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Abstract: This paper proposes a construction-free algorithm for solving linear MPC problems
based on autoregressive with exogenous terms (ARX) input-output models. The solution
algorithm relies on a coordinate-descent augmented Lagrangian (CDAL) method previously
proposed by the authors, which we adapt here to exploit the special structure of ARX-based
MPC. The CDAL-ARX algorithm enjoys the construction-free feature, in that it avoids explicitly
constructing the quadratic programming (QP) problem associated with MPC, which would
eliminate construction cost when the ARX model changes/adapts online. For example, the
ARX model parameters are dependent on linear parameter-varying (LPV) scheduling signals,
or recursively adapted from streaming input-output data with cheap computation cost, which
make the ARX model widely used in adaptive control. Moreover, the implementation of
the resulting CDAL-ARX algorithm is matrix-free and library-free, and hence amenable for
deployment in industrial embedded platforms. We show the efficiency of CDAL-ARX in two
numerical examples, also in comparison with MPC implementations based on other general-
purpose quadratic programming solvers.
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced technique
to control multi-input multi-output systems subject to
constraints, and its core idea is to predict the evolution
of the controlled system by means of a dynamical model,
solve an optimization problem over a finite time horizon,
only implement the control input at the current time, and
then repeat the optimization again at the next sample, see
Qin and Badgwell (2003).

In earlier MPC developments, some methods shared the
same receding horizon control idea, under different names.
The Model Predictive Heuristic Control, the Model Al-
gorithmic Control used a finite impulse response model,
the Dynamic Matrix Control (DMC) employed a trun-
cated step-response model, and the Generalized Predictive
Control (GPC) involved a transfer function model. As the
MPC field has grown, state-space (SS) models replaced
input-output (I/O) models, and most MPC theory is based
on SS formulations, see Mayne (2014).

However, in industrial control applications, MPC based
on input-output models, such as the autoregressive model
with exogenous terms (ARX) model, may still be prefer-
able, see Qin and Badgwell (2003), for two main reasons:
(1) there is no need of a state-observer; (2) I/O models
are easier to identify and to adapt online (such as us-
ing recursive least-squares or Kalman Filter algorithms),
which makes them widely used in adaptive control, see
Åström and Wittenmark (2013). In particular, the latter

is particularly appealing in practical cases in which the
dynamics of the systems changes during operations, such
as in the case of changes of mass and inertia in rockets
due to fuel consumption, wear of heating equipment in
chemical processes, and many others. In fact, an observ-
able SS model can be equivalently transformed into an
ARX model, and Wu (2022a) shows the equivalence of SS-
based MPC and ARX-based MPC problems. It proposes
an alternative for the acquisition of ARX model based on
the first-principle-based modeling paradigm, rather than
the data-driven identification paradigm. This allows us to
acquire ARX models using many existing first-principles
based models in different engineering fields. The resulted
interpretative ARX model can be adopted in adaptive
MPC framework by adding an online updating scheme for
the ARX model, see Wu (2022b).

A common practice in MPC is to first formulate a
quadratic programming (QP) problem in terms of a
control-oriented prediction model and MPC parameters,
and then pass it to the optimization solver. Such a problem
construction step can be performed offline when the pre-
diction model is fixed, otherwise, it requires to be repeated
online when the prediction model or MPC parameters are
varying. In such varying cases, the online computation
time includes both constructing and solving the QP prob-
lem associated with MPC. Indeed, often constructing and
solving the MPC problem have comparable costs, such as
when warm-starting strategies are employed and set-points
change slowly. In Wu (2022b), the online construction
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Åström and Wittenmark (2013). In particular, the latter

is particularly appealing in practical cases in which the
dynamics of the systems changes during operations, such
as in the case of changes of mass and inertia in rockets
due to fuel consumption, wear of heating equipment in
chemical processes, and many others. In fact, an observ-
able SS model can be equivalently transformed into an
ARX model, and Wu (2022a) shows the equivalence of SS-
based MPC and ARX-based MPC problems. It proposes
an alternative for the acquisition of ARX model based on
the first-principle-based modeling paradigm, rather than
the data-driven identification paradigm. This allows us to
acquire ARX models using many existing first-principles
based models in different engineering fields. The resulted
interpretative ARX model can be adopted in adaptive
MPC framework by adding an online updating scheme for
the ARX model, see Wu (2022b).

A common practice in MPC is to first formulate a
quadratic programming (QP) problem in terms of a
control-oriented prediction model and MPC parameters,
and then pass it to the optimization solver. Such a problem
construction step can be performed offline when the pre-
diction model is fixed, otherwise, it requires to be repeated
online when the prediction model or MPC parameters are
varying. In such varying cases, the online computation
time includes both constructing and solving the QP prob-
lem associated with MPC. Indeed, often constructing and
solving the MPC problem have comparable costs, such as
when warm-starting strategies are employed and set-points
change slowly. In Wu (2022b), the online construction

A construction-free coordinate-descent
augmented-Lagrangian method for

embedded linear MPC based on ARX
models

Liang Wu ∗, Alberto Bemporad ∗

∗ IMT School for Advanced Studies Lucca, Italy, (e-mail:
{liang.wu,alberto.bemporad}@imtlucca.it)

Abstract: This paper proposes a construction-free algorithm for solving linear MPC problems
based on autoregressive with exogenous terms (ARX) input-output models. The solution
algorithm relies on a coordinate-descent augmented Lagrangian (CDAL) method previously
proposed by the authors, which we adapt here to exploit the special structure of ARX-based
MPC. The CDAL-ARX algorithm enjoys the construction-free feature, in that it avoids explicitly
constructing the quadratic programming (QP) problem associated with MPC, which would
eliminate construction cost when the ARX model changes/adapts online. For example, the
ARX model parameters are dependent on linear parameter-varying (LPV) scheduling signals,
or recursively adapted from streaming input-output data with cheap computation cost, which
make the ARX model widely used in adaptive control. Moreover, the implementation of
the resulting CDAL-ARX algorithm is matrix-free and library-free, and hence amenable for
deployment in industrial embedded platforms. We show the efficiency of CDAL-ARX in two
numerical examples, also in comparison with MPC implementations based on other general-
purpose quadratic programming solvers.

