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A stochastic generalized Nash equilibrium model

for platforms competition in the ride-hail market

Filippo Fabiani and Barbara Franci

Abstract— The presence of uncertainties in the ride-hailing
market complicates the pricing strategies of on-demand plat-
forms that compete each other to offer a mobility service while
striving to maximize their profit. Looking at this problem as
a stochastic generalized Nash equilibrium problem (SGNEP),
we design a distributed, stochastic equilibrium seeking algo-
rithm with Tikhonov regularization to find an optimal pricing
strategy. Remarkably, the proposed iterative scheme does not
require an increasing (possibly infinite) number of samples of
the random variable to perform the stochastic approximation,
thus making it appealing from a practical perspective. More-
over, we show that the algorithm returns a Nash equilibrium
under mere monotonicity assumption and a careful choice of the
step size sequence, obtained by exploiting the specific structure
of the SGNEP at hand. We finally corroborate our results on
a numerical instance of the on-demand ride-hailing market.

I. INTRODUCTION

In the last few years, we have been experiencing a dizzying

growth of the ride-hailing market [1], where on-demand ride-

hailing platforms, such as Uber, Lyft and Didi Chuxing,

have to settle up suitable pricing strategies to be attrac-

tive on two nearly complementary fronts: costumers and

drivers. Each ride-hailing firm, indeed, not only competes

for costumers with the other firms and with traditional

transportation systems, but also strives to secure an as wide

as possible fleet of “loyal” drivers so that it can meet pos-

sibly growing costumers’ demand, which often may not be

predicted accurately. In this framework, competition among

the platforms can be naturally described through a stochastic

generalized Nash equilibrium problem (SGNEP): the firms

aim at maximizing their expected valued profit function,

trying to satisfy the demand for rides, which is typically

uncertain, while sharing the market with the other platforms.

Specifically, SGNEPs amount to a collection of mutually

coupled stochastic optimization problems, which are chal-

lenging to address especially if one aims at finding a solution,

i.e., a stochastic generalized Nash equilibrium (SGNE), in a

distributed fashion. The difficulties are mainly due to the

constraints coupling the agents’ strategies, and the presence

of uncertainty. The first issue is typically accommodate by

reformulating the problems as a monotone inclusion [2], [3]

obtained by exploiting the Karush-Khun-Tucker conditions
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of the coupled optimization problems. Concerning the uncer-

tainty instead, the usual approach approximates the expected-

valued pseudogradient mapping of the game by leveraging

available realizations of the uncertainty [4], [5].

As a next step, one should design a sequence of in-

structions alternating distributed computation and communi-

cation steps, i.e., an algorithm, with provable convergence

guarantees to an equilibrium solution of the SGNEP at

hand. Among the numerous algorithms for classic stochastic

optimization [6], [7], only few of them are amenable to

solve SGNEPs. For this class of problems, indeed, we in-

clude the forward-backward (SFB) algorithm [3] and related

variations, such as the relaxed forward-backward (SRFB) [8]

or the projected-reflected-gradient (SPRG) algorithms [9].

However, these procedures are affected by common draw-

backs: the monotonicity assumption of the operators involved

and the number of samples necessary for the approximation.

In fact, both SFB and SPRG algorithms converge in case the

pseudogradient mapping is strongly monotone or cocoercive,

which correspond to rather strong assumptions. Moreover,

FB-based methods take as an approximation the average over

an increasing, possibly infinite, number of samples of the

uncertainty, which is impractical or even unrealistic. These

reasons motive us to modify the traditional FB algorithm

with a Tikhonov (Tik) regularization method [10, Ch. 12],

tailored for SGNEPs. Introducing a regularization sequence

is indeed a well-known technique to weaken strong assump-

tions [5], [11], since it allows one to obtain, e.g., a strongly

monotone operator starting from a merely monotone one

[10]. We summarize all these considerations in Table I.

In [5], a distributed version of this Tikhonov

regularization-based algorithm was introduced for SNEPs,

i.e., without coupling constraints. We show here that the

generalization to SGNEPs is possible, albeit non-trivial,

as the time-varying nature of both the step sizes and

regularization step poses technical challenges to be treated

Tik SpFB [3] SPRG [9] SRFB [8]

MONOTONICITY ✓ ✗ ✗ ✓

# SAMPLE(S) 1 Nk Nk Nk

STEP SIZE αk α α α

TABLE I: Existing FB-based algorithms for SGNEPs which

converge with monotonicity (✓) or stronger assumptions (✗).

