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Abstract. The structure of many financial networks is protected by pri-
vacy and has to be inferred from aggregate observables. Here we consider
one of the most successful network reconstruction methods, producing
random graphs with desired link density and where the observed con-
straints (related to the market size of each node) are replicated as aver-
ages over the graph ensemble, but not in individual realizations. We show
that there is a minimum critical link density below which the method
exhibits an ‘unreconstructability’ phase where at least one of the con-
straints, while still reproduced on average, is far from its expected value
in typical individual realizations. We establish the scaling of the critical
density for various theoretical and empirical distributions of interbank
assets and liabilities, showing that the threshold differs from the critical
densities for the onset of the giant component and of the unique com-
ponent in the graph. We also find that, while dense networks are always
reconstructable, sparse networks are unreconstructable if their structure
is homogeneous, while they can display a crossover to reconstructability
if they have an appropriate core-periphery or heterogeneous structure.
Since the reconstructability of interbank networks is related to market
clearing, our results suggest that central bank interventions aimed at
lowering the density of links should take network structure into account
to avoid unintentional liquidity crises where the supply and demand of
all financial institutions cannot be matched simultaneously.

Keywords: Network Reconstruction · Random Graphs · Financial Net-
works

1 Introduction

The interactions between the components of social, biological and economic sys-
tems are frequently unknown. In the case of financial networks, where nodes
represent financial institutions (such as banks) and links represent credit rela-
tionships (such as loans), only aggregate exposures are observable due to con-
fidentiality issues [1]. This means that only the total exposure of each node
towards the aggregate of all other nodes is known. The field of network re-
construction is interested in devising methods that make the best use of the
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available partial information to infer the original network [2]. Among the prob-
abilistic reconstruction techniques, particularly successful are those based on
the maximum entropy principle [3]. By maximizing the entropy, which is an
information-theoretic notion of uncertainty encoded in a probability distribu-
tion [4], these models generate the least biased distribution of random network
configurations consistent with the constraints derived from the observed aggre-
gate information. Clearly, the goodness of the reconstruction depends on the
choice of the constraints: certain constraints are more informative, while others
are less. Different implementations of the maximum entropy principle, originat-
ing from different choices of constraints, have been considered [2,5,6,7,8]. As a
common aspect, these methods are ensemble ones as they generate not a single,
but a whole set of random configurations that are compatible on average with
the available data.

In this work we introduce the problem of reconstructability of the network
under ensemble methods. Reconstructability is achieved when all the constraints,
besides being reproduced on average, are also ‘sufficiently close’ to their expected
value in individual typical realizations of the ensemble. We will first define this
notion rigorously and then explore the role of the available empirical properties
in making the network more or less easily reconstructable. Using both analytical
calculations and empirical data, we study how the realized values of the con-
straints fluctuate around the empirical values as a function of network density.
We find a minimum critical network density which is typically safely exceeded
in the unrealistically dense regime, but not necessarily in the sparse regime of
interest for real-world financial networks. If the network density is lower than
the critical threshold, in typical configurations of the reconstructed networks
the realized constraints are displaced away from the desired, observed values.
These displacements are critical from the point of view of systemic risk. In-
deed, if any of the many network-based models for financial shock propagation
[9,10,11,12,13,14] (which are quite sensitive to the underlying topology of the
network) is run on realizations of a network reconstruction method, a misalign-
ment between the realized constraints and the empirical ones could severely bias
the model-based estimation of systemic risk. Moreover, since reconstructability
can be understood as related to decentralized market clearing (where all con-
straints are met simultaneously via purely pairwise matchings), the lack thereof
might have adverse implications in terms of illiquidity of the interbank system.
Therefore the possibility of a crossover to unreconstructability suggests that reg-
ulatory authorities should monitor the density of interbank relationships with
an increased awareness.

The rest of the paper is structured as follows: Sec. 2 introduces the general
formalism and method, Sec. 3 illustrates some reference cases that are analyt-
ically tractable, Sec. 4 makes a technical check of the role played by self-loops
to warrant the validity of the general approach, Sec. 5 looks at empirical data
from the Bankscope dataset and uses them to extrapolate the results to realistic
regimes, and finally Sec. 6 provides final remarks and conclusions.
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2 General setting

2.1 The reconstruction method

Links in financial networks correspond to exposures, e.g. they indicate the amount
of money that a bank has borrowed from another bank in a certain time window.
Individual links are unobservable, while the sum of the outgoing link weights and
the sum of the incoming link weights for each node are both observable, as they
represent the total interbank assets and the total interbank liabilities that can
be derived from the balance sheet of the corresponding institution. While these
relationships are clearly directional, for simplicity in this paper we will frame
the problem within the context of undirected networks, where we interpret each
link as representing the bilateral exposure (the sum of the exposure in both
directions) between two nodes. This does not change the essence of the phe-
nomenology we address in this paper, i.e. the identification of a regime where
the margins of the empirical network cannot be properly replicated in individual
reconstructed networks, even if they are still replicated on average.

We denote the weights of the links of the (unobserved) original network as
{w∗

ij}ij (where w∗
ij = w∗

ji > 0 denotes the amount of the bilateral exposure
between nodes i and j, while w∗

ij = 0 denotes the absence of a link) and we
arrange these weights into aN×N symmetric matrix W∗. We assume that, while
we cannot observe W∗, we can observe its margins, i.e. the so-called strength

s∗i ≡
N∑
j=1

w∗
ij (1)

of each node i (i = 1, N). This quantity represents the sum of the interbank
assets and the interbank liabilities for node i. Let us denote with s∗ the N -
dimensional vector of entries {s∗i }, i.e. the (observable) strength sequence of the
(unobservable) empirical network.

Clearly, inferring W∗ from s∗ with certainty is impossible, and this is the
main drawback of deterministic reconstruction methods that identify a single
possible solution to the reconstruction problem [2]. By contrast, probabilistic
methods look for a solution, given s∗, in terms of a probability distribution
P (A) over the set {A} of all N × N symmetric binary adjacency matrices
(where the entry aij of one such matrix is aij = 1 if a link between nodes i
and j is present, and aij = 0 otherwise). This ensures that the unobserved adja-
cency matrix A∗ corresponding to the unobserved weighted matrix W∗ (where
a∗ij = 1 if w∗

ij > 0 and a∗ij = 0 if w∗
ij = 0) is a member of this ensemble and

is therefore assigned a non-zero probability P (A∗). Given each generated ad-
jacency matrix, a procedure to assign a weight to each realized link must also
be designed [2]. This step turns the random ensemble of binary matrices into a
random ensemble of weighted matrices where the entry wij of a generic matrix
W is a random variable, not to be confused with the deterministic (unknown)
value w∗

ij . Similarly, the strength si =
∑N
j=1 wij is a random variable, not to

be confused with the deterministic (known) value s∗i , and finally the total link
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weight W =
∑
i

∑
j<i wij =

∑N
i=1 si/2 is a random variable, not to be confused

with the total (known) weight W ∗ =
∑N
i=1 s

∗
i /2.