Keywords: ARX, State-Space, Model Predictive Control, Construction-free

1. INTRODUCTION

Model Predictive Control (MPC) is an advanced technique
to control multi-input multi-output systems subject to
constraints, and its core idea is to predict the evolution
of the controlled system by means of a dynamical model,
solve an optimization problem over a finite time horizon,
only implement the control input at the current time, and
then repeat the optimization again at the next sample, see
Qin and Badgwell (2003).

In earlier MPC developments, some methods shared the
same receding horizon control idea, under different names.
The Model Predictive Heuristic Control, the Model Al-
gorithmic Control used a finite impulse response model,
the Dynamic Matrix Control (DMC) employed a trun-
cated step-response model, and the Generalized Predictive
Control (GPC) involved a transfer function model. As the
MPC field has grown, state-space (SS) models replaced
input-output (I/O) models, and most MPC theory is based
on SS formulations, see Mayne (2014).

However, in industrial control applications, MPC based
on input-output models, such as the autoregressive model
with exogenous terms (ARX) model, may still be prefer-
able, see Qin and Badgwell (2003), for two main reasons:
(1) there is no need of a state-observer; (2) I/O models
are easier to identify and to adapt online (such as us-
ing recursive least-squares or Kalman Filter algorithms),
which makes them widely used in adaptive control, see
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or recursively adapted from streaming input-output data with cheap computation cost, which
make the ARX model widely used in adaptive control. Moreover, the implementation of
the resulting CDAL-ARX algorithm is matrix-free and library-free, and hence amenable for
deployment in industrial embedded platforms. We show the efficiency of CDAL-ARX in two
numerical examples, also in comparison with MPC implementations based on other general-
purpose quadratic programming solvers.

Keywords: ARX, State-Space, Model Predictive Control, Construction-free

1. INTRODUCTION

Model Predictive Control (MPC) is an advanced technique
to control multi-input multi-output systems subject to
constraints, and its core idea is to predict the evolution
of the controlled system by means of a dynamical model,
solve an optimization problem over a finite time horizon,
only implement the control input at the current time, and
then repeat the optimization again at the next sample, see
Qin and Badgwell (2003).

In earlier MPC developments, some methods shared the
same receding horizon control idea, under different names.
The Model Predictive Heuristic Control, the Model Al-
gorithmic Control used a finite impulse response model,
the Dynamic Matrix Control (DMC) employed a trun-
cated step-response model, and the Generalized Predictive
Control (GPC) involved a transfer function model. As the
MPC field has grown, state-space (SS) models replaced
input-output (I/O) models, and most MPC theory is based
on SS formulations, see Mayne (2014).

However, in industrial control applications, MPC based
on input-output models, such as the autoregressive model
with exogenous terms (ARX) model, may still be prefer-
able, see Qin and Badgwell (2003), for two main reasons:
(1) there is no need of a state-observer; (2) I/O models
are easier to identify and to adapt online (such as us-
ing recursive least-squares or Kalman Filter algorithms),
which makes them widely used in adaptive control, see
Åström and Wittenmark (2013). In particular, the latter

is particularly appealing in practical cases in which the
dynamics of the systems changes during operations, such
as in the case of changes of mass and inertia in rockets
due to fuel consumption, wear of heating equipment in
chemical processes, and many others. In fact, an observ-
able SS model can be equivalently transformed into an
ARX model, and Wu (2022a) shows the equivalence of SS-
based MPC and ARX-based MPC problems. It proposes
an alternative for the acquisition of ARX model based on
the first-principle-based modeling paradigm, rather than
the data-driven identification paradigm. This allows us to
acquire ARX models using many existing first-principles
based models in different engineering fields. The resulted
interpretative ARX model can be adopted in adaptive
MPC framework by adding an online updating scheme for
the ARX model, see Wu (2022b).

A common practice in MPC is to first formulate a
quadratic programming (QP) problem in terms of a
control-oriented prediction model and MPC parameters,
and then pass it to the optimization solver. Such a problem
construction step can be performed offline when the pre-
diction model is fixed, otherwise, it requires to be repeated
online when the prediction model or MPC parameters are
varying. In such varying cases, the online computation
time includes both constructing and solving the QP prob-
lem associated with MPC. Indeed, often constructing and
solving the MPC problem have comparable costs, such as
when warm-starting strategies are employed and set-points
change slowly. In Wu (2022b), the online construction
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Lρ(Y, U,∆U,Λ,Γ) =
1

2

T∑
t=1

‖(yt − rt)‖2Wy + ‖∆ut−1‖2W∆u

+

T∑
t=1

λ′
t

(
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

)

+
T∑

t=1

γ′
t (ut−2 +∆ut−1 − ut−1)

+
ρ

2

T∑
t=1

∥∥∥∥∥
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

∥∥∥∥∥
2

2

+
ρ

2

T∑
t=1

‖ut−2 +∆ut−1 − ut−1‖ ‖22

(3)
where Λ = {λt} and Γ = {γt}, ∀t = 1, . . . , T are the dual
vectors associated with the equality constraints induced
by the ARX model and the input increments, respectively,
and ρ is the penalty parameter. According to Bertsekas
(2014), the scaled AL method (ALM) iterates the following
updates

(Y k, Uk,∆Uk) = argmin
1

ρ
Lρ(Y, U,∆U,Λk−1,Γk−1)(4a)

λk
t = λk−1

t +

na∑
i=1

A(i)ykt−i +

nb∑
j=1

B(i)uk
t−i − ykt

, ∀t = 1, . . . , T

(4b)

γk
t = γk−1

t + uk
t−1 +∆uk

t − uk
t , ∀t = 1, . . . , T(4c)

The minimization step (4a) updates the primal vector,
Steps (4b) and (4c) update the dual vectors. We refer the
reader to Bertsekas (2014) for a well-known convergence
proof of ALM under Assumptions 1, 2. To improve the
speed of convergence of ALM, Kang et al. (2015) proposed
an accelerated version of ALM whose convergence rate is
O(1/k2) for linearly constrained convex programs by using
Nesterov’s acceleration technique, see Nesterov (1983).
The accelerated ALM algorithm for MPC problems has
been summarized in Wu and Bemporad (2023).

