R(ℓ∗+1)×(ℓ∗−1). Note that we cannot iterate move (iv) since otherwise we would find a config-
uration that does not belong to Dneg. On the other hand, applying once (iv) and iteratively
(iii), until we fill the rectangle R(ℓ∗+1)×(ℓ∗−1) with spins t, we find a set of configurations in
which the one with the smallest energy is σ such that Ct(σ) ≡ R(Ct(σ)). Starting from any
configuration of this set, the smallest energy increase is 2 − h and it is achieved by flipping
from 1 to t a spin 1 with three nearest neighbors with spin 1 and a neighbor of spin t inside
Ct(σ). It follows that

Φneg
ω −Hneg(1) ≥ 4ℓ∗ − h(ℓ∗ + 1)(ℓ∗ − 1) + 2− h > Γneg(1,X s

neg), (5.11)

where the last inequality holds because 2 > h(ℓ∗ − 1) since 0 < h < 1 and ℓ∗ :=
⌈
2
h

⌉
, see

Assumption 3.1. Since in (5.11) we obtained a contradiction, we conclude that any path
ω ∈ Ωopt

1,X s
neg

must visit Wneg(1,X s
neg).

5.2 Minimal gates: proof of the main results

We are now able to prove Theorems 3.5 and 3.6.
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Proof of Theorem 3.5. By Proposition 5.1 we get that Wneg(1,X s
neg) is a gate for the

transition from the metastable state 1 to X s
neg. In order to show that Wneg(1,X s

neg) is a
minimal gate, we exploit [51, Theorem 5.1] and we show that any η ∈ Wneg(1,X s

neg) is an
essential saddle. In order to do this, in view of the definition of an essential saddle given in
Subsection 3.3, for any η ∈ Wneg(1,X s

neg) we construct an optimal path from 1 to X s
neg passing

through η and reaching its maximum energy only there. Since η ∈ Wneg(1,X s
neg), there exists

s 6= 1 such that η ∈ B̄ℓ∗−1,ℓ∗(s, 1) and the optimal path above is defined by modifying the
reference path ω̂ of Definition 4.1 in a such a way that ω̂ℓ∗(ℓ∗−1)+1 = η in which Cs(η) is a
quasi-square ℓ∗×(ℓ∗−1) with a unit protuberance. It follows that ω̂∩Wneg(1,X s

neg) = {η} and
arg maxω̂Hneg = {η} by the proof of Lemma 4.2. To conclude, we prove that Wneg(1,X s

neg) is
the only minimal gate. Note that the above reference path ω̂ reaches the energy Φneg(1,X s

neg)
only in Wneg(1,X s

neg). It follows that, for any η1 ∈ Wneg(1,X s
neg), the set Wneg(1,X s

neg)\{η1}
is not a gate for the transition 1 → X s

neg. Indeed, from the above discussion we get that there
exists an optimal path ω̂ such that ω̂ ∩Wneg(1,X s

neg)\{η1} = ∅. Note that the uniqueness of
the minimal gate follows by the condition 2/h /∈ N, see Assumption 3.1.

Proof of Theorem 3.6. For any s ∈ X s
neg, the min-max energy value that is reached by any

path ω : 1 → s is Φneg(1, s) ≡ Φneg(1,X s
neg). Furthermore, Theorem 3.3 implies that when a

path ω : 1 → s visits some r ∈ X s
neg\{s}, the min-max energy value that the path reaches is

still Φneg(1,X s
neg). Indeed, for instance in the case in which the path ω may be decomposed in

two paths ω1 : 1 → r and ω2 : r → s, we have Φneg
ω = max{Φneg

ω1
,Φneg

ω2
} = Φneg(1,X s

neg) where
we used (3.13). Hence, the saddles visited by the process are only the ones crossed during the
transition between 1 and the first stable state. This fact, together with Theorem 3.5, allows
us to state that the set Wneg(1,X s

neg) is the unique minimal gate for the transition from 1 to
s, for any fixed s ∈ X s

neg. Thus, (3.21) is satisfied.

5.3 Tube of typical trajectories: proof of the main results

In order to give the proofs of Theorems 3.8 and 3.9, first we prove the following lemmas.

Lemma 5.2. Let C(η) and C(ζ) be the non-trivial cycles whose bottom are η ∈ R̄ℓ,ℓ−1(1, s)
and ζ ∈ R̄ℓ,ℓ(1, s) with ℓ ≤ ℓ∗ − 1 and s 6= 1, respectively. Then,

B(C(η)) = B̄1
ℓ−1,ℓ−1(1, s); (5.12)

B(C(ζ)) = B̄1
ℓ−1,ℓ(1, s). (5.13)

Proof. For any s 6= 1, let η1 ∈ R̄ℓ,ℓ−1(1, s) with ℓ ≤ ℓ∗. By Proposition 4.3, η1 ∈ M 3
neg is a

local minimum for the Hamiltonian Hneg. Using (3.24), our aim is to prove the following

B̄1
ℓ−1,ℓ−1(1, s) = F (∂C(η1)). (5.14)

In η1, for any v ∈ V the corresponding v-tile (see before Lemma 4.4 for the definition) is of
type (a), (b), (d), (e) and (h), see Figure 6. Starting from η1, by flipping to 1 (resp. s) the
spin s (resp. 1) on a vertex whose tile is of type (a), (d) (resp. (b), (e)), the process visits a
configuration σ1 such that

Hneg(σ1)−Hneg(η1) ≥ 2− h. (5.15)

Thus, the smallest energy increase is given by h by flipping to 1 a spin s on a vertex v1 centered
in a tile of type (h). Let η2 := ηv1,11 ∈ B̄ℓ−2

ℓ−1,ℓ−1(1, s). In η2, for any v ∈ V the corresponding
v-tile is one among those depicted in Figure 6(a), (b), (d), (e), (h) and (p) with r = s. Since
Hneg(η2) = Hneg(η1) + h, the spin flips on a vertex whose tile is of type (a), (b), (d) and (e)
lead to Hneg(σ2)−Hneg(η1) ≥ 2. Thus, as in the previous case, the smallest energy increase is
given by flipping to 1 a spin s on a vertex v1 centered in a tile of type (h). Note that starting
from η2 the only spin flip which decreases the energy leads to the bottom of C(η1), namely in
η1.
Let us now note that

Hneg(ηℓ−1)−Hneg(η1) = h(ℓ− 2). (5.16)
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Since ℓ ≤ ℓ∗, comparing (5.15) with (5.16), we get that ηℓ−1 ∈ F (∂C(η1)), and (5.14) is
verified.
Let us now consider for any s 6= 1 the local minimum ζ1 ∈ R̄ℓ,ℓ(1, s) ⊂ M 3

neg with ℓ ≤ ℓ∗ − 1.

