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Abstract—We develop a scheme based on active learning to
compute equilibria in a generalized Nash equilibrium problem
(GNEP). Specifically, an external observer (or entity), with little
knowledge on the multi-agent process at hand, collects sensible
data by probing the agents’ best-response (BR) mappings, which
are then used to recursively update local parametric estimates of
these mappings. Unlike [1], we consider the realistic case in which
the agents share corrupted information with the external entity
for, e.g., protecting their privacy. Inspired by a popular approach
in stochastic optimization, we endow the external observer with
an inexact proximal scheme for updating the local BR proxies.
This technique will prove key to establishing the convergence of
our scheme under standard assumptions, thereby enabling the
external observer to predict an equilibrium strategy even when
relying on masked information.

Index Terms—Multi-agent systems, Active learning, Competi-
tive decision-making, Stochastic optimization.

I. INTRODUCTION

PREDICTING a possible outcome in problems involving
self-interested and privacy-preserving agents is a key

requirement for their indirect control. As a prominent example,
a distribution system operator (DSO) ideally wishes to exploit
the flexibility offered by the widely spread smart-home appli-
ances and electric vehicles (EVs) for an efficient usage of the
distribution grid. To this end, a DSO typically designs energy
prices to induce a certain collective consumption profile of
the end-users, which can be predicted in advance only if these
users are willing to share sensitive information [2], [3].

Akin to [1], in this paper we take the perspective of an
external observer interested in learning a so-called gener-
alized Nash equilibrium (GNE) for a population of selfish
agents taking part to a generalized Nash equilibrium problem
(GNEP). Given its little knowledge on the multi-agent process
at hand, such an external observer is only allowed for querying
the best-response (BR) mappings held by the agents. The
latter, however, may be intentionally reluctant to reveal private
information exactly, could erratically change their mind when
presented with the same scenarios, may optimize their indi-
vidual objectives with scarce accuracy, or the communication
channels might be imperfect. For these reasons, we assume
that the information passed to the external observer is masked
by noise, as may happen in economic models [4], competitive
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versions of multi-agent feedback controller synthesis [5], or
signal processing [6]. We then design an active learning-
based scheme [7], [8] for the external entity that, despite the
misleading information collected, allows to predict a GNE via
faithful approximations of the agents’ BRs.

Learning an equilibrium strategy from a centralized perspec-
tive based on noisy information has been considered in that
branch of literature denoted as simulation-based game theory.
Several works [9]–[11] indeed proposed different schemes to
approximate the original matrix games and associated equi-
libria by leveraging noisy samples of agents’ costs provided
by an oracle. Existing techniques addressing simulated matrix
games with finite decision sets include also stochastic [12]
and sample-average approximation [13], as well as methods
based on Bayesian optimization [14], [15]. While the for-
mer analyze the asymptotic properties of equilibria obtained
from simulation-based models, also attaching probabilistic
certificates on their approximation quality, the latter leverage
statistical modeling tools acting as emulators of the agents’
costs. Tailored acquisition functions for equilibrium learning
are then designed based on the resulting posterior distributions.

In contrast, we design an active learning procedure for
an external entity that iteratively makes suitable queries to
estimate the BR mappings held by the agents, aiming at an
exact prediction of a GNE for the GNEP in which they take
part (§II). To deal with a possibly misleading information
provided by the agents, we take inspiration from a popular
approach in stochastic optimization to let the external observer
update the local BR proxies with noisy data by means of an
inexact proximal scheme. This will prove to be a key tool for
learning a GNE, as well as to accompany the overall scheme
with convergence guarantees under common assumptions.

Our main contributions can be summarized as follows:
i) We propose a stochastic variant of the active learning

scheme derived in [1] (§III). Our iterative algorithm
is based on an inexact proximal update to learn the
parameters approximating the BR mappings of the agents;

ii) Under standard assumptions [16], [17], we show how
these parameters can be learned exactly. Besides im-
proving the results of [1], where such a condition was
identified as sufficient for the convergence of the overall
scheme and only verified ex-post, it is instrumental for
proving that the external entity can asymptotically predict
a GNE of the underlying GNEP (§IV).