3.2 Coordinate-descent method

Sub-problem (4a) is a strongly convex box-constrained
QP problem, which can be solved by many methods.
Among others, as showed in Wu and Bemporad (2023),
problem (4a) can be solved by a simple coordinate-descent
method, which minimizes the objective function along only
one coordinate direction at each iteration while keeping
the other coordinates fixed, see Luo and Tseng (1992).
A convergence proof of at-least linear convergence when
solving convex differentiable minimization problems was
provided in Luo and Tseng (1992). Under Assumption 1
(non-emptyness of the feasible set) and since the objective
function Lρ(·) is continuously differentiable and convex
with respect to each coordinate, the CD method proceeds
repeatedly for k = 1, 2, . . . , as follows:

choose jk ∈ {1, 2, . . . , nz} (5a)

zkjk = argmin
zjk∈Z

1

ρ
Lρ(zjk , z

k−1
�=jk

,Λk−1,Γk−1) (5b)

Procedure 1 Full pass of cyclic coordinate descent on all
block variables
Input: Λ = {λ1, . . . , λT }, Γ = {γ1, . . . , γT },
Y = {y1, · · · , yT }, U = {u0, · · · , uT−1}, ∆U =
{∆u0, · · · ,∆uT−1}; MPC settings A(1), . . . , A(na),
B(1), . . . , B(nb), W y, W∆u, ymin, ymax, umin, umax,
∆umin, ∆umax; parameter σ, ρ > 0.

1. σ ← 0;
2. for t = 1, . . . , T − 1 do

2.1. j = min(na, T − t);

2.2. {yt, σ} ← CCD{ 1
ρW

y + I +
∑j

i=1 A(i)
′A(i), et,

σ}ymax
ymin

;
2.3. j = min(nb, T − t+ 1);

2.4. {ut−1, σ} ← CCD{2I +
∑j

i=1 B(i)′B(i), ft,
σ}umax

umin
;

2.5. {∆ut, σ} ← CCD{ 1
ρW

∆u + I, gt, σ}∆umax

∆umin
;

3. {yT , σ} ← CCD{ 1
ρW

y + I, eT , σ}ymax
ymin

;

4. {uT−1, σ} ← CCD{I +B(1)′B(1), fT , σ}umax
umin

;

5. {∆uT−1, σ} ← CCD{ 1
ρW

∆u + I, gT , σ}∆umax

∆umin
;

6. end.

Output: Y , U , ∆U , Λ, Γ, σ.

where z =
[
y′1 u′

0 ∆u′
0 . . . y′T u′

T−1 ∆u′
T−1

]′
is the opti-

mization vector, z ∈ Z � Y × U × ∆U , Z ⊆ Rnz , nz �
T (ny + nu + nu). We denote by Lρ(zjk , z

k−1
�=jk

,Λk−1,Γk−1)

the value Lρ(z,Λ
k−1,Γk−1) when z �=jk = zk�=jk

is fixed.
Here z �=jk denotes the subvector obtained from z by elim-
inating its jkth component zjk . The convergence of the
iterations (5) depends on the coordinate picking rule,
namely how jk is chosen. Existing research works have
analyzed the influence of different coordinate selection
rules such as the cyclic rule and the random selection
rule, on the convergence rate of the coordinate descent
method. We choose the simplest variant using cyclic coor-
dinate search to favor implementation simplicity. In fact,
the cyclic implementation preserves the order of optimiza-
tion variables with respect to the prediction horizon t,
type (output y, input u, or input increment ∆u), and
component, so that reconstructing the coordinate that is
currently optimized in is immediate. The implementation
of one pass through all nz coordinates using cyclic CD
is reported in Procedure 1. In Procedure 1, the operator
{s, σ} = CCD{M,d, σ}s̄s represents one pass iteration of
the reverse cyclic CDmethod through all its ns coordinates
s1, . . . , sns for the box-constrained QP mins∈[s,s̄]

1
2s

′Ms+
s′d, that is to execute the following ns iterations

for i = 1, . . . , ns

ŝi ← max(si,min(s̄i, si −
1

Mi,i
(Mi,·s+ di))

σ ← σ + (ŝi − si)
2

si ← ŝi
end

(6)

The quantities et, ft, gt used in Procedure 1 are defined for
t = 1, 2, · · · , T as follows:

of the MPC problem becomes necessary in the adaptive
ARX-based MPC framework, and the case of linear pa-
rameter varying ARX (LPV-ARX) models, in which model
parameters depend on a measured time-varying signal,
the so-called scheduling variable. Thus, a construction-free
ARX-MPC algorithm, in that MPC-to-QP construction is
explicitly eliminated, would significantly save the compu-
tational loads in those cases.

1.1 Related works and Contribution

Some ARX-based MPC algorithms in the literature first
convert the ARX model into SS form, treat the problem
as a standard SS-based MPC problem, see Huusom et al.
(2010), and then construct and solve a condensed or sparse
quadratic programming (QP) problem. In fact, the ARX-
to-SS transformation is not necessary for condensed and
sparse MPC-to-QP constructions, which only depend on
whether to eliminate or keep the ARX output variables.
Choosing the condensed or sparse construction only de-
pends on the total online computation cost (constructing
and solving), in time-varying ARX-based MPC problems.
The OSQP solver, based on the alternating direction
method of multipliers (ADMM), can directly consume the
ARX model as equality constraints, which is the sparse
QP formulation by keeping the output variables of the
ARX model. However, it still employs an explicit MPC-
to-QP construction to formulate the equality constraint
matrix, and more importantly, the OSQP solver needs
to repeatedly factorize and cache the Hessian matrix of
the quadratic objective at each sampling time, in time-
varying ARX-based MPC problems. In Saraf and Bempo-
rad (2017), the dynamic equality constraint from the ARX
model was relaxed by using a large penalty parameter, and
it resulted in an ill-conditioning bounded variable least-
squares (BVLS) problem, although the active-set based
method was used to mitigate the numerical difficulties
to some extent. Besides computation efficiency, easy-to-
deployment of an ARX-MPC algorithm should also be con-
sidered, in which code-simplicity and library-dependency
are important. In this respect, compared to the active-set
or interior-point based methods, the first-order method,
such as the primal or dual fast gradient method, the
ADMM method, is simpler but also becomes complicated
in time-varying cases, in that some offline operations have
to be performed online.