Arguing similarly to the previous case, (5.13) may be verified by proving that B̄1
ℓ−1,ℓ(1, s) =

F (∂C(ζ1)).

Lemma 5.3. Let C(η) be the non-trivial cycle whose bottom is η ∈ R̄ℓ1,ℓ2(1, s) with min{ℓ1, ℓ2} ≥
ℓ∗ and s 6= 1. Then,

B(C(η)) = B̄1
ℓ1,ℓ2(1, s) ∪ B̄1

ℓ2,ℓ1(1, s). (5.17)

Proof. For any s 6= 1, let η1 ∈ R̄ℓ1,ℓ2(1, s) with ℓ∗ ≤ ℓ1 ≤ ℓ2. By Proposition 4.3, η1 ∈ M 3
neg

is a local minimum for the Hamiltonian Hneg. Using (3.24), our aim is to prove the following

B̄1
ℓ1,ℓ2(1, s) ∪ B̄1

ℓ2,ℓ1(1, s) = F (∂C(η1)). (5.18)

In η1, for any v ∈ V the corresponding v-tile is of type (a), (b), (d), (e) and (h). Let v1 ∈ V
such that the v1-tile is of type (e) with r = s, and let η2 := ηv1,s1 . Note that if v1 is adjacent to
a side of length ℓ2, then η2 ∈ B̄1

ℓ1,ℓ2
(1, s), otherwise η2 ∈ B̄1

ℓ2,ℓ1
(1, s). Without loss of generality,

let us assume that η2 ∈ B̄1
ℓ1,ℓ2

(1, s). By simple algebraic calculation we obtain that

Hneg(η2)−Hneg(η1) = 2− h. (5.19)

In η2 for any v ∈ V the corresponding v-tile is of type (a), (b), (d), (e), (h) and (p) with
t = r = 1. By flipping to s a spin 1 on a vertex w whose tile is of type (p) with r = s the
energy decreases by h and the process enters a cycle different from the previous one that is
either the cycle C̄ whose bottom is a local minimum belonging to R̄ℓ1+1,ℓ2(m, 1), or a trivial
cycle for which iterating this procedure the process enters C̄. Thus, B̄1

ℓ1,ℓ2
(1, s) ⊆ ∂C(η1).

Similarly we prove that B̄1
ℓ2,ℓ1

(1, s) ⊆ ∂C(η1).
Let us now note that starting from η1 the smallest energy increase is h, and it is given by

flipping to 1 a spin s on a vertex whose tile is of type (h). Let us consider the uphill path ω
started in η1 and constructed by flipping to 1 all the spins s along a side of the rectangular
ℓ1×ℓ2 s-cluster, say one of length ℓ1. Using the discussion given in the proof of Lemma 5.2 and
the construction of ω, we get that the process intersects ∂C(η) in a configuration σ belonging
to B̄1

ℓ2−1,ℓ1
(1, s). By algebraic computations, we obtain the following

Hneg(σ) −Hneg(η1) = h(ℓ2 − 1). (5.20)

Since ℓ2 ≥ ℓ∗, it follows that Hneg(σ) > Hneg(η2).
Since by flipping to 1 (resp. s) the vertex centered in a tile of type (a), (d) (resp. (e)), the
energy increase is largest than or equal to 2 + h, it follows that (5.18) is satisfied.

In order to prove Theorems 3.8 and 3.9, we need some further definitions that are taken from
[55, 27, 60]. Our goal is to give an equivalent definition of the tube that only relies on the energy
landscape data. We call cycle-path a finite sequence (C1, . . . , Cm) of trivial or non-trivial cycles
C1, . . . , Cm ∈ C (X ), such that Ci ∩ Ci+1 = ∅ and ∂Ci ∩ Ci+1 6= ∅, for every i = 1, . . . ,m− 1.
A cycle-path (C1, . . . , Cm) is said to be downhill (strictly downhill) if the cycles C1, . . . , Cm are
pairwise connected with decreasing height, i.e., when H(F (∂Ci)) ≥ H(F (∂Ci+1)) (H(F (∂Ci)) >
H(F (∂Ci+1))) for any i = 0, . . . ,m− 1.
We denote the set of cycle-paths that lead from σ to A and consist of maximal cycles in X\A
as

Pσ,A:={cycle-path(C1, ..., Cm)|C1, ..., Cm∈M(C+
A(σ)\A), σ∈C1, ∂Cm∩A 6=∅}.

Given a non-empty set A ⊂ X and σ ∈ X , we constructively define a mapping G : Ωσ,A →
Pσ,A in the following way. Given ω = (ω1, . . . , ωn) ∈ Ωσ,A, we set m0 = 1, C1 = CA(σ) and
define recursively mi := min{k > mi−1| ωk /∈ Ci} and Ci+1 := CA(ωmi

). We note that ω is a
finite sequence and ωn ∈ A, so there exists an index n(ω) ∈ N such that ωmn(ω)

= ωn ∈ A and
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there the procedure stops. By (C1, . . . , Cmn(ω)
) is a cycle-path with C1, . . . , Cmn(ω)

⊂ M(X\A).
Moreover, the fact that ω ∈ Ωσ,A implies that σ ∈ C1 and that ∂Cn(ω) ∩ A 6= ∅, hence
G(ω) ∈ Pσ,A and the mapping is well-defined.
We say that a cycle-path (C1, . . . , Cm) is connected via typical jumps to A ⊂ X or simply
vtj−connected to A if

B(Ci) ∩ Ci+1 6= ∅, ∀i = 1, . . . ,m− 1, and B(Cm) ∩ A 6= ∅. (5.21)

Let JC,A be the collection of all cycle-paths (C1, . . . , Cm) that are vtj-connected to A and such
that C1 = C. Given a non-empty set A and σ ∈ X , we define ω ∈ Ωσ,A as a typical path from

σ to A if its corresponding cycle-path G(ω) is vtj-connected to A and we denote by Ωvtj
σ,A the

collection of all typical paths from σ to A, i.e.,

Ωvtj
σ,A := {ω ∈ Ωσ,A| G(ω) ∈ JCA(σ),A}. (5.22)

Finally, we define the tube of typical paths TA(σ) from σ to A as the subset of states η ∈ X
that can be reached from σ by means of a typical path which does not enter A before visiting
η, i.e.,

TA(σ) := {η ∈ X| ∃ω ∈ Ωvtj
σ,A : η ∈ ω}. (5.23)

Finally, we define TA(σ) as the set of all maximal cycles that belong to at least one vtj-
connected path from Cσ

A(Γ) to A, i.e.,

TA(σ):={C∈M(C+
A(σ)\A)|∃(C1, . . . , Cn)∈JCσ

A(Γ),A, ∃j ∈ {1, ..., n}:Cj=C}. (5.24)

Note that

TA(σ) = M(TA(σ)\A) (5.25)

and that the boundary of TA(σ) consists of states either in A or in the non-principal part of
the boundary of some C ∈ TA(σ), i.e, ∂TA(σ)\A ⊆ ⋃

C∈TA(σ)(∂C\B(C)) =: ∂npTA(σ).