The quantity Nk indicates an increasing (possibly infinite)

number of samples, while αk indicates a the time-varying

step size sequence, as opposed to α.
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carefully when using operator splitting techniques (§IV-B).

We can hence summarize our contributions as follows:

• Inspired by the cognate literature, we propose a nonco-

operative model for on-demand competing ride-hailing

platforms under a regulated pricing scenario and uncer-

tainties, and we recast it as a SGNEP (§II, III);

• We propose a distributed Tikhonov regularization-based

algorithm that leverages a finite number of samples of

the uncertainty to perform the stochastic approximation,

thus circumventing a crucial issue in equilibrium seek-

ing algorithm design for SGNEPs (§IV);

• We show that the algorithm converges to a SGNE i) un-

der mere monotonicity of the pseudogradient mapping,

one of the weakest assumptions to establish convergence

[12], and ii) with a careful choice of the step size

sequence that exploits the structure of the problem.

In conclusion, the performance of the designed Tikhonov-

like algorithm is tested on a numerical instance of the

proposed ride-hailing competition market model (§V).

A. Notation and Preliminaries

a) Notation: N indicates the set of natural numbers and

R (R̄ = R ∪ {∞}) is the set of (extended) real numbers.

〈·, ·〉 : Rn×Rn → R denotes the standard inner product and

‖·‖ is the associated Euclidean norm. Given a vector x ∈ Rn,

xmin = mini=1,...,nxi. We indicate that a matrix A is positive

definite, i.e., x⊤Ax > 0, with A ≻ 0. Given a symmetric

W ≻ 0, the W -induced inner product is 〈x, y〉W = 〈Wx, y〉
and the associated norm is defined as ‖x‖W =

√

〈Wx, x〉.
Id is the identity operator. ιX is the indicator function of

the set X , that is, ιX (x) = 0 if x ∈ X and ιX (x) = ∞
otherwise. The set-valued mapping NX : Rn → Rn denotes

the normal cone operator of the set X , i.e., NX (x) = ∅ if x /∈
X , NX (x) = {v ∈ Rn| supz∈X 〈v, z − x〉 ≤ 0} otherwise.

b) Operator theory: Let gra(F ) = {(x, u) : u ∈ F (x)}
be the graph of F : X ⊆ Rn → Rn. Then, F is said to be:

monotone on X if 〈F (x)−F (y), x− y〉 ≥ 0, for all x, y ∈
X ; µ-strongly monotone on X if there exists a constant µ >
0 such that 〈F (x)−F (y), x−y〉 ≥ µ‖x−y‖2, for all x, y ∈
X ; maximally monotone if there exists no monotone operator

G : X → Rn such that graG properly contains graF : ℓ-
Lipschitz continuous with constant ℓ > 0 if for all x, y ∈ X
‖F (x)−F (y)‖ ≤ ℓ‖x− y‖. The projection operator onto C
is the operator defined as projC(x) = argminz∈C‖z − x‖2.

c) Graph theory: The weighted adjacency matrix as-

sociated to Gλ is denoted with W = [wij ]i,j∈I ∈ RN×N ,

where wij > 0 if agents i and j can communicate with

each other and wij = 0 otherwise. Then, letting D =

diag{d1, . . . , dN} where di,h =
∑N

j=1 wij is the degree of

agent i, the associated Laplacian is given by L = D−W ∈
RN×N . It follows from Assumption 5 that L = L⊤.

d) Stochastic setting: Eξ represent the mathematical

expectation with respect to the distribution of the random

variable ξ(ω), in the probability space (Ξ,F ,P). We avoid

expressing the dependency on ω when clear from the context

and often simply write E. We use i.i.d. to indicate indepen-

dent identically distributed random variables.

II. ON-DEMAND COMPETING RIDE-HAILING FIRMS

We take inspiration from [13]–[15] to examine how N ∈
N on-demand competing ride-hailing platforms (e.g., Uber,

Didi Chuxing, Lyft, Juno and Via) design their pricing

strategies under a regulated pricing scenario and the presence

of uncertainties. Specifically, given a continuum of potential

riders of mass Ch > 0 for each area of interest h ∈ H ⊂ N

(e.g., suburbs, city centres, airports), each firm i ∈ I :=
{1, . . . , N} aims at maximizing its profit by setting i) a price

pi,h ≥ 0 for the on-demand ride-hailing service to attract as

many costumers as possible in the h-th area, with

1

N

∑

i∈I

pi,h ≤ p̄h, ∀h ∈ H, (1)

capping the averaged maximum price allowed p̄h > 0, usu-

ally imposed by consumers’ associations; ii) a wage wi,h ≥
w > 0 for the registered drivers on the i-th ride-hailing

platform, which is also typically regulated by institutions

[13], [16], to meet the resulting costumers’ demand. As one

may expect, since profit maximization is a consideration, pi,h
and wi,h shall be necessarily interdependent.