This paper proposes a simple and efficient algorithm
for solving ARX-based MPC problems. Based on the
coordinate-descent augmented Lagrangian method, the re-
sulting CDAL-ARX algorithm enjoys three mian features:
(i) it is construction-free, in that it avoids the online MPC-
to-QP construction in time-varying ARX cases to save
computation cost; (ii) is matrix-free, in that it avoids
multiplications and factorizations of matrices, which are
required by other first-order methods in time-varying ARX
cases; and (iii) is library-free, as our 150-lines of C-code
implementation is without any library dependency, which
matters in embedded deployment.

2. ARX-BASED MPC PROBLEM FORMULATION

Consider the multi-input multi-output (MIMO) ARX
model described by

yt =

na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i (1)

where yt ∈ Rny and ut ∈ Rnu are the output and input
of the system, respectively, A(i) ∈ Rny×ny , i = 1, . . . , na,
and B(i) ∈ Rny×nu , i = 1, . . . , nb, and na, nb define the
model order of the ARX model.

This paper considers the following MPC tracking formu-
lation based the ARX model (1)

min
Y,U,∆U

1

2

T∑
t=1

‖(yt − rt)‖2Wy + ‖∆ut−1‖2W∆u

s.t.yt =

na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i, t = 1, . . . , T

∆ut = ut − ut−1, t = 0, . . . , T − 1
ymin ≤ yt ≤ ymax, t = 1, . . . , T
umin ≤ ut ≤ umax, t = 0, . . . , T − 1
∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

(2)

where T is the prediction horizon, W y � 0 and W∆u � 0
are positive semi-definiteness diagonal matrices on the
outputs and the input increments, respectively, rt, t =
1, . . . , T are the future desired set-point vectors, ∆ut−1

are the input increments, [ymin, ymax], [umin, umax], and
[∆umin,∆umax] define box constraints on outputs, inputs,
and input increments, respectively, and Y = (y1, . . . , yT ),
U = (u0, . . . , uT−1), and ∆U = (∆u0, . . . ,∆uT−1) are the
optimization variables.

3. COORDINATE DESCENT AUGMENTED
LAGRANGIAN METHOD

Wu and Bemporad (2023) proposed a coordinate-descent
augmented-Lagrangian (CDAL) method for SS-based MPC
problems. We want to adapt here the method to solve
problem (2) without computing a state-space realization of
the ARX model (1), while retaining the construction-free,
matrix-free, and library-free properties of CDAL.

3.1 Augmented Lagrangian method

The following assumptions are needed to ensure the con-
vergence of the Augmented Lagrangian method.

Assumption 1. Problem (2) has a feasible solution.

Note that Assumption (1) is satisfied in all practical
situations in which the reference rt is far enough from
the output bounds and the prediction horizon T is long
enough.

Assumption 2. The equality constraint matrix arising
from stacking all the equality constraints in (2) is full rank
at the optimal solution of the problem.

Let Y, U , and ∆U denote the hyper-boxes on Y , U ,
and ∆U , respectively, defined by the box constraints
in (2), respectively. The bound-constrained Augmented
Lagrangian function Lρ : Y ×U ×∆U ×RTny ×RTnu → R
is given by
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Lρ(Y, U,∆U,Λ,Γ) =
1

2

T∑
t=1

‖(yt − rt)‖2Wy + ‖∆ut−1‖2W∆u

+

T∑
t=1

λ′
t

(
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

)

+
T∑

t=1

γ′
t (ut−2 +∆ut−1 − ut−1)

+
ρ

2

T∑
t=1

∥∥∥∥∥
na∑
i=1

A(i)yt−i +

nb∑
i=1

B(i)ut−i − yt

∥∥∥∥∥
2

2

+
ρ

2

T∑
t=1

‖ut−2 +∆ut−1 − ut−1‖ ‖22

(3)
where Λ = {λt} and Γ = {γt}, ∀t = 1, . . . , T are the dual
vectors associated with the equality constraints induced
by the ARX model and the input increments, respectively,
and ρ is the penalty parameter. According to Bertsekas
(2014), the scaled AL method (ALM) iterates the following
updates

(Y k, Uk,∆Uk) = argmin
1

ρ
Lρ(Y, U,∆U,Λk−1,Γk−1)(4a)

λk
t = λk−1

t +

na∑
i=1

A(i)ykt−i +

nb∑
j=1

B(i)uk
t−i − ykt

, ∀t = 1, . . . , T

(4b)

γk
t = γk−1

t + uk
t−1 +∆uk

t − uk
t , ∀t = 1, . . . , T(4c)

The minimization step (4a) updates the primal vector,
Steps (4b) and (4c) update the dual vectors. We refer the
reader to Bertsekas (2014) for a well-known convergence
proof of ALM under Assumptions 1, 2. To improve the
speed of convergence of ALM, Kang et al. (2015) proposed
an accelerated version of ALM whose convergence rate is
O(1/k2) for linearly constrained convex programs by using
Nesterov’s acceleration technique, see Nesterov (1983).
The accelerated ALM algorithm for MPC problems has
been summarized in Wu and Bemporad (2023).

3.2 Coordinate-descent method

Sub-problem (4a) is a strongly convex box-constrained
QP problem, which can be solved by many methods.
Among others, as showed in Wu and Bemporad (2023),
problem (4a) can be solved by a simple coordinate-descent
method, which minimizes the objective function along only
one coordinate direction at each iteration while keeping
the other coordinates fixed, see Luo and Tseng (1992).
A convergence proof of at-least linear convergence when
solving convex differentiable minimization problems was
provided in Luo and Tseng (1992). Under Assumption 1
(non-emptyness of the feasible set) and since the objective
function Lρ(·) is continuously differentiable and convex
with respect to each coordinate, the CD method proceeds
repeatedly for k = 1, 2, . . . , as follows:

choose jk ∈ {1, 2, . . . , nz} (5a)

zkjk = argmin
zjk∈Z

1

ρ
Lρ(zjk , z

k−1
�=jk

,Λk−1,Γk−1) (5b)

Procedure 1 Full pass of cyclic coordinate descent on all
block variables
Input: Λ = {λ1, . . . , λT }, Γ = {γ1, . . . , γT },
Y = {y1, · · · , yT }, U = {u0, · · · , uT−1}, ∆U =
{∆u0, · · · ,∆uT−1}; MPC settings A(1), . . . , A(na),
B(1), . . . , B(nb), W y, W∆u, ymin, ymax, umin, umax,
∆umin, ∆umax; parameter σ, ρ > 0.