We finally discuss practical implementation details, which are
then used to test our algorithm on a numerical case study
involving the indirect control of a population of EVs that tries
to optimize the collective day-ahead charging schedule (§V).

ar
X

iv
:2

50
3.

13
16

7v
2 

 [
m

at
h.

O
C

] 
 7

 M
ay

 2
02

5



Notation: N, R and R≥0 denote the set of natural, real, and
nonnegative real numbers, respectively. N0 := N ∪ {0}. For
a vector v ∈ Rn, ∥v∥2 denotes the standard Euclidean norm.
The operator col(·) stacks its arguments in column vectors or
matrices of compatible dimensions. For example, given vectors
x1, . . . , xN with xi ∈ Rni and I = {1, . . . , N}, we denote
x := (x⊤

1 , . . . , x
⊤
N )⊤ = col((xi)i∈I) ∈ Rn, n :=

∑
i∈I ni,

and x−i := col((xj)j∈I\{i}), where (·)⊤ denotes the trans-
pose. Abusing notation, we also use x = (xi,x−i). With
EP[z] = col(EPi(zi))i∈I we consider the stacked vector z
and apply the expected value component-wise. The uniform
distribution on [a, b] is denoted by U(a, b), while the normal
distribution with mean µ and variance σ2 by N (µ, σ2).

II. PROBLEM FORMULATION

A GNEP involves N self-interested agents, indexed by the
set I := {1, . . . , N}, where each of them controls a decision
variable xi ∈ Rni . Their aim is to minimize a local cost
function Ji : Rn → R, n :=

∑
i∈I ni, subject to both local

and coupling constraints. As such, a GNEP can be written as
a collection of mutually-coupled optimization problems [17]:

∀i ∈ I :

{
min
xi∈Xi

Ji(xi,x−i)

s.t. (xi,x−i) ∈ Ω.
(1)

Thus, each cost function Ji(xi,x−i) depends not only on
the local variable xi, but also on the decisions of the other
agents, x−i = col((xj)j∈I\{i}). For every agent i ∈ I,
Xi represents the set of local constraints, while the coupling
constraint set is Ω ⊆ Rn. The collective feasible set of the
GNEP in (1) is then given by Ω∩X , with X :=

∏
i∈I Xi, and

the feasible decision set for agent i ∈ I, parametric in x−i,
is Xi(x−i) = {xi ∈ Xi | (xi,x−i) ∈ Ω}. A popular solution
concept for a GNEP is the so-called GNE, defined next:

Definition 1. A collective decision vector x⋆ ∈ Ω ∩ X is a
GNE of the GNEP in (1) if, for all i ∈ I, Ji(x

⋆
i ,x

⋆
−i) ≤

minxi∈Xi(x⋆
−i)

Ji(xi,x
⋆
−i). □

Roughly speaking, at a GNE, none of the agents has
incentive to deviate from the strategy currently taken. In the
considered game-theoretic framework, a quantity of interest is
represented by the agent’s BR mapping, formally defined as:

fi(x−i) := argmin
xi∈X (x−i)

Ji(xi,x−i). (2)

In words, each fi : Rn−i ⇒ Rni , n−i :=
∑

j∈I\{i} nj ,
expresses what is the best set of decisions agent i can
take, given the current decision of its opponents x−i. It is
also instrumental to characterize a GNE, since x⋆ can be
equivalently defined as a collective fixed point of the agents’
BR mappings, i.e., x⋆

i ∈ fi(x
⋆
−i), for all i ∈ I.