Proof of Theorem 3.8. Following the same approach as [60, Section 6.7], we characterize
the tube of typical trajectories using the so-called “standard cascades”. See [60, Figure 6.3] for
an example of a standard cascade. We describe these in terms of the paths that are started in
1 and are vtj-connected to X s

neg. See (5.22) for the formal definition and see [55, Lemma 3.12]
for an equivalent characterization of these paths. We remark that any typical path from 1 to
X s

neg is also an optimal path for the same transition.
In order to give a geometrical description of these typical paths, we proceed similarly to

[60, Section 7.4], where the authors apply the model-independent results given in Section
6.7 to identify the tube of typical paths in the context of the Ising model. We define a vtj-
connected cycle-path that is the concatenation of both trivial and non-trivial cycles. Let η1
be a configuration belonging to one of the minimal gates for the transition 1 → X s

neg, see
Theorem 3.5 . We begin by studying the first descent from η1 both to 1 and to X s

neg. Then, we
complete the description of TX s

neg
(1) by joining the time reversal of the first descent from η1

to 1 with the first descent from η1 to X s
neg. In view of (3.19) we have that η1 ∈ B̄1

ℓ∗−1,ℓ∗(1, s)
for some s 6= 1, and for the sake of semplicity we describe a vtj-connected path from 1 to X s

neg

conditioned to hit X s
neg for the first time in s.

Let us begin by studying the standard cascades from η1 to 1. Since a spin flip from s
to t /∈ {1, s} implies an increase of the energy value equal to the increase of the number of
the disagreeing edges, we consider only the splin-flips from s to 1 on those vertices belonging
to the s-cluster. Thus, starting from η1 and given v1 a vertex such that η1(v1) = s, since
Hneg(η1) = Φneg(1,X s

neg), we get

Hneg(η
v1,1
1 ) = Φneg(1,X s

neg) + ns(v1)− n1(v1) + h. (5.26)

It follows that the only possibility for the path to be optimal is ns(v1) = 1 and n1(v1) = 3.
Thus, along the first descent from η1 to 1 the process visits η2 in which all the vertices have
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spin 1 except those, which are s, in a rectangular cluster ℓ∗ × (ℓ∗ − 1), i.e., η2 ∈ R̄ℓ∗−1,ℓ∗(1, s).
By Proposition 4.3 η2 ∈ M 3

neg is a local minimum, thus according to (5.21) we have to describe
its non-trivial cycle and its principal boundary. Starting from η2, the next configuration along
a typical path is defined by flipping to 1 a spin s on a vertex v2 on one of the four corners of
the rectangular s-cluster. Indeed, since Hneg(η2) = Φneg(1,X s

neg)− 2 + h, we have

Hneg(η
v2,1
2 ) = Φneg(1,X s

neg)− 2 + 2h+ ns(v2)− n1(v2), (5.27)

and for the path to be optimal, we must have ns(v2) = 2 and n1(v2) = 2. By (4.19), the
smallest energy increase for any single step of the dynamics is equal to h. Thus, a typical path
towards 1 proceeds by eroding the ℓ∗− 2 unit squares with spin s belonging to a side of length
ℓ∗− 1 that are corners of the s-cluster and that belong to the same side of v2. Each of the first
ℓ∗ − 3 spin flips increases the energy by h, and these uphill steps are necessary in order to exit
from the cycle whose bottom is the local minimum η2. After these ℓ∗−3 steps, the process hits
the bottom of the boundary of this cycle in a configuration ηℓ∗ ∈ B̄1

ℓ∗−1,ℓ∗−1(1, s), see Lemma
5.2. The last spin-update, that flips from s to 1 the spin s on the unit protuberance of the
s-cluster, decreases the energy by 2 − h. Thus, the typical path arrives in a local minimum
ηℓ∗+1 ∈ R̄ℓ∗−1,ℓ∗−1(1, s), i.e., it enters a new cycle whose bottom is a configuration in which
all the vertices have spin 1, except those, which are s, in a square (ℓ∗ − 1)× (ℓ∗ − 1) s-cluster.
Summarizing the construction above, we have the following sequence of vtj-connected cycles

{η1}, Cη2

1 (h(ℓ∗ − 2)), {ηℓ∗}, Cηℓ∗+1

1 (h(ℓ∗ − 2)). (5.28)

Iterating this argument, we obtain that the first descent from η1 ∈ Wneg(1,X s
neg) to 1 is

characterized by the concatenation of those vtj-connected cycle-subpaths between the cycles
whose bottom is the local minima in which all the vertices have spin equal to 1, except those,
which are s, in either a quasi-square (ℓ−1)× ℓ or a square (ℓ−1)× (ℓ−1) for any ℓ = ℓ∗, . . . , 1,
and whose depth is given by h(ℓ−2). More precisely, from a quasi-square to a square, a typical
path proceeds by flipping to 1 those spins s on one of the shortest sides of the s-cluster. On the
other hand, from a square to a quasi-square, it proceeds by flipping to 1 those spins s belonging
to one of the four sides of the square. Thus, a standard cascade from η1 to 1 is characterized
by the sequence of those configurations that belong to

ℓ∗⋃

ℓ=1

[ ℓ−1⋃

l=1

B̄l
ℓ−1,ℓ(1, s)∪R̄ℓ−1,ℓ(1, s)∪

ℓ−2⋃

l=1

B̄l
ℓ−1,ℓ−1(1, s)∪R̄ℓ−1,ℓ−1(1, s)

]
. (5.29)

Let us now consider the first descent from η1 ∈ B̄1
ℓ∗−1,ℓ∗(1, s) to s ∈ X s

neg. Since the path is
optimal, we only consider flips from 1 to s. Thus, let w1 be a vertex such that η1(w1) = 1.
Flipping the spin 1 on the vertex w1, we get

Hneg(η
w1,s
1 ) = Φneg(1,X s

neg) + n1(w1)− ns(w1)− h, (5.30)

and the only feasible choice is n1(w1) = 2 and ns(w1) = 2. Thus, ηw1,s
1 ∈ B̄2

ℓ∗−1,ℓ∗(1, s),
namely the bar is now of length two. Arguing similarly, we get that along the descent to s

a typical path proceeds by flipping from 1 to s the spins 1 with two nearest-neighbors with
spin s and two nearest-neighbors with spin 1 belonging to the incomplete side of the s-cluster.
More precisely, it proceeds downhill visiting η̄i ∈ B̄i