1. σ ← 0;
2. for t = 1, . . . , T − 1 do

2.1. j = min(na, T − t);

2.2. {yt, σ} ← CCD{ 1
ρW

y + I +
∑j

i=1 A(i)′A(i), et,

σ}ymax
ymin

;
2.3. j = min(nb, T − t+ 1);

2.4. {ut−1, σ} ← CCD{2I +
∑j

i=1 B(i)′B(i), ft,
σ}umax

umin
;

2.5. {∆ut, σ} ← CCD{ 1
ρW

∆u + I, gt, σ}∆umax

∆umin
;

3. {yT , σ} ← CCD{ 1
ρW

y + I, eT , σ}ymax
ymin

;

4. {uT−1, σ} ← CCD{I +B(1)′B(1), fT , σ}umax
umin

;

5. {∆uT−1, σ} ← CCD{ 1
ρW

∆u + I, gT , σ}∆umax

∆umin
;

6. end.

Output: Y , U , ∆U , Λ, Γ, σ.

where z =
[
y′1 u′

0 ∆u′
0 . . . y′T u′

T−1 ∆u′
T−1

]′
is the opti-

mization vector, z ∈ Z � Y × U × ∆U , Z ⊆ Rnz , nz �
T (ny + nu + nu). We denote by Lρ(zjk , z

k−1
�=jk

,Λk−1,Γk−1)

the value Lρ(z,Λ
k−1,Γk−1) when z �=jk = zk�=jk

is fixed.
Here z �=jk denotes the subvector obtained from z by elim-
inating its jkth component zjk . The convergence of the
iterations (5) depends on the coordinate picking rule,
namely how jk is chosen. Existing research works have
analyzed the influence of different coordinate selection
rules such as the cyclic rule and the random selection
rule, on the convergence rate of the coordinate descent
method. We choose the simplest variant using cyclic coor-
dinate search to favor implementation simplicity. In fact,
the cyclic implementation preserves the order of optimiza-
tion variables with respect to the prediction horizon t,
type (output y, input u, or input increment ∆u), and
component, so that reconstructing the coordinate that is
currently optimized in is immediate. The implementation
of one pass through all nz coordinates using cyclic CD
is reported in Procedure 1. In Procedure 1, the operator
{s, σ} = CCD{M,d, σ}s̄s represents one pass iteration of
the reverse cyclic CDmethod through all its ns coordinates
s1, . . . , sns for the box-constrained QP mins∈[s,s̄]

1
2s

′Ms+
s′d, that is to execute the following ns iterations

for i = 1, . . . , ns

ŝi ← max(si,min(s̄i, si −
1

Mi,i
(Mi,·s+ di))

σ ← σ + (ŝi − si)
2

si ← ŝi
end

(6)

The quantities et, ft, gt used in Procedure 1 are defined for
t = 1, 2, · · · , T as follows:
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Algorithm 3 Accelerated cyclic CDAL algorithm for
ARX-based MPC
Input: primal/dual warm-start Y = {y1, y2, · · · , yT },
U = {u0, u1, · · · , uT−1}, ∆U = {∆u0,∆u1, · · · ,∆uT−1},
Λ−1 = Λ0 = {λ1, λ2, · · · , λT }, Γ−1 = Γ0 =
{γ1, γ2, · · · , γT }; History input and output data
{y0, y−1, . . . , y1−na}, {u−1, u−2, . . . , u1−nb

}; MPC settings
{A(1), A(2), . . . , A(na), B(1), B(2), . . . , B(nb), W

y, W∆u,
ymin, ymax, umin, umax, ∆umin, ∆umax}; Algorithm set-
tings {ρ,Nout, Nin εout, εin}

1. α1 ← 1; Λ̂0 ← Λ0; Γ̂0 ← Γ0;
2. for k = 1, 2, · · · , Nout do

2.1. for t = 1, 2, · · · , T do

2.1.1. λk
t = λ̂k−1

t + (
∑na

i=1 A(i)y
k
t−i +∑nb

j=1 B(i)uk
t−i − ykt )

2.1.2. γk
t = γ̂k−1

t + (uk
t−2 +∆uk

t−1 − uk
t−1);

2.2. for kin = 1, 2, · · · , Nin do
2.2.1. (Y, U,∆U, σ) ← Procedure 1 with use of

Procedure 2;
2.2.2. if σ ≤ εin break the loop;

2.3. if ‖Λk − Λ̂k−1‖22 + ‖Γk − Γ̂k−1‖22 ≤ εout stop;

2.4. αk+1 ← 1+
√

1+4α2
k

2 ;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

Output: Y, U,∆U,Λ,Γ

cost of the online construction step. We tested CDAL-
ARX on randomly-generated two-input-two-output
ARX models with order na = 4 and nb = 4
and time-varying system matrices. For demonstration
purposes, here below we report one instance of them,
whose ARX coefficient matrices At(1), . . . , At(4),
Bt(1), . . . , Bt(4) at time t are given by

A(i)t = A(i) + 0.1M t, i = 1, . . . 4
B(i)t = B(i) + 0.1M t, i = 1, . . . 4

(8)

where A(1)=
[
0.9 0.1

0.1 0.9

]
, A(2)=

[
0.7 0.1

0.1 0.7

]
, A(3)

=
[
0.5 0.1

0.1 0.5

]
, A(4)=

[
0.3 0.1

0.1 0.3

]
, B(1)=[

1 0.5

0.5 1

]
, B(2)=

[
0.8 0.4

0.4 0.8

]
, B(3)=

[
0.6 0.3

0.3 0.6

]

, B(4)=
[
0.4 0.2

0.2 0.4

]
,M t=


 sin(

t

10
) cos(

t

10
)

cos(
t

10
) sin(

t

10
)


 .