In particular, we consider a successful reconstruction method, proposed in
various variants [7,15,16], where the probability P (A) is factorized over pairs
of nodes, i.e. the edges of the graph are assumed to be independent Bernoulli
random variables. Specifically, a link between node i and node j is established
with probability

pij(z) =
z s∗i s

∗
j

1 + z s∗i s
∗
j

, (2)

where z is the only free parameter (since s∗ is known) and is chosen in order to
tune the resulting expected link density

d(z) =
2

N(N − 1)

N∑
i=1

∑
j<i

pij(z) (3)

of the reconstructed networks. The specific functional form of the connection
probability in Eq. (2) derives from a maximum-entropy construction where,
morally, one enforces the degree (i.e. the number of links) of each node as a
constraint to be met as an ensemble average [3]. In such a construction, the com-
bined quantity xi ≡

√
zs∗i in Eq. (2) is in principle unrelated to the strength,

as it is technically a transformed Lagrange multiplier required to enforce the
degree of node i. However, since the degree itself is typically not observable in
financial networks, the quantity xi cannot be determined from the data. The
core of the ‘fitness ansatz’ is the observation that, for a few networks whose
structure has been analysed and for which the value of xi has been calculated
from the empirical degrees, this value has been found to display a strong linear
correlation with the empirical strength s∗i of the corresponding node [7]. This
linear correlation suggests that, for networks with unobservable topology, the
undetermined value of xi can be assumed to be proportional (by a factor

√
z)

to the observable strength s∗i , thereby giving rise to Eq. (2). In this way, the
only free parameter is z and its effect is that of controlling for the overall link
density. Now, the empirical density is also not necessarily known, however the
method allows for the exploration of a range of realistic densities as a function
of z, based for instance on published analyses of networks of the same type for
which the empirical density has been documented. Indeed, several real financial
networks are found to be sparse, which means that their empirical density scales
as the inverse of N [10]. This implies that a choice for z could be z = zsparse
where zsparse is such that

d(zsparse) ≃
k

N
, k > 1 (4)

with k finite. Clearly, the value zsparse realizing the above condition depends on
the entire strength sequence, and in general on the strength distribution when
N → ∞.
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Once generated, each binary adjacency matrix A drawn from the ensemble
is ‘dressed’ with link weights. In the simplest specifications of the model [7,15],
the link weights are deterministic functions of the observable margins: if the link
is realized, the random variable wij is assigned a value s∗i s

∗
j

2W∗pij(z)
, otherwise it is

given a zero value. This means that wij is a Bernoulli random variable given by

wij =


s∗i s

∗
j

2W ∗ pij(z)
with probability pij(z),

0 with probability 1− pij(z).
(5)

A variant of this approach where the (conditional) weights on the realized links
are placed not deterministically, but following a second random process result-
ing in exponentially distributed weights, with expected value given again by

s∗i s
∗
j

2W∗pij(z)
, has also been considered [16]. While this approach is found to be

superior from the point of view of the reconstruction of the unobserved weight
matrix (as W∗ is always generated with positive likelihood), our main focus here
is the (simpler) reconstruction of the margins s∗ of W∗ in typical realizations,
for which we can use the specification given by Eq. (5) without loss of general-
ity (exponentially distributed weights around the values considered here do not
change the essence of our results).

Equation (5) ensures that the (unconditional) expected weight of the link
connecting nodes i and j equals

⟨wij⟩ = pij(z)
s∗i s

∗
j

2W ∗ pij(z)
=
s∗i s

∗
j

2W ∗ , (6)

so that the expected strength ⟨si⟩ of each node i equals the corresponding ob-
served strength s∗i (which is a prerequisite for a successful reconstruction):

⟨si⟩ =
N∑
j=1

⟨wij⟩ =
N∑
j=1

s∗i s
∗
j

2W ∗ = s∗i ∀i. (7)

Note that, in the above summations, it is crucial that j takes also the value i
and that the ‘diagonal’ expected value is equal to

⟨wii⟩ =
(s∗i )

2

2W ∗ , (8)

i.e. it must be described by Eq. (6) (with i = j) just like any other ‘non-diagonal’
expected weight. This means that, actually, the ensemble of binary adjacency
matrices should allow for self-loops: the diagonal entry aii should also be a
Bernoulli random variable with probability pii(z) given by Eq. (2) with i = j,
and similarly the entry wii should also follow Eq. (5) with i = j. Therefore,
even if the empirical (unobserved) matrices A∗ and W∗ have no self-loops (as
it makes no sense to say that a bank lends or borrows from itself), the method
needs the generation of self-loops with appropriate probabilities and weights in
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order to ensure that Eq. (7) holds and that all strengths are exactly replicated
on average. What is important for practical purposes is that the self-loops in
the reconstructed ensemble retain a negligible expected weight, so that their
existence does not cause any relevant difference with respect to their absence in
the real matrix W∗. In Sec. 4 we will check that this condition is met for the
cases of relevance for real-world financial networks, and for the moment assume
that self-loops can be safely added to the model as they will not play a crucial
role.

In what follows, we are interested in studying various properties of the model
as a function of N , and eventually in the thermodynamic limit N → ∞. We
assume that, as N increases, the average empirical strength s∗ = N−1

∑N
i=1 s

∗
i

remains finite. This accounts for the fact that, irrespective of how many banks
enter the market, each bank retains a finite value of assets and liabilities. Again,
this regime is consistent with the sparse regime typically observed for real-world
networks. We therefore choose units such that

s∗ = 1, 2W ∗ = Ns∗ = N, (9)

i.e. divide each empirical node strength by the average strength over all nodes.
Later, we will consider different empirical distributions of the node strengths
with average value given by s∗ = 1. Besides its simplicity, this choice of units
has the advantage that, by construction, the average value of the connection
probability pij(z) given by Eq. (2) over all pairs of nodes, which is precisely the
link density given by Eq. (3), is of order z/(1 + z). This implies that, in order
to realize the sparsity condition in Eq. (4), a necessary condition is

zsparse → 0+ for N → +∞. (10)

The necessary condition, i.e. the specific speed with which zsparse has to decay
as N grows, depends on the particular strength distribution, as we will discuss
for explicit examples later.

