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Abstract

The proximal point algorithm (PPA) is the most widely recognized method for solving inclusion prob-
lems and serves as the foundation for many numerical algorithms. Despite this popularity, its convergence
results have been largely limited to the monotone setting. In this work, we study the convergence of (relaxed)
preconditioned PPA for a class of nonmonotone problems that satisfy an oblique weak Minty condition.
Additionally, we study the (relaxed) Douglas-Rachford splitting (DRS) method in the nonmonotone setting
by establishing a connection between DRS and the preconditioned PPA with a positive semidefinite pre-
conditioner. To better characterize the class of problems covered by our analysis, we introduce the class of
semimonotone operators, offering a natural extension to (hypo)monotone and co(hypo)monotone operators,
and describe some of their properties. Sufficient conditions for global convergence of DRS involving the
sum of two semimonotone operators are provided. Notably, it is shown that DRS converges even when the
sum of the involved operators (or of their inverses) is nonmonotone. Various example problems are provided,
demonstrating the tightness of our convergence results and highlighting the wide range of applications our
theory is able to cover.

Keywords. Convex/nonconvex optimization ·monotone/nonmonotone variational inequalities · inclusion prob-
lems · preconditioned proximal point algorithm · Douglas–Rachford splitting · semimonotone operators
AMS subject classifications. 47H04 · 49J52 · 49J53 · 65K05 · 65K15 · 90C26.

1 Introduction
The preconditioned proximal point algorithm (PPPA) is one of the most fundamental methods for solving
inclusion problems arising in optimization and variational analysis. It aims to find a solution to the inclusion
problem

find z ∈ �n such that 0 ∈ Tz, (G-I)

where T : �n ⇒ �n is a set-valued operator which is usually assumed to be monotone. The iterates of the
(relaxed) preconditioned proximal point algorithm (PPPA) can be expressed as follows:

{
z̄k ∈ (P + T )−1Pzk

zk+1= zk + λk(z̄k − zk). (PPPA)

Here, P ∈ �n×n is a symmetric positive semidefinite matrix and (λk)k∈� is a sequence of strictly positive
relaxation parameters. The classic proximal point algorithm (PPA) [56] corresponds to the setting where the
preconditioner P takes the form of 1/γI, where γ is a positive stepsize parameter, and the relaxation parameter
λk is equal to one.

Several methods are known to be instances of PPPA, each with a specific choice of preconditioner aimed at
exploiting structure present in the problem. These include well-known techniques such as Douglas-Rachford
splitting (DRS) [31, Thm. 6], the alternating direction method of multipliers (ADMM) [28, §8], the (proximal)
augmented Lagrangian method (ALM) [73, §4 & 5], the primal-dual hybrid gradient (PDHG) method [42,
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Lem. 2.2], [32] (also known as Chambolle-Pock (CP) [18]), iterative refinement [64, §4.1.2], the method of
partial inverses [31, §5], progressive hedging [76, Thm. 1], and progressive decoupling [75, Thm. 4].

The convergence analysis of the methods mentioned above typically relies upon an underlying mono-
tonicity/convexity assumption [73, 74, 75]. See also [82, 55, 30, 17, 34] for related works and generalizations.
Departing from this classical setting, we aim to establish convergence of relaxed PPPA for a class of nonmono-
tone operators that are defined through an oblique weak Minty condition (see Definition 2.1). This definition
involves a symmetric matrix V that is not required to be positive or negative definite and controls the level
of (non)monotonicity. When V is equal to the zero matrix, this condition reduces to the Minty variational in-
equality (MVI) [58, 35], sometimes also referred to as variational coherence, satisfied for instance by all pseu-
doconvex and star-convex functions [87]. When V takes the form of ρI for negative ρ, one obtains the so-called
weak MVI that has been employed in the context of the extragradient method and forward-backward-forward
splitting for solving nonconvex-nonconcave min-max problems [24, 68, 69, 12, 1, 2]. Weak MVI is closely re-
lated to the notion of cohypomonotonicity [10, 50, 85], for which a convergence analysis of classic PPA was
already performed in [67, 46, 19]. The key difference between the weak MVI and cohypomonotonicity is that
the governing inequality is not considered between any two points in the graph of T , but instead only between
any point in the graph of T and (a subset of) the zeros of T (see also Example 2.6).

In contrast to the traditional convergence analysis relying on firm nonexpansiveness of the resolvent map-
ping, our convergence analysis leverages a projective interpretation that was introduced in the monotone case
in [81, 80, 47]. We show that the same idea can be applied in the nonmonotone setting for the preconditioned
proximal point algorithm provided that a different halfspace is considered. More specifically, each iteration of
PPPA is interpreted as a projection onto a certain halfspace, separating the current iterate from a subset of so-
lutions that satisfy the oblique weak Minty assumption. A second key aspect of our convergence analysis is
to allow for positive semidefinite preconditioners (as opposed to positive definite ones), which is crucial for
establishing a connection with splitting techniques such as (relaxed) Douglas-Rachford splitting (see Section
3.1). We note that in the monotone setting convergence of PPPA with semidefinite preconditioners has been
studied in [49, Thm. 3.4], [13, §2.1]. In the nonmonotone setting, the aforementioned halfspace will be con-
structed using so-called shadow sequences, obtained by projecting the sequences (zk)k∈� and (z̄k)k∈� onto the
range of the preconditioner P.

In the second part of this paper, we consider the class of Douglas/Peaceman-Rachford splitting methods
and shift our attention towards structured inclusion problems of the form

find x ∈ �n such that 0 ∈ TPx B Ax + Bx, (P-I)

where A : �n ⇒ �n and B : �n ⇒ �n are two (possibly nonmonotone) operators. Given stepsize γ > 0,
strictly positive relaxation parameters λk > 0, and a certain initial guess s0 ∈ �n, the (relaxed) Douglas-
Rachford splitting method consists of the following iterates:



uk ∈ JγA(sk)
vk ∈ JγB(2uk − sk)
sk+1= sk + λk(vk − uk).

(DRS)

For λk = 1, this method corresponds to classic Douglas-Rachford splitting [26], while for λk = 2, it reduces
to Peaceman-Rachford splitting (PRS) [66]. Initially introduced to solve systems of linear equations emerging
in heat conduction problems, these methods were later extended in [54] for finding zeros of the sum of two
maximally monotone operators, and convergence of the sequence (uk)k∈� to a solution was shown [54, 83].

In the optimization setting, global convergence of classic DRS (corresponding to λk = 1) in the nonconvex
setting was obtained in [53] assuming that one function is Lipschitz differentiable. Similarly, PRS (correspond-
ing to λk = 2) was considered in [52] under the additional requirement that the smooth function is strongly
convex. These results were then unified in [84] and tight stepsize ranges for (relaxed) DRS in the noncon-
vex setting were provided. When restricting to their setting (one function being Lipschitz differentiable), we
will show that when the nonsmooth term has a so-called semimonotone subdifferential, our theory allows for a
larger stepsize range compared to [84] (see Remark 5.3(iii)).

A convergence analysis of DRS for minimizing the sum of an α-convex and a β-convex function has been
provided in [41] under the assumption that α + β > 0, i.e. in the convex case. Similar results were obtained
for DRS applied to inclusion problems involving the sum of an α- and a β-monotone operator [21, 71] and the
sum of an α- and a β-comonotone operator [8], both under the assumption that α+β > 0. In the former work, it
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is obvious that the so-called primal inclusion (P-I) is monotone, while in the latter, the so-called dual inclusion
(D-I) is monotone due to [10, Lem. 2.6]. Therefore, the achieved results in this research direction have been
limited to the case where either the primal or the dual problem is monotone.

1.1 Contributions
Our main contributions can be summarized as follows:

1. We establish convergence of PPPA for a class of nonmonotone operators that have oblique weak Minty
solutions at one (or more) of its zeros (see Definition 2.1 and Theorem 2.4). Our convergence result hinges
upon mere positive semidefiniteness of the preconditioning matrix (see Table 1), and tightness of our stepsize
range is demonstrated in Example 2.6. Additionally, sublinear last-iterate convergence rates are obtained in
Theorem 2.11 under a more stringent oblique comonotonicity assumption.

2. Leveraging a primal-dual connection between DRS and PPPA, convergence results of DRS are deduced
whenever the associated primal-dual operator has oblique weak Minty solutions, as well as in the more
restrictive, comonotone setting (see Section 3). Additionally, we demonstrate the tightness of this result in
Example 6.1(ii).

3. Despite the underlying nonmonotonicity, (local) linear convergence of PPPA is established in Theorem 2.13
under an additional metric subregularity assumption. In turn, this result leads to sufficient conditions for
(local) linear convergence of DRS for (possibly) nonmonotone piecewise polyhedral mappings (see Theo-
rem 3.6).

4. We introduce and develop calculus rules for the class of (µ, ρ)-semimonotone operators, which can be
viewed as a natural extension of (hypo)monotone and co(hypo)monotone operators (see Remark 4.2). In
addition, various examples of well-known (nonconvex) function classes with semimonotone subdifferen-
tials are provided.

5. We provide sufficient conditions for the convergence of DRS, based on the semimonotonicity of the opera-
tors A and B (see Theorem 5.2). The stepsize region obtained through our analysis encompasses and extends
existing results on relaxed Douglas/Peaceman-Rachford splitting methods such as [21, 8], see Remark 5.3.
Up to the knowledge of the authors, this is the first work that is able to cover the convergence of DRS in the
case where neither the primal, nor the dual, nor the primal-dual inclusion is monotone. We provide several
example problems that demonstrate the applicability of our theory beyond the standard monotone setting.

1.2 Organization
The paper is structured as follows. Section 1.3 introduces some notation and recalls some standard defini-
tions. In Section 2 the concept of oblique weak Minty solutions (cf. Definition 2.1) is formally introduced,
and the convergence of PPPA is studied for a class of operators that admit at least one such solution. Section 3
establishes a primal-dual connection between PPPA and DRS, which leads to convergence results for DRS un-
der an oblique weak Minty assumption on the associated primal-dual operator. In Section 4 we introduce the
class of semimonotone operators, for which we provide several calculus rules and examples. Sufficient condi-
tions for the convergence of DRS, based on the semimonotonicity of the underlying operators are provided in
Section 5. In Section 6 various example problems covered by our theory for DRS are presented. Finally, Sec-
tion 7 concludes the paper. For the sake of readability, several proofs and auxiliary results are deferred to the
Appendix.

1.3 Notation
The set of natural numbers including zero is denoted by � B {0, 1, . . .}. The set of real and extended-real
numbers are denoted by � B (−∞,∞) and � B � ∪ {∞}, while the positive and strictly positive reals are
�+ B [0,∞) and �++ B (0,∞). We denote the positive part of a real number by [·]+ B max{0, ·} and the
negative part by [·]− B min{0, ·}. With id we indicate the identity function x 7→ x defined on a suitable space.
We denote by �n the standard n-dimensional Euclidean space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥.
For a vector w = (w1, . . . ,wN) ∈ �n, wi ∈ �ni is used to denote its i-th (block) coordinate. The identity matrix is
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denoted by In ∈ �n×n; we write I when no ambiguity occurs. Given a matrix P ∈ �n×n, we denote the range of
A by R(A) and the kernel of A by N(A). The sets of symmetric, symmetric positive semidefinite and symmetric
positive definite n-by-n matrices are denoted by Sn, Sn

+ and Sn
++, respectively. We also write P ⪰ 0 and P ≻ 0

for P ∈ Sn
+ and P ∈ Sn

++, respectively. We say that matrices P,Q ∈ �n×n are similar if there exists a nonsingular
matrix X ∈ �n×n such that P = X−1QX. For any matrix P ∈ �n×n with real eigenvalues, we denote its smallest
eigenvalue by λmin(P). Given a symmetric matrix P ∈ Sn we define the scalar product ⟨x, y⟩P = ⟨x, Py⟩ and the
quadratic function qP(x) B ⟨x, x⟩P. If P ∈ Sn

++ then its associated induced norm is defined as ∥x∥P =
√

qP(x).
We denote the Kronecker product between two matrices of arbitrary size by ⊗.

We use the notation (zk)k∈I to denote a sequence with indices in the set I ⊆ �. When dealing with scalar
sequences we use the subscript notation (γk)k∈I . We say that (zk)k∈� converges (sublinearly) with a big-O(

g(k)
)

rate if there exists an index k0 ∈ � and a positive scalar c such that |zk | ≤ cg(k) for all k ≥ k0 and we say
that (zk)k∈� converges (sublinearly) with a little-o

(
g(k)

)
rate if zk/g(k) → 0. We say that (zk)k∈� converges to

a point z⋆ (at least) Q-linearly with Q-factor given by c ∈ (0, 1) if there exists an index k0 ∈ � such that
∥zk+1 − z⋆∥ ≤ c∥zk − z⋆∥ for all k ≥ k0. We say that (zk)k∈� converges to a point z⋆ (at least) R-linearly if there
exists a sequence of nonnegative scalars (vk)k∈� such that ∥zk − z⋆∥ ≤ vk and (vk)k∈� converges Q-linearly to
zero.

An operator or set-valued mapping A : �n ⇒ �d maps each point x ∈ �n to a subset A(x) of �d. We will
use the notation A(x) and Ax interchangeably. We denote the domain of A by dom A B {x ∈ �n | Ax , ∅}, its
graph by gph A B {(x, y) ∈ �n × �d | y ∈ Ax}, and the set of its zeros by zer A B {x ∈ �n | 0 ∈ Ax}. The
inverse of A is defined through its graph, i.e., gph A−1 B {(y, x) | (x, y) ∈ gph A}, and we denote the range of
A by R(A) B dom A−1. The resolvent of A is defined as JA B (id + A)−1. The composition of two operators A
and B is denoted by A ◦ B.

Definition 1.1 (parallel sum of operators). The parallel sum between operators A, B : �n ⇒ �n is defined as
A □ B B (A−1 + B−1)−1.

Definition 1.2 (parallel sum of extended-real numbers). Let a, b ∈ �. We say that a and b are parallel
summable if either a = b = 0 or a + b , 0 and their parallel sum is defined as

a □ b B
{

0, if a = b = 0,
ab

a+b , otherwise,

where we use the convention that a □∞ = a.

Definition 1.3 ((co)monotonicity). An operator A : �n ⇒ �n is said to be µ-monotone for some µ ∈ � if

⟨x − x′, y − y′⟩ ≥ µ∥x − x′∥2, for all (x, y), (x′, y′) ∈ gph A,

and it is said to be ρ-comonotone for some ρ ∈ � if

⟨x − x′, y − y′⟩ ≥ ρ∥y − y′∥2, for all (x, y), (x′, y′) ∈ gph A.

The operator A is said to be maximally (co-)monotone if its graph is not strictly contained in the graph of
another (co-)monotone operator.

We say that A is outer semicontinuous (osc) at x̄ ∈ dom A if

lim sup
x→x̄

Ax B {y | ∃xk → x̄,∃yk → y with yk ∈ Axk} ⊆ Ax̄. (1.1)

Outer semicontinuity of A everywhere is equivalent to its graph being a closed subset of �n ×�d.
The domain of an extended real-valued function f : �n → � is the set dom f B {x ∈ �n | f (x) < ∞}.

We say that f is proper if dom f , ∅ and that f is lower semicontinuous (lsc) if the epigraph epi f B
{(x, α) ∈ �n ×� | f (x) ≤ α} is a closed subset of �n+1. We denote the limiting subdifferential of f by ∂ f .
We say that f is ℓ-smooth to indicate that f is continuously differentiable and ∇f is Lipschitz continuous with
modulus ℓ.

The indicator function of a set E ⊆ �n is denoted by δE , namely δE(x) = 0 if x ∈ E and ∞ otherwise.
We denote the normal cone of E by NE . The projection onto and the distance from E with respect to ∥ · ∥Q,
Q ∈ Sn

++, are denoted by

Π
Q
E (x) B arg min

z∈E
{∥z − x∥Q}, distQ(x, E) B inf

z∈E
{∥z − x∥Q},

respectively. The absence of super/subscript Q implies the same definitions with respect to the canonical norm.
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2 The preconditioned proximal point method
In this section, the convergence of PPPA with positive semidefinite preconditioning is studied for a class of
nonmonotone operators, defined through an oblique weak Minty assumption.

We begin by introducing this class of nonmonotone operators and detailing our underlying assumptions.
Then, leveraging a projective interpretation of the proximal point algorithm, we provide the corresponding
convergence results of PPPA. Subsequently, we demonstrate the tightness of our convergence results through
a simple example. Finally, we establish (local) linear convergence under an additional metric subregularity
assumption.

2.1 Convergence analysis of PPPA under oblique weak Minty
Consider the following class of operators with oblique weak Minty solutions, which generalizes the class of
operators with weak Minty solutions that has been employed in the context of the extragradient method and
forward-backward-forward splitting [24, 69, 12].

Definition 2.1 (V-oblique weak Minty solutions). An operator T : �n ⇒ �n is said to have V-oblique weak
Minty solutions at (a nonempty set) S⋆ ⊆ zer T for some symmetric matrix V ∈ Sn if

⟨v, z − z⋆⟩ ≥ qV (v), for all z⋆ ∈ S⋆, (z, v) ∈ gph T , (2.1)

where the quadratic form qV (v) B ⟨v,Vv⟩. Whenever V = ρI for some ρ ∈ �, we refer to them as ρ-weak Minty
solutions.

The generalization of the weak MVI to include a general symmetric matrix V instead of a scalar value
ρ permits a more detailed characterization of problem classes, which in turn will lead to tight results for the
convergence of PPPA and DRS (cf. Section 3).

The above definition can be further relaxed by requiring (2.1) to hold instead on (z, v) ∈ gph T ∩ (R((P +
T )−1P)×R(P)), where P is the preconditioner from PPPA. Under this weaker condition, the results from The-
orems 2.4 and 2.13 are still satisfied since (2.1) is invoked only at points in this restricted set (see (2.9)). We
refrain from using this relaxation given that it couples the problem class with the preconditioner and does not
appear to lead to tighter sufficient conditions in terms of semimonotonicity (cf. Section 5).

As previously mentioned in the introduction, a key aspect of our forthcoming convergence analysis for
PPPA is to consider positive semidefinite preconditioners, largely inspired by the convergence analysis of [49,
Thm. 3.4] and [20, Thm. 3.3]. Unlike the aforementioned works, we do not assume that T is the sum of a
maximally monotone and a linear skew-symmetric operator. Instead, we require that it admits at least a single
oblique weak Minty solution. More specifically, we work under the following assumptions.

Assumption I. The operator T in (G-I) and the preconditioner P in (PPPA) satisfy the following properties.

a1 T : �n ⇒ �n is outer semicontinuous.

a2 The preconditioned resolvent (P + T )−1P has full domain.

a3 There exists a nonempty set S⋆ ⊆ zer T and a symmetric, possibly indefinite matrix V ∈ Sn such that T has
V-oblique weak Minty solutions at S⋆ for V.

a4 P ∈ Sn
+ is a symmetric positive semidefinite matrix such that

ηmin B 1 + λmin(U⊤VPU) > 0, (2.2)

where U is any orthonormal basis for the range of P.

Note that the preconditioned resolvent (P+T )−1◦P can be seen as a particular instance of the warped/nonlinear
resolvent considered in the monotone setting in [15, 36].