(2) DNN-based LPV-ARX model example: We tested on
CDAL-ARX on randomly-generated two-input-two-
output quasi-LPV-ARXmodels of larger order na = 6
and nb = 6, whose coefficient matrices are piecewise
affine (PWA) maps of the scheduling vector wt−1[

yt(1)
yt(2)

]
=

[
N1(wt−1)

′

N2(wt−1)
′

]
xt−1 (9)

where xt−1 =
[
y′t−1, . . . , y

′
t−6, u

′
t−1, . . . , u

′
t−6

]′ ∈ R24,

wt−1 =
[
y′t−1, . . . , y

′
t−6, u

′
t−2, . . . , u

′
t−6

]′ ∈ R22, and

N1,N2 ∈ R22 → R24 are deep feedforward neural net-
works with three layers and ReLU activation function,
namelyN1(wt−1)=W1,3 max(0,W1,2 max(0,W1,1wt−1

+b1,1)+b1,2)+b1,3,N2(wt−1)=W2,3 max(0,W2,2 max(0,
W2,1wt−1 + b2,1) + b2,2) + b2,3. Here we choose the
number of neurons in each hidden layer as three

times the number of inputs according to Serra et al.
(2018), that is, W1,1 and W2,1 ∈ R66×22, b1,1 and
b2,1 ∈ R66, W1,2 and W2,2 ∈ R66×66, b1,2 and
b2,2 ∈ R66, W1,3 and W2,3 ∈ R24×66, b1,3 and
b2,3 ∈ R24. For demonstration purposes, we de-
fine b1,3, b2,3 by collecting the coefficients defining
A(1), . . . , A(4), A(4), A(4), B(1), . . . , B(4), B(4), B(4)
as in (8); the remaining network parameters are ran-
domly generated uniformly between 0 and 0.1. At
each time t, the linear model consumed by our CDAL-
ARX algorithm is given by evaluating the deep ReLU
networks as in (9).

In both examples, we use the same MPC parameters
Wy = I,W∆u = 0.1I, [ymin, ymax] = [−1, 1], [umin, umax] =
[−1, 1], [∆umin,∆umax] = [−1, 1]. Different prediction
horizon lengths T are used to investigate numerical per-
formance, namely T = 10, 20, and 30. Their history input-
output conditions are both zeros. For example, y−3 =
y−2 = y−1 = y0 = [0 0]′, and u−3 = u−2 = u−1 = [0 0]′

for the first case. In the two examples, the closed-loop
simulation is run over 200 sampling steps, and the desired
references for y1 and y2 are randomly changed every 20
steps. Warm-start used in all solvers (qpOASES, OSQP,
CDAL-ARX). We keep default solver settings in both
qpOASES and OSQP, so that they produce solutions of
similar precision, that is measured in terms of Euclidean
distance (since qpOASES belongs to the class of active-set
methods, in principle it always provides a high-precision
solution at termination, so its solution quality cannot be
tuned as easily as in the case of ADMM). For a fair
comparison, in the two examples we set εin = 10−6 and
εout = 10−6 under ρ = 1 to define the stopping criteria
of our CDAL-ARX solver, so to obtain closed-loop control
sequences with similar precision. In both examples, the
generated closed-loop simulation results are almost indis-
tinguishable, see Figures 1(a) and 1(b), respectively, which
show good tracking performance and no violation in input
and output constraints.

Using the qpOASES and OSQP solvers require the online
construction of the QP problem, whose computation time
must be counted in the total time. Table 1 lists the solution
time of CDAL-ARX and lists the construction and solution
time when using qpOASES (condensed construction) and
OSQP (sparse construction). From Table 1 it can be
noticed that CDAL-ARX is always solving the MPC
problem in a smaller CPU time, when compared to the sum
of construction and solution time of qpOASES and OSQP.
Moreover, as the prediction horizon increases, qpOASES
and OSQP may fail to solve the problem due to the ill-
conditioning issue. Note also that the computation time of
CDAL-ARX is often shorter than the pure solution time of
qpOASES and OSQP (i.e., not counting the construction
time), which seems to indicate that the reported speed-
ups are due to both adopting the proposed augmented
Lagrangian method and avoiding the the construction
step.

5. CONCLUSION

This paper introduced a solution algorithm for solving
MPC problems based on ARX models that avoids con-
structing the associated QP problem explicitly. Due to its

et = −W yr − (λt +

na∑
i=1

A(i)yt−i +

nb∑
i

B(i)ut−i)

+

min(na,T−t)∑
ni=1

A(ni)
′(λt+ni +

na∑
i�=ni

A(i)yt+ni−i

+

nb∑
i=1

B(i)ut+ni−i − yt+ni)

ft = −(γt + ut−2 +∆ut−1) + (γt+1 +∆ut + ut)

+

min(nb,T−t+1)∑
ni=1

B(ni)
′(λt+ni +

na∑
i=1

A(i)yt+ni−i

+

nb∑
i�=ni

B(i)ut+ni−i − yt+ni
)

gt = γt + ut−2 − ut−1

eT = −W yr − (λT +

na∑
i=1

A(i)yT−i +

nb∑
i=1

B(i)uT−i)

fT = −(γT + uT−2 +∆uT−1) +B(1)′(λT

+

na∑
i=1

A(i)yT−i +

nb∑
i�=1

B(i)uT−i − yT )

gT = γT + uT−2 − uT−1

which shows that they involve several matrix-vectors mul-
tiplications. It would greatly affect the computation effi-
ciency since their computational cost is proportional to the
product of the inner iterations and the outer iterations.
To eliminate their explicit calculation, we propose here
below an efficient coupling scheme between CD and AL
that reduces the cost per iteration, without changing the
rate of convergence of the algorithm.