Similar to [14], [17], we assume that the fraction of

customers who choose the i-th platform’s service in the h-th

area, i.e., the demand for the i-th firm, is characterized as:

di,h =
ChKi,h

p̄
∑

j∈I Kj,h



p̄− pi,h +
θi

N − 1

∑

j∈I\{i}

pj,h



 ,

(2)

where Ki,h > 0 denotes the number of registered drivers

on the i-th ride-hailing platform who prefer to work in the

h-th area, p̄ > maxh∈H p̄h is a maximum service price, and

θi ∈ [0, 1] models the substitutability of the service provided

by each firm. When θi is close to 0, the service of the i-
th platform is almost independent from the others, while θi
close to 1 means that it is fully substitutable, thus obtaining

a perfect competition market. We discuss in details the role

played by this parameter in §V with a numerical example.

Note that, however, the demand request in (2) does not

account for the willingness of the drivers to actually provide

a service, which is key to meet the costumers’ demand

and hence maximize the profit. In fact, any driver provides

service in a prescribed area h ∈ H only if its earn is greater

than their opportunity cost, here denoted by δi,h, which we

let coincide with a random variable. For each firm and area,

we assume the wage be given by wi,h = βpi,h, where the

parameter β > 0 denotes the commission ratio that the

platform should pay to its driver, typically regulated by a

third party (e.g., governments [13]). Thus, for all i ∈ I and

h ∈ H, we introduce the effective demand as

de
i,h = di,h P[wi,h ≥ δi,h], (3)

which coincides with the portion of costumers’ demand for

which a ride-haling company can actually claim a payment.

Roughly speaking, a driver is willing to provide a service

only if the wage she gets matches (at least) her expectations.



This directly leads us to define the fraction of drivers that

give services on the i-th platform as:

ki,h = Ki,h P[wi,h ≥ δi,h]. (4)

As a consequence, the effective demand in (3) can be

equivalently obtained from (2) by replacing Ki,h with ki,h.

However, the costumers’ service request in (2) may be

affected by an additional source of uncertainty. In fact, it

is unlikely that the i-th firm is aware of the total number

of potential drivers,
∑

j∈I Kj,h, both for privacy reasons

and possible multiple registrations. Thus, we define Ch(ξ) =
Ch(ξ)∑
j∈I Kj,h

as the unknown fraction of passengers in area

h ∈ H, which allows us to explicitly account for the

uncertain parameter ξ. In accordance, the demands in (2)

and (3) turn into random variables di,h(ξ) and de
i,h(ξ).

As commonly adopted in the literature [13], [15], we

restrict attention to the case where the drivers’ willingness is

uniformly distributed in [w, w̄i,h], so that P[wi,h ≥ δi,h] =
(wi,h −w)/(w̄i,h −w). This not only allows us to consider

one source of uncertainty, but also to make the constraint in

(4) convex. Note that a similar argument can be adopted

for any distribution concave in the induced demand di,h
(e.g., exponential, Pareto). Then, the stochastic optimization

problem associated to each platform amounts to:

∀i ∈ I :



















max
(pi,h,wi,h)h∈H

Eξ[
∑

h∈H

(pi,hd
e
i,h(ξ)− wi,hki,h)]

s.t. (1), (3), (4), pi,h ≥ 0, ∀h ∈ H,

wi,h ∈ [w, w̄i,h], ∀h ∈ H.
(5)

The first part of the cost function amounts to the profit

of the i-th firm to provide a service to the costumers,

while the second one considers the costs for providing a

service to the drivers. Unlike [13], [14], [17], the cost

functions in (5) accounts for the number of actual drivers

who decide to provide a service rather than the whole fleet of

registered ones, Ki,h. After replacing the equality constraints

in (3) and (4), we obtain a collection of mutually coupled

stochastic optimization problems, where the cost functions

(cubic in pi,h, due to the distribution of δi,h) are affected

by the uncertain fraction of potential riders, i.e., Ch(ξ).
The proposed model relies on a common assumption in the

literature: those riders who do not get assigned to a driver

when they seek service from the ride-haling platforms, e.g.,

because of excess demand for rides, use a different mean

of transportation. The need for a common platform handling

competition in ride-haling mobility to satisfy the costumers’

demand has been indeed recently explored in, e.g., [18], [19].
Throughout the paper we treat this model as a SGNEP, and

we propose an algorithm to compute an equilibrium solution,

according to the discussion presented in the next section.