2.2 Transition from reconstructability to unreconstructability

The above model ensures that the expected value of each constraint matches the
corresponding observed value exactly, i.e. ⟨s⟩ = s∗, however it does not ensure
that all constraints can be met in each realization of the network. This is normal
for any canonical ensemble where the constraints are by construction allowed to
fluctuate around their expected values [3] and is not undesirable, as long as all
constraints are close enough to their observed values in a typical realization of
the network. This means that, for the network to be satisfactorily reconstructed,
a necessary condition is that the relative fluctuation (defined as the ratio of the
standard deviation to the expected value) of the strength of each node vanishes
sufficiently fast in the limit of large N . In other words, we want to avoid the
undesired situation where the typical realizations violate some of the constraints
by an unacceptable amount, even though the expected value of each of them still
coincides with the desired, observed value.
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For the unobserved network W∗ to be reconstructable from the observed
strength sequence s∗ we therefore require that, for each node i, the relative
strength fluctuations

δi(z) ≡
√
vi(z)

⟨si⟩
=

√
vi(z)

s∗i
(11)

decay at least as fast as 1/
√
Nβ , where vi(z) ≡ Var[si] is the variance of si

and β > 0 is some desired exponent. The ‘canonical’ case is β = 1, although
one might in principle allow for more general scenarios. As we now show, this
requirement implies that z should be larger than a critical value zc, i.e. that
the expected network density d(z) defined in Eq. (3) exceeds a critical threshold
dc ≡ d(zc).

Note that if z = +∞ then d(+∞) = 1 and the model has a deterministic
outcome producing only one fully connected network where all strengths are
replicated exactly, with zero variance v(+∞) = 0. At the opposite extreme, if
z = 0 then d(0) = 0 and the model is again deterministic, but the output is now
a single, empty network where none of the strengths are replicated as they are
all zero with zero variance v(0) = 0. The critical value zc we are looking for is an
intermediate value separating a reconstructable phase from an unreconstructable
one, corresponding to a critical scaling for the largest relative fluctuation (as we
want all node strengths to be satisfactorily replicated) given by

max
i

{δi(zc)} = max
i

√
vi(zc)

s∗i
≡

√
cN−β (12)

where c > 0 is a finite constant. Since we want maxi{δi(zc)} < 1 (so that the
standard deviation of the strength does not exceed the expected strength) for
all values of β > 0 including values arbitrarily close to 0, we also require c < 1.

To identify zc we first compute the variance of the weight wij as

Var[wij ] = ⟨w2
ij⟩ − ⟨wij⟩2

= pij(z)
(s∗i s

∗
j )

2

(2W ∗)2 p2ij(z)
− ⟨wij⟩2

=

(
s∗i s

∗
j

2W ∗

)2(
1

pij(z)
− 1

)
=

(
s∗i s

∗
j

2W ∗

)2
1

z s∗i s
∗
j

=
s∗i s

∗
j

(2W ∗)2 z

=
s∗i s

∗
j

N2 z
. (13)
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Next, using the independence of different edges in the graph, we compute the
variance vi(z) of the strength si as

vi(z) =

N∑
j=1

Var[wij ] =
s∗i

2W ∗z
=

s∗i
Nz

(14)

and the resulting relative fluctuations as

δi(z) ≡
√
s∗i /Nz

s∗i
=

1√
N z s∗i

. (15)

Clearly, the largest fluctuation is attained by the node with minimum strength:

max
i

{δi(z)} =
1√

Nzmini{s∗i }
. (16)

Now, imposing that maxi{δi(zc)} equals the critical expression in Eq. (12) im-
plies that the critical value for z is

zc =
Nβ−1

cmini{s∗i }
, (17)

which is essentially driven by the statistics of the minimum strength. This is our
general result. To ensure that all node strengths are replicated satisfactorily in
a typical single realization of the model, we need z > zc. We are particularly
interested in determining whether, in the realistic sparse regime z = zsparse given
by Eq. (4), the network is reconstructable, i.e. whether

zsparse > zc. (18)

Note that the above requirement, combined with the necessary sparsity condition
in Eq. (10), implies another necessary condition:

zc → 0+ for N → +∞. (19)

In what follows, we are going to consider specific theoretical and empirical cases,
corresponding to different distributions f(s∗) of the node strengths.

3 Specific cases

3.1 Homogeneous networks

As a first, trivial example, we consider the case of equal empirical strengths
s∗i = 1 for all i, i.e. f(s∗) = δ(s∗ − 1). Inserting this specification into Eq. (2),
it is clear that the underlying binary network reduces to an Erdős-Rényi (ER)
random graph with homogeneous connection probability

pij(z) =
z

1 + z
≡ p(z) ∀i, j. (20)
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Equation (5) indicates that, when realized, each link gets the same conditional
weight wij = N−1p−1(z) = (1 + z)/(Nz), so that the expected unconditional
weight in Eq. (6) is ⟨wij⟩ = N−1 for each pair of nodes i, j.

Now, since in this particular case p(z) coincides with the expected link density
d(z), Eq. (4) implies that, to have a sparse network, we need z = zsparse with

zsparse ≃
k

N
, k > 1 (21)

so that d(zsparse) =
zsparse

1+zsparse
≃ zsparse = k/N as required. Equation (21) sets

the specific way in which the sparsity condition in Eq. (10) is realized in this
completely homogeneous case. Note that the corresponding relative fluctuations
of the strength are asymptotically constant:

δi(zsparse) =
1√

Nzsparse s∗i
≃ 1√

k s∗i
=

1√
k

∀i (22)

and hence do not vanish in the sparse case. The critical value zc for the recon-
structability found using Eq. (17) is

zc =
1

c
Nβ−1, 0 < β < 1, (23)

where we have enforced the additional requirement β < 1 to realize the nec-
essary condition given in Eq. (19). Indeed, the ‘canonical’ case β = 1 (relative
fluctuations vanishing like 1/

√
N) would yield a finite threshold zc = c−1 > 1

and a finite critical density d(zc) = pc = (1+ c)−1 > 1/2. In this case, in the re-
constructability phase z > zc the network would necessarily be dense. Similarly,
the case β > 1 would yield zc = +∞ and pc = 1, so asymptotically the network
would be a complete graph.

Therefore, in the only possible case 0 < β < 1 for the sparse regime, when
N is large we have zc ≪ 1 and hence pc ≡ p(zc) = zc/(1 + zc) ≃ zc = c−1Nβ−1.
Importantly, pc vanishes more slowly than the critical threshold pgcc ≃ 1/N
associated with the onset of the giant connected component (gcc) in the ER
graph and also more slowly than the critical threshold pucc ≃ logN/N associated
with the onset of an overall connectivity in the ER graph (unique connected
component, ucc). This clarifies that the reconstructability transition considered
here is different from both transitions in the underlying ER model. In particular,
to ensure reconstructability z need be larger than the values required for the
entire network to have a giant and even a unique connected component.

The above results suggest that, at least when all strengths are (nearly) equal
to each other, one should necessarily set 0 < β < 1 (hence deviating from the
canonical choice for the scaling of the relative fluctuations) if the network has
to simultaneously be reconstructable and have a vanishing density d(z) → 0. In
any case, β > 0 implies that zc in Eq. (23) is asymptotically always much larger
than the value zsparse in Eq. (21), which is required to have a realistically sparse
graph with density scaling as in Eq. (4). Therefore the condition in Eq. (18) is
always violated, except possibly for small values ofN . This means that real-world
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networks, if they were simultaneously large, sparse and homogeneous, could not
be reconstructed with the approach considered here. Indeed we see that only for
dense and homogeneous networks, i.e. finite d(z), it is possible to achieve the
reconstructability of the network, with β = 1. Finally, β > 1 is uninteresting as
it leads to a fully connected network.