ℓ∗−1,ℓ∗(1, s) for any i = 2, . . . , ℓ∗ − 1 and

η̄ℓ∗ ∈ R̄ℓ∗,ℓ∗(1, s), which is a local minimum by Proposition 4.3. In order to exit from the
cycle whose bottom is η̄ℓ∗ , the process crosses the bottom of its boundary by creating a unit
protuberance of spin s adjacent to one of the four edges of the s-square, i.e., visits {η̄ℓ∗+1} where
η̄ℓ∗+1 ∈ B̄1

ℓ∗,ℓ∗(1, s), see Lemma 5.3. Starting from {η̄ℓ∗+1}, a typical path towards s proceeds

by enlarging the protuberance to a bar of length two to ℓ∗− 1, thus it visits η̄ℓ∗+i ∈ B̄i
ℓ∗,ℓ∗(1, s)

for any i = 2, . . . , ℓ∗ − 1. Each of these steps decreases the energy by h, and eventually
the bottom of the cycle is reached, i.e., in the local minimum η̄2ℓ∗ ∈ R̄ℓ∗,ℓ∗+1(1, s). Then, the
process exits from this cycle through the bottom of its boundary by adding a unit protuberance
of spin s on any one of the four edges of the rectangular ℓ∗ × (ℓ∗ + 1) s-cluster in η̄2ℓ∗ . Thus,
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it visits the trivial cycle {η̄2ℓ∗+1}, where η̄2ℓ∗+1 ∈ B̄1
ℓ∗,ℓ∗+1(1, s) ∪ B̄1

ℓ∗+1,ℓ∗(1, s). Note that
the resulting standard cascade is different from the one towards 1. Thus, summarizing the
construction above, we have defined the following sequence of vtj-connected cycles

{η1}, C η̄ℓ∗

s (h(ℓ∗ − 1)), {η̄ℓ∗+1}, C η̄2ℓ∗

s (h(ℓ∗ − 1)), {η̄2ℓ∗+1}. (5.31)

Note that if η̄2ℓ∗ ∈ B̄1
ℓ∗,ℓ∗+1(1, s), then the process enters the cycle whose bottom is a con-

figuration belonging to R̄ℓ∗+1,ℓ∗+1(1, s). On the other hand, if η̄2ℓ∗ ∈ B̄1
ℓ∗+1,ℓ∗(1, s), then the

standard cascade enters the cycle whose bottom is a configuration belonging to R̄ℓ∗,ℓ∗+2(1, s).
In the first case the cycle has depth hℓ∗, in the second case the cycle has depth h(ℓ∗ − 1). Iter-
ating this argument, we get that the first descent from η1 to s is characterized by vtj-connected
cycle-subpaths from R̄ℓ1,ℓ2(1, s) to R̄ℓ1,ℓ2+1(1, s) defined as the sequence of those configurations
belonging to B̄l

ℓ1,ℓ2
(1, s) for any l = 1, . . . , ℓ2 − 1. Eventually, a configuration in which this

cluster is either a vertical or a horizontal strip is reached, i.e., it intersects one of the two sets
defined in (3.25)–(3.26). If the descent arrives in S v

neg(1, s), then it proceeds by enlarging the

vertical strip column by column. Otherwise, if it arrives in S h
neg(1, s), then it enlarges the

horizontal strip row by row. In both cases, starting from a configuration with an s-strip, i.e.,
a local minimum in M 2

neg by Proposition 4.3, the path exits from its cycle by adding a unit
protuberance with a spin s adjacent to one of the two vertical (resp. horizontal) edges and
increasing the energy by 2− h. Starting from this trivial cycle, the standard cascade proceeds
downhill in a new cycle by filling the column (resp. row) with spins s. More precisely, the
standard cascade visits K − 1 (resp. L − 1) configurations such that each of them is defined
by the previous one flipping from 1 to s a spin 1 with two nearest-neighbors with spin 1 and
two nearest-neighbors with spin s. Each of these spin-updates decreases the energy by h. The
process arrives in this way to the bottom of the cycle, i.e., in a configuration in which the
thickness of the s-strip has been enlarged by a column (resp. row). Starting from this state
with the new s-strip, we repeat the same arguments above until the standard cascade arrives
in the trivial cycle of a configuration σ with an s-strip of thickness L − 2 (resp. K − 2) and
with a unit protuberance. Starting from {σ}, the process enters the cycle whose bottom is s

and it proceeds downhill either by flipping from 1 to s those spins 1 with two nearest-neighbors
with spin 1 and two nearest-neighbors with spin s, or by flipping to s all the spins 1 with three
nearest-neighbors with spin s and one nearest-neighbor with spin 1. The last step flips from 1
to s the last spin 1 with four nearest-neighbors with spin s. Thus, the first descent from η1 to
X s

neg conditioning to hit this set in s is characterized by the sequence of those configurations
that belong to

K−1⋃

ℓ1=ℓ∗

K−1⋃

ℓ2=ℓ∗

R̄ℓ1,ℓ2(1, s) ∪
K−1⋃

ℓ1=ℓ∗

K−1⋃

ℓ2=ℓ∗

ℓ2−1⋃

l=1

B̄l
ℓ1,ℓ2(1, s) ∪

L−1⋃

ℓ1=ℓ∗

L−1⋃

ℓ2=ℓ∗

R̄ℓ1,ℓ2(1, s)

∪
L−1⋃

ℓ1=ℓ∗

L−1⋃

ℓ2=ℓ∗

ℓ2−1⋃

l=1

B̄l
ℓ1,ℓ2(1, s) ∪ S

v
neg(1, s) ∪ S

h
neg(1, s). (5.32)

To conclude we need to find the standard cascade from 1 to X s
neg. Using Theorem 3.5 and

the symmetry of the energy landscape with respect to the q− 1 stable states, we complete the
proof by taking the union of the standard cascades from 1 to all possible s ∈ X s

neg given by
(5.29)–(5.32). Finally, (3.28) follows by [55, Lemma 3.13].

