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Abstract

In this study, we examine the hypothesis that, when playing a sequence
of games, players may use feedback information to reinforce heuristics of play
instead of learning equilibrium play, even when such information is imme-
diate and accurate. This departs from the general view that feedback in
repeated interactions eventually leads to equilibrium play. To test this, we
designed an experiment with participants facing sequences of 2-person 3x3
games incorporating five common heuristics of play. Our 5x2 factorial design
includes two learning settings for each heuristic: ”overlapping strategies”
where the target heuristic and equilibrium strategy lead to the same action,
and " distinct strategies” where they differ. This setup allows comparison of
learning outcomes across target heuristics. Results show that learning equi-
librium play is more challenging in overlapping strategies treatments, with
many players interpreting feedback as reinforcing the target heuristic. This
effect varies across heuristics. Our findings demonstrate that even complete,
unambiguous feedback can reinforce non-rational behaviors. We conclude
that caution is needed when interpreting observed choice behavior in re-
peated strategic interactions. Observed equilibrium choices may not reflect
rational play, and accurate feedback can reinforce non-equilibrium strategies.
We discuss methodological implications for the field.
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1. Introduction

In commonly studied strategic interactions, feedback information is typi-
cally leveraged to facilitate learning of the rational course of action (Fuden-
berg and Levine, 1998, 2009; Erev and Haruvy, 2016). Whereas learning can
also happen without any information about the decision outcomes (Selten
and Chmura, 2008; Weber, 2003), the observed effects on choice behavior are
relatively smaller than when feedback is provided. Behavioral game theory
studies show that repetition and feedback generally guide behavior towards
equilibrium play (Hertwig and Ortmann, 2001; Camerer et al., 2004). Quick
convergence to equilibrium is especially observed in simultaneous-move, 2x2
matrix games, when feedback is complete, accurate, and immediate. In these
settings, players are informed about their and their counterparts’ choices and
outcomes, this information is certain and unambiguous and is provided right
after each choice. These are the feedback conditions we examine in our study.

Since learning is commonly defined as the effect of experience on choice
behavior, most learning studies use the average frequency of equilibrium
choices over time as a unit of analysis (learning trajectories - see Erev and
Roth (1998); Ho et al. (2007); Marchiori and Warglien (2008)). This mea-
sure, however, does not reflect what players actually learn; an increase in the
rate of equilibrium choices does not necessarily indicate an increased intent
to play rationally, as other intents may cause it. Marchiori et al. (2021) pro-
vides one of the first attempts to clarify this issue, showing that games of
different strategic/cognitive complexity (dominance vs. iterated dominance
games) offer different learning opportunities, even with feedback. Results
show that whereas the frequency of equilibrium choices increases over time
in both game types, eye-tracking data reveals that the majority of partici-
pants adopt equilibrium-compatible information gathering only in iterated-
dominance games. Salmon (2001) pioneering research showed the complexity
and difficulty of trying to accurately and reliably identify which learning rules
are used by subjects in experimental settings. His results indicate that even
the most common econometric models have difficulty in accomplishing such
task. Although these studies establish that feedback is not a sufficient con-
dition for the learning of rational play (beyond a mere increase of the rate of
equilibrium choices), they do not explore what heuristics players may learn,
or how these heuristics may hinder learning of equilibrium thinking.



Our study addresses this gap by systematically: 1) analyzing players’
choice behavior when learning occurs in games where the equilibrium choice
differs from the choice suggested by a target heuristic, compared with games
where these choices overlap. This comparison allows us to quantify the extent
to which target heuristics interfere with equilibrium learning. 2) Comparing
the “distraction from equilibrium” effect across five commonly observed tar-
get heuristics. This comparison reveals how learning outcomes vary across
the different heuristics.

Our results have significant theoretical and methodological implications.
Theoretically, we show that feedback is not sufficient for correcting play-
ers’ beliefs and controlling their interpretation of the game situation. Sur-
prisingly, even complete, unambiguous feedback can reinforce non-rational
behaviors. From a methodological perspective, our findings urge caution
in interpreting and generalizing data from learning experiments. We warn
against equating an increased frequency of equilibrium choices (observable)
with actual learning (generally non-observable). Although learning can be
inferred from experiments carefully designed for this purpose, it is crucial
to recognize that observed behavior may not directly reflect the underlying
learning process.