Remark 2.2. Assumption I.a4 provides a restriction on the preconditioner P, depending on the oblique weak
Minty matrix V . To better understand this condition, consider the matrix X B U⊤PU, which is positive definite
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z

z̄

zΠ

P(z̄ − z)

T z̄

S⋆zer T

z+

α(z̄ − z) z1

z2

1

1

z

z̄

zΠ

P(z̄ − z)

T z̄

S⋆zer T

z+

α(z̄ − z) z1

z2

1

1

z
z̄

P(z̄ − z)

T z̄

S⋆zer T

z+

w
w̄

w+ wΠ
α(w̄ − w)

z1

z2

Figure 1: Visualization of the involved variables in Lemma 2.3 for different types of preconditioners, where V = − 3
2 I,

α is as in (2.7) and λ = α/2. Here, we use the shorthand notation wΠ = Π
Q
Dw,w̄

(w) and zΠ = ΠP
Dz,z̄

(z). In these figures,
the vector z̄ satisfies the update rule (PPPA) (see (2.8)). Note that the precise location of the halfspace is governed
by the oblique weak Minty matrix V, due to the dependence of α on V. For example, if V = 0, then α = 1 and
the corresponding hyperplane would pass through w̄. (left and middle) Positive definite preconditioner, such that
ΠR(P) = I, P = Q and the variables z, z̄, z+, zΠ are equal to the variables w, w̄,w+,wΠ. (left) Multiple of identity
preconditioner P = 1

3 I. (middle) P = diag(1/3, 1/6). (right) Positive semidefinite preconditioner P = diag(1/3, 0).

by construction (see Lemma A.1(iv)). By similarity transformation using the similarity matrix X1/2 [44, Cor.
1.3.4], it follows that U⊤VPU is similar to the symmetric matrix X1/2U⊤VUX1/2, i.e., that

ηmin = 1 + λmin(X1/2U⊤VUX1/2). (2.3)

As a result, Assumption I.a4 holds if and only if

(U⊤PU)−1 + U⊤VU ≻ 0. (2.4)

This condition is vacuously satisfied in the case where U⊤VU ⪰ 0, which includes the WMI setting. The
preconditioner P needs to be selected properly only if U⊤VU is not positive semidefinite. For instance, when
P = 1/γI where γ > 0, Assumption I.a4 reduces to γ > [−λmin(V)]+. Moreover, when V = ρI, it matches the
stepsize condition γ > [−ρ]+ for cohypomonotone operators (see e.g. [19, Thm. 3.1] and Table 1 for more
details).

Our convergence analysis relies on a projective interpretation of the preconditioned proximal point al-
gorithm in the monotone setting that dates back to [81, 80, 47]. In particular, it was shown that when the
preconditioner is positive definite, each iteration of PPPA can be interpreted as a projection onto a certain
halfspace, constructed using the sequences (zk)k∈� and (z̄k)k∈�. In particular, under the assumption that T is
maximally monotone and P = γ−1I, [80] considers the halfspace

Dz,z̄ B
{
r ∈ �n | ⟨γ−1(z − z̄), z̄ − r⟩ ≥ 0

}
. (2.5)

We will show that this idea can be extended to our more general setting provided that a different halfspace is
considered. More specifically, each iteration of PPPA is interpreted as a projection onto a halfspace separating
the current iterate from a subset of solutions that satisfy the oblique weak Minty assumption. This halfspace
will be constructed using the so-called shadow sequences (wk)k∈� B (ΠR(P) zk)k∈� and (w̄k)k∈� B (ΠR(P) z̄k)k∈�
to deal with the fact that in our work the preconditioner is only positive semidefinite.

We proceed to present this separating halfspace and its main properties in the following lemma, for which
a supporting visualization is provided in Figure 1. Note that the introduction of the matrix Q B P + ΠN(P) is
inspired by the convergence analysis performed in [49, Thm. 3.4] and [20, Thm. 3.3].

Lemma 2.3 (halfspace interpretation). Suppose that Assumption I holds. Consider the points z ∈ �n, z̄ ∈
(P + T )−1Pz and z+ = z + λ(z̄ − z) satisfying update rule (PPPA), and let w B ΠR(P) z, w̄ B ΠR(P) z̄ and
w+ B ΠR(P) z+. Define the matrix Q B P + ΠN(P) and the halfspace

Dw,w̄ B
{
r ∈ �n | ⟨w − w̄, w̄ − r⟩Q ≥ qV (Q(w − w̄))

}
. (2.6)

Then, the following hold.
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(i) The set ΠR(P) S⋆ is a subset of Dw,w̄.

(ii) If w ∈ Dw,w̄ then P(z − z̄) = 0, and in particular z̄ ∈ zer T.

(iii) If z̄ < zer T, then qP(z − z̄) , 0 and

α B 1 +
qV (P(z − z̄))

qP(z − z̄)
≥ ηmin > 0. (2.7)

(iv) w+ = (1 − λ/α)w + λ/αΠQ
Dw,w̄

(w) for any λ ∈ �.

Proof.

♠ 2.3(i): By update rule (PPPA) it holds that

P(z − z̄) ∈ T z̄. (2.8)

Therefore, owing to the V-oblique weak Minty assumption (Assumption I.a3), for all z⋆ ∈ S⋆

⟨P(z − z̄), z̄ − z⋆⟩ ≥ qV (P(z − z̄)). (2.9)

As a result, for all w⋆ B ΠR(P) z⋆ ∈ ΠR(P) S⋆ ⊆ ΠR(P) zer T

⟨Q(w − w̄), w̄ − w⋆⟩ = ⟨P(z − z̄), z̄ − z⋆⟩ (2.9)≥ qV (P(z − z̄)) = qV (Q(w − w̄)),

where we used Lemma A.1(ii) to relate P and Q in the first and final equality. It is now evident that by
construction, ΠR(P) S⋆ ⊆ Dw,w̄.

♠ 2.3(ii): Suppose that w ∈ Dw,w̄ and define the shorthand notation w̃ B w − w̄, z̃ B z − z̄. Owing to Lemmas
A.1(i) and A.1(ii), it holds that

P = QΠR(P) = ΠR(P) QΠR(P) = UU⊤QUU⊤ = UXU⊤. (2.10)

Consequently, by definition of Dw,w̄, it holds that

0 ≥ ∥w̃∥2Q + qV (Qw̃) = ⟨QΠR(P) w̃, (I + VQΠR(P))w̃⟩
= ⟨UXU⊤w̃, (I + VUXU⊤)w̃⟩ = ⟨X1/2U⊤w̃, X1/2U⊤(I + VUXU⊤)w̃⟩
= ⟨X1/2U⊤w̃, (I + X1/2U⊤VUX1/2)X1/2U⊤w̃⟩. (2.11)

Furthermore, due to Assumption I.a4 and Remark 2.2 it follows that I + X1/2U⊤VUX1/2 is positive definite,
which combined with (2.11) and X ≻ 0 implies that U⊤w̃ = 0. In turn, using Lemmas A.1(i) and A.1(ii) we
have Pz̃ = PΠR(P) w̃ = PUU⊤w̃ = 0, which by (2.8) implies that z̄ ∈ zer T .

♠ 2.3(iii): If z̄ < zer T , then inclusion (2.8) implies that P(z − z̄) , 0. Combined with Q(w − w̄) = P(z − z̄)
(where we used Lemma A.1(ii)) and positive definiteness of Q (see Lemma A.1(iii)) it follows that qP(z− z̄) =
∥w − w̄∥2Q > 0, ensuring that α = 1 + qV (Qw̃)

∥w̃∥2Q
is finite-valued. Consequently, using (2.11) and that ∥w̃∥2Q =

⟨QΠR(P) w̃, w̃⟩ = ∥X1/2U⊤w̃∥2 by (2.10), α may be written as a Rayleigh quotient [44, Thm. 4.2.2] of I +
X1/2U⊤VUX1/2 and X1/2U⊤w̃, i.e.,

α = 1 + qV (Qw̃)
∥w̃∥2Q

=
⟨X1/2U⊤w̃, (I+X1/2U⊤VUX1/2)X1/2U⊤w̃⟩

∥X1/2U⊤w̃∥2 ≥ λmin(I + X1/2U⊤VUX1/2)
(2.3)
= ηmin.

♠ 2.3(iv): For any u < Dw,w̄, it holds that ΠQ
Dw,w̄

(u) = u + ⟨w−w̄,u−w̄⟩Q+qV (Q(w−w̄))
∥w−w̄∥2Q

(w̄ −w) [9, Ex. 29.20]. Therefore,

Π
Q
Dw,w̄

(w) = w + α(w̄ − w) and for any λ ∈ � it holds that

(1 − λ/α)w + λ/αΠQ
Dw,w̄

(w) = w + λ(w̄ − w) = ΠR(P)
(
z + λ(z̄ − z)

)
= ΠR(P) z+ = w+.
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Most notably, Lemma 2.3(iv) establishes that the update rule for the (shadow) sequence generated by PPPA
can be interpreted as a relaxed projection onto the halfspace defined in (2.6), while Lemmas 2.3(i) and 2.3(ii)
imply that if at any iteration the current iterate belongs to the halfspace containing the set of projected oblique
weak Minty solutions ΠR(P) S⋆, this implies its optimality. Owing to the non-expansiveness of the projection
operator, this leads to the following convergence result for the preconditioned proximal point algorithm.

Theorem 2.4 (convergence of PPPA). Suppose that Assumption I holds, and consider a sequence (zk, z̄k)k∈�
generated by PPPA starting from z0 ∈ �n with relaxation parameters λk ∈ (0, 2αk) such that lim infk→∞ λk(2αk−
λk) > 0, where

αk = 1 +
qV (P(zk − z̄k))

qP(zk − z̄k)
. (2.12)

Then, either a point z̄k ∈ zer T is reached in a finite number of iterations or the following hold for the sequence
(zk, z̄k)k∈�.

(i) v̄k := P(zk − z̄k) ∈ T z̄k for all k and (v̄k)k∈N converges to zero.

(ii) Every limit point (if any) of (z̄k)k∈� belongs to zer T.

(iii) The shadow sequences (ΠR(P) zk)k∈�, (ΠR(P) z̄k)k∈� are bounded and their limit points belong toΠR(P) zer T.

(iv) If λk(2αk − λk) ≥ κ > 0 uniformly for all k then

min
k=0,1,...,N

qP(zk − z̄k) ≤ 1
(N + 1)κ

qP(z0 − z⋆), for all z⋆ ∈ S⋆.

(v) If in Assumption I.a3ΠR(P) S⋆ = ΠR(P) zer T, then (ΠR(P) zk)k∈� converges to some element ofΠR(P) zer T.
If additionally (P + T )−1 ◦ P is (single-valued) continuous, then (z̄k)k∈� converges to some z⋆ ∈ zer T.
Finally, if λk is additionally uniformly bounded in the interval (0, 2), then (zk)k∈� also converges to
z⋆ ∈ zer T.

Proof. Note that as long as z̄k < zer T it follows from Lemma 2.3(iii) that αk ≥ ηmin > 0. Consider the shadow
sequences (wk)k∈� B (ΠR(P) zk)k∈� and (w̄k)k∈� B (ΠR(P) z̄k)k∈� with corresponding update rule

wk+1 = wk + λk(w̄k − wk). (2.13)

If wk ∈ Dwk ,w̄k for some k ∈ � then by Lemma 2.3(ii) the algorithm has reached a point z̄k ∈ zer T in a finite
number of iterations. Therefore, we will consider the case when wk < Dwk ,w̄k in the remainder of the proof.

♠ 2.4(i): From the update rule (PPPA), it directly follows that v̄k B P(zk − z̄k) ∈ T z̄k for all k. It remains
to show that (v̄k)k∈� converges to zero. By Lemma 2.3(iv), update step (2.13) is equivalent to the relaxed
projection Π̃k B (1 − ζk)id + ζk Π

Q
Dwk ,w̄k

, where ζk B λk/αk. Owing to firm nonexpansiveness of ΠQ
Dwk ,w̄k

[9, Prop.

4.16], the relaxed projection Π̃k is ζk/2-averaged in the space with inner product ⟨·, ·⟩Q [9, Cor. 4.41]. Note
that for any w⋆ ∈ ΠR(P) S⋆ it holds by Lemma 2.3(i) that w⋆ ∈ Dwk ,w̄k . Therefore, it follows from [9, Prop.
4.35(iii)] for any w⋆ ∈ ΠR(P) S⋆ that

∥wk+1 − w⋆∥2Q = ∥Π̃k(wk) − Π̃k(w⋆)∥2Q ≤ ∥wk − w⋆∥2Q − 1−ζk/2
ζk/2
∥wk+1 − wk∥2Q

= ∥wk − w⋆∥2Q − 2αk−λk
λk
∥λk(wk − w̄k)∥2Q

= ∥wk − w⋆∥2Q − λk(2αk − λk) ∥wk − w̄k∥2Q, (2.14)

establishing that (wk)k∈� is Fejér monotone with respect to ΠR(P) S⋆ [9, Def. 5.1]. By telescoping (2.14), and
since lim infk→∞ λk(2αk − λk) > 0, it follows that

∑∞
k=0 ∥wk − w̄k∥2Q < +∞, which implies that

∥wk − w̄k∥Q → 0. (2.15)

The convergence of (v̄k)k∈N to zero is established by noting that

∥v̄k∥2 = ∥P(wk − w̄k)∥2 ≤ ∥P1/2∥2 ∥P1/2(wk − w̄k)∥2 = ∥P∥ ∥wk − w̄k∥2Q. (2.16)
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Table 1: Connection between Theorem 2.4 and existing convergence results for PPPA.

P = γ−1I P ⪰ 0

Conditions Theorems Conditions Theorems

V = 0

γ > 0, λk = 1 [56]1, [74]1,2, [3, Thm. 3.2]

λk ∈ (0, 2) [49, Thm. 3.4]1, [13,
Thm. 2.9]1γ > 0,

[31, Thm. 3]1,2

λk ∈ (0, 2)

V = ρI

γ > [−2ρ]+, [67, Thm. 9]1,2, [46, Thm.
1]1,2, [39, Thm. 3.1]

Theorem 2.4
λk = 1 1 + λmin(ρU⊤PU) > 0,

γ > [−ρ]+,
[19, Thm. 3.1]1,2

λk ∈ (0, 2αk)

λk ∈
(
0, 2

(
1 + ργ

))

V ∈ S
γ > [−λmin(V)]+,

Theorem 2.4
1+λmin(U⊤VPU) > 0,

Theorem 2.4
λk ∈ (0, 2αk) λk ∈ (0, 2αk)

1Considers maximal monotonicity instead of MVI or maximal ρ-comonotonicity instead of ρ-weak Minty.
2Considers the setting where the stepsize γk is variable and the resolvent computations are performed inexactly.

♠ 2.4(ii): Since (v̄k)k∈� converges to zero and v̄k ∈ T z̄k, it follows from outer semicontinuity of T (due to
Assumption I.a1) that any limit point of (z̄k)k∈� belongs to zer T .

♠ 2.4(iii): It follows from (2.14) that (∥wk − w⋆∥Q)k∈� converges, and in particular that (wk)k∈� is bounded. In
turn, using (2.15) and the triangle inequality ∥w̄k∥Q ≤ ∥w̄k − wk∥Q + ∥wk∥Q, it follows that (w̄k)k∈� is bounded
and thus that it has at least one limit point. Take a subsequence (w̄k)k∈K converging to some limit point w∞.
Since (w̄k − wk)k∈� converges to zero by (2.15), we have that (wk)k∈K also converges to the same limit point
w∞. The claim is established by noting that w∞ ∈ ΠR(P) zer T owing to Theorem 2.4(ii).

♠ 2.4(iv): By telescoping (2.14) and from the uniform bound ∀k ∈ � : λk(2αk − λk) ≥ κ > 0, it follows that

min
0≤k≤N

∥wk − w̄k∥2Q ≤ 1
(N+1)κ ∥w0 − w⋆∥2Q. (2.17)

The claimed upper bound thus follows by noting that ∥wk − w̄k∥2Q = qP(zk − z̄k) and ∥w0 − w⋆∥2Q = qP(z0 − z⋆).

♠ 2.4(v): If ΠR(P) S⋆ = ΠR(P) zer T , then the convergence of (ΠR(P) zk)k∈� to some element of ΠR(P) zer T
follows by [9, Thm. 5.5]. Let G = (P + T )−1 ◦ P be (single-valued) continuous, so that z̄k = Gzk = Gwk.
Take a subsequence (wk)k∈K converging to some limit point w∞. Then, by continuity of G, the sequence (z̄k)k∈�
converges to z̄∞ = Gw∞, and by Theorem 2.4(ii) it holds that z̄∞ ∈ zer T .

It remains to show that (zk)k∈� also converges to z̄∞ if λk is uniformly bounded in the interval (0, 2). Note that

∥zk+1 − z̄∞∥ ≤ λk∥z̄k − z̄∞∥ + |1 − λk |∥zk − z̄∞∥.
Consequently, by uniform boundedness of λk, i.e., (λk)k∈� ⊆ [ϵ, 2 − ϵ] for some ϵ > 0, and by [70, Lem. 3 of
§2.2] it follows that limk→∞∥zk+1 − z̄∞∥ = 0, i.e., that (zk)k∈� also converges to z̄∞ ∈ zer T .

Note that as long as the solution has not yet been reached, i.e., as long as z̄k < zer T , then αk ≥ ηmin > 0 by
Lemma 2.3(iii). Therefore, all claims of Theorem 2.4 also hold for the (more restrictive) fixed stepsize range
λk ∈ (0, 2ηmin).

Due to the generality of our underlying assumptions, Theorem 2.4 unifies and extends existing convergence
results for PPPA in literature, as summarized in Table 1. One notable instance of Theorem 2.4 is when V = ρI
and P = γ−1I, in which case αk = ηmin = 1+ρ/γ. For completeness, we present the simplified theorem statement
for this setting below.

Corollary 2.5. Suppose that T is outer semicontinuous, that there exists a nonempty set S⋆ ⊆ zer T such
that T has ρ-weak Minty solutions at S⋆ and that the resolvent JγT has full domain given stepsize γ > [−ρ]+.
Consider a sequence (zk, z̄k)k∈� generated by PPPA starting from z0 ∈ �n with preconditioner P = 1/γI and
relaxation parameters λk ∈ (0, 2(1 + ρ/γ)) satisfying lim infk→∞ λk(2(1 + ρ/γ) − λk) > 0. Then, all the claims
from Theorem 2.4 hold.
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Figure 2: Visualization of the sequences (z̄k)k∈� for the relaxed proximal point algorithm with stepsize γ = 1 and
fixed relaxation parameter λ applied to Example 2.6, where a = 2 and b = 1. The zeros of T are marked in green
and its gradient flow −T is indicated using gray arrows. (left) Sequences generated using λ = 2.3 < λ̄, where λ̄ is
the upper bound on λk from (2.18). The orange sequence converges to the single

(
b/a2+b2

)
-weak Minty solution (0, 0)

while the blue sequence converges to a zero of T which is not the weak Minty solution (cf. Theorem 2.4(ii)). (right)
Sequences generated using λ = 2.5 > λ̄. In this setting, it is no longer guaranteed by Theorem 2.4 that the sequence
(z̄k)k∈� converges, as can be seen from the (diverging) blue sequence.

It is worth reiterating that all results from Theorem 2.4 except the final one apply even when only a subset of
zer T are oblique weak Minty solutions. Most notably, Theorem 2.4(ii) states that the limit points of (z̄k)k∈� are
zeros of T , which do not have to be oblique weak Minty solutions. The significance of this result is highlighted
by the second part of the following example, where this convergence behavior is observed in practice (see also
Figure 2). The first part of this example demonstrates the tightness of our results by considering a simple linear
inclusion related to saddle point problems. The details are deferred to Appendix C. Supplementary code for
the numerical examples presented in this work can be found on GitHub.

Example 2.6 (toy example). Consider the operator

T (z) B f
(
∥z∥

)[ b a
−a b

]
z, 0 1

0

1

Figure 3: Definition of f : �+ → [0, 1] in Example 2.6.

where f : �+ → [0, 1] and a, b ∈ � are not simultaneously equal to zero.

(i) If f ≡ 1, then the following hold.

1. T is
(
b/a2+b2

)
-comonotone, and thus T has a single

(
b/a2+b2

)
-weak Minty solution at S⋆ = zer T = (0, 0).

2. By Theorem 2.4(v), the sequence (z̄k)k∈� generated by the proximal point algorithm with fixed relax-
ation parameter λ converges to zer T if γ > [−b]+

a2+b2 and λ lies in the interval

0 < λ < λ̄ B 2
(
1 + b

γ(a2+b2)

)
. (2.18)

By examining the spectral radius of the algorithmic operator, it can be seen that this result is tight.

(ii) If f is defined as in Figure 3 and b is nonnegative, then the following hold.

1. T has a single
(
b/a2+b2

)
-weak Minty solution at the point S⋆ = (0, 0) ⊂ zer T while the other zeros of

T are not ρ-weak Minty solutions for any ρ ∈ �.