Proof of Theorem 3.9 Let us assume q > 2, otherwise the result is proven in [60, Section
7.4]. Starting from the metastable state 1, the process hits X s

neg in any stable state r with

the same probability 1
q−1 . The set of typical paths Ωvtj

1,s may be partitioned in two subsets

Ωvtj,1
1,s := {ω ∈ Ωvtj

1,s : ω ∩ X s
neg\{s} = ∅} and Ωvtj,2

1,s := {ω ∈ Ωvtj
1,s : ω ∩ X s

neg\{s} 6= ∅}. Since

the process follows a path belonging to Ωvtj,2
1,s with probability q−2

q−1 > 0, these trajectories also

belong to the tube of typical paths. Thus, the tube Ts(1) is comprised of those configurations
that belong to all the typical paths that go from 1 to X s

neg, i.e., those states belonging to
TX s

neg
(1), and of those configurations that belong to all typical paths from any r ∈ X s

neg\{s}
to s. Using Remark 3.3, these last configurations belong to the tube Tzero

s (r) given by [12,
Equation 4.25, Theorem 4.3]. Finally, we apply [55, Lemma 3.13] to prove (3.30).
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6 Sharp estimate on the mean transition time from the

metastable state to the set of the stable states

In order to prove our main results on the computation of the prefactor and on the estimate of
the expected value of the transition time from a metastable state to the stable set, we adopt the
potential theoretic approach. In order to apply this method, let us give some further definitions
and some known results taken from [19, 17] and from [5].

We begin by introducing some further model-independent definitions and results. Consider
any energy landscape (X , H,Q) and let h : X → R. We define Dirichlet form as

Eβ(h) :=
1

2

∑

σ,η∈X

µβ(σ)Pβ(σ, η)[h(σ) − h(η)]2

=
1

2

∑

σ,η∈X

e−βH(σ)

Z

e−β[H(η)−H(σ)]+

|Λ| [h(σ)− h(η)]2. (6.1)

Given two non-empty disjoint sets A1,A2 ⊂ X , the capacity of the pair A1,A2 is defined by

CAP(A1,A2) := min
h:X→[0,1]

h|A1
=1,h|A2

=0

Eβ(h). (6.2)

Note that from (6.2) it follows immediately that the capacity is symmetric in A1 and A2. In
particular, the right hand side of (6.2) has a unique minimizer h∗

A1,A2
known as equilibrium

potential of A1,A2 and given by h∗
A1,A2

(η) = P(τηA1
< τηA2

), for any η ∈ X . Finally, using what
we have just defined, consider the following.

Definition 6.1. A set A ⊂ X is said to be p.t.a.-metastable if

lim
β→∞

maxσ/∈A µβ(σ)[CAPβ(σ,A)]−1

minσ∈A µβ(σ)[CAPβ(σ,A\{σ})]−1
= 0. (6.3)

The prefix p.t.a. stands for potential theoretic approach and it is used for distinguishing the
Definition 6.1 from that of the metastable set Xm. We remark that the idea of defining a set
as in Definition 6.1 was introduced in [19], where the authors refer to it as set of metastable
points. We refer to [19] and to [17, Chapter 8] for the study of the main properties of this set.

Since the identification of a p.t.a.-metastable set is quite difficult if one starts from the
Definition 6.1, we recall [26, Theorem 3.6] where the authors give a constructive method for
defining any p.t.a.-metastable set. In particular, for any σ, η ∈ X , the authors introduced the
following equivalence relation

σ ∼ η if and only if Φ(σ, η) −H(σ) < Γm and Φ(η, σ) −H(η) < Γm. (6.4)

Assumed X\X s 6= ∅, let Xm
(1), . . . ,Xm

(km) and X s
(1), . . . ,X s

(ks)
be the equivalence classes in which

Xm and X s are partitioned with respect to the relation ∼, respectively.

Theorem 6.1. [26, Theorem 3.6] Assume that X\X s 6= ∅ and X\(X s ∪ Xm) 6= ∅. Choose
arbitrarily σs,i ∈ X s

(i) for any i = 1, . . . , ks and σm,j ∈ Xm
(j) for any j = 1, . . . , km. The set

{σs,1, . . . , σs,ks
, σm,1, . . . , σm,km

} is a p.t.a.-metastable.

Remark 6.1. In [17, Chapters 8 and 16] the authors state the main metastability theorems for
those energy landscapes in which the stable set X s = {s} and the metastable set Xm = {m}
are singletons. In particular, in [17, Lemma 16.13] the authors prove that the pair A = {m, s}
is a p.t.a.-metastable set.

6.1 Mean crossover time and computation of prefactor: proof of main

results

In this subsection we prove Theorem 3.7 by using the model independent results given in [5]
and [17, Chapter 16], by exploiting the discussion given in [26, Subsection 3.1] and also by

36



using some results given in [19],[6]. Let us begin by giving the following list of definitions and
notations.

- With an abuse of notation we consider X as a graph whose vertices are the configurations.
Given two configurations σ, η ∈ X there is an edge between the corresponding vertices if
it is possible to move from σ to η (resp. η to σ) in one step of the dynamics.

- Let X ∗
neg ⊂ X be the subgraph obtained by removing all the vertices corresponding to

configurations σ ∈ X such that Hneg(σ) > Γm
neg + Hneg(1) and also removing all edges

incident to these configurations.

- Let X ∗∗
neg ⊂ X ∗

neg be the subgraph obtained by removing all the vertices corresponding to
configurations σ such that Hneg(σ) = Γm

neg+Hneg(1) and also removing all edges incident
to these configurations.

- Let P∗
PTA(1,X s

neg) be the protocritical set and let C ∗
PTA(1,X s

neg) be the critical set. More
precisely, we exploit [17, Definition 16.3] and define (C ∗

PTA(1,X s
neg),P

∗
PTA(1,X s

neg)) as
the maximal subset of X × X such that: (1) for any σ ∈ P∗

PTA(1,X s
neg) there exists

η ∈ C ∗
PTA(1,X s

neg) such that σ ∼ η and for any η ∈ C ∗
PTA(1,X s

neg) there exists σ ∈
P∗

PTA(1,X s
neg) such that η ∼ σ;

(2) for any σ ∈ P∗
PTA(1,X s

neg), Φneg(σ,1) < Φneg(σ,X s
neg);

(3) for any η ∈ C ∗
PTA(1,X s

neg) there exists a path ω : η → X s
neg such that maxζ∈ω Hneg(ζ)−

Hneg(1) ≤ Γm
neg and ω ∩ {ζ ∈ X : Φneg(ζ,1) < Φneg(ζ,X s

neg)} = ∅.

Next, consider Wneg(1,X s
neg) = G1

neg ∪ G2
neg where G1

neg and G2
neg are defined as follows.

- G1
neg := {σ ∈ Wneg(1,X s

neg) : the cluster of spins different from 1 has the unit protuberance
on a corner of one of the longest sides of the quasi-square ℓ∗ × (ℓ∗ − 1)}.
- G2

neg := {σ ∈ Wneg(1,X s
neg): the cluster of spins different from 1 has the unit protuberance on

one of the ℓ∗−2 vertices different from the corners of one of the longest sides of the quasi-square
ℓ∗ × (ℓ∗ − 1)}. Following the same strategy given in [5], let us consider the set

X ∗∗
neg\(C1

X s
neg

(Γm
neg) ∪ CX s

neg

1 (Γneg(X s
neg,1))) =

I⋃

i=1

X (i), (6.5)

where each X (i) is a set of communicating states with energy strictly lower than Φneg(1,X s
neg)

and with communication energy Φneg(1,X s
neg) with respect to both 1 and X s

neg. Among these

sets we find also the wells Z1
j (resp. ZX s

neg

j ) that are connected by one step of the dynamics
with the unessential saddles that in [5, Definitions 3.2 and 3.4] are said to be “of the first
type” (resp. “of the second type”) and that are denoted by σj (resp. ζj). In view of the above
discussion, let us define the following subsets of X ∗

neg.