2. Theoretical framework and hypotheses

In behavioral game theory, learning commonly indicates “an observed
change in behavior owing to experience” (Camerer, 2011, p.265), and an
increase in the frequency of equilibrium choices is often implicitly equated
to a correspondingly increased level of strategic sophistication. This leads
to the popular conception that players choose equilibrium actions because
they have (at least to some extent) learned to analyze a game rationally. As
Camerer (2011, p.265), puts it, “Equilibrium concepts implicitly assume that
players either figure out what equilibrium to play by reasoning, follow the
recommendation of a fictional outside arbiter... or learn or evolve toward
the equilibrium”. We challenge this interpretation, emphasizing the need
to distinguish between the observed adaptation of choice behavior and its
inferred qualitative content. Specifically, we show that what players learn
with feedback depends upon the structure of a game, and that equilibrium
play may mask underlying non-rational intents. This because players may use
feedback to reinforce choice strategies that are only incidentally consistent
with equilibrium play. We show that this phenomenon occurs when a game’s



C1 C2

1 3
1 3

2 4
4 2

R1 Equilibrium, Focal Point

R2

Notes: Within each cell, the bottom left (top right) value is the payoff of the row (col-
umn) player. The top right cell, with its high and symmetrical payoffs, is a focal point

(underlined). The top right cell is also the unique Nash equilibrium in pure strategies (in
bold).

Table 1: A game in which the Focal Point and Equilibrium actions overlap

equilibrium strategy matches the one suggested by an alternative heuristic
of play.

Consider the scenario of a player (Row Player) facing the game presented
in Table 1, competing against a rational, profit-maximizing algorithm (Col-
umn Player). The algorithm will select C2, its dominant strategy.

If feedback is provided, all of the player’s strategies that lead to the se-
lection of R1 will be reinforced. Equilibrium play will be reinforced, but also
trying to coordinate on cell (R1, C2). This latter action, which maximizes
Social Welfare and minimizes Social Distance, is a natural focal point - see
(Schelling, 1960; Cooper et al., 1990; Van Lange, 1999, 2000; Crawford et al.,
2008; Jackson and Xing, 2014; Parravano and Poulsen, 2015; Polonio et al.,
2015; Devetag et al., 2016; Polonio and Coricelli, 2019). As feedback rein-
forces both strategies, and the player’s best response to each is R1, solely
observing the chosen action, we cannot infer the player’s actual underlying
intent. However, observing choice behavior in a second, opportunely designed
game can help disentangle between the two possibilities. Suppose that after
playing games similar to that in Table 1, a player faces games like that in
Table 2. Here, different strategic intentions lead to distinct choices. Players
consistently adopting a rational strategy, would now select R1. Conversely,
those who try to coordinate on the focal point would choose R2.

Ambiguous situations like this can arise when the same piece of feed-
back information reinforces different strategies. We argue that when multi-
ple strategies overlap on the same action, different interpretations of feedback
can be equally plausible. Specifically, some players will see it as reinforcing
equilibrium play, others as reinforcing alternative heuristics of play. This



C1 C2

R1 1 o Equilibrium

3 4
3 1

R2 Focal Point

Notes: The top right cell is the unique Nash equilibrium in pure strategies (in bold). The
bottom left cell, with its high and symmetrical payoffs, is a focal point (underlined).

Table 2: A game in which the Focal Point and Equilibrium actions are distinct

leads to Hypothesis 1:

Hypothesis 1. In ambiguous' strategic settings, we expect some players to
interpret feedback information as reinforcing the rational course of action.
However, a significant share of players will interpret it as reinforcing some
alternative heuristic of play.

Hypothesis 1 is particularly significant from a theoretical perspective.
Our study suggests that the design of a game itself can influence how players
use feedback information, and that complete and unambiguous feedback can
lead to different learning outcomes.

The elimination (or significant reduction) of strategic ambiguity facilitates
players’ identification of a game’s equilibrium structure. This leads to the
following Hypothesis 2:

Hypothesis 2. In unambiguous strategic situations, players are expected to
identify the (pure) equilibrium strategy more readily than in ambiguous set-
tings. Consequently, we anticipate that players will learn equilibrium play
more frequently in unambiguous settings than in ambiguous ones.