2. By Theorem 2.4(ii), the limit points of the sequence (z̄k)k∈� generated by the relaxed proximal point
algorithm with fixed relaxation parameter λ belong to zer T (not necessarily to S⋆) if γ > 0 and λ is
selected according to (2.18). This result has been verified numerically in Figure 2.
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−0.1

−0.2
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(
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)

0 25 50

1

1.2

1.4

k

∥z̄k − z⋆∥
∥zk − z⋆∥

Figure 4: (left) Visualization of the sequences (zk)k∈� and (z̄k)k∈� for the relaxed proximal point algorithm, applied
to the minimax problem from Example 2.7, with problem parameter ϵ = 1/10, weak Minty constant ρ = ϵ−1

4 = −9/40,
stepsize γ = 1/4 > [−ρ]+ and relaxation parameter λ = 1/3 ∈ (

0, 2(1 + ρ/γ)
)
. These choices comply with Corol-

lary 2.5. The domain z ∈ ∆2 × ∆2 is parametrized by z = (s, 1 − s, t, 1 − t). The heat map indicates the value of
ϱϵ

(
z
)
= infv∈NC (z) ⟨F(z)+v,z−z⋆⟩/∥F(z)+v∥2, which can be thought of as a local measure of nonmonotonicity of the operator

(see also Appendix C). The region where ϱϵ
(
z
)

is positive is marked in green. Even though the iterates pass through the
nonmonotone region, both sequences converge to the Nash equilibrium. (right) Visualization of the distance between
the sequences (zk)k∈� and (z̄k)k∈� and the Nash equilbrium z⋆. Note that in the first iterations, when passing through
the nonmonotone region, the sequence ∥z̄k − z⋆∥ increases. On the other hand, the sequence ∥zk − z⋆∥ is monotonically
decreasing (see also (2.14)).

As a second illustrative example, we will consider the application of our theory to the economic equilibrium
model of Von Neumann [61]. For this example, it was recently observed in [22, Prop. 2] that for certain choices
R and S , operator F is nonmonotone but satisfies the weak MVI. Here, we extend this result by showing that
the Nash equilibrium of (2.19) is a weak Minty solution of the full operator T B F + NC . The details are
deferred to Appendix C.

Example 2.7 (Von Neumann’s economic equilibrium model). Using the standard definition of the simplex
∆d B

{
z ∈ �d | z ≥ 0,

∑d
i=1 zi = 1

}
, consider an economy where there are n goods with relative prices y ∈ ∆n,

which can be produced by m processes with relative intensities x ∈ ∆m. Let Ri j ≥ 0 and S i j ≥ 0 denote the
number of units of the jth good produced and consumed by the ith process, respectively. By [61, §5], a pair
(x⋆, y⋆) for which this economy is expanding corresponds to a minimax solution of

minimize
x∈∆m

maximize
y∈∆n

f (x, y) B
⟨x,Ry⟩
⟨x, S y⟩ . (2.19)

Defining z B (x, y), the problem of finding stationary points of (2.19) corresponds to finding a zero of T (z) B
F(z) + NC(z), where F(z) =

( ∇x f (x,y)
−∇y f (x,y)

)
and C = ∆2 × ∆2. Let ϵ ∈ (0, 1) and let

R =
[

0 1 + ϵ/2
2 − ϵ/2 2

]
and S =

[
1/2 1/2
1 1

]
. (2.20)

Then, the unique Nash equilibrium z⋆ B (x⋆, y⋆) = [ 0 1 0 1 ]⊤ of (2.19) is a
(
ϵ−1

4

)
-weak Minty solution of T .

A numerical experiment leveraging this result can be found in Figure 4.

2.2 Last-iterate convergence of PPPA under comonotonicity
The convergence result from Theorem 2.4(iv) is expressed in terms of a best-so-far O(

1/(N+1)
)

rate for (qP(zk −
z̄k))k∈�. To obtain stronger last-iterate convergence rates, governing inequality (2.1) needs to hold between any
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two points in the graph of T instead of only between any point in the graph of T and (a subset of) zer T . This
observation leads us to introduce the class of V-comonotone operators.

Definition 2.8 (V-comonotone operator). An operator T : �n ⇒ �n is said to be V-comonotone for some
symmetric matrix V ∈ Sn if

⟨x − x′, y − y′⟩ ≥ qV (y − y′), for all (x, y), (x′, y′) ∈ gph T . (2.21)

It is said to be maximally V-comonotone if its graph is not strictly contained in the graph of another V-
comonotone operator.

This definition naturally reduces to the notion of (maximally) ρ-comonotone operators when V = ρI. The
class of operators with V-oblique weak Minty solutions is significantly larger than the class of (maximally)
V-comonotone operators. For instance, the following proposition establishes that the class of maximally V-
comonotone operator only consist of operators which do not have isolated zeros.

Proposition 2.9. If an operator T : �n ⇒ �n is maximally V-comonotone, then zer T is convex.

Proof. First, observe that zer (T−1 +V)−1 = (T−1 +V)(0) = zer T . Furthermore, note that by definition T−1 +V
is maximally monotone, and thus so is (T−1 + V)−1. Since the set of zeros of a maximally monotone operator
is convex [9, Prop. 23.39], the claim is established.

For maximally V-comonotone operators, the convergence of PPPA depends merely upon the selection of
the preconditioner P and the relaxation parameters λk. This is a consequence of the following proposition,
which allows to directly verify the underlying assumptions of Theorem 2.4.

Proposition 2.10. Suppose that T is maximally V-comonotone, that zer T is nonempty and that P is selected
according to Assumption I.a4. Then, Assumption I holds.

Proof. Let (xk, yk) ∈ gph T , where xk → x̄ and yk → ȳ. Note that xk ∈ (T−1 − V)−1(yk − V xk). Since T
is maximally V-comonotone, (T−1 − V)−1 is maximally monotone and thus also outer semicontinuous [77,
Ex. 12.8]. Consequently, it follows that x̄ ∈ (T−1 − V)−1(ȳ − V x̄). This implies that x̄ ∈ T ȳ, showing outer
semicontinuity of T . Assumption I.a2 follows directly from Proposition A.2 and Assumption I.a3 holds by
definition of V-comonotonicity and using that zer T is nonempty.

Leveraging Proposition 2.10, sublinear convergence rates can be obtained for the sequence (qP(zk − z̄k))k∈�
in the maximally V-comonotone setting by showing that this sequence is monotonically nonincreasing and
using the best-iterate result from Theorem 2.4(iv), as detailed below.

Theorem 2.11 (last-iterate convergence). Suppose that T is maximally V-comonotone, that zer T is nonempty
and that P is selected according to Assumption I.a4. Consider a sequence (zk, z̄k)k∈� generated by PPPA
starting from z0 ∈ �n with relaxation parameters λk ∈ (0, 2ηmin) such that λk(2ηmin − λk) ≥ κ > 0 uniformly
for all k. Then, for all z⋆ ∈ zer T, the following convergence estimates hold:

qP(zN − z̄N) ≤ qP(z0 − z⋆)
(N + 1)κ

and qP(zN − z̄N) = o
(
1/(N+1)

)
. (2.22)

Proof. By update rule (PPPA) it holds that

P(zk − z̄k) ∈ T z̄k and P(zk+1 − z̄k+1) ∈ T z̄k+1.

Defining z̃k B zk − z̄k and using V-comonotonicity of T between the points z̄k and z̄k+1, this implies that

⟨P(z̃k − z̃k+1), zk − zk+1⟩ ≥ qP+PVP(z̃k − z̃k+1),

which by update rule (2.13) reduces to

⟨2P(z̃k − z̃k+1), z̃k⟩ ≥ 2
λk

qP+PVP(z̃k − z̃k+1).
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Since qP(u) − qP(v) = ⟨2Pu, u − v⟩ − qP(u − v) for any u, v ∈ �n and using that P = UXU⊤, this implies that

qP(z̃k) − qP(z̃k+1) = ⟨2Pz̃k, z̃k − z̃k+1⟩ − qP(z̃k − z̃k+1)

≥ 2
λk

qP+PVP(z̃k − z̃k+1) − qP(z̃k − z̃k+1)

= 2
λk

qUX1/2(I+X1/2U⊤VUX1/2)X1/2U⊤ (z̃k − z̃k+1) − qP(z̃k − z̃k+1)

(2.3) ≥
(

2ηmin
λk
− 1

)
qP(z̃k − z̃k+1),

establishing that qP(zk − z̄k) is nonincreasing. Combining this with Theorem 2.4(iv) yields the claimed big-O
convergence rate. Finally, the little-o convergence follows from [23, Lem. 3-(1a)].

Theorem 2.11 provides a general framework for the sublinear convergence rate of PPPA, unifying many
existing results in literature. Among others, we retrieve the big-O rates for standard PPA (where P = γ−1I and
λk = 1) in the monotone setting (where V = 0) [14, Prop. 8] and the weak Minty setting (where V = ρI) [39,
Thm. 3.1], as well as the rates obtained for PPPA in the monotone setting [49, Thm. 3.4]. Moreover, it is worth
highlighting that when P = γ−1I, Theorem 2.11 indicates that the optimal rate is obtained for λk = ηmin, as
opposed to the usual choice of λk = 1.

2.3 Linear convergence of PPPA under metric subregularity
Metric subregularity is a well-known concept used to describe the behavior of a set-valued mapping in a neigh-
borhood around a given point and can be seen as a one-point version of metric regularity. Many algorithms
used in optimization, such as splitting methods, have been shown to have good convergence properties when
applied to operators that are metrically subregular, see e.g. [86, 27, 49, 48, 36]. Following [25, Ex. 3H.4], we
define metric subregularity as follows.

Definition 2.12 (metric subregularity). A set-valued mapping T : �n ⇒ �d is metrically subregular at x̄ for
ȳ if (x̄, ȳ) ∈ gph T and there exists a positive constant ζ together with a neighborhood of subregularity U of x̄
such that

dist(x,T−1ȳ) ≤ ζ dist(ȳ,T x), for all x ∈ U . (2.23)

There exist many prominent examples of operator classes that are metrically subregular. For instance,
all piecewise polyhedral mappings are metrically subregular at all points in their graph [25, §3]. Another
important example is the subdifferential operator ∂ f of a proper lsc convex function satisfying quadratic growth
conditions (cf. [4]). We refer the interested reader to [25, §3] and [77, §9] for further discussion.

The main result of this subsection is Theorem 2.13, where it is shown that local linear convergence of PPPA
can be attained under an additional metric subregularity assumption. If the metric subregularity holds globally,
i.e., U = �n in Definition 2.12, then the linear convergence holds globally. This result will in turn lead to
sufficient conditions for (local) linear convergence of DRS for (possibly) nonmonotone piecewise polyhedral
mappings (cf. Theorem 3.6).

Interestingly, when P = γ−1I and V = 0, Theorem 2.13 establishes that the sequence (dist(zk, zer T ))k∈�
converges Q-linearly to zero with the same factor as the one obtained in the maximally monotone setting [79,
Thm. 3.2(b)]. For a more detailed discussion on linear convergence of PPA in the monotone setting, we refer
the interested reader to [5, 51] and the references therein.

Theorem 2.13 (linear convergence of PPPA under metric subregularity). In addition to Assumption I, suppose
that zer T is nonempty, closed and convex, that Assumption I.a3 holds with S⋆ = zer T, that (P + T )−1 ◦ P
is continuous, and that T is metrically subregular with modulus ζ ∈ �+ at all z⋆ ∈ zer T for 0. Con-
sider a sequence (zk, z̄k)k∈� generated by PPPA starting from z0 ∈ �n with relaxation parameters λk ∈
(0, 2αk) such that λk(2αk − λk) ≥ κ > 0 for all k large enough, where αk is defined as in (2.12). Then,
(distQ(ΠR(P) zk,ΠR(P) zer T ))k∈� converges Q-linearly to zero with Q-factor

√
1 − κ/(1+ζ∥P∥)2, (ΠR(P) zk)k∈� con-

verges R-linearly to some element of ΠR(P) zer T and qP(zk − z̄k) converges R-linearly to zero.

Proof. By Theorem 2.4(v) the sequence (z̄k)k∈� converges to a point z⋆ ∈ zer T . Up to possibly discarding
initial iterates, it holds that z̄k ∈ Uz⋆ , where Uz⋆ denotes the neighborhood of subregularity associated with z⋆.
Metric subregularity of T at z⋆ for 0 along with the fact that P(zk − z̄k) ∈ T z̄k (cf. Theorem 2.4(i)) implies that

dist(z̄k, zer T ) ≤ ζ∥P(zk − z̄k)∥, (2.24)
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for some ζ ∈ (0,∞). The distance of the shadow sequence from the set ΠR(P) zer T may therefore be bounded
as

dist(w̄k,ΠR(P) zer T ) = inf
v∈ΠR(P) zer T

{∥v − w̄k∥} = inf
v∈zer T

{∥ΠR(P)(v − z̄k)∥} ≤ ∥ΠR(P) ∥ dist(z̄k, zer T )

(2.24) ≤ ζ∥P(zk − z̄k)∥ (2.25)

where we used that ∥ΠR(P) ∥ = 1. Note that since the set S⋆ = zer T is convex, so is ΠR(P) zer T , implying that
dist(w̄k,ΠR(P) zer T ) = ∥w̄k − ΠΠR(P) zer T (w̄k)∥ is attained. By the triangle inequality

∥wk − ΠΠR(P) zer T (w̄k)∥ ≤ ∥w̄k − ΠΠR(P) zer T (w̄k)∥ + ∥wk − w̄k∥ = dist(w̄k,ΠR(P) zer T ) + ∥wk − w̄k∥
(2.25) ≤ ζ∥P(zk − z̄k)∥ + ∥wk − w̄k∥
(2.16) ≤ ξ∥wk − w̄k∥Q,

where ξ = ζ∥P∥1/2 + ∥P∥−1/2. It then follows that

dist2Q(wk,ΠR(P) zer T ) = inf
v∈ΠR(P) zer T

{∥wk − v∥2Q} ≤ ∥wk − ΠΠR(P) zer T (w̄k)∥2Q ≤ ξ2∥P∥∥wk − w̄k∥2Q. (2.26)

Consequently, due to (2.14) and (2.26) we obtain for all k large enough that

dist2Q(wk+1,ΠR(P) zer T ) ≤ ∥wk+1 − ΠQ
ΠR(P) zer T (wk)∥2Q

(2.14) ≤ ∥wk − ΠQ
ΠR(P) zer T (wk)∥2Q − λk(2αk − λk)∥wk − w̄k∥2Q

= dist2Q(wk,ΠR(P) zer T ) − λk(2αk − λk)∥wk − w̄k∥2Q (2.27)

(2.26) ≤
(
1 − κ

ξ2∥P∥
)

dist2Q(wk,ΠR(P) zer T ),

establishing that the sequence (dist2Q(wk,ΠR(P) zer T ))k∈� converges Q-linearly to zero. Therefore, it follows
from (2.27) that (∥wk − w̄k∥Q)k∈� converges R-linearly to zero since

dist2Q(wk,ΠR(P) zer T ) ≥ λk(2αk − λk)∥wk − w̄k∥2Q ≥ κ∥wk − w̄k∥2Q.

Consequently, by (2.13) it follows that

∥wk+1 − wk∥2Q = λ2
k∥w̄k − wk∥2Q ≤ λ

2
k
κ

dist2Q(wk,ΠR(P) zer T ).

Combined with the fact that λk < 2αk < +∞ is bounded (the latter inequality follows directly from (2.12)),
and since the distance on the right-hand side converges Q-linearly to zero, (∥wk+1 − wk∥Q)k∈� converges R-
linearly to zero. This implies that (∥wk − w⋆∥Q)k∈� (with w⋆ ∈ ΠR(P) zer T being the point where the sequence
converges owing to Theorem 2.4(v)) also converges R-linearly to zero. Noting that ξ2∥P∥ = (1 + ζ∥P∥)2 and
that Q is positive definite completes the proof.

3 Douglas-Rachford splitting
In the previous section, convergence results of the preconditioned proximal point method were provided for a
class of nonmonotone operators. In this section, convergence results for DRS are obtained in the nonmonotone
setting by leveraging the equivalence between DRS and PPPA. In particular, we provide convergence results
whenever the primal-dual operator has oblique weak Minty solution(s), as well as in the more restrictive,
comonotone setting, and we show (local) linear convergence for piecewise polyhedral mappings.

3.1 Equivalence between DRS and PPPA
In the monotone setting, the convergence of DRS has been studied in [20] by establishing its connection with
the preconditioned proximal point method with a positive semidefinite preconditioner. In the nonmonotone
setting, this equivalence heavily relies upon the abstract duality framework introduced in [6], [7, §6.9]. In

14



this framework, the inclusion problem (P-I) is referred to as the primal inclusion. Associated with the primal
inclusion is the dual inclusion, given by

find y ∈ �n such that 0 ∈ TDy B − A−1(−y) + B−1(y). (D-I)

A key property of the dual inclusion is that the primal inclusion is solvable if and only if the dual inclusion is
solvable [7, Prop. 6.9.1]. Finally, the primal-dual inclusion is given by

find z = (x, y) ∈ �2n such that
[
0
0

]
∈ TPDz B

[
Ax

B−1y

]
+

[
y
−x

]
. (PD-I)

For the primal-dual inclusion, it holds by [7, Prop. 6.9.2] that

(x⋆, y⋆) ∈ zer TPD ⇐⇒ (x⋆,−y⋆) ∈ gph A, (x⋆, y⋆) ∈ gph B,

where zer TP = {x⋆ | ∃y⋆ : (x⋆, y⋆) ∈ zer TPD} and zer TD = {y⋆ | ∃x⋆ : (x⋆, y⋆) ∈ zer TPD}. Therefore, the
primal-dual inclusion encompasses the solutions of both the primal and the dual inclusion, in the sense that
(x⋆, y⋆) is a solution of (PD-I) if and only if x⋆ is a solution of (P-I) and y⋆ is a solution of (D-I). Hence,
to obtain a zero of TP, one may apply PPPA to the primal-dual operator TPD starting from an initial point
z0 = (x0, y0) with iterates zk = (xk, yk) and z̄k = (x̄k, ȳk). Most notably, PPPA applied to the primal-dual
operator TPD reduces to DRS when the preconditioner P is selected to be equal to

P =
[
γ−1In −In

−In γIn

]
, (3.1)

where γ ∈ �++ is a strictly positive stepsize parameter. In the following lemma, the equivalence between PPPA
and DRS is formally summarized.

Lemma 3.1 (equivalence of DRS and PPPA). Let z0 = (x0, y0) ∈ �2n and set s0 = x0 − γy0. Then, to any
sequence (uk, vk, sk)k∈� generated by DRS (initialized with s0) for solving (P-I), there correspond sequences
(zk)k∈� = (xk, yk)k∈�, (z̄k)k∈� = (x̄k, ȳk)k∈� generated by PPPA (initialized with z0) for solving (PD-I) with
preconditioner (3.1) (and vice versa), and the correspondence is as follows.

(i) sk = xk − γyk.

(ii) x̄k = uk.

(iii) ȳk = 1/γ(2uk − sk − vk).

Proof. See Appendix B.1.

3.2 Convergence analysis of DRS under oblique weak Minty
Despite the fact that DRS is a primal algorithm, Lemma 3.1 shows that it can be interpreted as applying PPPA
to the associated primal-dual operator TPD. Based on this equivalence, we proceed to derive convergence results
for DRS, leveraging the results obtained in Section 2. First, the underlying assumptions for PPPA provided in
Assumption I are translated to conditions on the individual operators A and B as follows.

Assumption II. In problem (P-I), the following hold.

a1 Operators A and B are outer semicontinuous.

a2 For the selected stepsizes, the resolvents have full domain, i.e., dom JγA = dom JγB = �
n.

a3 There exists a nonempty set S⋆ ⊆ zer TPD such that the primal-dual operator (PD-I) has V-oblique weak
Minty solutions at S⋆, where

V B blkdiag(βPIn, βDIn) (3.2)

and βP, βD, ∈ � satisfy [βD]−[βP]− < 1/4.
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Table 2: Table summarizing which operators from the abstract duality framework satisfy the Minty variational in-
equality (MVI), depending on the sign of βP and βD.