3.2 Core-periphery structure

We now consider a less trivial setting where we introduce some heterogeneity
in the network in the form of a core-periphery structure, where nodes in the
core have a larger strength and nodes in the periphery have a smaller strength.
The presence of a core-periphery structure has been documented in real financial
networks [17,18,19,20]. For simplicity we assume that all nodes in the core are
still homogeneous, i.e. they all have the same value s∗c of the expected strength,
and the same goes for all nodes in the periphery, i.e. they all have the same
expected strength s∗p, with clearly s∗p < s∗c . We place a fraction q of the N nodes
in the core, i.e. the core has Nc = qN nodes and the periphery has Np = (1−q)N
nodes. Then the distribution of empirical strengths is

f(s∗) = (1− q) δ(s∗ − s∗p) + q δ(s∗ − s∗c) (24)

and, setting s∗ = 1, we get

s∗ = (1− q) s∗p + q s∗c ≡ 1 (25)

where s∗p < 1 < s∗c . Inverting,

q =
1− s∗p
s∗c − s∗p

. (26)

Since mini{s∗i } = s∗p, Eq. (17) indicates that the critical density is achieved by
the condition

zc =
1

c s∗p
Nβ−1, β, c > 0 (27)

whose asymptotic behaviour essentially depends on how s∗p is chosen to scale as
N grows.

As in the previous example, we need to compare the above zc with the value
zsparse given by Eq. (4). To this end, we first compute the expected density
defined in Eq. (3) as

d(z) = dcc(z) + dpp(z) + dcp(z), (28)

where dcc(z), dpp(z) and dcp(z) represent the core-core, periphery-periphery and
core-periphery contributions given by

dcc(z) =
Nc(Nc − 1)

N(N − 1)

z (s∗c)
2

1 + z (s∗c)
2
, (29)
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dpp(z) =
Np(Np − 1)

N(N − 1)

z (s∗p)
2

1 + z (s∗p)
2
, (30)

dcp(z) =
2NcNp
N(N − 1)

z s∗c s
∗
p

1 + z s∗c s
∗
p

, (31)

respectively. Next, in order to look for zsparse given by Eq. (4), we need to specify
how Nc, Np, s∗c and s∗p scale with N .

If both Nc and Np grow linearly in N and if both s∗c and s∗p remain finite
(with s∗p < 1 < s∗c), then it is easy to see that the three terms in Eqs. (29), (30)
and (31) are all of the same order and the implied zsparse is inversely proportional
to N , as in the previous example. Again, this means zsparse < zc and the network
is unreconstructable in the sparse regime.

To better exploit the potential of the core-periphery model, we therefore
consider a highly concentrated (or ‘condensed’) case where, as N increases, only
a finite number Nc of nodes remain in the core, while the size Np = N − Nc
of the periphery grows extensively in N . We also assume that the strength of
peripheral nodes decreases with N as

s∗p ≃ αN−η, α, η > 0. (32)

Since q = Nc/N , Eq. (26) implies that asymptotically

s∗c ≃ q−1 = N/Nc. (33)

Inserted into Eqs. (29), (30) and (31), the above specifications imply that dcc(z)
is subleading with respect to dpp(z) and dcp(z). Therefore we can look for zsparse
by setting dpp(zsparse) + dcp(zsparse) ≃ k/N . Taken separately, the requirement
dpp(zsparse) ≃ k1N

−1 for some k1 > 0 implies

zsparse ≃
k1

N(s∗p)
2
≃ k1
α2

N2η−1, 0 < η < 1/2, (34)

where we have enforced the extra condition η < 1/2 to ensure that the exponent
2η − 1 of N is negative, in order to meet the necessary condition given by
Eq. (10). When inserted into dcp(z), Eq. (34) implies dcp(zsparse) ≃ k2/N with
k2 = 2Nc, showing that dpp(zsparse) and dcp(zsparse) are of the same order and
both contribute to the desired scaling d(zsparse) ≃ k/N with k = k1 + k2.

The above scaling of zsparse has to be compared with the reconstructability
threshold zc in Eq. (27) which, for the chosen behaviour of s∗p, reads

zc =
1

c α
Nβ−1+η, α, β, c > 0, 0 < η < 1/2. (35)

Comparing Eqs. (34) and (35), we see that the reconstructability condition
zsparse > zc is met asymptotically (for large N) if

0 < β < η, (36)
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while it is asymptotically violated if 0 < η < β. Indeed the largest relative
fluctuations in the sparse regime, following Eq. (16), are given by

max
i

{δi(zsparse)} =
1√

N zsparse s∗p
≃

√
s∗p
k1

≃
√
α

k1
N−η/2 (37)

and they remain within the critical value given by Eq. (12) (with the identifica-
tion c = α/k1) if the condition in Eq. (36) is met. So, for any chosen β > 0, there
is a critical exponent ηβ ≡ β such that for η > ηβ the network is reconstructable
while for for η < ηβ the network is unreconstructable. Since 0 < η < 1/2, we
see that reconstructability is possible only if 0 < β < 1/2. So, also in this case,
the canonical decay β = 1 of the relative fluctuations cannot be achieved in the
sparse regime.

The core-periphery model considered here is a simple, yet important exam-
ple showing that a sufficiently heterogeneous network structure, by acting on
the statistics of the minimum strength, can imply the presence of two phases
(reconstructability and unreconstructability) in the sparse regime. Contrary to
what naive intuition may suggest by looking at Eq. (17), i.e. that a decreasing
(with N) value of mini{s∗i } could make the reconstructability only more difficult
by increasing the value of zc, actually the net effect might be the opposite if
at the same time zsparse increases as well, sufficiently fast. This circumstance,
which is impossible in the completely homogeneous case discussed in Sec. 3.1, is
precisely what happens in Eq. (34) due to the presence of (s∗p)2, rather than s∗p
itself, in the denominator.

3.3 Arbitrary strength distribution

We now generalize the calculation of the critical reconstructability threshold zc to
the case of an arbitrary empirical strength distribution. To calculate mini=1,N{s∗i }
as a function ofN , we assume that the N values {s∗i }Ni=1 of the empirical strength
are realized via sampling N times (in an i.i.d. manner) from some probability
density function f(s). Then, a simple argument from Extreme Value Theory
indicates that the typical value of the realized minimum strength s∗min(N) =
mini=1,N{s∗i } is such that the expected number of nodes with strength s∗ ≤ s∗min

is of order one, or equivalently

1

N
≃
∫ s∗min(N)

0

f(s) ds. (38)

For a given choice of f(s), inverting the above equation produces the sought-for
scaling of s∗min(N) with N .