- Aneg := C1
X s

neg
(Γm

neg) ∪
⋃Jmeta

j=1 ({σj} ∪ Z1
j ).

- Bneg := CX s
neg

1 (Γneg(X s
neg,1)) ∪

⋃Jstab

j=1 ({ζj} ∪ ZX s
neg

j ).

Before of the proof of Theorem 3.7, it is useful to state the following results.

Lemma 6.1. The cardinality of G1
neg and G2

neg are |G1
neg| = 8|Λ|(q − 1) and |G2

neg| = 4|Λ|(ℓ∗ −
2)(q − 1), respectively.

Proof. In G1
neg the protuberance lies at one of the two extreme ends of one of the side of

length ℓ∗, hence there are four possible positions. On the other hand, in G2
neg there are 2(ℓ∗−2)

sites in which can place the unit protuberance. In both cases, the quantity 2|Λ| counts the
number of locations and rotations of the cluster with spins different from 1. Indeed, the quasi-
square with the unit protuberance may be located anywhere in Λ in two possible orientations.
Furthermore, the factor (q− 1) counts the number of possible spins that may characterize this
homogenous cluster.
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Lemma 6.2. If the external magnetic field is negative, then the set {1,X s
neg} is p.t.a-metastable.

Proof. Consider the equivalence relation ∼ given in (6.4). From Theorem 3.1, we get that in
the energy landscape (X , Hneg, Q) the metastable set is a singleton. Hence, there exists only one
equivalence class with respect to ∼ given by Xm

neg itself. On the other hand, X s
neg = {2, . . . ,q}

and from Equation (3.14) of Theorem 3.3 we get that X s
(1) := {2}, . . . ,X s

(q−1) := {q} are the
equivalence classes with respect to the relation ∼ that partition X s

neg. Thus, by Theorem 6.1
we conclude that the set {1,2, . . . ,q} = {1,X s

neg} is p.t.a.-metastable.

Proposition 6.1. If the external magnetic field is negative, then

C
∗
PTA(1,X s

neg) = Wneg(1,X s
neg). (6.6)

Proof. Following the same strategy of the proof of [17, Theorem 17.3], (6.6) follows by the
definition of C ∗

PTA(1,X s
neg), by Lemmas 4.1–4.3 and by Proposition 5.1.

Lemma 6.3. Let η ∈ Wneg(1,X s
neg) and let η̄ ∈ X such that η̄ := ηv,t for some v ∈ V and

t ∈ S, t 6= η(v). If the external magnetic field is negative, then either Hneg(η) < Hneg(η̄) or
Hneg(η) > Hneg(η̄).

Proof. Since η ∈ Wneg(1,X s
neg) =

⋃q
t=2 B̄

1
ℓ∗−1,ℓ∗(1, t), there exists s 6= 1 such that η ∈

B̄1
ℓ∗−1,ℓ∗(1, s). This implies that η is characterized by all spins 1 except those, which are s, in

a quasi-square (ℓ∗− 1)× ℓ∗ with a unit protuberance on one of the longest sides. In particular,
for any u ∈ V , either η(u) = 1 or η(u) = s. If η(u) = 1, then for any t ∈ S\{1}, depending on
the distance between the vertex u and the s-cluster, we have

Hneg(η̄)−Hneg(η) =





4− h1{t=s}, if n1(u) = 4 ;

3− 1{t=s} − h1{t=s}, if n1(u) = 3, ns(u) = 1;

2− 21{t=s} − h1{t=s}, if n1(u) = 2, ns(u) = 2.

(6.7)

Otherwise, if η(u) = 1, for any t ∈ S\{1}, depending on the distance between the vertex u and
the boundary of the s-cluster, we get

Hneg(η̄)−Hneg(η) =





4 + h, if ns(u) = 4;

3− 1{t=1} + h, if n1(u) = 1, ns(u) = 3;

2− 21{t=1} + h, if n1(u) = 2, ns(u) = 2;

1− 31{t=1} + h, if n1(u) = 3, ns(u) = 1.

(6.8)

We conclude that Hneg(η) 6= Hneg(η̄).
In [5, Definitions 3.2 and 3.4] the authors define two subsets of unessential saddles for the

metastable transition and they call them respectively unessential saddles of the first type” and
of the second type and in [5, Equations (3.16)–(3.17)] they define the sets K and K̃. Using
these definitions and Lemma 6.3, we are now able to prove the following.

Lemma 6.4. If the external magnetic field is negative, then the following properties are veri-
fied.

(a) K = ∅, K̃ = ∅.

(b) Any σ ∈ W ′
neg(1,X s

neg) is such that σ ∈ ⋃Jmeta

j=1 ({σj} ∪ Z1
j ), namely there exist at least a

unessential saddle σi “of the first type” and its well Z1
i is not empty.

(c) The set
⋃Jstab

j=1 ({ζj} ∪ ZX s
neg

j ) is not empty, namely there exists at least a unessential
saddle ζi “of the second type”.

Proof. By Lemma 6.3 we have that any η ∈ Wneg(1,X s
neg) that communicates with con-

figurations in the cycles C1
X s

neg
(Γm

neg) ∪ CX s
neg

1 (Γneg(X s
neg,1)), in X\X ∗

neg, and it does not com-

municate by a single step of the dynamics with another saddle. This implies that for any
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Figure 17: Example of a unessential saddle ζ “of the second type” defined in [5] when ℓ∗ = 5.
We color white the vertices with spin 1 and gray the vertices with spin s 6= 1.