3.3 Efficient coupling scheme between CD and AL

Our proposed efficient coupling scheme exploits the fact
that CD only updates one coordinate each time, and the
execution (6) of the operator CCD(·) involves the next
update of dual Lagrangian vectors. Here we take Step 2.2
of Procedure 1 as an example, which has been modified
from equation (6) to Procedure 2. Note that the dual
Lagrangian vectors used in Procedure 2 have been updated
before Procedure 2. The symbols {Dy

0 , D
y
1 , . . . , D

y
T−1} de-

note the diagonal elements of their Hessian matrices used
in Step 2.2 and 3

for t = 1, . . . , T − 1
j = min(na, T − t);

Dy
t ← diag

(
1

ρ
W y + I +

j∑
i=1

A(i)′A(i)

)

end

Dy
T−1 ← 1

ρ
W y + I

(7)

To avoid repeating division operations, the values { 1
Dy

0
,

1
Dy

1
, . . . , 1

Dy
T−1

} are cached before the iterations start. The

other steps involving the operator CCD(·) in Procedure 1
follow the same idea.

Procedure 2 One pass of cyclic coordinate descent for
Step 2.2 of Procedure 1 after using efficient coupling
scheme
Input: j = min(na, T − t); yt+1, λt, λt+1, . . . , λt+j ;
parameter ρ > 0; update amount σ ≥ 0.

1. for i = 1, . . . , ny do

1.1. s ← −λt,i +
∑j

ni=1 A(ni)
′
:,iλt+ni

;

1.2. θ ←
[
yt,i −

1
ρW

y
i
(yt,i−ri)+s

Dy
t,i

]ymax,i

ymin,i

;

1.3. ∆ ← θ − yt,i;
1.4. σ ← σ +∆2;
1.5. yt,i ← θ;
1.6. λt,i ← λt,i +∆;
1.7. for ni = 1, . . . , j do

1.7.1. λt+ni ← λt+ni +∆ ·A(ni):,i
2. end.

Output: yt, λt, λt+1, . . . , λt+j , σ.

3.4 Algorithm

Summarizing all the ingredients described in the previ-
ous sections, we obtain the construction-free ARX-based
MPC Algorithm 3, which we call CDAL-ARX. Here,
construction-free means that CDAL-ARX directly uses the
ARX model coefficients without the need of constructing
a QP problem explicitly. Note that the main update of
the Lagrangian variables in Algorithm 3 is placed early
in Step 2.1, which is different from the original version of
Algorithm 1 in Wu and Bemporad (2023) because the CD
method allows the use of our proposed efficient coupling
scheme. The quantities Nout and Nin denote the maximum
number of AL (outer-loop) and CD (inner-loop) iterations,
respectively. The tolerances εout and εin define the stopping
criteria of the outer and inner iterations, respectively.

4. NUMERICAL EXAMPLES

In this section, we test our proposed ARX-based MPC
algorithm against other MPC solvers, which rely on con-
densed or sparse MPC-to-QP construction, respectively.
The best choice between condensed and sparse QP forms
mainly depends on the number of outputs ny, control
inputs nu, and the length of the prediction horizon T ,
see Kouzoupis et al. (2015). For numerical comparisons
with our ARX-based MPC algorithm, this paper consid-
ers both condensed and sparse MPC-to-QP constructions,
which are then solved by the qpOASES (Ferreau et al.
(2014)) and OSQP (Stellato et al. (2020)), respectively.
The reported comparison simulation results were obtained
on a MacBook Pro with a 2.7 GHz 4-core Intel Core i7
and 16GB RAM. Algorithm 3, qpOASES v3.2 and OSQP
v0.6.2 are all executed in MATLAB R2020a via their C-
mex implementations.

4.1 Problem descriptions

(1) Time-varying ARX model example: one notable fea-
ture of ARX models is their ease to be updated
at runtime, which makes them particularly appeal-
ing when the system dynamics cannot be well cap-
tured by a single linear time-invariant model. Our
CDAL-ARX algorithm can take advantage of its
construction-free feature to avoid the computation
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Algorithm 3 Accelerated cyclic CDAL algorithm for
ARX-based MPC
Input: primal/dual warm-start Y = {y1, y2, · · · , yT },
U = {u0, u1, · · · , uT−1}, ∆U = {∆u0,∆u1, · · · ,∆uT−1},
Λ−1 = Λ0 = {λ1, λ2, · · · , λT }, Γ−1 = Γ0 =
{γ1, γ2, · · · , γT }; History input and output data
{y0, y−1, . . . , y1−na}, {u−1, u−2, . . . , u1−nb

}; MPC settings
{A(1), A(2), . . . , A(na), B(1), B(2), . . . , B(nb), W

y, W∆u,
ymin, ymax, umin, umax, ∆umin, ∆umax}; Algorithm set-
tings {ρ,Nout, Nin εout, εin}

1. α1 ← 1; Λ̂0 ← Λ0; Γ̂0 ← Γ0;
2. for k = 1, 2, · · · , Nout do

2.1. for t = 1, 2, · · · , T do

2.1.1. λk
t = λ̂k−1

t + (
∑na

i=1 A(i)ykt−i +∑nb

j=1 B(i)uk
t−i − ykt )

2.1.2. γk
t = γ̂k−1

t + (uk
t−2 +∆uk

t−1 − uk
t−1);

2.2. for kin = 1, 2, · · · , Nin do
2.2.1. (Y, U,∆U, σ) ← Procedure 1 with use of

Procedure 2;
2.2.2. if σ ≤ εin break the loop;

2.3. if ‖Λk − Λ̂k−1‖22 + ‖Γk − Γ̂k−1‖22 ≤ εout stop;

2.4. αk+1 ← 1+
√

1+4α2
k

2 ;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

3. end.

Output: Y, U,∆U,Λ,Γ

cost of the online construction step. We tested CDAL-
ARX on randomly-generated two-input-two-output
ARX models with order na = 4 and nb = 4
and time-varying system matrices. For demonstration
purposes, here below we report one instance of them,
whose ARX coefficient matrices At(1), . . . , At(4),
Bt(1), . . . , Bt(4) at time t are given by

A(i)t = A(i) + 0.1M t, i = 1, . . . 4
B(i)t = B(i) + 0.1M t, i = 1, . . . 4

(8)

where A(1)=
[
0.9 0.1

0.1 0.9

]
, A(2)=

[
0.7 0.1

0.1 0.7

]
, A(3)

=
[
0.5 0.1

0.1 0.5

]
, A(4)=

[
0.3 0.1

0.1 0.3

]
, B(1)=[

1 0.5

0.5 1

]
, B(2)=

[
0.8 0.4

0.4 0.8

]
, B(3)=

[
0.6 0.3

0.3 0.6

]

, B(4)=
[
0.4 0.2

0.2 0.4

]
,M t=


 sin(

t

10
) cos(

t

10
)

cos(
t

10
) sin(

t

10
)


 .