We are mainly interested in the behaviour of f(s) for low values s → 0+ of
the strength, because that is the behaviour that determines the statistics of the
minimum strength and the behaviour of the integral in Eq. (38). In particular
we consider the following behaviour

f(s) →s→0+ a sψ−1, a, ψ > 0. (39)
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Inserting this into Eq. (38) we get

1

N
≃ a

∫ smin(N)

0

sψ−1 ds =
a

ψ
sψmin(N) (40)

and, inverting,

smin(N) ≃
(
ψ

a

)1/ψ

N−1/ψ (41)

This implies

zc =
(a/ψ)1/ψ

c
Nβ−1+1/ψ (42)

where, to realize the condition in Eq. (19), we need β−1+1/ψ < 0 or equivalently

ψ > (1− β)−1. (43)

A comparison with Eq. (35) highlights that 1/ψ has an effect on zc similar
to the one that η has in the core-periphery model. Indeed, if in general we have
a scaling of the form

smin(N) ≃ mN−µ m > 0, µ ≥ 0, (44)

then Eq. (17) implies

zc ≃
1

cm
Nβ−1+µ (45)

where, to realize the condition in Eq. (19), we need

0 < µ < 1− β. (46)

In the examples considered so far, µ ≡ 0 (with m ≡ 1) for the homogeneous case
discussed in Sec. 3.1 (confirming that the above inequality cannot be realized),
while µ ≡ η with 0 < η < 1/2 for the core-periphery model discussed in Sec. 3.2
(for which we need 0 < β < 1/2), and finally µ ≡ 1/ψ for the general case
discussed in this Section, for which Eq. (43) has to hold. In order to check for
reconstructability, one should of course calculate also zsparse, which requires the
full knowledge of f(s) and has to be evaluated for the specific case at hand.

4 The role of induced self-loops

As anticipated, we now show that, even though the probabilistic reconstruction
model considered here generates self-loops, the role of the latter in the recon-
structability problem is negligible for the typical regimes of relevance for real-
world networks. We recall that, in our units such that s∗ = 1, the total weight
of all links in the empirical network is W ∗ =

∑N
i=1 s

∗
i /2 = N/2 and its expected

value in the model replicates the empirical value perfectly, i.e. ⟨W ⟩ =W ∗. How-
ever the model, differently from the real network, produces self-loops, each with
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an expected weight ⟨wii⟩ given by Eq. (8). The resulting expected total weight
of self-loops can be calculated as

⟨WSL⟩ =
N∑
i=1

⟨wii⟩ =
N∑
i=1

(s∗i )
2

2W ∗ =
Ns∗2

2W ∗ = s∗2 (47)

where s∗2 =
∑N
i=1(s

∗
i )

2/N is the empirical second moment of the node strengths.
If we require that the weight of all self-loops is negligible with respect to the
expected weight ⟨W ⟩ of all links (including self-loops), we should impose

⟨WSL⟩
⟨W ⟩

=
2s∗2

N
= o(1) =⇒ s∗2 = o(N) (48)

Note that Eq. (48) essentially sets a bound on the second moment, hence on the
right tail, of the strength distribution f(s). This should be combined with the
previous bounds on the left tail.

We now show that the above condition is satisfied in the regimes that are
typical for real-world networks. In particular, if we assume realistic strength
distributions that are observed in empirical financial networks, we should mainly
consider log-normal distributions and distributions with a power-law tail decay
f(s) ≃ b s−γ (with b > 0) for large s. If the second moment of f(s) is finite (as
for the log-normal distribution and the power-law distribution with γ > 3), we
can automatically conclude that Eq. (48) is verified. If the second moment of
f(s) diverges (as for the power-law distribution with γ ≤ 3), we should more
carefully look at how fast this occurs as N grows and check whether Eq. (48) is
still satisfied. We can do so using an Extreme Value Theory argument analogous
to the one in Eq. (38): we can first estimate how the realized maximum strength
s∗max(N) (out of an i.i.d. sample of N values) scales as a function of N , and then
use s∗max(N) to establish how the realized empirical second moment s∗2 scales
with N . Considering the non-trivial case f(s) ≃ b s−γ for large s, we estimate
s∗max(N) in analogy with Eq. (38) as

1

N
≃
∫ +∞

s∗max(N)

f(s) ds ≃ b

∫ +∞

s∗max(N)

s−γ ds, (49)

which leads to (note that γ − 1 > 0)

s∗max(N) ≃
(

b

γ − 1

) 1
γ−1

N
1

γ−1 . (50)
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We can then estimate the scaling of s∗2(N) as follows:

s∗2(N) =

∫ s∗max(N)

0

f(s) s2 ds

≃ b

∫ s∗max(N)

0

s2−γ ds

≃ b

γ − 3
[s∗max(N)]

3−γ

≃ b

γ − 3

(
b

γ − 1

) 3−γ
γ−1

N
3−γ
γ−1 . (51)

To ensure that self-loops contribute only negligibly as stated in Eq. (48), we need
to require (3− γ)/(γ − 1) < 1, which simply boils down to γ > 2. Importantly,
this means that empirical strength distributions that have an asymptotically
diverging second moment are still viable, provided they have an asymptotically
finite first moment. This is indeed what is observed in most real-world finan-
cial networks, where the strength distribution typically has either a log-normal
form or a power-law tail with an exponent in the range 2 < γ < 3. So all our
calculations in the previous sections are justified in the regimes of relevance for
real-world networks.

The same results can be derived more rigorously by analysing the large N
convergence of the probability distribution of the random variable WSL (whose
possible realized values will be denoted as wSL). Let us assume that the proba-
bility distribution f(s) of node strengths does not depend on N , in agreement
with the assumption of sparse networks with 2W ∗ = N . Let us consider the
PDF g(u) of the variable u = s2:

g(u) =
f(
√
u)

2
√
u
.

The PDF p(wSL) of WSL is related to g(u) by

p(wSL) =

∫ ∞

0

· · ·
∫ ∞

0

[
N∏
i=1

dui g(ui)

]
δ

(
wSL −

N∑
i=1

ui
N

)
Consequently, its characteristic function is

p̂(t) =

∫ ∞

0

dwSL p(wSL)e
−twSL =

[∫ ∞

0

du g(u)e−tu/N
]N

. (52)

We have to distinguish two fundamental cases: (i) u has a finite mean value (i.e.
s has a finite variance); (ii) u has diverging mean value (i.e. s has an infinite
variance).

– u = s2 <∞: in this case at small enough t we have∫ ∞

0

du g(u)e−tu/N = 1− u

N
t+ o(t/N) . (53)
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Using this expression in Eq. (52) and taking the large N limit we get

p̂(t) = e−ut . (54)

which is the Laplace transform of p(wSL) = δ(wSL − u). Using Eq. (47) we
can therefore conclude that in this case the relative weight of self-loops is
⟨WSL⟩/⟨W ⟩ = O(1/N), in accordance with Eq. (48). This confirms that log-
normal distributions or power-law distributions with finite variance (γ > 3)
are always acceptable.