III. STOCHASTIC GENERALIZED NASH EQUILIBRIUM

PROBLEM

To compact the notation, we rewrite the problem in (5) as

∀i ∈ I :

{

minxi∈Ωi
Ji (xi,x−i)

s.t. g(xi,x−i) ≤ 0.
(6)

where xi = col((pi,h)h∈H) ∈ Rn, n := |H|, x =
col((xi)i∈I) ∈ RnN , and x−i = col((xj)j 6=i). Moreover,

we indicate the set of local constraints of firm i as Ωi ∈ Rn

and let Ω :=
∏

i∈I Ωi. On the other hand, the set of coupling

constraints arising from (1) in a general form read as

X := Ω ∩ {y ∈ R
nN | g(y) ≤ 0m}, (7)

where g : RnN → Rm. We indicate with X i(x−i) the piece

of coupling constraints corresponding to agent i, which is

affected by the decision variables of the other agents x−i. We

stress that the formulation of the SGNEP in (6) is standard

[2], [8], [20], and hence the theory we develop applies to all

the SGNEPs satisfying the assumptions introduced next.

Assumption 1 (Constraint qualification): For each i ∈ I,
the set Ωi is nonempty, closed and convex. The set X

satisfies Slater’s constraint qualification. �

Assumption 2 (Separable convex coupling constraints):

The mapping g in (7) has a separable form, i.e.,

g(x) :=
∑N

i=1 gi(xi), for some convex differentiable

functions gi : Rn → Rm, i ∈ I and it is ℓg-

Lipschitz continuous. Its gradient ∇g is bounded, i.e.,

sup
x∈X

‖∇g(x)‖ ≤ B∇g. �

Given the stochastic nature of our collection of problems,

we indicate the cost function of each agent i ∈ I as

Ji(xi,x−i) := E[Ji(xi,x−i, ξ(ω))], (8)

for some measurable function Ji : R
n×Rd → R. We assume

that E[Ji(x, ξ)] is well defined for all feasible x ∈ X [21].

Assumption 3 (Cost function convexity): For each i ∈ I
and x−i ∈ X−i the function Ji(·,x−i) is convex and

continuously differentiable. �

The goal of the firms is hence to solve (6) to find a SGNE,

i.e., a strategy profile where no agent can decrease its cost

function by unilaterally deviating from its decision. Formally,

a SGNE is a collective vector x∗ ∈ X such that for all i ∈ I

Ji(x
∗
i ,x

∗
−i) ≤ inf{Ji(y,x

∗
−i) | y ∈ Xi(x

∗
−i)}.

Existence of a SGNE for the game in (6) is guaranteed

under suitable assumptions [21, §3.1], though uniqueness

does not hold in general [21, §3.2]. Within all possible Nash

equilibria, we focus on those coinciding with the solutions of

a suitable stochastic variational inequality (SVI) [5]. Thus,

we introduce the pseudogradient mapping of the game as

F(x) := col ((E[∇xi
Ji(xi,x−i)])i∈I) . (9)

Flipping the expected value and the gradient follows from

differentiability of Ji(·,x−i) (Assumption 3) [22, Th. 7.44].

Then, the SVI associated to the SGNEP in (6) reads as

〈F(x∗),x− x∗〉 ≥ 0, for all x ∈ X . (10)

If Assumptions 1–3 hold, any solution to SVI(X ,F) in (10)

is a SGNE of the game in (6), while the converse does not

necessarily hold. A game may have a Nash equilibrium while

the associated (S)VI may have no solution [23, Prop. 12.7].

Assumption 4 (Existence of a variational equilibrium):

The SVI in (10) has at least one solution. �



Algorithm 1 Distributed stochastic Tikhonov relaxation

Initialization: x0
i ∈ Ωi, λ

0
i ∈ Rm

≥0, and z0i ∈ Rm.