βD ≥ 0 βD < 0

βP ≥ 0 TP, TD, TPD TP

βP < 0 TD -

Note that these assumptions are not very restrictive. For instance, only the existence of a single oblique
weak Minty solution is required for the primal-dual inclusion. Furthermore, it can be seen that the range of βP
and βD in Assumption II.a3 covers cases where neither the primal inclusion (P-I) nor the dual inclusion (D-I)
satisfies the Minty variational inequality (MVI), which is an immediate consequence of the following lemma
(see also Table 2).

Lemma 3.2 (weak Minty for primal and dual operator). Suppose that Assumption II.a3 holds and let

S⋆P B {x⋆ | ∃y⋆ : (x⋆, y⋆) ∈ S⋆} and S⋆D B {y⋆ | ∃x⋆ : (x⋆, y⋆) ∈ S⋆}.
Then, the primal operator TP has βP-weak Minty solutions at S⋆P and the dual operator TD has βD-weak Minty
solutions at S⋆D.

Proof. See Appendix B.1.

The converse of Lemma 3.2 does not hold. For instance, consider the linear operators A = −In and B = In:
in this case both the primal operator TP and the dual operator TD reduce to the zero mapping, which has 0-weak
Minty solutions everywhere, while the primal-dual operator reduces to TPD =

[ −In In
−In In

]
, which does not have

any 0-weak Minty solutions.
The following theorem follows as a consequence of Theorem 2.4 and characterizes the convergence of

DRS in the nonmonotone setting, assuming the corresponding primal-dual operator has V-oblique weak Minty
solutions. To prove this result, we rely upon Lemma A.5, which shows that when Assumption II holds for
DRS, Assumptions I.a1 to I.a3 are satisfied for the corresponding preconditioned proximal point algorithm.
Note that Assumption I.a4 is not covered by this lemma. To ensure satisfaction of this final assumption, the
stepsize γ of DRS needs to be selected appropriately (see condition (3.3)).

Theorem 3.3 (convergence of DRS). Suppose that Assumption II holds and that γ lies within the interval
(

2[−βP]+
1+
√

1−4βDβP
,

1+
√

1−4βDβP

2[−βD]+

)
(3.3)

(which is nonempty since [βD]−[βP]− < 1/4). Consider a sequence (uk, vk, sk)k∈� generated by DRS starting
from s0 ∈ �n with stepsize γ and relaxation parameters λk ∈ (0, 2α) such that lim infk→∞ λk(2α − λk) > 0,
where α B 1+ 1

γ
βP+γβD > 0. Then, either a point for which uk = vk is reached in a finite number of iterations,

implying that
(
uk, 1/γ(uk − sk)

) ∈ zer TPD, or the following hold for the sequence (uk, vk, sk)k∈�.

(i) γ−1(uk − vk) ∈ Auk + Bvk for all k, and (uk − vk)k∈� converges to zero.

(ii) Every limit point (if any) of (uk, 1/γ(uk − sk))k∈� belongs to zer TPD.

(iii) The sequence (sk)k∈� is bounded and its limit points belong to {(x⋆ − γy⋆) | (x⋆, y⋆) ∈ zer TPD}.
(iv) If λk(2α − λk) ≥ κ > 0 uniformly for all k, then, for all s⋆ ∈ {(x⋆ − γy⋆) | (x⋆, y⋆) ∈ S⋆} we have

min
k=0,1,...,N

∥uk − vk∥2 ≤ ∥s
0 − s⋆∥2

(N + 1)κ
.

(v) If in Assumption II.a3 ΠR(P) S⋆ = ΠR(P) zer TPD, then (sk)k∈� converges to some element of {(x⋆ − γy⋆) |
(x⋆, y⋆) ∈ zer TPD}. If additionally JγA and JγB are (single-valued) continuous, then (uk, 1/γ(uk − sk))k∈�
converges to some element of zer TPD.
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Proof. Recall that DRS is cast as an instance of PPPA, as summarized in Lemma 3.1. Therefore, all the
assertions follow from those of Theorem 2.4 applied to the primal-dual inclusion (PD-I) with P as defined
in (3.1). Moreover, by Lemma A.5 it follows immediately that Assumptions I.a1 to I.a3 hold so that it only
remains to show that Assumption I.a4 holds whenever γ satisfies (3.3).

Throughout the proof, TPD is as in (PD-I). The preconditioning matrix P has two distinct eigenvalues,
namely zero and γ+γ−1, each with a multiplicity of n. Therefore, P = (γ+γ−1)UU⊤, where U is an orthonormal
basis for the range of P as defined in Assumption I.a4. In particular, we have

U = 1√
γ2+1

[
I
−γI

]
and ΠR(P) = UU⊤ = 1

γ2+1

[
I −γI
−γI γ2I

]
.

Therefore, substituting V B blkdiag(βPIn, βDIn) into (2.2), it follows that ηmin = 1 + 1
γ
βP + γβD. Owing to

Fact A.3(ii), ηmin > 0 iff γ satisfies (3.3), and therefore Assumption I.a4 holds.
Having established that the underlying assumptions of Theorem 2.4 are satisfied, it remains to translate the

sequences therein in terms of the variables of DRS. Leveraging the equivalences established in Lemma 3.1, it
follows that

P(zk − z̄k) =
( − 1

γ
(uk − vk), uk − vk) (3.4)

qP(zk − z̄k) = 1
γ
∥uk − vk∥2 (3.5)

qV (P(zk − z̄k)) = ( 1
γ2 βP + βD)∥uk − vk∥2. (3.6)

Analogous to the proof of Theorem 2.4, consider the shadow sequences (wk)k∈� B (ΠR(P) xk)k∈� and (w̄k)k∈� B
(ΠR(P) x̄k)k∈� with update rule (2.13). Owing to Lemma 2.3(ii) and (3.4), it holds that wk ∈ Dwk ,w̄k if and only if
uk = vk Consequently, if wk ∈ Dwk ,w̄k for some k ∈ � then the algorithm has reached a point for which uk = vk in
a finite number of iterations, which by update rule (DRS) immediately implies that

(
uk, 1/γ(uk − sk)

) ∈ zer TPD.
We will consider the case when wk < Dwk ,w̄k in the remainder of the proof, in which case αk as defined in (2.12)
coincides with α > 0 as defined in this theorem.

♠ 3.3(i): By Theorem 2.4(i) and (3.4), the sequence (uk − vk)k∈� converges to zero and

1
γ

(
uk − vk) ∈ Ax̄k + ȳk, −(uk − vk) ∈ B−1ȳk − x̄k,

implying the claimed inclusion.

♠ 3.3(ii): By Lemma 3.1, it holds that (x̄k, ȳk)k∈� = (uk, 1/γ(2uk − sk − vk))k∈�. Consequently, it follows from
Theorem 2.4(ii) that every limit point (if any) of (uk, 1/γ(2uk − sk − vk))k∈� belongs to zer TPD. The claimed
result then follows from the fact that (uk − vk)k∈� converges to zero.

♠ 3.3(iii): The claim follows directly from Theorem 2.4(iii) after noting that ΠR(P) zk = 1
1+γ2

(
sk,−γsk).

♠ 3.3(iv): The claimed rate follows from Theorem 2.4(iv) since ∥P(zk − z̄k)∥2 = (1+ 1
γ2 )∥uk − vk∥2, qP(z0− z̄⋆) =

1
γ
∥s0 − s⋆∥2 and ∥P∥ = γ + 1

γ
.

♠ 3.3(v): The assertion for (sk)k∈� is of immediate verification based on the assertion for (ΠR(P) zk)k∈� in
Theorem 2.4(v). Furthermore, by Lemma 3.1, we know that z̄k ∈ (P + TPD)−1Pzk iff x̄k ∈ JγA(xk − γyk)
and ȳk ∈ 1/γ(2JγA(xk − γyk) − xk + γyk − JγB(2JγA(xk − γyk) − xk + γyk)). Consequently, if JγA and JγB are
(single-valued) continuous, then (P + TPD)−1P is (single-valued) continuous as well. Therefore, the claim for
(uk, 1/γ(uk − sk))k∈� follows from the assertion for (x̄k, ȳk)k∈� = (uk, 1/γ(2uk − sk − vk))k∈� in Theorem 2.4(v)
and the fact that (uk − vk)k∈� converges to zero.

Note that in Theorem 3.3(v) we show that under suitable conditions (uk, 1/γ(uk − sk))k∈� converges to some
element of zer TPD. By [7, Prop. 6.9.2], this immediately implies that (uk)k∈� converges to some element of
zer TP and (1/γ(uk − sk))k∈� converges to some element of zer TD. An analogous argument holds for the limit
point result of Theorem 3.3(ii).

Under an additional V-comonotonicity assumption on the primal-dual operator, last-iterate convergence
rates can be obtained for the sequence (∥uk − vk∥2)k∈�. This result follows directly from Theorem 2.11 by
casting DRS as an instance of PPPA, analogous to the proof of Theorem 3.3.
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Corollary 3.4 (last-iterate convergence). Suppose that the primal-dual operator TPD is maximally V B
blkdiag(βPIn, βDIn)-comonotone, that [βD]−[βP]− < 1

4 , that zer TPD is nonempty and that γ is selected according
to (3.3). Consider a sequence (uk, vk, sk)k∈� generated by DRS starting from s0 ∈ �n with stepsize γ and relax-
ation parameters λk ∈ (0, 2α) such that λk(2α− λk) ≥ κ > 0 uniformly for all k, where α B 1+ 1

γ
βP + γβD > 0.

Then, for all s⋆ ∈ {(x⋆ − γy⋆) | (x⋆, y⋆) ∈ zer TPD}, the following convergence estimates hold:

∥uN − vN∥2 ≤ ∥s
0 − s⋆∥2

(N + 1)κ
and ∥uN − vN∥2 = o

(
1/(N+1)

)
.

Finally, consider the class of piecewise polyhedral mappings, which trivially includes piecewise linear
mappings and the subgradient of all piecewise linear quadratic convex functions such as normal cones of
polyhedral sets [77, §12].

Definition 3.5 (piecewise polyhedral mappings). A set-valued mapping T : �n ⇒ �n is said to be piecewise
polyhedral if its graph can be expressed as the union of finitely many polyhedral sets.

The following theorem shows that DRS achieves (local) linear convergence for (possibly) nonmonotone
piecewise polyhedral mappings. The proof is similar to [48, Lem. IV.4] and relies on the fact that piecewise
polyhedral mappings are metrically subregular at all points in their graph [25, §3] and on previous results from
Theorem 2.13 and Lemma 3.1.

Theorem 3.6 (linear convergence of DRS for piecewise polyhedral mappings). Suppose that A and B are
piecewise polyhedral mappings, that zer TPD is nonempty closed convex, and that Assumption II.a3 holds with
S⋆ = zer TPD. Set the stepsize γ according to (3.3) and suppose that the resolvents JγA, JγB have full domain
and are continuous. Consider a sequence (uk, vk, sk)k∈� generated by DRS starting from s0 ∈ �n with stepsize
γ and relaxation parameters λk ∈ (0, 2α) such that lim infk→∞ λk(2α − λk) > 0, where α is defined as in
Theorem 3.3. Then, (sk)k∈� converges R-linearly to some element of {(x⋆ − γy⋆) | (x⋆, y⋆) ∈ zer TPD} and
(∥uk − vk∥)k∈� converges R-linearly to zero.

Proof. See Appendix B.1.

4 Semimonotone operators
In this section, we introduce the class of semimonotone operators and provide several examples of well-known
function classes with semimonotone subdifferentials. Sufficient conditions for the convergence of DRS applied
to the sum of two semimonotone operators will be provided in Section 5.

We begin by providing the definition of (µ, ρ)-semimonotone operators, which can be seen as a natural
extension of (hypo)monotone and co(hypo)monotone operators. The semimonotone terminology adapted here
is inspired by the notion of semimonotonicity introduced in [63, Def. 2] (which corresponds to the case µ = ρ).

Definition 4.1 (semimonotonicity). Let µ, ρ ∈ �. An operator A : �n ⇒ �n is said to be (µ, ρ)-semimonotone
at (x′, y′) ∈ gph A if

〈
x − x′, y − y′

〉 ≥ µ∥x − x′∥2 + ρ∥y − y′∥2, for all (x, y) ∈ gph A. (4.1)

An operator A is said to be (µ, ρ)-semimonotone if it is (µ, ρ)-semimonotone at all (x′, y′) ∈ gph A. It is
said to be maximally (µ, ρ)-semimonotone if its graph is not strictly contained in the graph of another (µ, ρ)-
semimonotone operator.

Due to the additional degree of freedom this operator class enjoys, it is able to cover a wide array of other
commonly used operator classes available in literature. We list the most prominent connections below.

Remark 4.2 (relationship with other types of operators).

(i) (0, 0)-semimonotonicity is equivalent to the monotonicity of A (and of its inverse A−1).

(ii) (µ, 0)-semimonotonicity is equivalent to µ-monotonicity, which is also known as |µ|-hypomonotonicity
[77, Example 12.28] when µ < 0 and as strong monotonicity when µ > 0.
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Figure 5: (left) Relationship between semimonotonicity and other types of operators. The green hatched area repre-
sents the region where all operators satisfy (µ, ρ)-semimonotonicity and the red hatched area represents the region
for which there do not exist any (µ, ρ)-semimonotone operators (see Proposition 4.3). (right) Scaled Relative Graph
(SRG) for different operator classes. For instance, in the top row, the SRG of a µ-monotone operator is visualized
[78, Prop. 3.3 and Thm. 3.5]. In the bottom right figure a (µ, ρ)-semimonotone operator with negative µ and ρ is visu-
alized. For more details on the SRG and similar geometric illustrations, we refer the interested reader to [29, 37, 78].

(iii) Similarly, (0, ρ)-semimonotonicity is equivalent to ρ-comonotonicity, which is also referred to as |ρ|-
cohypomonotonicity when ρ < 0 and as ρ-cocoercivity when ρ > 0.

(iv) (0, ρ)-semimonotonicity of an operator T at a point (x⋆, 0) ∈ gph T is equivalent to T having ρ-weak
Minty solutions at x⋆ ∈ zer T , sometimes also referred to as ρ-star-cocoercivity around x⋆ [38, Def. 2.1].

(v) When µ = ρ < 0, our definition of (µ, ρ)-semimonotonicity is equivalent to the definition of |ρ|-semi-
monotonicity proposed in [63, Def. 2].

(vi) α-averagedness of an operator is equivalent to (1 − 1/(2−2α), 1/(2−2α))-semimonotonicity [9, Prop. 4.35(iv)].
Additionally, an operator is firmly nonexpansive if and only if it is 1/2-averaged [9, Remark 4.34(iii)],
which holds for any (0, ρ)-semimonotone operator with ρ ≥ 1.

(vii) When µ > 0 and ρ < 0, then the definition of (µ, ρ)-semimonotonicity coincides with the definition of
(−ρ, µ)-relaxed-cocoercivity [45, Def. 2.3].

Figure 5 provides the Scaled Relative Graph (SRG) [78] of different operator classes and a graphical
representation of the connections between them. In Figure 5a, the green (resp. red) hatched area represents the
region where all operators (resp. no operators) satisfy (µ, ρ)-semimonotonicity, which is a consequence of the
following proposition.

Proposition 4.3 (existence of semimonotone operators). Let µ, ρ ∈ �. The following hold.

(i) If [µ]−[ρ]− ≥ 1
4 , then all operators A : �n ⇒ �n satisfy the definition of (µ, ρ)-semimonotonicity.

(ii) If [µ]+[ρ]+ > 1
4 , then there does not exist any operator A : �n ⇒ �n that is (µ, ρ)-semimonotone.

(iii) If [µ]+[ρ]+ = 1
4 , then operator A : �n ⇒ �n

1. is (µ, ρ)-semimonotone iff for some c ∈ �n it holds that gph A ⊆ gph T, where T : x 7→ 2µx + c.

2. is maximally (µ, ρ)-semimonotone iff for some c ∈ �n it holds that A : x 7→ 2µx + c.
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Proof. See Appendix B.2.

We proceed to examine basic properties and calculus rules for the class of (maximally) semimonotone
operators. For instance, their inverses belong to the same class of operators, with the roles of µ and ρ reversed.
Additionally, the following proposition analyzes the scaling and shifting of semimonotone operators.

Proposition 4.4 (inverting, shifting and scaling). Let operator A : �n ⇒ �n be (maximally) (µ, ρ)-semimono-
tone [at (x′, y′) ∈ gph A]. Then, the following hold.

(i) The inverse operator A−1 is (maximally) (ρ, µ)-semimonotone [at (y′, x′) ∈ gph A−1].

(ii) For all α ∈ �++ and u,w ∈ �n, operator T (x) B w+αA(x+ u) is (maximally) (αµ, α−1ρ)-semimonotone
[at (x′ − u,w + αy′)].

Linear operators are a particular instance of semimonotone operators. For these operators, there exists an
interplay between µ and ρ, which is summarized in the following proposition. This result generalizes [10, Prop.
5.1] for µ-monotone and ρ-comonotone operators. Additionally, a subsequent corollary for multiple of identity
operators is provided, including its maximality.

Proposition 4.5 (linear operator). Let A ∈ �n×n and let µ, ρ ∈ �. Then, A is (µ, ρ)-semimonotone if and only
if 1

2 (A + A⊤) − ρA⊤A ⪰ µI.
Proof. Consider x ∈ �n. Then, it holds by (µ, ρ)-semimonotonicity that ⟨x, Ax⟩ ≥ µ∥x∥2 + ρ∥Ax∥2 ⇔ ⟨x, (A −
µI − ρA⊤A)x⟩ ≥ 0⇔

〈
x,

(
1
2 (A + A⊤) − µI − ρA⊤A

)
x
〉
≥ 0⇔ 1

2 (A + A⊤) − µI − ρA⊤A ⪰ 0.

Corollary 4.6 (multiple of identity). If A = αIn for some α ∈ �, then A is (α(1 − cα), c)-semimonotone for
any c ∈ �. Furthermore, A is maximal except when α < 0 and c = 1/2α.

Proof. See Appendix B.2.

The upcoming proposition discusses the sum and the parallel sum of two semimonotone operators, A and B.
Notice that the semimonotonicity parameters of the resulting operator always involve both a sum and a parallel
sum of A and B’s semimonotonicity parameters. As expected, the commutative property holds as swapping A
and B does not affect the result.

Proposition 4.7 (sum and parallel sum). Let operator A : �n ⇒ �n be (µA, ρA)-semimonotone [at (x′A, y
′
A) ∈

gph A] and operator B : �n ⇒ �n be (µB, ρB)-semimonotone [at (x′B, y
′
B) ∈ gph B]. Then, it holds that

(i) [if x′ = x′A = x′B, then] A + B is (µA + µB, ρA □ ρB)-semimonotone [at (x′, y′A + y′B)] if either ρA + ρB > 0
or ρA = ρB = 0.

(ii) [if y′ = y′A = y′B, then] A □ B is (µA □ µB, ρA + ρB)-semimonotone [at (x′A + x′B, y
′)] if either µA + µB > 0

or µA = µB = 0.

Proof. See Appendix B.2.

Combining the previous proposition for the sum with the characterization of multiple of identity operators
from Corollary 4.6, the semimonotonicity of the sum of a semimonotone and a multiple of identity operator is
obtained in Proposition 4.8(ii). However, under a particular condition, a stronger equivalence relationship can
be obtained by exploiting the multiple of identity structure present. This result is provided in Proposition 4.8(i)
and generalizes [10, Lem. 2.6 & 2.8].

Proposition 4.8 (sum with identity). Let µA, ρA ∈ �. Consider the operator A : �n ⇒ �n and define T B
A + αI where α ∈ �. Then, the following hold.

(i) If 1 + 2ρAα > 0, then T is (maximally)
(
µA+α(1+ρAα)

1+2ρAα
, ρA

1+2ρAα

)
-semimonotone [at (x′, y′ + αx′) ∈ gph T] if

and only if A is (maximally) (µA, ρA)-semimonotone [at (x′, y′) ∈ gph A].