– u = s2 → ∞: in this case we consider again the case f(s) ≃ b s−γ at large
s with 1 < γ ≤ 3 (note that γ > 1 is required in order to guarantee the
integrability of the PDF). Consequently g(u) ≃ (b/2)u−(γ+1)/2 at large u
(note that γ > 1 implies (γ+1)/2 > 1 too). By the properties of the Laplace
transform we now have that, at small t,∫ ∞

0

du g(u)e−tu/N = 1−A
|t|(γ−1)/2

N (γ−1)/2
+ o[(|t|/N)(γ−1)/2] (55)

for some finite A. If we now use this expression in Eq. (52) at large but finite
N we have

p̂(t) ≃ e−AN
(3−γ)/2|t|(γ−1)/2

(56)

which implies the typical value WSL ∼ N (3−γ)/(γ−1). Recalling Eq. (47), this
result coincides with Eq. (51). Indeed Eq. (56) implies p(wSL) ∼ w

−(γ+1)/2
SL

for wSL ≫ N (3−γ)/(γ−1) and, in order to have a total measure of order 1 for
the variable WSL, we have to go up to values of order N (3−γ)/(γ−1). From
Eq. (48) we see that the weight of self-loops can be neglected if (3− γ)/(γ−
1) < 1 i.e. 2 < γ < 3. This coincides with the ‘realistic’ regime identified
above.

We can summarize the discussion above by saying that self-loops can be
neglected with respect to the rest of the connections if the empirical strength
distribution has a finite variance (as in log-normal distributions or power-law
distributions with γ > 3) or if it has a power-law tail with 2 < γ < 3 (such
that the mean is finite but the variance diverges). Realistic situations typically
fall into one of those two cases. The next Section provides an empirical example
that confirms this picture.

5 Reconstructed networks from Bankscope Data

5.1 Dataset

The Bureau Van Dijk Bankscope database contains information on banks’ bal-
ance sheets and aggregate exposures. Our dataset consists of a subset of N =
119 anonymized European banks that were publicly traded between 2006 and
2013 [21]. For each of the N banks and each year t in the data, we have access
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Fig. 1: Scatter plot and simple linear regression of the type yi,k(t) = ak(t) · xi(t)
of the Interbank Assets (k = 1), Interbank Liabilities (k = 2), Equity (k = 3),
Total Liabilities (k = 4), and Interbank Assets + Liabilities (k = 5) of each bank
i (i = 1, 119) in year t = 2007, versus the total assets xi(t) of the same bank in
the same year. Data from Bankscope, reported in mil USD.

to the yearly values of total interbank assets, total interbank liabilities, total
assets, total liabilities, and equity.

To characterize the data, we start by noticing that all these bank-specific
variables are strongly linearly correlated, as the plots in Fig. 1 illustrate for year
2007. This observation holds for all the years in the data. Indeed, in Table 1 we
report, for each year t in the data, the fitted proportionality coefficient ak(t) and
the corresponding coefficient of determination R2

k(t) of a simple linear regression
of the type yi,k(t) = ak(t) · xi(t), where the independent variable xi(t) is always
the total assets of bank i in year t and the dependent variable yi,k(t) is the
Interbank Assets (k = 1), Interbank Liabilities (k = 2), Equity (k = 3), Total
Liabilities (k = 4), and Interbank Assets+Liabilities (k = 5) of the same bank
in the same year.

The approximate linearity of all the quantities allows us to proceed with an
undirected description of the data, in line with our discussion so far. We define
the strength of node i as

s∗i = Ai + Li (57)

where Ai and Li are the total interbank assets and interbank liabilities of bank
i, respectively. From now on, we limit ourselves to year 2007 and rescale the
yearly strengths to the average strength so that s∗ = 1, in line with our choice
of units so far.

The set of empirical strengths {s∗i }119i=1 represents the starting point of our
analysis and its empirical cumulative distribution function (CDF) is shown in
Fig. 2a. Since many of our results refer to the behavior of zc and zsparse as N
grows, we also construct synthetic replicas of the dataset for increasing values
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Year t 2006 2007 2008 2009 2010 2011 2012 2013

Interbank Assets 0.11 0.11 0.06 0.06 0.06 0.06 0.05 0.06
Interbank Liabilities 0.12 0.12 0.10 0.08 0.07 0.07 0.06 0.05

ak(t) Equity 0.04 0.04 0.03 0.05 0.05 0.05 0.05 0.05
Total Liabilities 0.96 0.96 0.97 0.95 0.95 0.95 0.95 0.95
Interbank Assets+Liabilities 0.23 0.23 0.16 0.15 0.13 0.13 0.11 0.11

Interbank Assets 0.69 0.74 0.46 0.53 0.47 0.46 0.41 0.44
Interbank Liabilities 0.87 0.88 0.86 0.90 0.86 0.80 0.71 0.65

R2
k(t) Equity 0.87 0.89 0.88 0.92 0.93 0.93 0.92 0.93

Total Liabilities 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Interbank Assets+Liabilities 0.85 0.89 0.78 0.83 0.73 0.69 0.62 0.59

Table 1: Coefficient ak(t) (top) and oefficient of determination R2
k(t) (bottom)

of a simple linear regression of the type yi,k(t) = ak(t) · xi(t), where xi(t) is
the total assets of bank i in year t (for t = 2006, . . . , 2013) and yi,k(t) is the
Interbank Assets (k = 1), Interbank Liabilities (k = 2), Equity (k = 3), Total
Liabilities (k = 4), and Interbank Assets + Liabilities (k = 5) of the same bank
in the same year. Data from Bankscope.

of N . To achieve this, we first fit a log-normal distribution

f(s) =
1

s σ
√
2π

exp

(
− (ln (s)− µ)

2

2σ2

)
, s > 0 (58)

to the empirical distribution of the N = 119 node strengths and then use it to
sample any desired number N of i.i.d. strength values {s∗i }Ni=1 from it. Note that
the theoretical mean value of the log-normal distribution is

s =

∫ +∞

0

f(s) s ds = exp

(
µ+

σ2

2

)
, (59)

therefore, to ensure an expected unit mean value s∗ = 1 for the sampled strengths,
we set µ ≡ −σ2/2, leaving out only the free parameter σ. When fitted to the
data, the latter gets the value σ = 2.28. The resulting theoretical CDF of the
strengths is

F (s) =

∫ s

0

f(x) dx =
1

2

[
1 + erf

(
ln s+ σ2/2

σ
√
2

)]
, s > 0. (60)

Figure 2a shows the good agreement between the empirical CDF of the 119
empirical Bankscope strengths and the CDFs of the corresponding N synthetic
values (for increasing N) sampled from the fitted log-normal distribution with
CDF given by Eq. (60). Note that the accordance with the log-normal distri-
bution automatically ensures that the induced self-loops in the network recon-
struction method do not represent any problem, as discussed in Sec. 4. We will
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Fig. 2: Empirical and synthetic data, using the 2007 Bankscope dataset as a
reference. (a) Cumulative distribution function of the rescaled node strengths
for the Bankscope data (N = 119) and for the synthetic data (for increasing
values of N) drawn from a log-normal distribution fitted to empirical data (with
σ = 2.28 and µ = −σ2/2). (b) Minimum realized strength s∗min(N) as a function
of the number N of nodes. Again, the point at N = 119 is the Bankscope dataset.

confirm this result explicitly later on. We also report, in Fig. 2b, the value of
the realized minimum strength s∗min(N) = mini=1,N{s∗i } as a function of N . As
in our examples considered in Secs. 3.2 and 3.3, s∗min(N) decreases with N , re-
alizing the necessary condition given in Eq. (10) to have a sparse network. The
behaviour of s∗min(N) will also affect the critical value zc given by Eq. (17) for
the reconstructability of the network.