Iteration k: Agent i receives xk
j for all j ∈ N J

i and zkj , λ
k
j

for j ∈ N λ
i , then updates:

xk+1
i = projΩi

{xk
i − αk

i γi(F̂i(x
k
i ,x

k
−i, ξ

k
i ) +∇gi(xi)

⊤λk
i

+ ǫki x
k
i )}

zk+1
i = zki − αk

i νi(
∑

j∈Nλ
i
wij(λ

k
i − λk

j ) + ǫki z
k
i )

λk+1
i = projRm

≥0

{λk
i + αi

kτi(gi(x
k
i )− ǫki λ

i
k)

+ αi
kτi

∑

j∈Nλ
i
wij [(z

k
i − zkj )− (λk

i − λk
j )]}

We call variational equilibria (v-SGNE) the SGNE that are

also solution to SVI(X ,F) in (10) with F in (9) and X in (7).

These equilibria can be characterized in terms of the Karush–

Kuhn–Tucker (KKT) conditions of the coupled optimization

problems in (6), i.e., a x∗ is a v-SGNE if and only if the

following inclusion is satisfied for λ ∈ Rm
≥0 [12, Th. 4.6]:

0 ∈ T (x,λ) :=

[

F(x) + NΩ(x) +∇g(x)⊤λ
NRm

≥0
(λ)− g(x)

]

, (11)

where T : X ×Rm
≥0 ⇒ RnN ×Rm is a set-valued mapping.

According to [24, Th. 3.1], [25, Th 3.1], the v-SGNE are

those equilibria such that the shared constraints have the

same dual variable for all the agents, i.e., λi = λ for all

i ∈ I, and solve the SVI(X ,F) in (10). Then, the v-SGNE

of the game in (6) correspond to the zeros of T , which can

be split as the sum of two operators, T = A+ B, where

A :

[

x

λ

]

7→

[

F(x)
0

]

+

[

∇g(x)⊤λ
−g(x)

]

,

B :

[

x

λ

]

7→

[

NΩ(x)
NRm

≥0
(λ)

]

.

(12)

IV. DISTRIBUTED STOCHASTIC TIKHONOV RELAXATION

We now discuss in details the sequence of instructions

summarized in Algorithm 1. For the local decision variable

xi the projection onto Ωi guarantees that the local constraints

are always satisfied, while the coupling constraints are en-

forced asymptotically through the (nonnegative, due to the

projection onto Rm
≥0) dual variable λi. The auxiliary variable

zi, instead, forces consensus on the dual variables [2], [24].

We assume that the decision-maker i knows its feasible set

Ωi, and its part of the coupling constraints X i(x−i). The set

of agents j whose decision variables affect the cost function

of agent i, are denoted by N J
i . Specifically, some j ∈ I

belongs to N J
i if Ji(xi,x−i) explicitly depends on xj .

Let us then introduce the graph Gλ = (I, Eλ) through

which a local copy of the dual variable is shared, along with

of the auxiliary one, zi ∈ Rm. The set of edges Eλ of the

multiplier graph Gλ, is given by: (i, j) ∈ Eλ if player j
share its {λj , zj} with player i. For all i ∈ I, the neighboring

agents in Gλ form the set N λ
i = {j ∈ I : (i, j) ∈ Eλ}. Under

these premises, Algorithm 1 is distributed in the sense that

each agent knows its own problem data and communicates

with the other agents through Gλ. To guarantee that consen-

sus can be reached, we make the following assumption.

Assumption 5 (Graph connectivity): The multiplier graph

Gλ is undirected and connected. �

By making use of Gλ, we hence note that consensus on the

dual variable can be enforced via equality constraint Lλ = 0,

where L = L⊗ Idm ∈ RNm×Nm, L being the Laplacian of

the graph, and λ = col(λ1, . . . , λN ) ∈ RNm. Following [2],

the operators A and B in (12) can thus be extended to

Ā :





x

z

λ



 7→





F(x)
0
Lλ



+





∇G(x)⊤λ
Lλ

−G(x)− Lz



 ,

B̄ :





x

z

λ



 7→





NΩ(x)
0

NRm
≥0
(λ)



 ,

(13)

where z = col(z1, . . . , zN ) ∈ RNm, G(x) =
diag((gi(xi))i∈I) and ∇G(x) = diag((∇xi

gi(xi))i∈I).
From now on, we indicate the local decision variable of each

agent taking part to the SGNEP as u = col(x, z,λ).
Remark 1: It can be proven that if Assumptions 1–5 are

satisfied, then the following hold [2], [3], [8]:

(i) Given any u∗ ∈ zer(Ā+ B̄), x∗ is a v-SGNE of game

in (6), i.e., x∗ solves the SVI(X ,F) in (10), λ∗ =
1N ⊗ λ∗, and (x∗, λ∗) satisfy the KKT condition in