(ii) If 1 + 2ρAα ≤ 0, then T is (µA + α(1 − cα), ρA □ c)-semimonotone [at (x′, y′ + αx′) ∈ gph T] for all
c > −ρA if A is (µA, ρA)-semimonotone [at (x′, y′) ∈ gph A].

Proof. See Appendix B.2.

20



Leveraging previous results, we now formalize the relationship between the semimonotonicity of an oper-
ator T defined as a function of another (maximally) monotone operator A. In practical applications, this result
can be leveraged to check (maximal) semimonotonicity of a given operator or to generate semimonotone op-
erators from a given monotone operator.

Corollary 4.9 (connection to monotone operators). Let ξ, ν ∈ �. Consider the operator A : �n ⇒ �n and
define T B (A + ξid)−1 + νid. Then, the following hold.

(i) If 1 + 2ξν > 0, then T is (maximally)
(
ν(1+ξν)
1+2ξν ,

ξ
1+2ξν

)
-semimonotone if and only if A is (maximally)

monotone.

(ii) If 1 + 2ξν ≤ 0, then T is
(
ν(1 − cν), ξ □ c

)
-semimonotone for all c > −ξ if A is monotone.

Proof. By applying Propositions 4.4(i) and 4.8 it follows that A is (maximally) monotone if and only if A+ξid
is (maximally) (ξ, 0)-semimonotone if and only if (A+ξid)−1 is (maximally) (0, ξ)-semimonotone. The claimed
result then follows by using Proposition 4.8 again.

When ν = 0, Corollary 4.9(i) reduces to a known equivalence between comonotonicity of an operator and
monotonicity of its Yosida regularization, see [16, Prop. 6.9.3]. The following result is a direct consequence
of Corollary 4.9(i), noting that for the choice of ξ and ν from (4.2) it holds that 1 + 2ξν = 1/

√
1−4ρµ > 0. This

result generalizes [63, Thm. 2], which only covers the case µ = ρ.

Corollary 4.10. A set-valued operator T : �n ⇒ �n is (maximally) (µ, ρ)-semimonotone with ρµ < 1
4 if and

only if A B (T − νid)−1 − ξid is a (maximally) monotone operator where

ξ = ρ√
1−4µρ

and ν = 2µ

1+
√

1−4µρ
. (4.2)

In light of the above connection with maximally monotone operators, a (µ, ρ)-semimonotone operator A
with ρµ < 1

4 is maximal if (A − νid)−1 is continuous (since any continuous monotone mapping is maximally
monotone). Additionally, the following proposition shows that the graph of a maximally (µ, ρ)-semimonotone
operator is closed.

Proposition 4.11 (outer semicontinuity of a semimonotone operator). Let A : �n ⇒ �n be a maximally
(µ, ρ)-semimonotone operator with either ρµ < 1

4 or [µ]+[ρ]+ = 1
4 . Then, A is outer semicontinuous.

Proof. See Appendix B.2.

We conclude this section by showing that if the stepsize is selected appropriately, the resolvent of a semi-
monotone operator has full domain and is Lipschitz continuous. This result generalizes [10, Prop. 2.17] for
comonotone operators and [63, Thm. 3], which is restricted to the case µ = ρ.

Proposition 4.12 (resolvent of a semimonotone operator). Let A : �n ⇒ �n be a (µ, ρ)-semimonotone opera-
tor with either ρµ < 1

4 or [µ]+[ρ]+ = 1
4 . Let

γ ∈
(

2[−ρ]+
1+
√

1−4ρµ
,

1+
√

1−4ρµ
2[−µ]+

)
. (4.3)

Then, the following hold.

(i) The resolvent JγA has full domain if and only if A is maximal.

(ii) The resolvent JγA is Lipschitz continuous with constant L(γ) =
|1+2ργ−1 |+

√
1−4µρ

2(1+µγ+ργ−1) .

Proof. See Appendix B.2.
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4.1 Examples of functions with semimonotone subdifferentials
In what follows, we present various function classes of which the (limiting) subdifferentials belong to the class
of semimonotone operators. We start by studying the class of functions with upper and/or lower curvature,
which are defined as follows.

Definition 4.13 (upper and lower curvature). Let σ, ℓ ∈ � and consider a proper lsc function f : �n → �.
Then,

(i) (lower curvature) f is said to have lower curvature with modulus σ (denoted by f ∈ Fσ(�n)) if φσ B
f − σ2 ∥ · ∥2 is convex.

(ii) (upper curvature) f is said to have upper curvature with modulus ℓ (denoted by f ∈ F ℓ(�n)) if f is
finite-valued and φℓ B ℓ

2 ∥ · ∥2 − f is convex.

A function with both upper and lower curvatures is denoted by F ℓ
σ(�n).

Many traditional function classes fit within this curvature framework. For instance, functions with positive
(resp. negative) lower curvatures are widely known as strongly (resp. hypo) convex functions. Another notable
example is that of ℓ-smooth functions, which have upper curvature ℓ and lower curvature −ℓ [84, Lem. 2.1].

The next proposition presents the semimonotonicity properties of the subdifferential of functions according
to their curvature. Additionally, a corollary is provided for the pointwise minimum of functions with upper
curvatures.

Proposition 4.14 (functions with upper and lower curvature). Let σ, ℓ ∈ �. Then, the following hold.

(i) If f ∈ Fσ(�n), i.e., f is σ-convex, then, ∂ f is
(
σ, 0

)
-semimonotone.

(ii) If f is continuous and f ∈ F ℓ(�n) with ℓ < 0, then, ∂ f is
(
0, 1
ℓ

)
-semimonotone.

(iii) If f is continuous and f ∈ F ℓ(�n) with ℓ ≥ 0, then, ∂ f is (α(1 − cα), c □ 1
ℓ
)-semimonotone for all α > ℓ

and c > 1
α−ℓ .

If f ∈ F ℓ
σ(�n), then, σ ≤ ℓ, f is continuously differentiable and the following hold.

(iv) If ℓ + σ > 0, then ∇f is
(
σ □ ℓ, 1

ℓ+σ

)
-semimonotone.

(v) If ℓ + σ ≤ 0, ∇f is
(
σ(1 − cσ), c □ 1

ℓ−σ
)
-semimonotone for any constant c such that 1 + c(ℓ − σ) > 0.

Proof. See Appendix B.3.

Corollary 4.15 (pointwise minimum). Let f be the pointwise min of finite-valued and continuous functions
fi ∈ F ℓ fi (�n) where ℓ fi ∈ �, i.e., f (x) = min{ f1(x), . . . , fN(x)}. Let ℓ̄ = maxi ℓ fi . Then, the following hold.

(i) If ℓ̄ < 0, then ∂ f is
(
0, 1
ℓ̄

)
-semimonotone.

(ii) If ℓ̄ ≥ 0, then ∂ f is
(
α(1 − cα), c □ 1

ℓ̄

)
-semimonotone for all α > ℓ̄ and c > 1

α−ℓ̄ .

Proof. See Appendix B.3.

One of the most fundamental operations for functions is the infimal convolution, which is the subject of the
upcoming proposition. To obtain this result, we first show that the subdifferential of the infimal convolution
of two semimonotone operators belongs to the parallel sum of the subdifferentials of these two functions (see
Proposition 4.16(i)), and then we use Proposition 4.7(ii).

Proposition 4.16 (infimal convolution). For i = 1, 2, let fi : �n → � be proper lsc functions whose subdiffer-
entials are (µi, ρi)-semimonotone with µi, ρi ∈ � such that µ1 + µ2 > 0 or µ1 = µ2 = 0. Denote their infimal
convolution by

φ : s 7→ min
w∈�n

{
f1(w) + f2(s − w)

}
.

Suppose that for each r1 ≥ 0 and s̄ ∈ �n there exists r2 > 0 such that the set
{
(w1,w2) ∈ �n

∣∣∣ ∑2
i=1 fi(wi) ≤ r1,

∥∥∥∑2
i=1 wi − s̄

∥∥∥ ≤ r2

}
(4.4)

is bounded. Then, the following hold.
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(i) ∂φ(s̄) ⊆ (∂ f1 □ ∂ f2)(s̄).

(ii) ∂φ is (µ1 □ µ2, ρ1 + ρ2)-semimonotone.

Proof. See Appendix B.3.

As a final example, we show that the associated saddle operator of a minimax optimization problem is
semimonotone under the so-called interaction dominance condition [40].

Proposition 4.17 (saddle operator). Suppose that φ : �n × �m → � is twice continuously differentiable
and σ-convex-concave for some σ ∈ �, i.e., ∇2

xxφ(z) ⪰ σI and −∇2
yyφ(z) ⪰ σI for all z ∈ �n+m. Moreover, the

α-interaction dominance condition [40, Def. 1] holds for some α > − 1
δ

and δ ∈ (0, 1/[−σ]+), i.e., for all z ∈ �n+m

∇2
xxφ(z) + ∇2

xyφ(z)
(

1
δ
I − ∇2

yyφ(z)
)−1∇2

yxφ(z) ⪰ αI,

−∇2
yyφ(z) + ∇2

yxφ(z)
(

1
δ
I + ∇2

xxφ(z)
)−1∇2

xyφ(z) ⪰ αI.

Then, the following hold for the associated saddle operator Tφ(z) B
(∇xφ(z),−∇yφ(z)

)
.

(i) If α < 1
δ
, then Tφ is ( α

1−αδ ,− δ
1−αδ )-semimonotone.

(ii) If α ≥ 0, then Tφ is (0,−δ)-semimonotone.

Proof. See Appendix B.3.

5 Douglas-Rachford splitting for semimonotone operators
In practical applications, it might be difficult to determine whether the conditions of Assumption II for DRS are
satisfied. To address this issue, we provide a set of sufficient conditions for the convergence of DRS involving
the sum of two semimonotone operators. More specifically, we work under the following assumptions on the
underlying operators A and B from problem (P-I).

Assumption III. In problem (P-I), there exist parameters µA, ρA, µB, ρB ∈ � and a nonempty set S⋆ ⊆ zer TPD
such that for every (x⋆, y⋆) ∈ S⋆, the following hold.

a1 It holds that either µA + µB > 0 or µA = µB = 0, that either ρA + ρB > 0 or ρA = ρB = 0 and that
[µA □ µB]−[ρA □ ρB]− < 1

4 .

a2 Operator A is (µA, ρA)-semimonotone at (x⋆,−y⋆) ∈ gph A.

a3 Operator B is (µB, ρB)-semimonotone at (x⋆, y⋆) ∈ gph B.

Under these assumptions, the primal-dual operator TPD has oblique weak Minty solutions as shown below
in Lemma 5.1(i). Additionally, whenever operators A and B are maximally semimonotone as in Assumption
IV, the primal-dual operator is maximally comonotone. The proof of Lemma 5.1 is deferred to Appendix B.4.

Assumption IV. In problem (P-I), zer(A+ B) is nonempty and there exist parameters µA, ρA, µB, ρB ∈ � satis-
fying Assumption III.a1 such that operator A is maximally (µA, ρA)-semimonotone and operator B is maximally
(µB, ρB)-semimonotone.

Lemma 5.1 (primal-dual operator). Suppose that either Assumption III or Assumption IV holds and let V be
defined as in (3.2), where

βP = ρA □ ρB and βD = µA □ µB. (5.1)

Then, the following hold.

(i) If Assumption III holds, then TPD has V-oblique weak Minty solutions at S⋆.

(ii) If Assumption IV holds, then TPD is maximally V-comonotone.
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Table 3: Range of γ for DRS for semimonotone operators.

µA = µB = 0
µA + µB > 0

µAµB ≥ 0 µAµB < 0

ρA = ρB = 0
γ ∈ (0,+∞)

γ ∈
(
0,− 1

µA□µB

)

ρA + ρB > 0
ρAρB ≥ 0 γ ∈ (0, γ+)

ρAρB < 0 γ ∈
(
−(ρA □ ρB),+∞

)
γ ∈ (γ−,+∞) γ ∈ (γ−, γ+)

We are now in a position to state the main result of this section: sufficient conditions for the convergence of
DRS, through the semimonotonicity properties of the operators A and B. The proof is deferred to Appendix B.4.

Theorem 5.2 (convergence of DRS under semimonotonicity). Suppose that

(i) either Assumption II.a1, Assumption II.a2 and Assumption III hold,

(ii) or Assumption IV hold s .

Let γ be selected according to Table 3, where

γ− B − 2(ρA□ρB)

1+
√

1−4(µA□µB)(ρA□ρB)
and γ+ B − 1+

√
1−4(µA□µB)(ρA□ρB)

2(µA□µB) . (5.2)

Then, α B 1+ 1
γ
(ρA□ρB)+γ(µA□µB) > 0. Consider a sequence (uk, vk, sk)k∈� generated by DRS starting from

s0 ∈ �n with stepsize γ and relaxation parameters λk ∈ (0, 2α) such that lim infk→∞ λk(2α − λk) > 0. Then, all
the claims of Theorem 3.3 hold. Furthermore, if Assumption IV holds and λk(2α − λk) ≥ κ > 0 uniformly for
all k, then the convergence estimates from Corollary 3.4 also hold.

Theorem 5.2 provides a general framework for the convergence of DRS, unifying and extending existing
convergence results on relaxed Douglas/Peaceman Rachford splitting methods. We provide several examples.

Remark 5.3 (comparison with existing theory).

(i) When A and B are maximally (0, 0)-semimonotone, i.e., maximally monotone, the convergence result of
classic DRS is recovered, see e.g. [54, 31].

(ii) When A and B are respectively µA- and µB-monotone, we recover several existing results in literature.
For instance, in the strongly monotone setting where µ B µA = µB > 0, we recover the convergence
result from [59], showing that DRS converges for λ ∈ (0, 2 + γµ) instead of the traditional λ ∈ (0, 2).
On the other hand, when µA + µB > 0, the stepsize range provided in Table 3 matches [21, Thm. 4.5(ii)].
Analogously, we recover the results for the sum of a ρA- and a ρB-comonotone operator with ρA + ρB > 0
from [8, Cor. 5.5(ii)].

(iii) In the optimization setting, global convergence of DRS has recently been shown in [53, 84] for struc-
tured nonsmooth, nonconvex optimization problems where the cost is split as the sum of one Lips-
chitz differentiable function f : �n → � and one proper lsc function g : �n → �, i.e., A = ∇f and
B = ∂g. These results rely on showing descent of the iterates on the so-called Douglas-Rachford enve-
lope [65], for which only properties of the Lipschitz differentiable function f are exploited to determine
the range of admissible stepsizes. For instance, consider the setting where f is ℓ-smooth and σ-convex,
where ℓ > 0 and σ ∈ [−ℓ, 0). Then, it is shown in [84] that DRS converges globally for λ ∈ (0, 2) and
γ < min

{ λ−2
2σ ,

1
ℓ

}
< − 1

σ
provided that arg minx f (x) + g(x) is nonempty.

Note that when additional semimonotonicity properties of g are given, a larger stepsize range for γ can be
obtained through Theorem 5.2. To see this, first observe that in this setting A is (µA, ρA)-semimonotone
for some µA < 0 and ρA ≥ 0 (see Proposition 4.14(iv)). Therefore, supposing that ∂g is (µB, ρB)-semi-
monotone at (x⋆, y⋆) ∈ gph ∂g where µA + µB > 0 and ρB ≥ 0 it follows from Theorem 5.2 that DRS
converges for γ ∈ (0, γ+), which is a larger stepsize range since γ+ > − 1

σ
.
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6 Example problems
In this section, we provide several example problems for DRS that go beyond the standard monotone setting.
Details of the examples presented in this section can be found in Appendix C.

We commence by applying DRS to a simple linear inclusion problem. This setting is of particular interest
for two specific reasons. First, this example demonstrates the tightness of the stepsize range provided in The-
orem 3.3 (see Example 6.1(ii)). Second, it highlights that our theory is able to cover cases where neither the
primal nor the dual nor the primal-dual inclusion is monotone (see Example 6.1(iii)).

Example 6.1 (saddle point problem). Consider the problem of finding a stationary point of a linear inclusion,
with a particular structure that emerges naturally in saddle point problems [33, §1.4.1]

0 ∈ TPx =
[

b a
−a b

]
x =

[
0 a
−a 0

]

︸   ︷︷   ︸
A

x +
[
b 0
0 b

]

︸︷︷︸
B

x, (6.1)

where a, b ∈ � \ {0}. In particular, any solution to the inclusion problem
0 ∈ TPx is a minimax solution of f (x1, x2) B ax1x2+

b
2 (x2

1−x2
2) when b >

0 and a maximin solution when b < 0. For this problem, the following
assertions hold.

(i) By examining the spectral radius of the algorithmic operator, it can
be seen that the sequence (uk, vk, sk)k∈� generated by DRS with
fixed relaxation parameter λ converges iff λ lies in the interval

0 < λ < λ̄ B 2
(a2γ + b)(1 + γb)
γ(a2 + b2)

, (6.2)

which is nonempty iff either b > 0 or

b < 0, a2 , b2 and γ ∈
(
min{− 1

b ,− b
a2 },max{− 1

b ,− b
a2 }

)
.

A numerical experiment verifying this convergence result is pro-
vided in Figure 6.

−1 0 1

−1

0

1

λ = 6
5 λ̄

λ = λ̄

λ = 4
5 λ̄

Figure 6: Sequences uk generated
by applying DRS on Example 6.1 for
a = 2, b = −1 and stepsize γ = 1

2 .

(ii) The results from Theorem 3.3 are tight in the sense that the entire range of relaxation parameters λ from
(6.2) is covered, when in (2.1) the vector v is restricted to R(P) (see the remark below Definition 2.1).

(iii) The range of a and b from Example 6.1(i) for which DRS converges covers cases where neither the
primal, nor the dual, nor the primal-dual problem is monotone.

Additionally, an analysis of the tightness of Theorem 5.2 is provided in Appendix C. In this analysis, the
semimonotonicity parameters µA, µB, ρA, ρB are selected according to Proposition 4.5 such that the relaxation
parameter in Theorem 5.2 is maximized. Notice that although A is obviously (0, 0)-semimonotone, the maximal
relaxation parameter is in general attained for other values of µA and ρA.

Next, we turn our attention to a nonsmooth optimization problem. This example highlights the generality
of our underlying assumptions, as the convergence of DRS for this problem is not covered by any previous
works on DRS (to the best of the authors’ knowledge).

Example 6.2 (nonsmooth optimization). Consider the separable nonsmooth optimization problem
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−5

0

5

x

fA(x)
fB(x)

fA(x) + fB(x)

0 100 200 300 400

−5

0

5

k

uk

Figure 8: (left) Visualization of the functions involved in Example 6.4. Additionally, the sequence (uk)400
k=0 is indicated

using black arrows, which is obtained by applying DRS to 0 ∈ ∂ fA(x) + ∂ fB(x) with stepsize γ = 11/60 ∈ (1/6, 1/5) and
relaxation λ = 9/10

(
2− 4/15γ− 12γ/5

) ≈ 0.095. When evaluating the (multi-valued) resolvents JγA and JγB, each element
is sampled with equal probability. (right) Visualization of the sequence (uk)400

k=0 for 200 such experiments, of which the
initializations s0 are evenly spaced within the interval [−5, 5].

minimize
x∈�

fA(x) + fB(x)

which is visualized in Figure 7, where

fA(x) B
{

3x2 − 3x + 8, if x ∈ [−1, 1],
− 1

2 x2 − 3x + 23
2 , otherwise,

fB(x) B



2x2 − x, if x < −1,
x2 + 3x + 5, if x ∈ [−1, 2],
x2 + 15x − 19, if x > 2.

The following hold for the inclusion 0 ∈ TPx = ∂ fA(x) + ∂ fB(x).

−2 −1 0 1 2
0

10

20

30

40

x

fA(x)
fB(x)

fA(x) + fB(x)

Figure 7: Visualization of the (nonsmooth)
functions involved in Example 6.2.

(i) Assumption II.a1 and Assumption II.a2 hold when γ , 1.

(ii) Assumption III holds for S⋆ = {
(0, 3)

}
and µA = −1.2, ρA = 0.2, µB = 1.6 and ρB = 0.1.