While not particularly restrictive, the following conditions
ensure the existence of at least a GNE [17]:

Standing Assumption 1 (BR mappings and constraints). For
all i ∈ I, fi : Rn−i → Rni is single-valued and continuous,
with each xi 7→ Ji(xi,x−i) convex on Xi(x−i). The collective
feasible set Ω ∩ X ⊆ Rn is nonempty, convex, and bounded.
□

In this framework, we assume that the external entity has
no knowledge about the private functions Ji but can probe
the agents’ BR mappings in order to collect data and predict
an equilibrium strategy x⋆. Unlike [1], however, we assume
here that instead of communicating the exact BR, each agent
shares a noisy information zi = f̃i(x−i, ηi) with the external
entity. Specifically, ηi : Ξi → Rd is a random vector defined
on the probability space (Ξi,Fi,Pi) with unknown probability
distribution to all parties involved.

As commonly assumed in a stochastic framework [16], [18],
we postulate next a condition on the bias associated to zi:

Standing Assumption 2 (Unbiased noisy information). For
all i ∈ I and x−i ∈ Rn−i , it holds that EPi

[zi] = xi, i.e.,
EPi

[f̃i(x−i, ηi)] = fi(x−i). □

Considering noisy BRs provides a more practical setting in
which the agents, intentionally or unintentionally, do not share
exact best responses, for some of the reasons we described in
§I. However, Standing Assumption 2 postulates, realistically,
that the agents have no interest in boycotting the central entity
with its prediction task, i.e., they are not intentionally mali-
cious: it is each agent’s own interest to achieve an agreement
with the other agents.

The external entity, equipped with some learning procedure
L , shall then predict a GNE by leveraging possibly mislead-
ing, yet non-private, information. Specifically, let us consider
an estimate f̂i : Rn−i × Rpi → Rni of the i-th BR mapping
fi(·). This BR proxy is parametrized by θi ∈ Θi ⊆ Rpi , a
quantity that shall be updated iteratively by integrating the
data obtained from the agents through a smart query process,
which will be described in the next section.

Standing Assumption 3 (Parameter set and BR proxies). For
all i ∈ I, it holds that:

(i) Θi is a closed, compact, and convex set;
(ii) The mapping θi 7→ f̂i(x−i, θi) is continuous. □

While not postulated in [1], in our stochastic framework
we need Standing Assumption 3.(i) to restrict the set of
parameters, thereby ensuring that the learning procedure can
compensate for the noise. This will be key to establishing
the asymptotic convergence of the parameters, thus improving
over [1], where this condition was identified as sufficient for
concluding on the convergence of the overall procedure.

III. ACTIVE LEARNING WITH MISLEADING INFORMATION

The proposed active GNE learning scheme is summarized
in Algorithm 1. Note that in the last step the agents act as
oracles, i.e., they provide samples consisting of noisy BRs that
the external observer uses for learning. Specifically, at every
iteration k the external entity integrates samples just collected
to perform an inexact update of the BR proxies as in (3).
In fact, given ηt = col((ηti)i∈I) at the generic t-th iteration,
Fk is there defined according to the filtration F = {Fk}k∈N,
i.e., the family of σ-algebras with F0 = σ

(
X0

)
and Fk =

σ
(
X0,η1,η2, . . . ,ηk

)
such that Fk ⊆ Fk+1 for all k ∈ N.

In words, Fk contains the information up to iteration k.



Algorithm 1: Active learning-based method with misleading information

Initialization: x0 ∈ Ω, θ0i ∈ Rpi for all i ∈ I
Iteration (k ∈ N0):

• External entity computes

θk+1
i ∈

{
ξ ∈ Θi

∣∣∣ EPi [∥ξ − θ̂i(z
k
i , x̂

k
−i, θ

k
i )∥2|Fk] ≤ (αk

i )
2 a.s.