(11), i.e., col(x∗, λ∗) ∈ zer(A+ B).
(ii) zer(A+ B) 6= ∅ and zer(Ā+ B̄) 6= ∅. �

Note that the update of the primal variable xi in Algo-

rithm 1 makes use of an approximation F̂ of the pseudo-

gradient mapping F, since the distribution of the random

variable is unknown and hence the expected value mapping

can be hard to compute. Thus, at each iteration k we let

F̂ (xk, ξk) = col((F̂i(x
k, ξk))i∈I)

= col(∇x1
J1(x

k, ξk1 ), . . . ,∇xN
JN (xk, ξkN )),

(14)

where ξk = col(ξk1 , . . . , ξ
k
N ) ∈ RN is a collection of i.i.d.

random variables drawn from P. Essentially, we replace the

expected-valued pseudogradient mapping with the realization

of one sample of the random variable. It follows that

F̂ (xk, ξk) = F(xk)− δk(xk, ξk),

where δk is typically called stochastic or approximation error.

By exploiting the approximation F̂ in (14) of the expected

value mapping F, we replace the operator Ā in (13) with

Â :





(x, ξ)
z

λ



7→





F̂ (x, ξ)
0

Lλ



+





∇G(x)⊤λ
Lz

−G(x)− Lz



 . (15)

Algorithm 1 can now be rewritten in compact form as

uk+1 = (Id+Φ−1
k B̄)−1(uk − Φ−1

k (Âuk + εkuk)), (16)

where Φk ≻ 0 contains the inverse of step size sequences

Φk = α−1
k Φ = α−1

k diag(γ−1, ν−1, τ−1), (17)



with γ−1, ν−1, τ−1 being diagonal matrices, and εk =
diag(ǫkj ) ∈ RT×T , T = nN + 2Nm, contains the regu-

larization steps. This last term is what typically characterize

the Tikhonov regularization scheme [5], [10].

A. Convergence analysis

We now study the convergence properties of Algorithm 1.

First, to ensure that Ā and B̄ have the properties that we use

for the analysis, we make the following assumption, which

allows us to state the result immediately below.

Assumption 6 (Monotonicity): F in (9) is monotone and

ℓF-Lipschitz continuous for some ℓF > 0. �

Lemma 1: [8, Lemma 2 and 4] Let Assumptions 5 and

6 hold true, and let Φ ≻ 0. Then, the operators Ā and B̄ in

(13) have the following properties.

1) Ā is monotone and ℓĀ-Lipschitz continuous.

2) B̄ is maximally monotone.

3) Φ−1Ā is monotone and ℓΦ-Lipschitz continuous.

4) Φ−1B̄ is maximally monotone. �

The Lipschitz constants in Lemma 1 depends on those of

gi, i ∈ I, and F (Assumptions 1 and 6, respectively).

Their specific expressions, however, are not relevant for our

analysis, and therefore we point to [8] for additional details.

Remark 2: Introducing the regularization term makes Ā+
εk strongly monotone [10, Th. 12.2.3]. Thus, mere mono-

tonicity of the pseudogradient mapping is enough to show

convergence. In addition, note that the regularization term is

added to the operator Ā and not to force strong monotonicity

of the SVI in (10). In fact, starting from a strongly monotone

mapping, the resulting operator Ā can be at most cocoercive

[2, Lemma 5 and 7], [26, Lemma 2 and 4]. �

Taking few samples as in (14) is realistic and compu-

tationally tractable, at the price of requiring an additional

assumption on the step sizes. Specifically, we indicate next

how to choose the parameters in Algorithm 1 to ensure that

they are vanishing to control the approximation error [5].

Assumption 7: The step size sequence (αk)k∈N and the

regularizing sequences (ǫkj )k∈N, j = 1, . . . , T , are such that

αk = (k+ η)−a and ǫkj = (k+ ζj)
−b for k ≥ 0, where each

η and ζj are selected from a uniform distribution on the

intervals [η, η̄] and [ζ, ζ̄], respectively, for some 0 < η < η̄
and 0 < ζ < ζ̄ and a, b ∈ (0, 1), a+ b < 1, and a > b. �

Let us define the filtration F = {Fk}k∈N, that is, a

family of σ-algebras such that F0 = σ (X0) and Fk =
σ (X0, ξ1, ξ2, . . . , ξk) for all k ≥ 1, such that Fk ⊆ Fk+1

for all k ∈ N. In words, Fk contains the information

up to iteration k. Since we consider the approximation in

(14), we let ∆k = col(δk, 0, 0) be the stochastic error, i.e.,

∆k = Ā(uk) − Â(uk, ξk). Then, an additional assumption

is finally needed to regulate its asymptotic behaviour.