In our following analysis, we will also consider a completely homogeneous
benchmark where, for a given set of N banks, each bank i is assigned exactly
the same strength s∗i = 1, as in our discussion in Sec. 3.1. This benchmark (in
which clearly s∗min = 1 independently of N) will serve as a reference to emphasize
the role of bank heterogeneity in the reconstructed networks.

5.2 Network reconstruction

We now apply the method described in Sec. 2.1 to the sets of empirical and syn-
thetic strengths to test our theoretical results and check for possible transitions
from reconstructability to unreconstructability. We are interested in the sparse
regime where the link density is given by d(zsparse) ≃ k/N as in Eq. (4), where
k is the average node degree in the network. For a given strength distribution,
we explore various numbers of nodes, N = {119, 250, 500, 1000, . . . , 10000}, and
two values of the average degree, k = {50, 100}. For each pair of N and k, we
consider an ensemble of 1000 realizations of weighted undirected networks. We
are interested in determining whether typical realizations produce the desired
strengths with vanishing relative fluctuations, i.e., whether Eq. (12) is verified.
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Fig. 3: Distribution of the reconstructed strengths in the case of identical nodes
(homogeneous networks), across all the nodes and all the 1000 network real-
izations in the ensemble. The distribution is peaked around the expected value
s∗ = 1. Different colors correspond to different choices of the constant k, while
each subplot corresponds to a different number N of nodes.

Identical strengths. We start from the homogeneous benchmark where all
banks are identical and all strengths are therefore equal. As discussed in Sec. 3.1,
the underlying binary network reduces to an Erdős-Rényi random graph with
homogeneous connection probability.

In Fig. 3 we report, for different values of N and k, the distribution of the
realized strengths in the networks sampled from the ensemble, across all the
N nodes and all the 1000 network realizations. The results confirm a distribu-
tion peaked around the expected value s∗ = 1. However, in order to investigate
whether this distribution is ‘narrow enough’ in order to achieve the desired re-
constructability of the network, we have to look more closely at the relative
fluctuations δi(zsparse) for each node i.

This is what we illustrate in Fig. 4a, where for one randomly chosen node
(note that all nodes are statistically equivalent in the homogeneous case) we
compare the theoretical value δtheoi (zsparse) calculated in Eq. (15) with the sam-
ple fluctuations δsample

i (zsparse) measured using the sample variance across the
1000 realizations of the network, for different values of N and k. We confirm
that sample and theoretical values are in excellent agreement. In Fig. 4b we also
confirm that, after a transient trend that increases with N , the relative fluctua-
tions approach the asymptotically constant value δi(zsparse) = 1/

√
k for all i, as

expected from Eq. (22), and hence they do not vanish. Indeed, as discussed in
Sec. 3.1, the relative fluctuations for homogeneous networks decay only in the
dense regime.

In Fig. 5 we compare the behaviour of zsparse(N), obtained by inverting
Eq. (4) (for k = 50 and k = 100), with the critical zc(N) given by Eq. (23),
with the identification c = 1/(kmini{s∗i }) = 1/k that would correspond to the
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Fig. 4: Relative strength fluctuations δi(zsparse) in the case of identical nodes
(homogeneous networks), for a randomly chosen node i. (a) The theoretical
value δtheoi (zsparse) given by Eq. (15) matches the realized value δsample

i (zsparse)
calculated across 1000 sampled networks, for different values of N and k. (b)
Realized δsample

i (zsparse) versus the number N of nodes, which asymptotically
approaches the theoretical value 1/

√
k.

baseline asymptotic behaviour for δ(zsparse) when β → 0+. The figure confirms
that, asymptotically, the network is unreconstructable (zc > zsparse) for all the
values 0 < β < 1 allowed by Eq. (23). Only for small β → 0+ and moderate
values of N the network can be found transiently in the reconstructability phase.
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Fig. 5: Comparison between zsparse(N) and zc(N) ≃ c−1Nβ−1 with c = 1/k, for
different values of β and N in the case of homogeneous networks. Each subplot
corresponds to a different choice of the constant k. The shaded area is the region
z(N) < zsparse(N): the network is reconstructable whenever zc(N) crosses that
region. This occurs only for β → 0+ and small N , while for large N the network
is always in the unreconstructability regime.
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Fig. 6: Empirical strengths s∗ versus the generated ones. Each dot figures out the
value of the generated strength of a certain node and a certain network between
the 1000 realizations in the ensemble versus its empirical strength. Each subplot
corresponds to a different choice of the constant k and different colors correspond
to a different number of nodes N .

Bankscope strengths. We then consider the heterogeneous case where the
strengths of banks are either taken from the Bankscope data or sampled from
the fitted distribution with CDF given by Eq. (60), as discussed in Sec. 5.1. We
enforce the same values of density as in the previous example (sparse regime)
and vary N and k as before.

Figure 6 reports a scatter plot of the realized node strength of each node i
(in a typical realization out of the 1000 sampled ones) versus the corresponding
empirical strength s∗i , which is also the expected value across the entire ensemble.
We see that, in line with our theoretical calculations, nodes with smaller strength
feature larger relative displacements from the expected identity line. For a fixed
value of k, the relative displacement increases as the numberN of nodes increases
(hence as the link density decreases). Larger displacements correspond to a worse
reconstruction.

To quantify the above effect rigorously, in Fig. 7 we focus on the relative fluc-
tuations δi(zsparse) and, in analogy with Fig. 4a, compare the sample fluctuations
δsample
i (zsparse) (measured using the sample variation across 1000 realizations of

the network) with the theoretical value δtheoi (zsparse) calculated in Eq. (15), for
different values of N and k. Since in this case the banks’ strengths vary greatly
in size, we report in different subplots the fluctuations for different representa-
tive nodes, each corresponding to a certain quantile of the strength distribution.