(iii) The claims from Theorem 3.3 hold for the sequence (uk, vk, sk)k∈� generated by DRS with stepsize γ ∈(
0, 0.2614

)
and relaxation parameter λ ∈ (

0, 2 + 2/15γ − 48γ/5
)
.

Remark 6.3 (comparison with previous works).

(i) Since both fA and fB are nonsmooth and fA is nonconvex, convergence results for DRS in the optimization
setting such as [53, 84] cannot be applied.

(ii) Since ρA > 0 and ρB > 0, it holds by definition that ∂ fA is µA-monotone at (x⋆,−y⋆) and ∂ fB is µB-
monotone at (x⋆, y⋆). However, as the monotonicity of A and B does not hold globally, the results from
[21] are not applicable here.

Next, consider the following example, where we apply DRS to the subdifferential of a separable nonsmooth
function. For this example, we show that our analysis of DRS covers its convergence behavior towards the
stationary points, and provide numerical results in Figure 8. Notice that in the iterates are attracted by the local
minimum, while in contrast e.g. descent methods would quickly diverge.

Example 6.4 (stationary point). Let µA = −0.3, ρA = −0.1, µB = 0.4 and ρB = 0.4. Consider the problem of
finding a stationary point of fA(x) + fB(x), visualized in Figure 8, where

fA(x) B



1−
√

1−4µAρA

4ρA
x2 − x − 3, if x ∈ [−3, 3],

1+
√

1−4µAρA

4ρA
x2 − x − 9

√
1−4µAρA

2ρA
− 3, otherwise,
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fB(x) B
{

x2 + x + 2, if x ∈ [−1, 1],
1
4 x2 + x + 11

4 , otherwise.

The following hold for the inclusion 0 ∈ TPx = ∂ fA(x) + ∂ fB(x).

(i) Assumption II.a1 and Assumption II.a2 hold for γ ∈ (
0, −2ρA

1+
√

1−4µAρA

) ∪ ( −2ρA

1+
√

1−4µAρA
, 1/5

)
.

(ii) Assumption III holds for S⋆ = {
(0,−1)

}
and the given µA, ρA, µB, ρB.

(iii) The claims from Theorem 3.3 hold for the sequence (uk, vk, sk)k∈� generated by DRS with stepsize γ ∈(
1/6, 1/5

)
and fixed relaxation parameter λ ∈ (

0, 2 − 4/15γ − 12γ/5
)

(see Figure 8 for numerical results).

As a final example, consider the following quadratic programming (QP) problem, with box and linear
equality constraints. When Q is positive semidefinite, which is the convex setting, convergence of DRS for Ex-
ample 6.5 follows directly by monotonicity of A and B. The following example demonstrates that our results
allow to go beyond the monotone setting, leveraging the calculus rules from Section 4. Note that in this example
both f and g are nonsmooth, and thus convergence results for DRS such as [53, 84] cannot be applied here.

Example 6.5 (constrained QP). Consider the following quadratic program

minimize
x∈�n

1
2 x⊤Qx + q⊤x

subject to Hx = h,

l ≤ x ≤ u,

(6.3)

where Q ∈ Sn, q ∈ �n, H ∈ �m×n has full row rank, h ∈ �m and scalars l, u ∈ � satisfying l < u. This problem
can be equivalently formulated as minimizex f (x) + g(x) where

f (x) B 1
2 x⊤Qx + q⊤x + δ{s | Hs=h}(x) and g(x) B δ{s | l≤s≤u}(x),

and the associated first-order optimality condition is given by 0 ∈ A(x) + B(x) B ∂ f (x) + ∂g(x), By splitting
the quadratic program (6.3) into f and g, the resulting DRS iterations can be computed efficiently in closed
form. In particular, f corresponds to an equality constrained QP problem, of which the prox can be solved
efficiently through its corresponding KKT system [62, §16.1], and computing the resolvent of ∂g corresponds
to projecting onto a box.

For instance, let Q = diag(−1, 1
2 ), q = [ −4 −1 ]⊤, H = [ 1 1 ], h = 1, l = 0 and u = 1. Then, the unique

minimizer of (6.3) is given by x⋆ = [ 1 0 ]⊤ and the following assertions hold.

(i) Operator A is (−1, 0)-semimonotone.

(ii) Operator B is (2, 0)-semimonotone at (x⋆, y⋆) = ([ 1 0 ]⊤, [ 2 −2 ]⊤) ∈ gph B.

(iii) The sequence (uk, 1/γ(uk − sk))k∈� generated by DRS with fixed relaxation parameter λ converges to
zer TPD for γ ∈ (0, 1/2) and λ ∈ (0, 2 − 4γ).

Proof. By Propositions 4.4(ii) and 4.5, it follows that the mapping x 7→ Qx + q is (−1, 0)-semimonotone.
The claimed semimonotonicity of A then follows by observing that the normal cone N{s | Hs=h} is monotone [9,
Ex. 20.26] and applying Proposition 4.7(i). Finally, the claimed semimonotonicity of B follows from Proposi-
tion A.7 and the convergence result for DRS follows from Theorem 5.2.

7 Conclusion
This paper presented a comprehensive study of the (relaxed) preconditioned proximal point algorithm (PPPA)
and the (relaxed) Douglas-Rachford splitting (DRS) method for a class of nonmonotone problems that satisfy
an oblique weak Minty condition. To make the achieved results for DRS readily applicable in practice, the class
of semimonotone operators was introduced, and sufficient conditions were developed for the convergence of
DRS for the sum of two semimonotone operators. Various relevant example problems were provided thoughout
the paper, showing tightness of the achieved convergence results.

Future research directions include investigating inexact variants of PPPA, analyzing other splitting methods
in nonmonotone settings, and studying applications in noncooperative game theory and nonconvex distributed
optimization.
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A Auxiliary lemmas
Lemma A.1. Let P ∈ Sn

+ be a symmetric positive semidefinite matrix, U be an orthonormal basis for R(P)
and define Q B P + ΠN(P). Then, the following properties hold.

(i) The projection onto the range of P is given by ΠR(P) = UU⊤.

(ii) P = PΠR(P) = ΠR(P) P = QΠR(P).

(iii) Q ≻ 0.

(iv) U⊤PU = U⊤QU ≻ 0.

Proof. Statement A.1(i) follows from [57, §5.13] and A.1(ii) follows directly by definition of P and Q.

♠ A.1(iii): Let x ∈ �n\{0} and consider decomposing it as x = x1 + x2 where x1 ∈ R(P) and x2 ∈ N(P). Let
U1Λ1U⊤1 be a compact eigendecomposition of P, so that U1U⊤1 = ΠR(P) and pmin B λmin(Λ1) > 0. Then,

⟨x,Qx⟩ = ⟨x, Px⟩ + ⟨x,ΠN(P) x⟩ = ⟨x1,U1Λ1U⊤1 x1⟩ + ∥x2∥2
≥ pmin⟨x1,ΠR(P) x1⟩ + ∥x2∥2 = pmin∥x1∥2 + ∥x2∥2 ≥ min{1, pmin}∥x∥2 > 0.

♠ A.1(iv): The equivalence U⊤PU = U⊤QU follows from Lemmas A.1(i) and A.1(ii) using U⊤U = I. Positive
definiteness follows from Lemma A.1(iii) and the fact that U has full column rank [11, Prop. 8.1.2(xiii)].

Proposition A.2 (resolvent of a comonotone operator). Let T : �n ⇒ �n be a V-comonotone operator and
suppose that P is selected according to Assumption I.a4. Then, the preconditioned resolvent (P + T )−1 ◦ P has
full domain if and only if T is maximal.

Proof. Since T is V-comonotone, it holds by definition that T−1 − V is monotone and thus also that T̃ B
U⊤T−1U − U⊤VU is monotone. Furthermore, it holds that (U⊤PU)−1 + U⊤VU ≻ 0 by Assumption I.a4
and Remark 2.2. Denote T̂ B U⊤T−1U + (U⊤PU)−1. Owing to (U⊤PU)−1 +U⊤VU ≻ 0 and Minty’s theorem
[9, Thm. 21.1], the operator

(
(U⊤PU)−1 + U⊤VU

)−1T̂ =
(
(U⊤PU)−1 + U⊤VU

)−1T̃ + id

has full range iff
(
(U⊤PU)−1+U⊤VU

)−1T̃ is maximally monotone. Since (U⊤PU)−1+U⊤VU ≻ 0, this implies
that T̂ has full range iff T̃ is maximally monotone, i.e., iff T is maximally V-comonotone.

Therefore, it only remains to show that T̂ has full range iff dom (P + T )−1 ◦ P = �n. First suppose that T̂
has full range. Let m denote the dimension of the range of P and fix ŷ ∈ �m. Then, by the full range assumption
for T̂ , there exists some x̂ ∈ �m such that ŷ ∈ T̂ x̂. Letting ẑ = ŷ − (U⊤PU)−1 x̂, this implies that

ŷ ∈ U⊤T−1Ux̂ + (U⊤PU)−1 x̂ ⇐⇒ ẑ ∈ U⊤T−1U
(
U⊤PU(ŷ − ẑ)

)
(A.1)

Multiplying by U, this implies that Uẑ ∈ ΠR(P) T−1(PU(ŷ − ẑ)
)
. Defining x′ = Ux̂, y′ = Uŷ and z′ = Uẑ,

this corresponds to z′ ∈ ΠR(P) T−1(P(y′ − z′)
)
. Consequently, T−1(P(y′ − z′)

)
is nonempty and there exists a

z′′ ∈ N(P) ⊆ �n so that z′′ ∈ ΠN(P) T−1(P(y′ − z′)
)
. Summing both inclusions, it holds that

z′ + z′′ ∈ T−1(P(y′ − z′)
) ⇐⇒ P(y′ − z′) ∈ T (z′ + z′′) ⇐⇒ z′ + z′′ ∈ (

P + T
)−1Py′ (A.2)

Since the choice of y′ is arbitrary in R(P),
(
P + T

)−1P has full domain.
The converse follows similarly. Assume that dom

(
P + T

)−1P = �n. Then, for any fixed ŷ ∈ �m and
y′ = Uŷ there exists some z ∈ �n such that z ∈ (T+P)−1Py. Without loss of generality, decompose z B Uẑ+z′′,
where ẑ ∈ �m and z′′ ∈ N(P). Then, by (A.2) it follows that Uẑ + z′′ ∈ T−1(PU(ŷ − ẑ)

)
. Multiplying by U⊤,

this implies that ẑ ∈ U⊤T−1U
(
U⊤PU(ŷ − ẑ)

)
. Defining x̂ = U⊤PU(ŷ − ẑ) and using (A.1), we obtain ŷ ∈ T̂ x̂,

thus establishing that T̂ has full range.

Fact A.3 (Solution of quadratic inequality). Let a, b, c ∈ � and suppose that b > −2
√

ac when ac ≥ 0. Then,
the following hold.
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Table 4: Ranges of γ for which the resolvents JγA and JγB have full domain.

µA = µB = 0
µA + µB > 0

µAµB ≥ 0 µAµB < 0

ρA = ρB = 0
γ ∈ (0,+∞)

γ ∈
(
0,− 1

min{µA,µB}
)

ρA + ρB > 0
ρAρB ≥ 0 γ ∈ (0, γ̄+)

ρAρB < 0 γ ∈ (−min{ρA,ρB},+∞) γ ∈ (γ̄−,+∞) γ ∈ (γ̄−, γ̄+)

(i) There exists a γ > 0 satisfying aγ2 + bγ + c > 0 if and only if it holds that

b > 2
√

ac when a < 0 and c < 0. (A.3)

(ii) If (A.3) holds, then γ > 0 satisfies aγ2 + bγ + c > 0 if and only if γ ∈
(

2[−c]+
b+
√

b2−4ac
, b+

√
b2−4ac

2[−a]+

)
, which is

nonempty.

Fact A.4. Let a, b ∈ � such that a + b > 0. Then, a □ b < min{a, b}.
Lemma A.5 (implications of Assumption II). If Assumption II holds, then Assumptions I.a1 to I.a3 hold for
operator TPD from (PD-I) and preconditioner P as in (3.1).

Proof. First, outer semicontinuity of TPD follows from that of A and B [77, Thm. 5.7(a)], showing I.a1. Second,
I.a2 holds since JγA and JγB having full domain implies that the preconditioned resolvent (P + TPD)−1P has
full domain, owing to [77, Lem. 12.14]. Finally, statement I.a3 is immediate, completing the proof.

Lemma A.6 (implications of Assumption IV). Suppose that Assumption IV holds and that γ is selected ac-
cording to Table 3, where γ− and γ+ are defined as in (5.2). Then, Assumptions II.a1 and II.a2 hold and the
resolvents JγA and JγB are Lipschitz continuous.

Proof. First, observe that [µA □ µB]−[ρA □ ρB]− < 1
4 , which by Fact A.4 and Proposition 4.3(ii) implies that

[µA]−[ρA]− < 1
4 and [µB]−[ρB]− < 1

4 . Therefore, owing to Proposition 4.11, it follows that A and B are outer
semicontinuous, showing that Assumption II.a1 holds. Furthermore, owing to Proposition 4.12(i), it follows
that the resolvents JγA and JγB are Lipschitz continuous and have full domain if γ complies with Table 4, where

γ̄− =



−2ρA

1+
√

1−4µAρA
, if ρA < 0,

−2ρB

1+
√

1−4µBρB
, otherwise,

and γ̄+ =


− 1+
√

1−4µAρA

2µA
, if µA < 0,

− 1+
√

1−4µBρB

2µB
, otherwise.

(A.4)

As γ is selected according to Table 3, it simply remains to prove that these ranges are a subset of the ranges
for γ provided in Table 4, which can be verified directy using Fact A.4.

Proposition A.7 (normal cone of a box). The normal cone operator NC : �n ⇒ �n of the n-dimensional box
C B {x ∈ �n | li ≤ xi ≤ ui, i = 1, . . . , n} is

(
min

{ |ṽ1 |
u1−l1
, . . . , |ṽn |

un−ln

}
, 0

)
-semimonotone at (x̃, ṽ) ∈ gph NC .

Proof. By monotonicity of the normal cone NC [9, Ex. 20.26], it holds that

⟨ṽ, x̃ − x⟩ =
n∑

i=1

|ṽi||x̃i − xi| ≥
n∑

i=1

|ṽi |
ui−li
|x̃i − xi|2 ≥ min

{ |ṽ1 |
u1−l1
, . . . , |ṽn |

un−ln

}
∥x̃ − x∥2,

where the first inequality holds since |x̃i − xi| ≤ ui − ℓi for all i ∈ {1, . . . , n}.
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B Omitted proofs

B.1 Douglas-Rachford splitting

Proof of Lemma 3.1 (equivalence of DRS and PPPA). The update rule (PPPA) applied to (PD-I) with precon-
ditioner (3.1) can be equivalently written as

x̄k ∈ JγA(xk − γyk) (B.1a)

ȳk ∈ (γid + B−1)−1(2x̄k − xk + γyk)⇔ 2x̄k − xk + γyk − γȳk ∈ JγB(2x̄k − xk + γyk) (B.1b)

xk+1 = xk + λk(x̄k − xk) (B.1c)

yk+1 = yk + λk(ȳk − yk), (B.1d)

where [77, Lem. 12.14] was used in (B.1b). We proceed by induction. The base case k = 0 is vacuously
satisfied through initialization s0 = x0 − γy0, and by using (B.1a) and (B.1b), noting that for any x̄0, ȳ0 there
exists u0 = x̄0 ∈ JγA(s0), v0 = 2u0 − s0 − γȳ0 ∈ JγB(2u0 − s0) (and vice versa). Suppose now that the claim
holds for some k ≥ 0. In particular, sk = xk − γyk, uk = x̄k and vk = 2uk − sk − γȳk. According to update rule
(DRS), it holds that

sk+1 = sk + λk(vk − uk) = sk + λk(x̄k − sk − γȳk) = xk − γyk + λk(x̄k − γȳk − xk + γyk) = xk+1 − γyk+1,

where the induction hypothesis was used in the first two equalities, and (B.1c) and (B.1d) were used in the
last equality. Having established sk+1 = xk+1 − γyk+1, the claim for the correspondences between x̄k+1, ȳk+1 and
uk+1, vk+1 follow from (B.1a) and (B.1b) as argued in the base case.

Proof of Lemma 3.2 (weak Minty for primal and dual operator). Let (xA, yA) ∈ gph A and (xB, yB) ∈ gph B.
Then, by definition of the primal-dual operator and using that (yB, xB) ∈ gph B−1 it holds that (z, v) B(
(xA, yB), (yA + yB, xB − xA)

)
∈ gph TPD. Therefore, by Assumption II.a3 it holds for all z⋆ = (x⋆, y⋆) ∈ S⋆ that〈

v, z − z⋆
〉 ≥ qV (v), i.e.,

〈
yA + yB, xA − x⋆

〉
+

〈
xB − xA, yB − y⋆

〉
≥ βP∥yA + yB∥2 + βD∥xB − xA∥2. (B.2)

Let xA = xB C xP. Then, from (B.2) it follows that
〈
yA + yB, xP − x⋆

〉 ≥ βP∥yA + yB∥2 for all x⋆ ∈ S⋆P .
Since (xP, yA + yB) ∈ gph TP it is of immediate verification that TP has βP-weak Minty solutions at S⋆P .

Similarly, let −yA = yB C yD. Then, due to (B.2)
〈
xB − xA, yD − y⋆

〉 ≥ βD∥xB − xA∥2 for all y⋆ ∈ S⋆D and
the claim for TD follows analogously from the fact that (yD, xB − xA) ∈ gph TD, completing the proof.

Proof of Theorem 3.6 (linear convergence of DRS for piecewise polyhedral mappings).
Since operator B is piecewise polyhedral so is its inverse, and in turn so is the mapping T̂ = A×B−1. Therefore,
TPD being the sum of T̂ and a linear mapping is also piecewise polyhedral. Since the inverse of a piecewise
polyhedral mapping is piecewise polyhedral, it follows from [25, 3H.1 and 3H.3] that TPD is metrically sub-
regular at any z for any v with (z, v) ∈ gph TPD. The claimed rates for DRS are an immediate consequence of
Theorem 2.13, owing to the relations U⊤1 zk = sk and (3.5).

B.2 Semimonotone operators

Proof of Proposition 4.3 (existence of semimonotone operators). Consider (x, y), (x′, y′) ∈ gph A and let ϵ >
0. Then, by the Fenchel-Young inequality, it holds that

−ϵ∥x − x′∥2 − ϵ−1∥y − y′∥2 ≤ 2⟨x − x′, y − y′⟩ ≤ ϵ∥x − x′∥2 + ϵ−1∥y − y′∥2, (B.3)

♠ 4.3(i): The first inequality of (B.3) implies that (4.1) is always satisfied for µ ≤ − ϵ2 and ρ ≤ − 1
2ϵ , i.e., for

[µ]−[ρ]− ≥ 1
4 , which completes the proof.
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♠ 4.3(ii): The second inequality of (B.3) implies that (4.1) can never be satisfied when µ > ϵ2 and ρ > 1
2ϵ , i.e.,

when [µ]+[ρ]+ > 1
4 .

♠ 4.3(iii): The second inequality of (B.3) implies that (4.1) can only be satisfied with equality when µ = ϵ2 > 0
and ρ = 1

2ϵ > 0, i.e.,
〈
x − x′, y − y′

〉
= µ∥x − x′∥ + 1

4µ ∥y − y′∥2, for all (x, y), (x′, y′) ∈ gph A,

which is equivalent to

µ
∥∥∥∥x − x′ − 1

2µ (y − y′)
∥∥∥∥

2
= 0, for all (x, y), (x′, y′) ∈ gph A.

By construction, this may only hold if gph A ⊆ gph T for some c ∈ �n. Since gph T cannot be enlarged by
another point (x̂, ŷ) while maintaining (µ, ρ)-semimonotonicity, T is maximally (µ, ρ)-semimonotone, and the
proof is complete.