Our hypotheses so far hinge on the structural ambiguity of a game, as
previously defined. However, the degree of structural ambiguity is expected
to vary depending on which heuristic aligns with the equilibrium strategy.
We anticipate that the more salient, widely diffused across the population,

'In our study, the adjective ”ambiguous” always refers to the concurrent existence of
different strategic intentions within the same action, not to uncertainties in the features
of the game structure.



and easily recognizable a heuristic is, the stronger its distraction effect from
equilibrium play will be. It is important to note that the plausibility and
prevalence of a heuristic in the population may result from a selection process
based on its effectiveness among a population of boundedly rational players.
On this point, the study by Spiliopoulos and Hertwig (2020) links the preva-
lence of a heuristic in the population to its performance effectiveness. They
demonstrate, for example, that the L1 heuristic (which we also consider in
our study; see next section for a description) is the most widespread as it
yields the highest average payoff compared to other heuristics.

Let us illustrate this with an example. In the game in Table 1, the equi-
librium strategy aligns with what is usually referred to as the focal point
strategy. Research has shown that people frequently use focal points as coor-
dination devices (Schelling, 1960; Mehta et al., 1994; Parravano and Poulsen,
2015), and symmetric game outcomes with high rewards for both players are
generally perceived as focal points (Goeree and Holt, 2001; Crawford et al.,
2008; Jackson and Xing, 2014). Thus, the focal point strategy consists of
selecting the option that includes the focal outcome. In these games, it is
reasonable to expect a substantial proportion of players to learn a ”focal-
point seeking” strategy rather than the equilibrium one.

Now consider a different game, presented in Table 3. Here, the algorithm
will select C2, its dominant strategy. Players rationally best responding
to this strategy will choose R1, as would players adopting the Optimistic
heuristic (i.e., aiming for their highest possible payoff). In this case, feedback
information would reinforce both rational play and the Optimistic heuristic.
However, since the Optimistic heuristic is not much diffused among players
(Selten et al. (2003)), learning from these games is likely to enhance rational
strategic thinking in a comparatively larger share of the population.

In conclusion, comparing behavior in the games presented in Table 2
and 3 is expected to show a higher proportion of heuristic-consistent choices
in the former than in the latter. This expectation forms the basis for our
Hypothesis 3:

Hypothesis 3. Heuristics differ in their plausibility. Thus, in strategically
ambiguous situations, the frequency of heuristic-consistent choices will de-
pend on the specific heuristic reinforced by feedback information.

We will test this hypothesis by considering learning outcomes across five
target heuristics, selected among the most studied ones, and differing in their
inherent features.



C1 C2

R1 1 1 4 2 Equilibrium, Optimistic
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Notes: The top right cell is the unique Nash equilibrium in pure strategies (in bold). Tt
also corresponds to the highest possible payoff for the row player (underlined).

Table 3: A game in which the Optimistic and Equilibrium actions overlap

2.1. Selected heuristics

One of the goals of this paper is to test how different heuristics influence
learning outcomes. To this aim, we selected five heuristics that are among the
most studied in the literature (Costa-Gomes et al., 2001; Costa-Gomes and
Weizsécker, 2008; Spiliopoulos and Hertwig, 2020). Of these five heuristics,
two are widely adopted (other regarding Focal Point and Level 1), two are less
frequently observed (Optimistic and Level 2), and one is particularly relevant
in our specific context, as we will explain later (Best Reply to an Optimistic
counterpart). Among these heuristics, three are defined as strategic (Focal
Point and Level 2), whereas the others are not (Level 1 and Optimistic).
Table 4 summarizes the characteristics of these heuristics.

As detailed in section 3, players in our experiments are matched with
a profit-maximizing algorithm. Such a design ensures that all participants
make decisions within the same strategic environment. To communicate the
algorithm’s strategic behavior in both precise and accessible terms, players
were informed that the algorithm “will try to earn as much as possible,
will assume you will do the same, and will not change strategy through the
experiment.” The five heuristics we selected align to varying degrees with
this description of the algorithm’s behavior. Therefore, the plausibility of
these heuristics is also expected to vary based on this information.