}
for all i ∈ I (3)

• External entity defines M(θk+1) := argminx∈Ω∩X
∑

i∈I

∥∥∥xi − f̂i(x−i, θ
k+1
i )

∥∥∥2
2
, and computes

x̂k+1 = argmin
x∈Rn

{
1
2∥x∥

2
2 s.t. x ∈ M(θk+1)

}
(4)

• External entity collects corrupted BRs, for all i ∈ I:

zk+1
i = f̃i(x̂

k+1
−i , ηk+1

i )

If each probability distribution Pi was known, the external
entity would ideally implement the following proximal rule:

θ̂i(zi, x̂−i, θi) ∈ argmin
ξi∈Θi

{
Li(ξi|zi, x̂−i) +

µ

2
∥ξi − θi∥22

}
,

(5)
for all i ∈ I, µ > 0, where in particular

Li(θi|zi, x̂−i) = EPi [ℓi(zi, f̂i(x̂−i, θi))]. (6)

However, since each EPi
is unavailable, we propose for the

external entity to focus on (3) as a viable option.
The loss function Li : Θi → R measures the dissimilarity

between the information received via zi, and the estimate f̂i.
Note that Li does not depend explicitly on xi and x−i, since
those are quantities provided through samples. In addition,
ℓi : Θi × Ξi → R depends on ηi via zi, hence the expected
value with respect to (w.r.t.) Pi. We then impose what follows:

Standing Assumption 4 (Training loss function). For all i ∈
I, the following conditions hold true:

(i) The mapping θi 7→ Li(θi|xi,x−i) is convex and twice
continuously differentiable;

(ii) The mapping θi 7→ ℓi(zi, f̂i(x̂−i, θi)) is differentiable;
(iii) For all (xi,x−i, θi) ∈ Ω∩X ×Θi, 0 ≤ Li(θi|xi,x−i) <

∞, with Li(θi|xi,x−i) = 0 ⇐⇒ xi = f̂i(x−i, θi). □

While Standing Assumption 4 actually turns the inclusion
in (5) into equality, the following condition, postulated also in
[16], [18], will be key for our convergence analysis:

Standing Assumption 5 (Proximal map). The proximal map-
ping θ̂i(·, ·, θi) in (5) is a-contractive, a ∈ (0, 1), i.e., for all
θi, θ

′
i ∈ Θi, ∥θ̂(·, ·, θi)− θ̂(·, ·, θ′i)∥ ≤ a∥θi − θ′i∥. □

We postulate this property as an assumption, although suf-
ficient conditions guaranteeing the contractivity of θ̂i(·, ·, θi)
can be obtained similarly to [17, Prop. 12.17] and [16,
§2.2]. However, since the external entity does not know the
probability distribution Pi of the noise, the expected value in
(5)–(6) can not be computed exactly. This is the reason why,
inspired by [16], we propose an inexact scheme as described
in (3). In fact, such an instruction is asymptotically equivalent
to the exact proximal mapping in (5), but it can be computed

through the iterations. The parameters αk
i in (3), instead, form

a deterministic sequence that meets the following conditions:

Standing Assumption 6 (Accuracy sequence). For all i ∈ I,
the sequence {αk

i }k∈N is such that
∑

k∈N0
αk
i < ∞ and, for

all k ∈ N0, αk
i ≥ 0 and limk→∞ αk

i = 0. □

Remark 1. In [16], a stochastic approximation method is used
to obtain a solution to (3) which is αk

i -close to the exact one of
(5). As a consequence of Standing Assumption 6, convergence
to the exact solution holds (see Lemma 1). This consists in
performing a number of stochastic proximal gradient descent
steps, proportional to the outer iteration index k of Algorithm
1 [16, §3.4]. In particular, at iteration k, for all i ∈ I, the
external entity performs the following steps for t > 0:

ξt+1
i = projΘi

(ξti − γt( 1
S

∑S
j=1 ∇θiℓi(z

k,j
i , f̂i(x̂

k
−i, ξ

t
i))

+ µ(ξti − θki ))),
(7)

with γt being a vanishing step-size sequence and {zk,ji }Sj=1

being a collection of S samples of the noisy queries. The
iterative procedure stops, say after t̄ iterations, and sets
θk+1
i = ξ t̄i . In this case, some further assumption on the

expected-valued gradients should be considered—see, e.g.,
[16, Ass. 1.(c), 1.(d)]. Other algorithms can be however used
and integrated with different approximation schemes. □

By leveraging the BR surrogates updated through (3), the
external entity then designs the next query point x̂k+1 to
collect new information from the agents according to (4), i.e.,
as the minimum norm strategy profile falling into the set:

M(θk+1) := argmin
x∈Ω∩X

∑
i∈I

∥∥∥xi − f̂i(x−i, θ
k+1
i )

∥∥∥2
2
, (8)

where M : Rp ⇒ Ω, p :=
∑

i∈I pi. This set contains
all collective profiles that are the closest to a fixed point
of each f̂i(·, θk+1

i ), i.e., closest to a GNE as defined in
Definition 1 and discussion following (2). Indeed, if each
f̂i(x̄−i, θ̄

k
i ) was exactly equal to fi(x̄−i), and the minimum

in (8) was identically zero, then x̄ ∈ M(θ̄k) would be a
GNE of the GNEP in (1). Such a smart selection of the
query points amounts to the “active” part of Algorithm 1, and



allows the central entity to accumulate (noisy) information
in a neighborhood of a point that is the closest to a true
GNE. This will be key for the technical analysis carried
out in the next section. In (8), θk+1 represents the whole
collection of parameters {θk+1

i }i∈I characterizing the estimate
mappings, which at every iteration coincides with the argument
of the corresponding parameter-to-query mapping M(·). It
then follows from the definition of M and from Standing
Assumption 2 that (EP[zi], x̂−i) ∈ Ω ∩ X . Once obtained the
minimum norm vector x̂k+1 in (4), the external entity queries
each agent with x̂−i, which in turn reacts through a noisy BR
zk+1
i = f̃i(x̂

k+1
−i , ηk+1

i ). The observer finally collects all these
data, and the process repeats.

IV. CONVERGENCE ANALYSIS

Before studying the asymptotic properties of the active
learning procedure in Algorithm 1, we postulate some as-
sumptions on the learning procedure L . We then prove some
preliminary results, functional to the asymptotic analysis.

In particular, our analysis will be based on the possibility
of matching pointwise the BR mapping fi of each agent. To
this aim, for all i ∈ I and for all (xi,x−i) ∈ Ω ∩ X , let

Ai(xi,x−i) = {θ̃i ∈ Θi|Li(θ̃i|xi,x−i) = 0}.

This set is instrumental to prove the following crucial result:

Lemma 1. For all i ∈ I, let {θki }k∈N be the sequence
generated by (3) in Algorithm 1. If limk→∞ EPi

[zki ] = x̄i,
limk→∞ x̂k

−i = x̄−i so that (x̄i, x̄−i) ∈ Ω ∩ X , then for all
i ∈ I, limk→∞ θki = θ̄i, and limk→∞ EPi

[∥∥θki − θ̄i
∥∥] = 0

a.s.. Moreover, θ̄i ∈ Ai(x̄i, x̄−i), i.e., (3) converges to a
solution of the exact proximal scheme in (5). □

Proof. The fact that limk→∞ θki = θ̄i for all i ∈ I follows
analogously to [16, Prop. 1] by using contractivity (Standing
Assumption 5), the unbiased noise (Standing Assumption 2)
and convexity of Θi (Standing Assumption 3) on ∥θk+1

i − θ̄i∥,
together with the vanishing property of {αk

i } (Standing As-
sumption 6). With the same assumptions, it follows similarly
that limk→∞ EPi

[∥∥θki − θ̄k
∥∥] = 0 [16, Prop. 2.(b)]. The last

statement, instead, follows analogously to [1, Lemma 4.2]
from the properties of ℓi (Standing Assumption 4). ■

Lemma 1 says that when all the ingredients involved in
Algorithm 1 converge, then the pointwise approximation of fi
shall be exact at x−i, i.e., f̂i(x−i, θ̄i) = EPi [f̃i(x−i, ηi)] =
fi(x−i), with θ̄i ∈ Ai(xi,x−i). We will then prove in
Proposition 1 that the conditions required in Lemma 1 are
verified. To simplify the notation, let r(x, θ) =

∑
i∈I ∥xi −

f̂i(x−i, θi)∥22. Next, we impose some conditions on r(x, θ):

Standing Assumption 7. The following conditions hold true:
(i) For all x ∈ Ω, θ 7→ r(x, θ) is convex and differentiable;

(ii) For all θ ∈ Rp,x 7→ r(x, θ) is convex and continuous;
(iii) For all θ ∈ Rp, the vector ∂r(x, θ)/∂θ ∈ Rp of partial

derivatives is bounded w.r.t. x. □

The following technical result characterizes the properties
of the sequence of query points {x̂k}k∈N produced by the
central entity in the second step (4) of Algorithm 1.