(2) DNN-based LPV-ARX model example: We tested on
CDAL-ARX on randomly-generated two-input-two-
output quasi-LPV-ARXmodels of larger order na = 6
and nb = 6, whose coefficient matrices are piecewise
affine (PWA) maps of the scheduling vector wt−1[

yt(1)
yt(2)

]
=

[
N1(wt−1)

′

N2(wt−1)
′

]
xt−1 (9)

where xt−1 =
[
y′t−1, . . . , y

′
t−6, u

′
t−1, . . . , u

′
t−6

]′ ∈ R24,

wt−1 =
[
y′t−1, . . . , y

′
t−6, u

′
t−2, . . . , u

′
t−6

]′ ∈ R22, and

N1,N2 ∈ R22 → R24 are deep feedforward neural net-
works with three layers and ReLU activation function,
namelyN1(wt−1)=W1,3 max(0,W1,2 max(0,W1,1wt−1

+b1,1)+b1,2)+b1,3,N2(wt−1)=W2,3 max(0,W2,2 max(0,
W2,1wt−1 + b2,1) + b2,2) + b2,3. Here we choose the
number of neurons in each hidden layer as three

times the number of inputs according to Serra et al.
(2018), that is, W1,1 and W2,1 ∈ R66×22, b1,1 and
b2,1 ∈ R66, W1,2 and W2,2 ∈ R66×66, b1,2 and
b2,2 ∈ R66, W1,3 and W2,3 ∈ R24×66, b1,3 and
b2,3 ∈ R24. For demonstration purposes, we de-
fine b1,3, b2,3 by collecting the coefficients defining
A(1), . . . , A(4), A(4), A(4), B(1), . . . , B(4), B(4), B(4)
as in (8); the remaining network parameters are ran-
domly generated uniformly between 0 and 0.1. At
each time t, the linear model consumed by our CDAL-
ARX algorithm is given by evaluating the deep ReLU
networks as in (9).

In both examples, we use the same MPC parameters
Wy = I,W∆u = 0.1I, [ymin, ymax] = [−1, 1], [umin, umax] =
[−1, 1], [∆umin,∆umax] = [−1, 1]. Different prediction
horizon lengths T are used to investigate numerical per-
formance, namely T = 10, 20, and 30. Their history input-
output conditions are both zeros. For example, y−3 =
y−2 = y−1 = y0 = [0 0]′, and u−3 = u−2 = u−1 = [0 0]′

for the first case. In the two examples, the closed-loop
simulation is run over 200 sampling steps, and the desired
references for y1 and y2 are randomly changed every 20
steps. Warm-start used in all solvers (qpOASES, OSQP,
CDAL-ARX). We keep default solver settings in both
qpOASES and OSQP, so that they produce solutions of
similar precision, that is measured in terms of Euclidean
distance (since qpOASES belongs to the class of active-set
methods, in principle it always provides a high-precision
solution at termination, so its solution quality cannot be
tuned as easily as in the case of ADMM). For a fair
comparison, in the two examples we set εin = 10−6 and
εout = 10−6 under ρ = 1 to define the stopping criteria
of our CDAL-ARX solver, so to obtain closed-loop control
sequences with similar precision. In both examples, the
generated closed-loop simulation results are almost indis-
tinguishable, see Figures 1(a) and 1(b), respectively, which
show good tracking performance and no violation in input
and output constraints.

Using the qpOASES and OSQP solvers require the online
construction of the QP problem, whose computation time
must be counted in the total time. Table 1 lists the solution
time of CDAL-ARX and lists the construction and solution
time when using qpOASES (condensed construction) and
OSQP (sparse construction). From Table 1 it can be
noticed that CDAL-ARX is always solving the MPC
problem in a smaller CPU time, when compared to the sum
of construction and solution time of qpOASES and OSQP.
Moreover, as the prediction horizon increases, qpOASES
and OSQP may fail to solve the problem due to the ill-
conditioning issue. Note also that the computation time of
CDAL-ARX is often shorter than the pure solution time of
qpOASES and OSQP (i.e., not counting the construction
time), which seems to indicate that the reported speed-
ups are due to both adopting the proposed augmented
Lagrangian method and avoiding the the construction
step.

5. CONCLUSION

This paper introduced a solution algorithm for solving
MPC problems based on ARX models that avoids con-
structing the associated QP problem explicitly. Due to its
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(a) Time-varying ARX model
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(b) DNN-based LPV-ARX model

Fig. 1. Closed-loop tracking results

Table 1. Computation time (ms) of CDAL-
ARX and comparison with other solvers

Examples T CDAL-ARX qpOASES OSQP
avg, max avg, max avg, max

Time-varying

10 0.14, 1.5 0.42*, 2.8* 0.41*, 2.9*

ARX

0.08†, 1.4† 0.18†, 0.92†

20 0.25, 2.8 1.2*, 6.3* 1.0*, 3.8*

0.18†, 4.4† 1.9†, 17†

30 0.36, 3.6 2.6*, 10.2* 2.4*, 8.1*

fail 22†, 48†

DNN-based

10 0.51, 2.5 0.46*, 3.2* 0.42*, 3.6*

LPV-ARX

0.57†, 3.9† 1.1†, 14†

20 1.2, 4.6 1.2*, 5.5* 0.97*, 4.5*

fail 16†, 32†

30 2.0, 7.3 3.1*, 10.8* 2.8*, 8.9*

fail fail

*construction time, †solution time. For qpOASES and OSQP
the time to evaluate the MPC law is the sum of construction
and solution time.

matrix-free and library-free features, the proposed CDAL-
ARX algorithm can be useful in adaptive embedded linear
MPC applications based on ARX models, especially when
combined with a fast and robust recursive linear identi-
fication method. Future research will address extending
the method to handle soft output constraints, so to relax
Assumption 1.
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