Focal Point: When considering a course of action, agents might analyze a
game focusing on outcomes, rather than by strategy. In such cases and based
on individual prosocial attitudes, analyses might include looking for outcomes
that maximize Social Welfare (the sum of the player’s own and the opponent’s
payoffs), or minimize Social Distance (the difference between the player’s
own and the opponent’s payoffs) (Van Lange, 1999, 2000; Jackson and Xing,
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2014; Polonio and Coricelli, 2019; Spiliopoulos and Hertwig, 2020). In each
game, we create a Focal Point (FP) as an outcome that maximizes Social
Welfare while maintaining a Social Distance of 0 (with symmetric payoffs).
This suggests that when reinforced, it could emerge as a highly salient and
efficient strategy. In our experimental design, feedback that supports the
belief that the algorithm might attempt to coordinate on the game’s FP
aligns with the described algorithm behavior, making this heuristic highly
plausible and salient in our settings.

Level 1: The Level 1 heuristic (L1) often represents a reasonable and
cognitively inexpensive approach to play (Spiliopoulos and Hertwig, 2020).
Evidence shows that players using this non-strategic heuristic focus on their
own incentives, disregarding those of their counterpart, and select the option
with the highest average payoff (Devetag et al., 2016). Within our experi-
mental framework, the assumption that L1 players assume their counterpart
to choose randomly is inconsistent with the information provided in the in-
structions. Nonetheless, as long as feedback reinforces this strategy, players
might lack the motivation to explore more complex strategies that would
require greater cognitive effort.

Level 2: The Level 2 heuristic (L2) involves more sophisticated strate-
gic thinking than L1. Players using L2 are assumed to anticipate that their
opponent will behave as a L1 player and will then choose the best response
to the expected move (Nagel, 1995; Stahl and Wilson, 1995). This two-step
reasoning categorizes L2 as a strategic heuristic. Although the L2 heuristic,
in 2x2 games, invariably corresponds to a pure equilibrium strategy if there
exists one, this does not hold for 3x3 games. Thus, to be able to keep the L2
choice separate from the equilibrium choice, we only considered 3x3 games in
our experimental design (see Section 3). Although attributing to the coun-
terpart an L1 behavior would not fit the description provided, applying an
L2 strategy could be motivated by a naive interpretation of the information
once supported by reinforcing feedback.

Optimistic: Players using the Optimistic heuristic (OPT) target the op-
tion with the highest possible payoff, disregarding their opponent’s payoffs.
This non-strategic heuristic represents strategically naive behavior, which is

20f course, outcome-based strategies might also include heuristic based on negative
prosociality. However, as discussed at the end of this section, such heuristics are not
relevant in our context.



uncommon in interactive settings (Spiliopoulos and Hertwig, 2020). Apply-
ing the Optimistic strategy does not align with the provided information
about the algorithm’s strategy, suggesting that agents using this heuristic
disregard the given information. Consequently, we expect that positive rein-
forcement will have only a minimal impact on the frequency and salience of
Optimistic behavior.

Best Reply to Optimistic: We included the ”Best Reply to Optimistic”
(BRO) heuristic. Although mostly unexplored in the literature, this heuristic
is relevant to our context, as it aligns with a possible (albeit imprecise and
naive) interpretation of the description of the algorithm’s strategy provided
to players. This heuristic assumes that players respond optimally to an
Optimistic player who targets their highest payoff in the game matrix. Thus,
a naive reading of experimental instructions may suggest to some players
that the algorithm selects actions trying to obtain its largest possible payoff,
ignoring the strategic dimension of the game interaction. Such interpretation
would be supported by feedback.

Notably, we focused on heuristics pertinent to our experimental setting
of human-algorithm interaction, omitting those that are not. We collapsed
heuristics embedding positive social preferences such as maximizing joint
payoff (Costa-Gomes et al., 2001) and minimizing payoff distance (Fehr and
Schmidt, 1999) within the Focal Point heuristic. Conversely, we omitted
heuristics embedding negative social preferences, such as heuristics where
players attempt to maximize the difference between their payoff and the op-
ponent’s. These are inconsistent with the provided information about the
algorithm’s strategy. Our reasoning for this exclusion and simplification is
twofold: 1) The design constraints of 3x3 games (see next section for the de-
tails) limit the number of distinct heuristics that can be implemented without
overlap; including competitive heuristics would have inevitably led to redun-
dancies with those already in place. 2) Parsimony and feasibility considera-
tions; incorporating additional heuristics would have significantly expanded
the number of treatments, compromising the study’s manageability and fo-
cus. Finally, it is important to highlight that in terms of game design, we
designed games with a unique pure strategy Nash Equilibrium, and avoided
games with dominance, as the presence of a dominant strategy (a powerful
attractor of choice behavior) would have significantly diminished the effect
of the heuristics under study.
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3. Experimental design