Proposition 1. Let M(θ̃) = {x̃}. Then the sequence {x̂k}k∈N
generated by (4) is feasible, i.e., x̂k ∈ Ω ∩ X for all k ∈ N,
and satisfies limk→∞ x̂k = x̃. □

Proof. In view of Lemma 1, limk→∞ θki = θ̃i a.s. for all i ∈ I.
The proof then follows from Standing Assumptions 1 and 7
which imply that M(θk) is a convex set [1, Lemma 3.3]. From
the same assumptions then follows that the sequence {x̂k}k∈N
is bounded and its cluster points x̄ belong to M(θ̃) [1, Lemma
3.6, 3.7]. By contradiction we can instead show that it can not
happen that x̄ ̸= x̃ [1, Lemma 3.7]. ■

We are now ready to state the asymptotic properties of the
active learning-based technique summarized in Algorithm 1:

Theorem 1. Let M(θ̃) = {x̃}. Then, limk→∞ ∥EP[z
k −

x̂k]∥2 = 0, and the sequences {xk}k∈N and {x̂k}k∈N gener-
ated by Algorithm 1 converge to the same GNE of the GNEP
in (1). □

Proof. It follows from Standing Assumptions 1, 4 and 7 by
noting that, in view of the consistency property in Lemma 1,
and by Proposition 1 the pointwise approximation shall be
exact, namely each θ̃i is so that, for all i ∈ I, ∥f̂i(x̃−i, θ̃i)−
EPi

[f̃i(x̃−i, ηi)]∥2 = 0 [1, Th. 4.5]. ■

Theorem 1 establishes that the external entity achieves
convergence to the true values, i.e., it predicts both an exact
GNE of the game and the BR mappings, despite the possibly
misleading information passed by the agents.

V. IMPLEMENTATION DETAILS AND SIMULATION RESULTS

We now discuss several implementation details related to
Algorithm 1 that will be employed to perform numerical
experiments on a charging coordination problem for EVs.

A. Practical considerations

A distinct feature of the proposed active learning-based
scheme is represented by the inexact proximal step in (3),
which can be accomplished as discussed in Remark 1. To this
end, performing for instance the stochastic proximal gradient
descent in (7) requires one the availability of a batch of S
samples {zk,ji }Sj=1 at every outer iteration k. The latter can
be obtained by the central entity either probing the i-th BR
mapping S times with the same x̂k−1

−i , or producing synthetic
samples. While the former may not represent a viable approach
in a realistic case involving, e.g., human agents, the latter can
be always pursued on the basis of the data collected up to
iteration k, i.e., {zji }kj=1. Among the simplest approaches, a
maximum likelihood estimation (MLE) method [19] allows
one to estimate the (possibly time-varying) measurement noise
covariance matrix Rk

i using measurement residuals (innova-
tions), i.e., eki = zki − f̂i(z

k
−i, θ

k
i ). The likelihood function

associated to the measurements {zji }kj=1 given Rk is then:

Li(R
k
i ) =

∏k
j=1 exp

(
− 1

2 (e
j
i )

⊤(P j
i )

−1eji

)
/
√

|2πP j
i |, where

P j
i denotes the measurement covariance at the j-th outer

iteration. Taking the logarithm of the likelihood function, we
obtain logLi(R

k
i ) = −k

2 log |P
k
i | − 1

2

∑k
j=1(e

j
i )

⊤(P j
i )