Critical density for network reconstruction 23

10
5

10
3

10
1

10
1

theo

10
5

10
4

10
3

10
2

10
1

10
0

10
1

sa
m

pl
e

Quantile = 0

N
119.0
250.0
500.0
1000.0

k
50.0
100.0

10
5

10
3

10
1

10
1

theo

10
5

10
4

10
3

10
2

10
1

10
0

10
1

sa
m

pl
e

Quantile = 0.25

N
119.0
250.0
500.0
1000.0

k
50.0
100.0

10
5

10
3

10
1

10
1

theo

10
5

10
4

10
3

10
2

10
1

10
0

10
1

sa
m

pl
e

Quantile = 0.5

N
119.0
250.0
500.0
1000.0

k
50.0
100.0

10
5

10
3

10
1

10
1

theo

10
5

10
4

10
3

10
2

10
1

10
0

10
1

sa
m

pl
e

Quantile = 0.75

N
119.0
250.0
500.0
1000.0

k
50.0
100.0

10
5

10
3

10
1

10
1

theo

10
5

10
4

10
3

10
2

10
1

10
0

10
1

sa
m

pl
e

Quantile = 1

N
119.0
250.0
500.0
1000.0

k
50.0
100.0

Fig. 7: Relative strength fluctuations δi(zsparse) in the reconstructed networks
based on the Bankscope data (heterogeneous networks). The theoretical value
δtheoi (zsparse) given by Eq. (15) is compared with the realized value δsample

i (zsparse)
calculated across 1000 sampled networks, for different values of N and k. Each
subplot shows the fluctuations for a representative node that corresponds to the
indicated quantile of the strength distribution.

Again, we confirm the good accordance between the sampled fluctuations and
our theoretical calculations, for all quantiles.

As a related check, Fig. 8 shows the sample relative fluctuation δsample
i (zsparse)

versus the empirical strength s∗i . For fixed k and N , δsample
i (zsparse) is propor-

tional to 1/
√
s∗i , in accordance with the expectation from Eq. (15). Moreover we

see that, for fixed s∗i , the dependence of δsample
i (zsparse) on N is not suppressed.

This is different from the behaviour we found in Eq. (21) for the homogeneous
case, where the dependence of δsample

i (zsparse) on N is exactly cancelled out by
the expression zsparse ≃ k/N given by Eq. (22), which in this case evidently does
not hold (at least for the considered range of values for N). In particular, here
we see that δsample

i (zsparse) increases with N , a behaviour that is confirmed in
Fig. 9.

In Fig. 10 we compare zsparse(N) and zc(N) ≃ c−1Nβ−1 with c−1 = k mini{s∗i },
which again would correspond to the baseline decay of the relative fluctuations,
for different values of β and N . We find the presence of two regimes (recon-
structability and unreconstructability), depending on the combination of values
of β and N . So, in this case the reconstructability depends sensibly on the de-
tails of the strength distribution and on the size of the network. Even if certain
values of β lead asymptotically to unreconstructability, we find that for finite
but realistically large N the system may still be in the reconstructability regime.
In other words, depending on the chosen values for k and β, the networks are
reconstructable up to a critical number of nodes whose value increases as β de-
creases (hence as the decay of the largest relative fluctuations of the strength
slows down).
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Fig. 8: Sample relative fluctuation δsample
i (zsparse) versus the empirical strength

s∗i . Each subplot corresponds to a different value of k, and different colors cor-
respond to a different number N of nodes.

Self-loops contribution. We finally confirm that, as expected, the effect of
the induced self-loops in the reconstruction is negligible. This is shown in Table
2 where we report the fraction of weight associated to self-loops, confirming that
the condition in Eq. (48) is met, as the fraction decreases for increasing N .

119.0 250.0 500.0 1000.0
N

10
4

10
3

10
2

10
1

10
0

10
1

k
50.0
100.0

Fig. 9: Boxplot representing the distribution of the sample relative fluctuations
δsample
i (zsparse) over nodes, as a function of the number N of nodes. Yellow dots

represent the mean. Different colors correspond to different values of k.
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N Homogeneous networks Heterogeneous networks

119 0.008 0.061
250 0.004 0.073
500 0.002 0.049
1000 0.001 0.026

Table 2: Fraction ⟨WSL⟩/⟨W ⟩ of total link weight associated to the self-loops
induced by the reconstruction method, for different numbers of nodes N in the
case of homogeneous (equal values) and heterogeneous (from Bankscope data)
strength distributions.

6 Conclusions

In this paper we focused on the reconstruction of financial networks from aggre-
gate constraints (node strengths, representing assets and liabilities) and intro-
duced the concept of reconstructability, occurring when the constraints, besides
being reproduced on average, are also close to their expected value in individual
typical realizations of the ensemble. We considered different situations arising
in the sparse regime, first from a theoretical point of view and then by gener-
ating networks from real-world strength distributions. In the homogeneous case
of equal strengths, we found that simultaneously sparse and large networks are
always unreconstructable. By contrast, if an appropriate degree of heterogeneity
is introduced (specifically, a core-periphery structure), we found that the sys-
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Fig. 10: Comparison between zsparse(N) and zc(N) ≃ c−1Nβ−1 with c =
1/(k mini{s∗i }), for different values of β and N in the case of networks with
strengths based on the Bankscope data. Each subplot corresponds to a different
choice of the constant k. The shaded area is the region z(N) < zsparse(N), and
the network is reconstructable whenever zc(N) crosses that region. Whether this
occurs depends strongly on β: for β → 0+ the network is reconstructable for all
values of N , for β = 1 the network is always unreconstructable, while for inter-
mediate values of β the reconstructability depends on N .
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tem can be in one of two regimes (reconstructability and unreconstructability),
depending on the asymptotic decay of the minimum strength. In general, the
behaviour of the minimum strength plays a crucial role in the reconstruction.
Using data from the Bankscope dataset, and extrapolating to a larger number
of nodes, we found again the presence of two regimes, which additionally depend
sensibly on the number of nodes and on the details of the strength distribution.

It should be noted that the independence of different links captured by the
reconstruction method discussed in Sec. 2.1, together with the fact that both
the connection probability pij in Eq. (2) and the link weight wij in Eq. (5) are
determined by purely local properties (s∗i and s∗j ), indicates that it is possible
to use the reconstruction method as a form of a decentralized market clearing
mechanism where all the constraints are met simultaneously via purely pairwise
interbank interactions, as long as the reconstructability criterion in Eq. (18) is
met. Violations of the reconstructability condition make market clearing more
difficult without a centralized entity capable of enforcing all constraints glob-
ally. Therefore the existence of a critical density for reconstructability implies
that central bank interventions that lower the density of links below the crit-
ical threshold may unintentionally favour a liquidity crisis. More in general, if
individual realizations of the reconstructed networks are used by regulators as
substrates to simulate the propagation of shocks throughout the interbank sys-
tem, a mismatch between the realized marginals and the empirical ones could
lead to an incorrect estimation of systemic risk. Reconstructability then becomes
an important criterion to be met in order to avoid the resulting bias.

Our result suggest that network reconstructability is an important aspect of
probabilistic reconstruction techniques and deserves further study, including its
generalization to directed and more complicated network structures.
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