The experiment consists of several treatments composed of three sequen-
tial stages: Assessment, Learning, and Reassessment. A similar design was
adopted in Marchiori et al. (2021). In the initial Assessment stage, partici-
pants play 14 2-person, 3 x 3 games without receiving feedback about their
counterpart’s choices and the obtained payoffs. In this stage, participants’
initial strategic skills are assessed. In the subsequent Learning stage, partici-
pants play 14 games (details provided later in this section) receiving feedback
after each choice. Feedback information summarizes both the actions cho-
sen by the algorithm and those of the player, indicating their payoffs. By
varying the kind of games that are presented in the Learning stage (which
differ across treatments), we can control for participants’ accumulated expe-
rience, and check its effects on the learning outcome. The final Reassessment
stage reassesses participants’ strategic skills after learning has shaped them:
participants play another sequence of 14 games structurally similar to those
played in the Assessment, again without receiving any feedback. Such a de-
sign allows us to evaluate the effects of the intermediate Learning stage by
comparing, within-subject, choice behavior in the first and final stages.

To enhance control over players’ beliefs about their counterpart’s behav-
ior, players were matched against an algorithm. Matching players against
each other would have raised expectations and shaped beliefs about their
counterparts that would have been difficult to control for. Players were all
equally instructed that they would play against an algorithm that would
choose to maximize its payoff, under the assumption that its opponent (i.e.,
the human player) would do the same. They were also informed that the
algorithm would not adjust its strategy based on previous interactions, re-
maining consistent throughout the experiment.

To examine whether feedback in ambiguous settings affects participants
differently from feedback in unambiguous ones, we employed a 2x5 factorial
design, with two levels of ambiguity (overlapping/distinct strategies) for each
target heuristic - see Table 5. Within each target heuristic, the treatments
differ only for the games in the Learning stage when feedback is provided to
players. In this stage, the Overlapping treatment composes entirely of games
in which the target heuristic strategy and the equilibrium strategy are the
same (ambiguous setting), while the Distinct treatment includes games in
which the target heuristic strategy and the equilibrium strategy are distinct
(unambiguous setting). Moreover, while the games in stages 1 and 3 are

11



Level of ambiguity

Overlapping L1~ (N=83 Distinct L1
Distinct L2

) ( )

Target Overlapping L2 ) ( )
N=76) Distinct OPT (N=88)
) ( )

) ( )

heuristic Overlapping OPT
Overlapping BRO
Overlapping FP

Distinct BRO
Distinct FP

Table 5: The 2 x 5 experimental treatments and their respective number of subjects

identical between the two treatments, the Learning stage includes games that
are similar (see Section 3.1 for a detailed explanation). A between-subjects
analysis of behavior in stage 3 across the two treatments enables us to assess
how choice behavior has been influenced during the learning stage.

As stated in Hypothesis 3, the impact of learning in ambiguous settings
is expected to differ across target heuristics. To test this hypothesis, we
applied the same learning design using ambiguous vs. unambiguous games
for each of our five target heuristics, yielding ten experimental treatments,
as outlined in Table 7.

3.1. Game structure

The game matrices for this experiment were carefully designed to allow
for the comparison of results across treatments. Each game was designed to
embed all five heuristics (L1, L2, FP, OPT, and BRO), plus the (unique) pure
strategy Nash equilibrium (EQ). For concreteness, we discuss the rationale
for the game design considering the target heuristic Level 1, with the same
approach applying to all other heuristics.

The Level-1 treatments. These two experimental treatments consider the
Level 1 heuristic as the target. As mentioned earlier, the two experimental
treatments (labeled Overlapping-L1 and Distinct-L1), differ on whether the
strategy for the target heuristic is identical to the equilibrium strategy, in
the games presented in the Learning stage. In both treatments, the strategy
for heuristics FP, L2, and OPT is associated with Row 3, whereas the BRO
strategy is associated with Row 2%. In the Overlapping treatment games,

3In Subsection 3.2 it is explained why BRO is associated with Row 2 and not Row 3,
as the other heuristics are.