Proof of Corollary 4.6 (multiple of identity). From Proposition 4.5 and using that A = αIn, it follows that A is
(µ, ρ)-semimonotone if and only if α ≥ µ+ ρα2, which is trivially satisfied when (µ, ρ) = (α(1 − cα), c) for any
c ∈ �. Now, let (x̂, ŷ) ∈ �n ×�n and suppose that

⟨x − x̂, αx − ŷ⟩ ≥ α(1 − cα)∥x − x̂∥2 + c∥αx − ŷ∥2, ∀x ∈ �n. (B.4)

To show when A is maximally (α(1 − cα), c)-semimonotone, we must show when it is guaranteed that (x̂, ŷ) ∈
gph A, i.e., that ŷ = αx̂. Through elementary algebra, it can be shown that (B.4) is equivalent to

0 ≥ (1 − 2cα)⟨x, ŷ − αx̂⟩ + α(1 − cα)∥x̂∥2 − ⟨x̂, ŷ⟩ + c∥ŷ∥2, ∀x ∈ �n. (B.5)

Due to the dependence of the first term on x, necessarily either ŷ = αx̂ or c = 1
2α . Plugging in ŷ = αx̂ into

(B.5), we get 0 ≥ 0 (as expected). Plugging in c = 1
2α into (B.5), we get

0 ≥ 1
2α∥x̂∥2 − ⟨x̂, ŷ⟩ + 1

2α∥ŷ∥2 = 1
2α∥αx̂ − ŷ∥2, ∀x ∈ �n.

Therefore, (B.5) holds iff either (i) ŷ = αx̂ or (ii) c = 1
2α and α < 0, completing the proof.

Proof of Proposition 4.7 (sum and parallel sum).

♠ 4.7(i): First, consider the case where A and B are only semimonotone at a single point. Let (x, yA) ∈ gph A
and (x, yB) ∈ gph B. Then, it holds that

⟨x − x′, yA + yB − (y′A + y′B)⟩ = ⟨x − x′, yA − y′A⟩ + ⟨x − x′, yB − y′B⟩
≥ (µA + µB)∥x − x′∥2 + ρA∥yA − y′A∥2 + ρB∥yB − y′B∥2.

Consequently, by definition A + B is (µA + µB, ρ)-semimonotone at (x′, y′A + y′B) if and only if

ρ∥yA + yB − (y′A + y′B)∥2 = ρ∥yA − y′A∥2 + 2ρ⟨yA − y′A, yB − y′B⟩ + ρ∥yB − y′B∥2 ≤ ρA∥yA − y′A∥2 + ρB∥yB − y′B∥2,

which is equivalent to the LMI
(
ρA−ρ −|ρ|
−|ρ| ρB−ρ

)
⪰ 0. This is satisfied if and only if the determinant and trace are

nonnegative, i.e.,

ρAρB − ρ(ρA + ρB) ≥ 0 and ρA + ρB − 2ρ ≥ 0 ⇔ ρ ≤
{ ρAρB
ρA+ρB

, if ρA + ρB > 0,
0, if ρA = ρB = 0.

(B.6)

Since by definition the largest possible value for ρ satisfying (B.6) is given by ρA □ ρB (if either ρA + ρB > 0 or
ρA = ρB = 0), the first part of the proof is completed.

If A and B are semimonotone then by definition A is (µA, ρA)-semimonotone at all (x′A, y
′
A) ∈ gph A and B

is (µB, ρB)-semimonotone at all (x′B, y
′
B) ∈ gph B. Hence, using the previous result we know that A + B is

(µA + µB, ρA □ ρB)-semimonotone at all points in the set
{
(x′, v′A + v′B) | x′ ∈ dom A ∩ dom B, v′A ∈ Ax′, v′B ∈ Bx′

}
.

Since this set is equal to gph(A + B), the proof is completed.
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♠ 4.7(ii): This is an immediate consequence of the definition of the parallel sum, owing to Proposition 4.4(i)
and Proposition 4.7(i).

Proof of Proposition 4.8 (sum with identity).

♠ 4.8(i): First, consider the assertion where the semimonotonicity holds only at a single point. Operator A is
(µA, ρA)-semimonotone at (x′, y′) ∈ gph A if and only if ⟨x − x′, y − y′⟩ ≥ µA∥x − x′∥2 + ρA∥y − y′∥2 for all
(x, y) ∈ gph A. Defining p B y + αx and p′ B y′ + αx′, so that (x, p), (x′, p′) ∈ gph T , this is equivalent to

(1 + 2ρAα)⟨x − x′, p − p′⟩ ≥ (µA + α(1 + ρAα))∥x − x′∥2 + ρA∥p − p′∥2, ∀(x, p) ∈ gph T.

Dividing both sides by 1 + 2ρAα > 0, the claimed equivalence between (µA, ρA)-semimonotonicity of A at
(x′, y′) and

(
µA+α(1+ρAα)

1+2ρAα
, ρA

1+2ρAα

)
-semimonotonicity of T at (x′, y′+αx′) is established. The assertion for (global)

semimonotonicity follows analogously by considering all points (x′, y′) ∈ gph A.

Finally, the assertion for maximality holds since gph A can be enlarged with a point (x̂, ŷ) without breaking
(µA, ρA)-semimonotonicity if and only if gph T can be enlarged with (x̂, ŷ+αx̂) without violating

(
µA+α(1+ρAα)

1+2ρAα
, ρA

1+2ρAα

)
-

semimonotonicity.

♠ 4.8(ii): This result immediately follows from Proposition 4.7(i) and Corollary 4.6.

Proof of Proposition 4.11 (outer semicontinuity of a semimonotone operator). First, assume that ρµ < 1
4 and

let ξ and ν be defined as in (4.2). Let (xk, yk) ∈ gph A, where xk → x̄ and yk → ȳ. Then, it holds by construction
that xk − ξ(yk −νxk) ∈

[
(A−1−νid)−1− ξid

]
(yk −νxk). Owing to Corollary 4.10, (A−1−νid)−1− ξid is maximally

monotone and thus also outer semicontinuous [77, Ex. 12.8]. Consequently, it follows that x̄ − ξ(ȳ − νx̄) ∈[
(A−1 − νid)−1 − ξid

]
(ȳ − νx̄), which in turn implies that x̄ ∈ Aȳ, showing outer semicontinuity of A. Finally,

in the case where [µ]+[ρ]+ = 1/4, maximal monotonicity of A follows by combining Propositions 4.3(iii)-2.
and 4.4(ii) and Corollary 4.6, which implies its outer semicontinuity [77, Ex. 12.8].

Proof of Proposition 4.12 (resolvent of a semimonotone operator).

♠ 4.12(i): First, assume that µρ < 1
4 . Define θ B

√
1 − 4ρµ and let ν B 2µ

1+θ , ξ B
ρ
θ

and ω B γ
1+γν . Using the

upper bound γ < 1+θ
2[−µ]+ from (4.3), it follows that 1+ γν = 1+ γ 2µ

1+θ ≥ 1− 2γ[−µ]+
1+θ > 0. Consequently, ω+ ξ > 0

since

γ
1+γν +

ρ
θ
> 0

1+γν > 0⇐⇒ γ +
(
1 + γ 2µ

1+θ

)
ρ
θ
> 0

θ > 0⇐⇒
(
2θ + 4µρ

1+θ

)
γ + 2ρ > 0⇐⇒ (1 + θ)γ + 2ρ > 0

which is satisfied by the lower bound γ > 2[−ρ]+
1+θ from (4.3). Denote Â B (A − νid)−1 + ωid. Owing to

ω + ξ > 0 and Minty’s theorem [9, Thm. 21.1], the operator 1
ω+ξ

Â = 1
ω+ξ

(
(A − νid)−1 − ξid

)
+ id has full range

iff 1
ω+ξ

(
(A − νid)−1 − ξid) is maximally monotone. Since ω + ξ > 0, this implies that Â has full range iff the

operator Ã B (A − νid)−1 − ξid is maximally monotone.

On the other hand, by definition 1 + 2ξν = 1 + 1−θ2
θ(1+θ) =

1
θ
> 0. Hence, using Corollary 4.9(i), the operator Ã B

(A − νid)−1 − ξid is maximally monotone if and only if A is maximally
(
ν(1+ξν)
1+2ξν ,

ξ
1+2ξν

)
= (µ, ρ) semimonotone,

where the equality is the result of substituting ξ and ν. Therefore, it suffices to show Â has full range iff
R(id + γA) = �n, i.e., that the resolvent has full domain. First suppose that Â has full range. Fix y ∈ �n.
Then, by the full range assumption for Â, there exists some x ∈ �n such that ω

γ
y ∈ (A − νid)−1x + ωx. Letting

z = ω( 1
γ
y − x) we have

1
γ
y − 1

ω
z ∈ (A − νid)z ⇐⇒ 1

γ
y ∈ (

A + ( 1
ω
− ν)id)z ⇐⇒ y ∈ (

γA + id
)
z, (B.7)

where in the last equivalence we used the fact that γ = ω
1−ων . Since the choice of y was arbitrary, JγA has full

domain. The converse follows similarly. Assume that R(I + γA) = �n. For any fixed y ∈ �n there exists some
z ∈ �n such that y ∈ γAz+ z. Therefore, by (B.7) and letting x = 1

γ
y− 1

ω
z we obtain ω

γ
y ∈ Âx, thus establishing

that R(Â) = �n.

32



Finally, consider the case [µ]+[ρ]+ = 1
4 . The range for the stepsize in (4.3) then reduces to γ ∈ (0,+∞). First,

suppose that JγA has full domain, i.e., R(id + γA) = �n. Fix v ∈ �n. Then, there exists (x, y) ∈ gph A such
that v = x + γy. By Proposition 4.3(iii)-1., y = 2µx + c for some c ∈ � and some x ∈ dom A, and therefore,
v = (1 + 2γµ)x + cγ. Since 1 + 2γµ > 0 and the choice of v was arbitrary, necessarily dom A = �n, and
as such A is maximally (µ, ρ)-semimonotone, see Proposition 4.3(iii)-2.. Now, suppose that A is maximally
(µ, ρ)-semimonotone. Then, by Proposition 4.3(iii)-2. it holds that A : x 7→ 2µx + c for some c ∈ �n, which
implies that A is maximally monotone. Therefore by Minty’s theorem [9, Thm. 21.1] the resolvent JγA has full
domain.

♠ 4.12(ii): Take (u, v), (u′, v′) ∈ gph JγA. By semimonotonicity of A and using the fact that 1
γ
(u − v) ∈ Av,

1
γ
(u′ − v′) ∈ Av′, we have

µ∥v − v′∥2 + ργ−2∥(u − v) − (u′ − v′)∥2 ≤ γ−1⟨(u − v) − (u′ − v′), v − v′⟩.
Expanding the last term of the left-hand side and rearranging, we get

(
1 + µγ + ργ−1

)
∥v − v′∥2 + ργ−1∥u − u′∥2 ≤

(
1 + 2ργ−1

)
⟨u − u′, v − v′⟩

≤
∣∣∣1 + 2ργ−1

∣∣∣∥u − u′∥∥v − v′∥.
(B.8)

By Fact A.3(ii) it follows that (4.3) provides all strictly positive solutions for γ of 1+ µγ + ργ−1 > 0. Hence, if
u = u′ then necessarily v = v′, and the Lipschitz inequality holds trivially. Else, divide both sides by ∥u − u′∥2
to obtain (

1 + µγ + ργ−1
)
ω2 −

∣∣∣1 + 2ργ−1
∣∣∣ω + ργ−1 ≤ 0,

where ω B ∥v−v′∥
∥u−u′∥ . Solving this inequality for ω yields the claimed Lipschitz modulus.

B.3 Examples of functions with semimonotone subdifferentials

Proof of Proposition 4.14 (functions with upper and lower curvature).

♠ 4.14(i): Follows by definition.

♠ 4.14(ii): By [77, Prop. 12.60] and strong convexity of − f , the conjugate (− f )∗ is − 1
ℓ
-smooth, i.e.

⟨∇(− f )∗(x) − ∇(− f )∗(x′), x − x′⟩ ≤ − 1
ℓ
∥x − x′∥2, ∀x, x′ ∈ �n. (B.9)

Moreover, since − f is continuous and convex, we have by [77, Prop. 11.3] that ∇(− f )∗ = (∂(− f ))−1, so that
(B.9) is equivalent to

⟨y − y′, x − x′⟩ ≤ − 1
ℓ
∥y − y′∥2, ∀(x, y), (x′, y′) ∈ gph ∂(− f ). (B.10)

Finally, since − f is finite and convex, it follows from [77, Cor. 9.21] that ∂ f (x̄) ⊆ −∂(− f )(x̄), ∀x̄ ∈ �n, so that

⟨y − y′, x − x′⟩ ≥ 1
ℓ
∥y − y′∥2, ∀(x, y), (x′, y′) ∈ gph ∂ f ⊆ − gph ∂(− f ).

♠ 4.14(iii): Consider the function φ = f − α2 ∥ · ∥2. Then, by definition φ ∈ F ℓ−α(�n), implying that ∂φ is
(0, 1
ℓ−α )-semimonotone owing to Proposition 4.14(ii) since α > ℓ. Since ∂ f = ∂φ + αid, [72, Ex. 8.8(c)], it

follows from Proposition 4.8 that for c > 1
α−ℓ the claimed semimonotonicity holds.

♠ 4.14(iv), 4.14(v): Suppose that ℓ > σ, since if ℓ = σ, then, ∇f = ℓid and the claims follow trivially. Consider
the function φ = f − σ2 ∥ · ∥2 ∈ F ℓ−σ

0 (�n). Since φ is finite and convex its subdifferential ∂φ(x) is nonempty
for all x ∈ �n [72, Thm. 23.4]. Consequently, φ is continuously differentiable due to [84, Lem. 2.1] and ∇φ
is (0, 1

ℓ−σ )-semimonotone due to [60, Thm. 2.1.10]. Therefore, by Proposition 4.4(i), there exists a monotone
mapping Ã for which (∇φ)−1 = Ã + 1

ℓ−σ and thus, owing to ∇f = ∇φ + σid [77, Ex. 8.8(c)] it holds that

∇f = ∇φ + σid =
(
Ã + 1

ℓ−σ id
)−1
+ σid.

The claimed results from Propositions 4.14(iv) and 4.14(v) then follow from Corollary 4.9, where we let
ξ = 1

ℓ−σ and ν = σ. This is because ℓ − σ > 0 and therefore 1 + 2ξν > 0 (resp. ≤ 0) if and only if σ + ℓ > 0
(resp. ≤ 0).
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Proof of Corollary 4.15 (pointwise minimum). Since fi ∈ F ℓ fi (�n), it follows that ℓ̄2 ∥·∥2− fi is convex. There-
fore, ℓ̄2∥x∥2 − f (x) = max

{
ℓ̄
2∥x∥2 − f1(x), . . . , ℓ̄2 ∥x∥2 − fN(x)

}
is convex being the pointwise max of convex

functions and thus f ∈ F ℓ̄(�n). The claimed result then follows immediately from Propositions 4.14(ii)
and 4.14(iii).

Proof of Proposition 4.16 (infimal convolution).

♠ 4.16(i): Let f (w) = f1(w1)+ f2(w2), and L be the linear mapping Lw = w1+w2. Then, the infimal convolution
may be viewed as the parametric minimization of f̃ (w, s) = f (w) + δ{0}(Lw − s) with respect to the variable
w, i.e., φ(s) = minw f̃ (w, s). Let M(s) B arg min(w1,w2) { f1(w1) + f2(w2) | w1 + w2 = s}. Then, owing to (4.4) it
holds by [77, Thm. 10.13] for all s̄ ∈ �n that

∂φ(s̄) ⊆
⋃

x̄∈M(s̄)

{
y ∈ Rn | (0, y) ∈ ∂ f̃ (x̄, s̄)

}
. (B.11)

Consider f̄ (w, u) = f (w) + δ{0}(u) and the linear transformation K : (w, s) 7→ (w, Lw − s). Then, f̃ = f̄ ◦ K.
Since K has full rank, by [77, Ex. 10.7] for any pair (x̄, s̄) such that x̄ ∈ M(s̄) it holds that

∂ f̃ (x̄, s̄) = (K⊤ ◦ ∂ f̄ ◦ K)(x̄, s̄) where ∂ f̄ (w, u) = (∂ f (w),N{0}(u)).

Using this in (B.11) yields

∂φ(s̄) ⊆
⋃

x̄∈M(s̄)

{
y ∈ Rn | (0, y) ∈

(
∂ f (x̄) + L⊤N{0}(Lx̄ − s̄),−N{0}(Lx̄ − s̄)

)}
=

⋃

(x̄1,x̄2)∈M(s̄)

∂ f1(x̄1) ∩ ∂ f2(x̄2).

Hence, the claimed result follows from [9, Prop. 25.30(i)].

♠ 4.16(ii): Follows immediately from Proposition 4.16(i) and Proposition 4.7(ii).

Proof of Proposition 4.17 (saddle operator). Consider the saddle envelope

φδ(x, y) B min
u∈�n

max
v∈�m

{
φ(u, v) + 1

2δ ∥u − x∥2 − 1
2δ∥v − y∥2},

along with the associated resolvent JδTφ B (id + δTφ)−1. For any (z,w) ∈ gph JδTφ with the decomposition
z = (x, y) and w = (u, v) we have by construction that

0 = ∇xφ(w) + 1
δ
(u − x) = ∇xφ(w) − ∇xφδ(z) and 0 = ∇yφ(w) − 1

δ
(v − y) = ∇yφ(w) − ∇yφδ(z).

Hence,
Tφ(w) =

(∇xφ(w),−∇yφ(w)
)
=

(∇xφδ(z),−∇yφδ(z)
)
C Tφδ (z). (B.12)

On the other hand, it follows from [40, Prop. 1] that

1
δ
I ⪰ ∇xxφδ(z) ⪰ α

1+δα I, 1
δ
I ⪰ −∇yyφδ(z) ⪰ α

1+δα I, ∀z, (B.13)

thus implying that the operator Tφδ is α
1+δα -monotone. Let w1,w2 ∈ �n and zi = wi + δTφwi for i = 1, 2. Then,

(zi,wi) ∈ gph JδTφ for i = 1, 2 and we have that

⟨Tφw1 − Tφw2,w1 − w2⟩ = ⟨Tφw1 − Tφw2, z1 − z2⟩ − δ∥Tφw1 − Tφw2∥2
(B.12) = ⟨Tφδz1 − Tφδz2, z1 − z2⟩ − δ∥Tφw1 − Tφw2∥2
(B.13) ≥ α

1+αδ ∥z1 − z2∥2 − δ∥Tφw1 − Tφw2∥2. (B.14)

The second assertion follows from the above inequality noting that 1 + αδ > 0. Moreover, plugging zi =

wi + δTφwi in (B.14) and multiplying by (1 + αδ) yields

(1 − αδ)⟨Tφw1 − Tφw2,w1 − w2⟩ ≥ α∥w1 − w2∥2 − δ∥Tφw1 − Tφw2∥2,
establishing the first assertion.
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B.4 Douglas-Rachford splitting for semimonotone operators

Proof of Lemma 5.1 (primal-dual operator). Let (xA, yA) ∈ gph A and (xB, yB) ∈ gph B. Additionally, if As-
sumption IV holds, let (x′A, y

′
A) ∈ gph A and (x′B, y

′
B) ∈ gph B. Otherwise, if Assumption III holds, let (x⋆, y⋆) ∈

S⋆ and define (x′A, y
′
A) B (x⋆,−y⋆) ∈ gph A and (x′B, y

′
B) B (x⋆, y⋆) ∈ gph B. Then, by definition of the

primal-dual operator from (PD-I), it holds that

(z, v) B
(
(xA, yB), (yA + yB, xB − xA)

)
∈ gph TPD and (z′, v′) B

(
(x′A, y

′
B), (y′A + y′B, x

′
B − x′A)

)
∈ gph TPD.