−1eji ,
which, in case the measurements are affected by Gaussian



Table I
INDIRECT CONTROL OF EVS – SIMULATION PARAMETERS

Parameters Description Value

T Time interval 14
N Number of EVs 10
Qi = qiIT Degradation cost – quadratic term qi ∼ U(0.006, 0.01)
ci Degradation cost – affine term ∼ U(0.055, 0.095)T

d Normalized inflexibility demand from [20, Fig. 1]
ρi Local charging requirement ∼ U(1.2, 1.8)
c̄i Upper bound - power injection 0.25
c̄ Grid capacity 0.2
a Inverse price elasticity of demand 0.8
b Baseline price 0.02

ηi Additive noise on each BR ∼ N (0, 0.1)
Θi Parameters’ set [−10, 10]pi

K Number of iterations (Alg. 1) 200
γt Step-size in (7) 10−3t

µ Proximal parameter 10
t̄ Iterations performed in (7) 10k

noise, allows one to estimate Rk
i by maximizing logLi(R

k
i )

w.r.t. Rk
i itself. Thus, setting the derivative of the above to zero

and solving for Rk
i yields: R̂k

i = 1
k

∑k
j=1 e

j
i (e

j
i )

⊤, which is
the sample covariance of the residuals, and can be employed
to produce synthetic samples {zk,ji }Sj=1 for (7) through, e.g.,
multivariate normal sampling. Specifically, one generates data
zk,ji = zki + V k

i νji , where νji ∼ N (0, Ini) and V k
i is a matrix

obtained from the Cholesky or singular value decomposition
of R̂k

i . We will later exploit this empirical approach in §V-B.
Note that the convergence property of our active learning-

based scheme requires only a pointwise exact approximation
of the BR mappings held by the agents for the external ob-
server to successfully accomplish the prediction task, despite
noisy data. For this reason, as observed in [1] it is convenient
for the external entity to adopt affine BR proxies f̂i(·, θi), i.e.,

f̂i(x−i, θi) = Λi

[
x−i

1

]
, (9)

for Λi ∈ Rni×(n−i+1)—note that θi is the vectorization
of Λi, with pi = ni(n−i + 1). In case one adopts a
standard mean squared error (MSE) for the training, i.e.,
ℓi(zi, f̂i(x−i, θi)) = 1

2∥zi − Λi

[
x⊤
−i 1

]⊤∥2 such a design
choice allows to automatically satisfy Standing Assumption 4,
as well as the requirements in Standing Assumption 7. Besides
all these technical motivations, affine BR surrogates also yield
important practical consequences. Specifically, each gradient
in (7) reads as (Λt

i[(x̂
k
−i)

⊤ 1]⊤ − zk,ji )[(x̂k
−i)

⊤ 1], while
solving (8) turns out to be a constrained least-squares (LS)
problem, which is convex in view of Standing Assumption 1.

B. Case study: Indirect control of smart grids

We test our technique on an indirect control problem faced
by DSOs, which design price signals enabling the energy
flexibility offered by price-sensitive end-users [21].

In particular, we consider a set of N EVs populating a
distribution grid [20], [22], where every selfish agent aims at
determining an optimal EV charging schedule over a certain
discrete time interval {1, . . . , T} by controlling the energy
injection xi ∈ RT

≥0. The underlying problem is typically

modeled as a GNEP, consisting of the following collection
of mutually coupled optimization problems:

∀i ∈ I :

{
min
xi

∥xi∥2Qi
+ c⊤i xi + (a(σ(x) + d) + b1T )

⊤xi

s.t. 1⊤
T xi ≥ ρi, xi ∈ [0, x̄i]

T , σ(x) ≤ c̄.
(10)

Each private cost function is composed of two terms:
∥xi∥2Qi

+c⊤i xi, which models the battery degradation cost, and
(a(σ(x)+d)+b1T )

⊤xi, which is associated to the electricity
pricing. Here, σ(x) denotes the aggregate demand of the whole
population of EVs, defined as σ(x) = 1

N

∑N
i=1 xi ∈ RT

≥0,
where a > 0 represents the inverse of the price elasticity of
demand, b > 0 the baseline price, and d ∈ RT

≥0 the normalized
average inflexible demand. In addition, each user has to
satisfy both local and shared constraints due for instance to a
minimum charging amount over the interval, 1⊤

T xi ≥ ρi ≥ 0,
a cap on the power injection xi ∈ [0, x̄i]

T , or accounting for
intrinsic grid limitations, i.e., σ(x) + d ∈ [0, c̄]T .