Assumption 8: The step size sequence (αk)k∈N, regu-

larization sequence (εk)k∈N and the stochastic error ∆k

satisfy limk→∞(αk/ǫk,min)E[‖∆k‖2Φ | Fk] = 0 and
∑∞

k=0 α
2
kE[‖∆

k‖2Φ | Fk] < ∞ a.s.. �

We are now ready to state our main convergence result.

Theorem 1: Let Assumptions 1 - 8 hold true. Then, the

sequence (xk)k∈N generated by Algorithm 1 with F̂ as in

(14) converges a.s. to a v-SGNE of the game in (6). �

Proof: Convergence to the primal-dual solution follows

similarly to [5] by using the Φ-induced metric. Specifically,

with similar steps as [5, Prop. 1 and 2] and by letting yk be

the sequence generated by the centralized Tikhonov method

[5, Lemma 3], we obtain

E[‖uk+1 − yk‖2Φ|Fk] ≤ (1 − c(αk, εk))‖uk+1 − yk‖2Φ

+ d(αk, εk) + α2
kE[‖∆

k‖2Φ|Fk]

where d(αk, εk) and α2
kE[‖∆

k‖2|Fk] vanish as k → ∞
(Assumptions 7 and 8) and c(αk, εk) ∈ [0, 1] is such

that [27, Lemma 4.7] can be applied to conclude that

limk→∞ ‖uk+1−yk‖2 = 0. Then, the statements recalled in

Remark 1 guarantee convergence of (xk)k∈N to a v-SGNE

of the SGNEP in (6).

Remark 3: Although our proof follows similar steps to [5,

Prop. 1 and 2], note that their component-wise approach can

be used basing on the fact that in SNEPs the feasible set

reduces to the Cartesian product of the agents’ local sets

Ωi, i ∈ I. However, in our generalized setting, the nature

of the coupling constraints in (7) makes this assumption not

necessarily true. Moreover, this means that our proof applies

to the general case of finding a zero of a monotone inclusion

0 ∈ Ā(u) + B̄(u), independently from the fact that such an

inclusion comes from the KKT conditions of the game in

(11). Finally, this also explains why we resort to the step

size matrix Φk with structure as defined in (17). �

B. Discussion on the variable step size sequence

We traditionally identify two main approaches to perform

stochastic approximations: either we take one sample as

considered in (14), or we take the average over an increasing

(possibly infinite) number of realizations. The idea behind

having a large number of samples is that the variance of

the stochastic error disappears with the number of iterations

[6], [7]. By following classic results in convergence analysis

[2], [3], [8], however, it turns out that this latter approach is

computationally expensive, or even unrealistic in some cases,

and hence taking just one or a finite number of samples is

preferable in practice. This practical simplification comes

at the price of choosing a vanishing step size to control

the approximation error, which in our case corresponds

to the time-varying matrix Φk, thus possibly involving a

time-varying metric for the convergence analysis. Although

convergence can be guaranteed in such cases [27], [28], some

additional assumptions on the metric should be satisfied.

Specifically, the matrix Φk should be chosen so that

sup
k∈N

‖Φ−1
k ‖ < ∞ and ∀k > 0 (1 + ηk)Φ

−1
k+1 < Φ−1

k , (18)

where (ηk)k∈N is a nonnegative sequence such that
∑

k η
k <

∞. Unfortunately, this contradicts the fact that the step

size sequence should be decreasing. Loosely speaking, the

motivation for (18) stems from the fact that, with a variable

metric, it is hard to prove whether the algorithm converges



Fig. 1: Effect of the parameter η of step size, according to

Assumption 7, on the convergence rate.

Fig. 2: Effect of the parameter η of step size, according to

Assumption 7, on the convergence rate.

to a zero of the mapping or to a zero of the step sequences.

On the other hand, given the specific structure of our matrix

Φk, we overcome this issue by considering a fixed matrix Φ
that we can use as a metric, and then by pre-multiplying Φ
with a vanishing step as in (17). Note that this formulation

allows us to preserve the distributed nature of the algorithm.

We also note that a “separable” matrix as Φk in (17)

cannot be used for every iterative distributed algorithm. In

the standard SFB [3], for instance, the matrix Φk serves as a

preconditioning matrix that has non-zero off-diagonal entries.