Owing to the semimonotonicity assumptions and Proposition 4.4(i), this implies that

〈
v − v′, z − z′

〉
=

〈
yA + yB − (y′A + y′B), xA − x′A

〉
+

〈
xB − xA − (x′B − x′A), yB − y′B

〉

=
〈
yA − y′A, xA − x′A

〉
+

〈
xB − x′B, yB − y′B

〉

≥ µA∥xA − x′A∥2 + ρA∥yA − y′A∥2 + ρB∥yB − y′B∥2 + µB∥xB − x′B∥2. (B.15)

On the other hand, it follows from the Cauchy-Schwarz inequality that

qV (v − v′) = βP∥yA + yB − (y′A + y′B)∥2 + βD∥xB − xA − (x′B − x′A)∥2
≤ βP∥yA − y′A∥2 + βP∥yB − y′B∥2 + 2|βP|∥yA − y′A∥∥yB − y′B∥

+ βD∥xB − x′B∥2 + βD∥xA − x′A∥2 + 2|βD|∥xB − x′B∥∥xA − x′A∥.
(B.16)

Combining (B.15) and (B.16), it follows that the primal-dual operator TPD has V-oblique weak Minty so-
lutions at S⋆ if Assumption III holds and that it is V-comonotone if Assumption IV holds, provided that
X B

(
µA−βD −|βD |
−|βD | µB−βD

)
⪰ 0 and Y B

(
ρB−βP −|βP |
−βP ρA−|βP |

)
⪰ 0. As previously discussed in the proof of Proposition 4.7(i),

the largest possible value for βD satisfying X ⪰ 0 is given by µA □ µB if either µA + µB > 0 or µA = µB = 0 (and
analogously the largest value for βP satisfying Y ⪰ 0 is given by ρA □ ρB if either ρA + ρB > 0 or ρA = ρB = 0),
which completes the proof for Lemma 5.1(i). To show Lemma 5.1(ii), it only remains to show maximality.
To this end, consider an arbitrary stepsize γ complying with Table 3, where γ− and γ+ are defined as in (5.2).
Then, by Lemma A.6 the resolvents JγA and JγB have full domain, which in turn implies that the precondi-
tioned resolvent (P + TPD)−1P has full domain, where P is given by (3.1) [77, Lem. 12.14]. The claim then
follows from Proposition A.2.

Proof of Theorem 5.2 (convergence of DRS under semimonotonicity). Consider the following implications.

♠ For Theorem 5.2(i), it follows from Assumption III and Lemma 5.1(i) that Assumption II.a3 holds.

♠ For Theorem 5.2(ii), it follows from Assumption IV and Lemma A.6 that Assumptions II.a1 and II.a2 hold
and from Assumption IV and Lemma 5.1(ii) that TPD is maximally V B blkdiag(βPIn, βDIn)-comonotone,
where [βD]−[βP]− < 1

4 .

Moreover, the stepsize γ satisfies (3.3), since the provided bounds on γ from Table 3 are obtained by plugging
in (5.1) into (3.3). Based on these observations, the claims follow directly from Theorem 3.3 and Corollary 3.4,
concluding the proof.

C Examples

Details of Example 2.6 (toy example).

♠ 2.6(i)-1.: Since T is equal to the linear mapping T =
[

b a
−a b

]
, it is ρ-comonotone if and only if 1

2 (T + T⊤) ⪯
ρT⊤T which holds for ρ ≤ b/a2+b2.
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♠ 2.6(i)-2.: To show that the result from Theorem 2.4(v) is tight, define

H B I2 + λ
(
(I2 + γT )−1 − I2

)
= I2 + λ


[
1 + γb γa
−γa 1 + γb

]−1

− I2

 = I2 + λ

(
1

(1+γb)2+γ2a2

[
1 + γb −γa
γa 1 + γb

]
− I2

)
,

such that the iteration of the proximal point algorithm with fixed relaxation parameter λ can be expressed as
the linear dynamical system zk+1 = Hzk. This system is globally asymptotically stable if and only if the spectral

radius of H, given by
√

1 − λ(2λ̄−λ)(a2+b2)γ2

(a2+b2)γ2+2bγ+1 , is strictly less than one, which holds iff (2.18) is satisfied.

♠ 2.6(ii)-1.: Recall that for a given ρ ∈ �, the ρ-weak Minty solutions of this problem are given by the set
S⋆ ⊆ zer T for which it holds that

⟨T (z), z − z⋆⟩ ≥ ρ∥T (z)∥2, ∀z ∈ �2, z⋆ ∈ S⋆. (C.1)

The analytical expression for f as defined in Figure 3 is given by

f
(
∥z∥

)
B



∥z∥, if ∥z∥ ≤ 2/5,
4/5 − ∥z∥, if ∥z∥ ∈ (

2/5, 4/5
)
,

0, if ∥z∥ ∈ [
4/5, 1

]
,

5/2
(∥z∥ − 1

)
, if ∥z∥ ∈ (

1, 7/5
)
,

1, if ∥z∥ ≥ 7/5.

(C.2)

Therefore, by definition of T , it holds that zer T =
{
z ∈ �2 | ∥z∥ ∈ {0} ∪ [4/5, 1]

}
and that (C.1) corresponds to

f
(
∥z∥

)(
b∥z∥2 − b

(
z1z⋆1 + z2z⋆2

)
+ a

(
z1z⋆2 − z⋆1 z2

)) ≥ ρ(a2 + b2) f
(
∥z∥

)2∥z∥2, ∀z ∈ �2, z⋆ ∈ S⋆. (C.3)

This obviously holds for all z ∈ zer T . For z < zer T , we distinguish between the following two cases.

♢ ∥z⋆∥ = 0: Then, (C.3) holds iff for all z < zer T it holds that ρ ≤ b
(a2+b2) f (∥z∥) . Since f (∥z∥) ∈ (0, 1], this

condition is satisfied for ρ = b/a2+b2.

♢ ∥z⋆∥ ∈ [4/5, 1]: Let z = ϵz⋆ where ϵ ∈ (0, 2/5). Then, f (∥z∥) = ϵ∥z⋆∥ and (C.3) holds iff ρ ≤ b(1−ϵ−1)
ϵ(a2+b2)∥z⋆∥

Taking the limit for ϵ to zero from above, we get that limϵ→0+
b(1−ϵ−1)
ϵ(a2+b2)∥z⋆∥ = − ∞ and thus (C.3) cannot be

satisfied for any ρ ∈ �.

Details of Example 2.7 (Von Neumann’s economic equilibrium model). We proceed by establishing three in-
termediate facts for the set C B ∆2 × ∆2 and the operators F and NC . First, observe that by definition of the
simplex

z ∈ C ⇐⇒ z = (s, 1 − s, t, 1 − t) for some s, t ∈ [0, 1]. (C.4)

Second, recall that

F(z) = (F1(z), F2(z), F3(z), F4(z)) =
(
∇x f (x, y),−∇y f (x, y)

)
=

( ⟨x,S y⟩Ry−⟨x,Ry⟩S y
⟨x,S y⟩2 , ⟨x,Ry⟩S ⊤x−⟨x,S y⟩R⊤x

⟨x,S y⟩2
)
.

Therefore, using the parametrization from (C.4) it holds for any z ∈ C that

⟨F(z), z − z⋆⟩ = ϵ(s+t)−st(ϵ+s)
1/2(2−s)2 , F1(z) − F2(z) = ϵ−t(2+ϵ/2)

1/2(2−s)2 and F3(z) − F4(z) = ϵ/2+s
1/2(2−s) . (C.5)

Finally, denoting the vector of all 1s of dimension n by 1n, it holds owing to [43, Ex. 5.2.6(c)] that

NC(z) =
{{
α ⊗ 12 − β

∣∣∣α ∈ �2, β ∈ �4
+, ⟨β, z⟩ = 0

}
, if z ∈ C,

∅, otherwise.
(C.6)

We now proceed with the main argument. In [22, Prop. 2(1)], it was shown that z⋆ = (0, 1, 0, 1) is the unique
Nash equilibrium of (2.19) (noting that f (x, y) − 2 = ⟨x,

[ −1 ϵ/2
−ϵ/2 0

]
y⟩/⟨x,S y⟩). This Nash equilibrium is a ρϵ-weak
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Figure 9: Comparison between the optimal weak Minty constant ρϵ and its lower bound ϵ−1
4 for Example 2.7.

Minty solution of T provided that ρϵ = infz∈C ϱϵ(z) where ϱϵ(z) = infv∈NC (z) ⟨F(z)+v,z−z⋆⟩/∥F(z)+v∥2. From now
onwards, we tacitly assume that z ∈ C. Then, owing to (C.6), it holds that

ϱϵ(z) = inf
{ ⟨F(z),z−z⋆⟩+⟨α⊗12−β,z−z⋆⟩

∥F(z)+α⊗12−β∥2 | α ∈ �2, β ∈ �4
+, ⟨β, z⟩ = 0

}
.

Owing to the parametrization from (C.4) and the fact that z⋆ = (0, 1, 0, 1), it holds that
〈
α ⊗ 12, z − z⋆

〉
= 0 and

⟨β, z⋆⟩ = β2 + β4, so that

ϱϵ(z) = inf
{ ⟨F(z),z−z⋆⟩+β2+β4

∥F(z)+α⊗12−β∥2 | α ∈ �
2, β ∈ �4

+, ⟨β, z⟩ = 0
}
.

Note that by construction the sign of ϱϵ(z) is equal to the sign of
〈
F(z), z − z⋆

〉
: if

〈
F(z), z − z⋆

〉
is positive, this

is obvious since βi ≥ 0; if it is negative, then this can be seen by taking the candidate solution β2 = β4 = 0.
Therefore, it follows from (C.5) that ϱϵ(z) < 0 if and only if ϵ(s + t) − st(ϵ + s) < 0, i.e., if and only if z lies in
the nonempty set

D B
{
(s, 1 − s, t, 1 − t) | s ∈ (

√
ϵ, 1], t ∈ (t̄(s), 1]

}
where t̄(s) B ϵs

s(ϵ+s)−ϵ .

Therefore, ρϵ = infz∈C ϱϵ(z) = infz∈D ϱϵ(z). Consider z ∈ D ⊂ C. Then, by construction ϱϵ(z) is negative,
which implies that ϱϵ(z) is minimized for α that minimizes the denominator, given by

arg min
α∈�2

∥F(z) + α ⊗ 12 − β∥2 =
(

1
2 (F1(z) − F2(z) − β1 + β2), 1

2 (F3(z) − F4(z) − β3 + β4)
)
,

this implies that

ϱϵ(z) = inf
{

2⟨F(z),z−z⋆⟩+2β2+2β4(
F1(z)−β1−F2(z)+β2

)2
+
(

F3(z)−β3−F4(z)+β4

)2 | β ∈ �4
+, ⟨β, z⟩ = 0

}
.

Plugging in the parametrization for z from (C.4), using (C.5) and introducing β̄ B 1/2(2 − s)2β, it follows that

ϱϵ(s, t) = inf
{

4(2−s)2
(
ϵ(s+t)−st(ϵ+s)+β̄2+β̄4

)
(
2ϵ−t(4+ϵ)−2β̄1+2β̄2

)2
+
(
(ϵ+2s)(2−s)−2β̄3+2β̄4

)2 | β̄ ∈ �4
+, ⟨β̄, (s, 1 − s, t, 1 − t)⟩ = 0

}
,

We claim that β̄ = 0 at the infimum for any s ∈ (
√
ϵ, 1] and t ∈ (t̄(s), 1]. For β̄1 and β̄3, this follows immediately

from the equality constraint and the fact that s and t are strictly positive, so that

ϱϵ(s, t) = inf
{

4(2−s)2
(
ϵ(s+t)−st(ϵ+s)+β̄2+β̄4

)
(
2ϵ−t(4+ϵ)+2β̄2

)2
+
(
(ϵ+2s)(2−s)+2β̄4

)2 | (β̄2, β̄4) ∈ �2
+, ⟨(β̄2, β̄4), (1 − s, 1 − t)⟩ = 0

}
.

If s ∈ (
√
ϵ, 1) and t ∈ (t̄(s), 1), the claim for β̄2 and β̄4 also follows from the equality constraint. Otherwise,

consider the following cases.

♠ If s = 1 and t ∈ (t̄(1), 1) = (ϵ, 1), then β̄4 = 0 due to the equality constraint and

ϱϵ(1, t) = inf
β̄2∈�+

4(ϵ−t+β̄2)
(2ϵ−t(4+ϵ)+2β̄2)2+(ϵ+2)2 = inf

β̄2∈[0,t−ϵ)
4(ϵ−t+β̄2)

(2ϵ−t(4+ϵ)+2β̄2)2+(ϵ+2)2 .

Since this function is monotonically increasing for β̄2 ∈ [0, t − ϵ), the infimum is attained for β̄2 = 0.
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♠ If s ∈ (
√
ϵ, 1) and t = 1, then β̄2 = 0 due to the equality constraint and

ϱϵ(s, 1) = inf
β̄4∈�+

4(2−s)2(ϵ−s2+β̄4)

(ϵ−4)2+
(
(ϵ+2s)(2−s)+2β̄4

)2 = inf
β̄4∈[0,s2−ϵ)

4(2−s)2(ϵ−s2+β̄4)

(ϵ−4)2+
(
(ϵ+2s)(2−s)+2β̄4

)2 .

Since this function is monotonically increasing for β̄4 ∈ [0, s2 − ϵ), the infimum is attained for β̄4 = 0.

♠ If s = 1 and t = 1, then

ϱϵ(1, 1) = inf
(β̄2,β̄4)∈�2

+

4(ϵ−1+β̄2+β̄4)
(ϵ−4+2β̄2)2+(ϵ+2+2β̄4)2 ,

of which the global minimum is attained for β̄2 = β̄4 = 0.

Having established that β̄ = 0 at the infimum, it follows that

ρϵ = inf
{
ϱϵ(s, t) | s ∈ (

√
ϵ, 1], t ∈

(
ϵs

s(ϵ+s)−ϵ , 1
]}

where ϱϵ(s, t) = 4(2−s)2
(
ϵ(s+t)−st(ϵ+s)

)
(
2ϵ−t(4+ϵ)

)2
+(ϵ+2s)2(2−s)2

. (C.7)

Finally, the lower bound ϵ−1
4 ≤ ρϵ is obtained by solving this parametric optimization problem numerically

(see also Figure 9).

Details of Example 6.1 (saddle point problem).

♠ 6.1(i): By defining H B (I + γA)−1, Ĥ B (I + γB)−1(2H − I) and H B I + λ(Ĥ − H), DRS can be expressed
as the linear dynamical system sk+1 = Hsk. This system is globally asymptotically stable if and only if the
spectral radius of H is strictly less than one, which through elementary algebra can be shown to hold iff (6.2)
is satisfied.

♠ 6.1(ii): The primal-dual operator and its inverse are given by

TPD =

[
A I2
−I2 B−1

]
and T−1

PD =

[
(A + B)−1 −(A + B)−1B

B(A + B)−1 B − B(A + B)−1B

]

where we used the Schur complement lemma. Consequently, when in (2.1) the vector v is restricted to R(P)
we may equivalently state Assumption II.a3 as

z⊤
(

TPD+T⊤PD
2 − T⊤PDVTPD

)
z ≥ 0, for all z ∈ �n : z ∈ T−1

PDR(P), (C.8)

where V is defined as in (3.2). Using that U =
[

I2
−γI2

]
is an orthogonal basis for R(P), it follows that (C.8) is

satisfied iff (
T−1

PDU
)⊤( TPD+T⊤PD

2 − T⊤PDVTPD

)
T−1

PDU ⪰ 0 ⇐⇒ 1
γ
βP + γβD ≤ b(a2γ+1)

γ(a2+b2) .

Consequently, for the upper bound on λ implied by Theorem 3.3, denoted by λmax, it holds that

λmax B 2
(
1 + 1

γ
βP + γβD

)
≤ 2 + 2 b(a2γ+1)

γ(a2+b2) .

As this bound matches the upper bound on λ from (6.2), the proof is completed.

♠ 6.1(iii): For example, consider a = 2, b = −1, for which the trace of TP,TD and TPD are all equal to -2.

♠ Finally, we will discuss the range of relaxation parameters λ covered by Theorem 5.2. To this end, the semi-
monotonicity parameters µA, ρA, µB, ρB need to be selected such that the relaxation parameter is maximized,
i.e.

λsemi
max B max

µA,ρA,µB,ρB
2
(
1 + 1

γ
(ρA □ ρB) + γ(µA □ µB)

)

subject to µA + a2ρA ≤ 0 and µB + b2ρB − b ≤ 0,

where the constraints are obtained using Proposition 4.5 by enforcing (µA, ρA)- and (µB, ρB)-semimonotonicity
of operators A and B, respectively. Note that this optimization problem can be encoded as a convex SDP.
Solving this problem numerically for a = 10, b = −1, the result visualized in Figure 10 is obtained. Hence,
when characterizing the nonmonotonicity of the problem through the semimonotonicity properties of A and
B separately rather than through the (oblique) weak Minty condition for the combined primal-dual operator,
some looseness is inevitably introduced.
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Figure 10: Comparison between the upper bounds on the relaxation parameter λ in function of the stepsize γ for Ex-
ample 6.1 with a = 10, b = −1. λ̄ is the bound given by (6.2) and λsemi

max is the bound implied by Theorem 5.2.

Details of Example 6.2 (nonsmooth optimization). The corresponding limiting subdifferentials are given by

∂ fA(x) =



−x − 3, if x < −1,
{−2,−9}, if x = −1,
6x − 3, if x ∈ (−1, 1),
{−4, 3}, if x = 1,
−x − 3, if x > 1,

and ∂ fB(x) =



4x − 1, if x < −1,
[−5, 1] if x = −1,
2x + 3, if x ∈ (−1, 2),
[7, 19], if x = 2,
2x + 15, if x > 2.

(C.9)

♠ Assumption II.a1: Follows by definition of the limiting subdifferential [72, Def. 8.3(b)].

♠ Assumption II.a2: It is easy to verify that for γ , 1 it holds that R(1+ γ∂ fA) = R(1+ γ∂ fB) = �. Hence, the
resolvents Jγ∂ fA and Jγ∂ fB have full domain.

♠ Assumption III: Let (x⋆, y⋆) = (0, 3). Then, it is of immediate verification that the subdifferentials ∂ fA and
∂ fB are semimonotone at respectively (x⋆,−y⋆) and (x⋆, y⋆) with µA = −1.2, ρA = 0.2, µB = 1.6 and ρB = 0.1.

♠ Follows by applying Theorem 5.2 and using that µA □ µB = −24/5 and ρA □ ρB = 2/30.

Details of Example 6.4 (stationary point). Define g1(x) B (1−
√

1−4µAρA/2ρA)x−1, g2(x) B (1+
√

1−4µAρA/2ρA)x−1,
h1(x) B 2x + 1 and h2(x) B 1

2 x + 1. Then, the limiting subdifferentials of fA and fB are given by

∂ fA(x) =



{
g1(x), g2(x)

}
, if x ∈ {−3, 3},

g1(x), if x ∈ (−3, 3),
g2(x), otherwise,

and ∂ fB(x) =



{
h1(x), h2(x)

}
, if x ∈ {−1, 1},

h1(x), if x ∈ (−1, 1),
h2(x), otherwise.

♠ Assumption II.a1: Follows by definition of the limiting subdifferential [72, Def. 8.3(b)].

♠ Assumption II.a2: The resolvents Jγ∂ fA and Jγ∂ fB have full domain iff R(1 + γ∂ fA) = R(1 + γ∂ fB) = �. It is
easy to verify that R(1 + γ∂ fB) = � for all γ ∈ �+. On the other hand, we have that

(1 + γ∂ fA)(x) =



x − γ +
{ 1−
√

1−4µAρA

2ρA
γx,

1+
√

1−4µAρA

2ρA
γx

}
, if x ∈ {−3, 3},

x − γ + 1−
√

1−4µAρA

2ρA
γx, if x ∈ (−3, 3),

x − γ + 1+
√

1−4µAρA

2ρA
γx, otherwise

from which follows that R(1 + γ∂ fA) = � for all γ ∈ �+ iff γ is selected according to the provided range.

♠ Assumption III: Let (x⋆, y⋆) = (0,−1). Then, it is of immediate verification that the subdifferentials ∂ fA and
∂ fB are semimonotone at respectively (x⋆,−y⋆) and (x⋆, y⋆) for the given parameters µA, ρA, µB, ρB. Further-
more, these parameters satisfy Assumption III.a1.

♠ Follows by applying Theorem 5.2 and using that µA □ µB = −6/5 and ρA □ ρB = −4/30.
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