η̄ ∈ Sneg(1,X s
neg)\Wneg(1,X s

neg), visited by the process before visiting the gate Wneg(1,X s
neg),

it does not exist a path ω1 : η → η̄ such that ω1 ∩ C1
X s

neg
(Γm

neg) = ∅, ω1 ∩Wneg(1,X s
neg) = {η},

and maxσ∈ω1 Hneg(σ) ≤ Φneg(1,X s
neg). This concludes that K = ∅. Furthermore, for any η̄ ∈

Sneg(1,X s
neg)\Wneg(1,X s

neg), visited by the process after visiting the gate Wneg(1,X s
neg), there

does not exist ω1 : η → η̄ such that ω1 ∩ CX s
neg

1 (Γneg(X s
neg,1)) = ∅, ω1 ∩Wneg(1,X s

neg) = {η},
and maxσ∈ω1 Hneg(σ) ≤ Φneg(1,X s

neg). This concludes that K̃ = ∅ and the proof of item (a).
Let us now prove item (b). Using Theorem 3.5, we get that any saddle in which the protu-
berance is on one of the shortest sides: σi ∈ W ′

neg(1,X s
neg), is an unessential saddle. Thus, σi

satisfies [5, Definition 3.2] and it belongs to
⋃Jmeta

j=1 ({σj}∪Z1
j ). Moreover, if σi ∈ B̄1

ℓ∗,ℓ∗−1(1, s),
and without loss of generality the protuberance is on the shortest side that is north, then it
communicates by one step of the dynamics with a configuration in B̄2

ℓ∗,ℓ∗−1(1, s) with a bar of

length two on the north side. This belongs to Z1
i together with those configurations with a

bar of length l on the north side belonging to B̄l
ℓ∗,ℓ∗−1(1, s) for any l = 3, . . . , ℓ∗ − 2 and its

bottom is a configuration belonging to R̄ℓ∗−1,ℓ∗+1(1, s) with the shortest sides that are north
and south. The same arguments hold by replacing north with south, east, west.
Let us now prove item (c) by illustrating an example of unessential saddle ”of the second

type”. We choose this unessential saddles as the configuration ζ ∈ ∂CX s
neg

1 (Γneg(X s
neg,1)) ∩

(Sneg(1,X s
neg)\Wneg(1,X s

neg)) in which all the vertices have spin equal to 1 except those, which
are all equal to s for some s 6= 1, in a cluster that is a square (ℓ∗ − 1)× (ℓ∗ − 1) with a bar of
length two on one of the four sides and a bar of length ℓ∗ − 2 on one of the two consecutive
sides, see Figure 17.

Note that ζ ∈ Sneg(1,X s
neg)\Wneg(1,X s

neg) since the perimeter of the s-cluster is 4ℓ∗ and
since its area is equal to ℓ∗(ℓ∗ − 1) + 1, and so by (4.4) we get that Hneg(ζ) = Hneg(1) + 4ℓ∗ −
h(ℓ∗(ℓ∗− 1)+1)) = Φneg(1,X s

neg). Furthermore, ζ ∈ ∂CX s
neg

1 (Γneg(X s
neg,1)). Indeed, by flipping

to s the spin 1 adjacent to the bar of length ℓ∗ − 2, the process intersects a configuration

belonging to B̄2
ℓ∗−1,ℓ∗(1, s) ⊂ CX s

neg

1 (Γneg(X s
neg,1)).

Now we are able to give the proof of Theorem 3.7. Since our model is under Glauber
dynamics, we exploit the proof of [17, Theorem 17.4].

Proof of Theorem 3.7. Let us begin to compute the prefactor (3.23) by exploiting the
variational formula for Θneg = 1/Kneg given in [5, Lemma 10.7]. This variational problem is
simplified because of our Glauber dynamics. Indeed, from the definition of Aneg and Bneg and
from Proposition 6.1, we get that X ∗

neg\(Aneg ∪ Bneg) = C ∗
PTA(1,X s

neg). It follows that there
are no wells inside C ∗

PTA(1,X s
neg) and any critical configuration may not transform into each

other via single spin-update. We proceed by computing a lower and un upper bound for Θneg

as follows.
Upper bound. In order to estimate un upper bound for the capacity we choose a test function
h : X ∗

neg → R defined as

h(σ) :=





1, if σ ∈ Aneg,

0, if σ ∈ Bneg,

ci, if σ ∈ Gi
neg, i = 1, 2,

(6.9)
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where c1, c2 are two constants, see [5, Equation (10.17)]. Thus, we get

Θneg ≤ (1 + o(1)) min
c1,c2∈[0,1]

min
h:X ∗

neg→[0,1]

h|Aneg
=1,h|Bneg

=0

h|
Gi
neg

=ci,i=1,2

1

2

∑

σ,η∈X ∗
neg

1{σ∼η}[h(σ)− h(η)]2

= (1 + o(1)) min
c1,c2∈[0,1]

[
∑

σ∈Aneg

η∈Gi
neg,i=1,2
σ∼η

(1− h(η))2 +
∑

σ∈Bneg

η∈Gi
neg,i=1,2
σ∼η

h(η)2]

= (1 + o(1)) min
c1,c2∈[0,1]

[
∑

η∈Gi
neg,i=1,2
σ∼η

N−(η)(1 − ci)
2 +

∑

η∈Gi
neg,i=1,2
σ∼η

N+(η)c2i ] (6.10)

where N−(η) := |{ξ ∈ ⋃q
t=2 R̄ℓ∗−1,ℓ∗(1, t) : ξ ∼ η}|, and N+(η) := |{ξ ∈ ⋃q

t=2 B̄
2
ℓ∗−1,ℓ∗(1, t) :

ξ ∼ η}|. Let us note that

N−(η) = 1, if η ∈ G1
neg ∪ G2

neg, and N+(η) =

{
1, if η ∈ G1

neg,

2, if η ∈ G2
neg.

(6.11)

Thus, we have

Θneg ≤ (1 + o(1)) min
c1,c2∈[0,1]

[
∑

η∈G1
neg

(1− c1)
2 + c21 +

∑

η∈G2
neg

(1− c2)
2 + 2c22]

= (1 + o(1)) min
c1,c2∈[0,1]

[|G1
neg|(2c21 − 2c1 + 1) + |G2

neg|(3c22 − 2c2 + 1)],

where the equality follows by the fact that the sums are independent from η ∈ Gi
neg, i = 1, 2.

Furthermore, since the minimum value of the function g1(c1) := 2c21 − 2c1 + 1 is 1
2 and the

minimum value of the function g2(c2) := 3c22 − 2c2 + 1 is 2
3 , we have

Θneg=|G1
neg|

1

2
+|G2

neg|
2

3
=
1

2
8|Λ|(q−1)+

2

3
4|Λ|(ℓ∗−2)(q−1)=

4

3
|Λ|(2ℓ∗−1)(q−1),

where the second equality follows by Lemma 6.1.
Lower bound. Since the variational formula for Θneg = 1/Kneg given in [5, Lemma 10.7] is
defined by a sum with only non-negative summands, we obtain a lower bound for Θneg as
follows

Θneg ≥ min
c1,c2∈[0,1]

min
h:X ∗

neg→[0,1]

h|Aneg
=1,h|Bneg

=0

h|
Gi
neg

=ci,
i=1,2

1

2

∑

σ,η∈(C∗
PTA

(1,X s
neg))

+

1{σ∼η}[h(σ) − h(η)]2

where (C ∗
PTA(1,X s

neg))
+ := C ∗

PTA(1,X s
neg) ∪ ∂C ∗

PTA(1,X s
neg).