In this framework, an equilibrium strategy x⋆, which pro-
duces the aggregate consumption 1

N

∑N
i=1 x

⋆
i , heavily depends

on the values of a and b. It is then clear how a suitable design
of a and b, based on an accurate prediction of the resulting
x⋆(a, b), allows for an efficient usage of the distribution grid.
Thus, a DSO is interested in making accurate forecasts on
the aggregate electricity consumption of end-users in response
to price-signals, aimed at enabling flexibility offered by the
users themselves. On the other hand, the smart query process
proposed in [1] does not account for the possible malice
of end-users, who may not be willing to provide correct
information, are uncertain or even contradictory about it.

We conduct numerical experiments by using the values
reported in Tab. I. Specifically, we assume the DSO endowed
with affine BR proxies as in (9), and additive noise affecting
the agents’ BRs, i.e., zi = fi(x−i) + ηi for all i ∈ I.
While Algorithm 1 is initialized as described in [1, §VI.A],
we exploit the procedure in Remark 1 for solving (5) with
increasing accuracy at every outer iteration k. With this regard,
we preliminary analyze the impact that the size of S has
on the computation of a GNE with misleading information.
For each agent, to generate synthetic samples {zk,ji }Sj=1 at
each iteration, we have adopted the MLE-based approach
discussed in §V-A. Then, for each S ∈ {1, 5, 10, 20, 50}, we
have generated 20 numerical instances of (10), run [1, Alg. 1]
with noise-free BR samples for computing a reference GNE,
and then Algorithm 1. In Fig. 1, which illustrates the box
plot associated to the relative distance from a GNE for each
case, we observe that, as expected, a larger batch of samples
allows for a better accuracy in the GNE computation and
reduces the related variance. On the other hand, we have also
experienced a significant increase in the computational time,
since each iteration of Algorithm 1 with S = 1 takes 2.79[s]
as worst-case average (i.e., with k = 200), up to 52.8[s] for
S = 50. Motivated by these considerations, we have then set
S = 10 and compared the query point sequences generated
by Algorithm 1 with a naı̈ve implementation of [1, Alg. 1].
Also in this case, we have considered 20 different numerical
instances, with reference GNE computed through [1, Alg. 1]
by relying on noiseless data. From Fig. 2, it is clear that,
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Figure 1. Relative distance between the GNE computed by relying on
misleading information through Algorithm 1 (i.e., x200), and the one obtained
with noiseless data (i.e., x⋆), averaged over 20 numerical instances of (10).

0 50 100 150 200 250 300 350

k

10!3

10!2

10!1

100

kx̂
k
!

x
?
k 2

=
kx

?
k 2

Figure 2. Relative distance sequence produced by Algorithm 1 (solid blue
line) and by [1, Alg. 1] exploiting noisy data (solid red line), averaged over 20
numerical instances. The shaded colored areas represent the standard deviation
over the different numerical trials, while the shaded black region corresponds
to the random initialization of both procedures.

whether the procedure in Algorithm 1 can cope with noisy BR
samples provided by the agents, running [1, Alg. 1] blindly
with inexact data produces a non-convergent behavior.

VI. CONCLUSION

We have proposed a novel procedure based on active learn-
ing to let an external observer learn faithful local proxies of
BR mappings privately held by a population of agents taking
part to a GNEP. With the goal of predicting a GNE of the
underlying game, we have adopted an inexact proximal update
of those surrogates that allows to integrate possible misleading
information provided by the agents. We have shown that this
technique guarantees the convergence of the BR estimates
and, at the same time, of the overall active learning scheme,
ensuring that the external entity succeeds in its prediction task.
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