Pre-multiplying such entries for a quantity (even fixed) would

compromise the corresponding KKT conditions, thus making

impossible to produce distributed iterations.

V. NUMERICAL SIMULATIONS

We now validate both the model in §II and Algorithm 1

numerically. Specifically, we consider an instance of the

competition among N = 5 on-demand ride-hailing firms

over |H| = 10 areas with main parameters in Table II.

TABLE II: Simulation parameters

Parameter Unit Description Value

p̄ $ Maximum service price 35
p̄h $ Area price cap ∼ U(0.65p̄, 0.95p̄)
β Commission rate 0.9
w $ Wage lower bound 12
θi Competition parameters ∼ U(0.6, 1)
Ch Area costumers’ demand ∼ U(5, 12) × 103

Ki,h Registered drivers ∼ U(0.5, 3)× 103

Fig. 3: Impact of the substitutability parameter on the aver-

aged percentage of expected profit, for each firm i ∈ I.

Fig. 4: Impact of the substitutability parameter on the aver-

aged costumers’ demand satisfaction, for each area h ∈ H.

First, we test the effect of the step size sequence on the

convergence of Algorithm 1 by recalling that, in view of

Assumption 7, αk = (k + η)−a. In particular, Fig. 1 shows

how the rate of convergence is affected by the exponent a
while in Fig. 2 we plot the effect of the base η. In the first

example we choose η = 108 and εk = (k+106)−0.15, while

for the second one a = 0.7 and εk = (k+106)−0.2. The thick

lines indicate the average performance while the transparent

areas are the variability over 10 runs of the algorithm.



Successively, we examine how the competition parameters

θi, i ∈ I, affect the equilibrium solution of the SGNEP

in (5) against K = 1000 random realizations of δi,h, i.e.,

the willingness of the driver to provide service. In view of

(4), given some drivers’ expectation level δ
(j)
i,h ∼ U(w, w̄i,j)

and an equilibrium strategy profile x∗ = col((x∗
i )i∈I) with

x∗
i = col((p∗i,h)h∈H), if δ

(j)
i,h ≤ βp∗i,h then k

(j)
i,j = Ki,j .

The number of drivers providing a service allows each firm

to actually request a payment from the costumers, thus

earning J̃
(j)
i

:= Eξ[
∑

h∈H p∗i,h(d
e,(j)
i,h (ξ) − βk

(j)
i,h)]. This

value, however, can be different (possibly smaller) from the

expected profit Ji := Eξ[
∑

h∈H p∗i,h(d
e
i,h(ξ) − βki,h)], i.e.,

the value function associated to the equilibrium condition.

Then, for each firm i ∈ I, Fig. 3 shows how the ratio

between these two quantities, resulting into a percentage of

expected profit, changes with the level of competition in the

ride-hailing market. Specifically, we note that when firms

operate in an almost oligopoly regime, i.e., θi ∈ [0.2, 0.4]
for all i ∈ I, the averaged percentage is small and grows

when the market becomes more competitive. For small values

of θi, indeed, each company is almost independent and

tends to select prices to match the lower bound w/β – this

also coincides with the strategy adopted by firms with only

few registered drivers, thus explaining the behavior of firms

2 and 5 – whereas for larger values of θi the firms are

entitled to significantly raise their prices, thus allowing to

meet drivers’ expectations with a higher probability. Such

trend is confirmed by the numerical results shown in Fig. 4,

which reports the costumers’ demand satisfaction, measured

as
∑

i∈I k
(j)
i,h/Ch, for each area h ∈ H. In almost oligopoly

regimes the costumers’ request is met few times only, while

it grows significantly when also the competition increases.

VI. CONCLUSION

We have proposed a model for the ride-hailing market un-

der a regulated pricing scenario involving several platforms

that compete to offer mobility services. The model takes

into account the natural uncertainty of the demand and the

need for the platforms to set up suitable pricing strategies

to attract riders and fair wages to secure a fleet of drivers.

To optimize the operations of these interdependent problems,

we have recasted the model as a stochastic Nash equilibrium

problem for which we have proposed a distributed, Tikhonov

regularization-based algorithm that enjoys convergence guar-

antees to a Nash equilibrium. In particular, the proposed

equilibrium seeking method leverages only a finite number

of samples of the uncertainty to perform the stochastic

approximation, as well as it requires mere monotonicity of

the pseudogradient mapping to establish convergence.
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