Note that ∂C ∗
PTA(1,X s

neg)∩X ∗
neg =

⋃q
s=2(R̄ℓ∗,ℓ∗−1(1, s)∪B̄2

ℓ∗,ℓ∗−1(1, s)), with
⋃q

s=2 R̄ℓ∗,ℓ∗−1(1, s) ⊂
C1
X s

neg
(Γm

neg) and
⋃q

s=2 B̄
2
ℓ∗,ℓ∗−1(1, s) ⊂ CX s

neg

1 (Γneg(X s
neg,1)). Thus, we have

Θneg ≥ min
h:X ∗

neg→[0,1]

∑

η∈C∗
PTA

(1,X s
neg)

( ∑

σ∈
⋃q

s=2 R̄ℓ∗,ℓ∗−1(1,s),
σ∼η

[1− h(η)]2 +
∑

σ∈
⋃q

s=2 B̄2
ℓ∗,ℓ∗−1(1,s),

σ∼η

h(η)2
)

=
∑

σ,η∈C∗
PTA

(1,X s
neg)

min
h∈[0,1]

(
N−(η)[1− h]2 +N+(η)h2

)
. (6.12)

Since the minimizer of the function f(h) := N−(η)[1 − h]2 +N+(η)h2 is hmin = N−(η)
N−(η)+N+(η) ,

we obtain

Θneg ≥
∑

σ,η∈C∗
PTA

(1,X s
neg)

N−(η)N+(η)

N−(η) +N+(η)
=

4

3
|Λ|(2ℓ∗ − 1)(q − 1), (6.13)
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where the first equality follows by (6.11). Finally, (3.22) is proven following the strategy given
in [17, Subsection 16.3.2] by taking into account the metastable set {1,X s

neg} by replacing the
role of Lemma 16.17 with [5, Lemma 10.7], see Remark 6.1 and Lemma 6.2.

A Appendix

A.1 Additional material for Subsection 4.2

A.1.1 Explicit calculation of the inequality (4.8)

We have

Hneg(ω̂k∗)−Hneg(1) = 4ℓ∗ − h(ℓ∗(ℓ∗ − 1) + 1),

Hneg(ω̂(K−1)2+1)−Hneg(1) = 4K − 4− h(K − 1)2 − h.

Note that

Hneg(ω̂k∗)−Hneg(ω̂(K−1)2+1) = 4ℓ∗ − h(ℓ∗)2 + hℓ∗ − 4K + 4 + hK2 − 2hK + h. (A.1)

Using the constraints of Assumption 3.1 it follows that, we may write ℓ∗ = 2
h + 1 − δ where

0 < δ < 1 denotes the fractional part of 2/h. Hence, using (A.1), we get

Hneg(ω̂k∗) ≤ Hneg(ω̂(K−1)2+1) (A.2)

⇐⇒ 4ℓ∗ − h(ℓ∗)2 + hℓ∗ − 4K + 4 + hK2 − 2hK + h ≤ 0

⇐⇒ − 4

h
(
2

h
+ 1− δ) + (

2

h
+ 1− δ)2 − (

2

h
+ 1− δ) +

4

h
K − 4

h
−K2 + 2K − 1 ≥ 0

⇐⇒ − 8

h2
− 4

h
+

4

h
δ +

4

h2
+ 1 + δ2 +

4

h
− 4

h
δ − 2δ − 2

h
− 1 + δ +

4

h
K − 4

h
− 1 ≥ K2 − 2K

⇐⇒ − 4

h2
− 6

h
+

4

h
K + δ2 − δ − 1 ≥ K2 − 2K.

Since K ≥ 3ℓ∗ = 3( 2h + 1− δ) and since 0 < δ < 1, it follows that

K2 − 2K ≥ K(3ℓ∗)− 2K = 3K(
2

h
+ 1− δ)− 2K =

6

h
K +K − 3Kδ >

6

h
K − 2K.

Moreover, since 0 < δ < 1 implies that δ2 − δ < 0, we have that

− 4

h2
− 6

h
+

4

h
K + δ2 − δ − 1 < − 4

h2
− 6

h
+

4

h
K. (A.3)

Hence, approximately we get that (A.2) is verified if and only if

− 4

h2
− 6

h
+

4

h
K >

6

h
K − 2K ⇐⇒ − 4

h2
− 6

h
− 2

h
K + 2K > 0,

that is an absurd because of the l.h.s. is strictly negative. Indeed, Assumption 3.1(ii), i.e.,
0 < h < 1, implies that − 2

hK + 2K = 2K(1− 1
h ) < 0. Thus, (A.2) is not verified and

Hneg(ω̂k∗) > Hneg(ω̂(K−1)2+1). (A.4)

A.2 Additional material for Subsection 4.3

A.2.1 Proof of Proposition 4.5

Proof. Our aim is to prove (4.47) by constructing a path ω : r → s such that

Φneg
ω −Hneg(r) = 2min{K,L}+ 2 = 2K + 2, (A.5)
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where the last equality follows by our assumption L ≥ K. Let σ∗ ∈ X be the configuration
defined as

σ∗(v) :=

{
s, if v ∈ c0,

r, otherwise.
(A.6)

We define the path ω as the concatenation of the two paths ω(1) : r → σ∗ and ω(2) : σ∗ → s such

that Φneg

ω(1) = Hneg(r) + 2K and Φneg

ω(2) = Hneg(r) + 2K + 2. We define ω(1) := (ω
(1)
0 , . . . , ω

(1)
K )

where ω
(1)
0 = r and where for any i = 1, . . . ,K the state ω

(1)
i is obtained by flipping the spin

on the vertex (i − 1, 0) from r to s. The energy difference at each step of the path is

Hneg(ω
(1)
i )−Hneg(ω

(1)
i−1) =





4, if i = 1,

2, if i = 2, . . . ,K − 1,

0, if i = K.

(A.7)

Hence, arg maxω(1) = {ω(1)
K−1, ω

(1)
K = σ∗}. Indeed, in view of the periodic boundary conditions

and of the (A.7), we have

Hneg(ω
(1)
K−1)−Hneg(r) = 2K = Hneg(ω

(1)
K )−Hneg(r). (A.8)

Therefore, Φneg

ω(1) = Hneg(r) + 2K. Let us now define the path ω(2). We note that σ∗ has an
s-bridge on column c0 and so we apply to it the expansion algorithm introduced in Proposition
4.4. The algorithm gives a path ω(2) : σ∗ → s such that Φneg

ω(2) = Hneg(σ
∗)+2 = Hneg(r)+2K+2,

where the last equality follows by (A.8).
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