12



C1 C2 C3
5.5 5 6.1 T
R1 6.5 6 71 Equilibrium, L1
6.6 4.5 7
R2 5.1 7.2 6.3 BRO
8 9 5.3
R3 3 4 5.6 L2, OPT, FP
Overlapping-type game
C1 C2 C3
5.5 5 6.1 e s
R1 5.1 6 71 Equilibrium
6.6 4.5 7
R2 6.5 7.2 6.3 BRO, L1
8 9 5.3
R3 3 4 56 L2, OPT, FP

Distinct-type game

Notes: Within each cell, the bottom left (top right) value is the payoff of the row (column)
player. The labels to the right mark the row corresponding to each heuristic. In the first
game, the top-row action is consistent with both Equilibrium and the L1 heuristic. In
the second game, the top-row (middle-row) action is consistent with Equilibrium (L1
heuristic). The two matrices differ only for the row player’s payoff in the top and middle
left cells. The Equilibrium choice is in bold, whereas the payoffs that differ between the
two games are in italics.

Table 6: Example of Overlapping- and Distinct-type games for the L1 heuristic

L1 and Nash players would choose the same action, Row 1, whereas in the
Distinct treatment games, Nash players would choose Row 1 and L1 players
Row 2. Table 6 represents our baseline Overlapping and Distinct games for
the L1 heuristic. From these baseline matrices, the 28 matrices used for the
experiment were created through random transformations of the payoffs that
did not alter the described structure.

In the Assessment and Reassessment stages, participants play a sequence
of games including seven Overlapping and seven Distinct games (not iden-
tical to those proposed in the Learning stage), without receiving feedback.
Conversely, in the Learning stage, agents play 14 games of the same type

13



(only Overlapping or only Distinct), with feedback. With such a game struc-
ture, in treatment Distinct-L1, feedback indicates that the best strategy is
the equilibrium choice. In treatment Overlapping-L1, players may learn to
identify the equilibrium strategy or the L1 heuristic one, depending on their
interpretation of feedback.

Level-2, Focal Point, Optimistic, and Best Reply treatments. Similarly
to what we discussed for the Level 1 treatments, we created different game
matrices for each of the other treatments: Level 2, BRO, Focal Point, and
Optimistic, for a total of 10 baseline matrices ({Heuristics} x {Overlapping,
Distinct}). The main scheme was the same: in the Distinct games, the
equilibrium strategy was assigned to Row 1, and the target heuristic to Row
2; conversely, in the Overlapping games, both the target heuristic and the
equilibrium strategy were associated with Row 1. All other heuristics were
assigned to Row 3, except for the BRO heuristic assigned to Row 2. However,
when the BRO heuristic served as the target, it was placed on Row 2 in the
Distinct treatment and on Row 1 in the Overlapping treatment (all other
heuristics being in Row 3). As done for the L1 treatments, we designed
the baseline matrices and generated different instances of them by applying
random perturbations to payoffs that did not alter the original structure. All
baseline matrices are presented in Appendix G. Table 7 provides a summary
of the experimental treatments, while Table G.20 shows, for each treatment,
which row of game matrix each heuristic was on.

3.2. Game construction rules

The games presented in the experiment were carefully designed to satisfy
some general rules in addition to the rationale exposed earlier. These rules
were established to minimize potential confounding factors. All games share
the following characteristics:

e There is a unique Nash equilibrium in pure strategies.

e The Level-1 strategy yields an average payoff that is notably higher
than the one of the other two rows.*

4The average payoff of the L1 row is on average 5.34% higher (min 0.5%) than the
second highest and on average 8.57% higher (min 2.3%) than the mean of the two other
rows. The same holds for the column player, where the average payoff of the L1 column
is on average 8.3% higher (min 1.1%) than the second highest and on average 14.2% (min
3.5%) higher than the mean of the two other columns

14



Treatment

Stage 1: Assessment

Stage 2: Learning

Stage 3: Reassessment

Overlapping L1

Distinct L1

7 Overlapping games for L1
7 Distinct games for L1

No Feedback

14 Overlapping games for L1
Feedback

14 Distinct games for L1
Feedback

7 Overlapping games for L1
7 Distinct games for L1

No Feedback

Overlapping L2

Distinct L2

7 Overlapping games for L2
7 Distinct games for L2

No Feedback

14 Overlapping games for L2
Feedback

14 Distinct games for L2
Feedback

7 Overlapping games for L2
7 Distinct games for L2

No Feedback

Overlapping OPT

Distinct OPT

7 Overlapping games for OPT
7 Distinct games for OPT

No Feedback

14 Overlapping games for OPT
Feedback

14 Distinct games for OPT
Feedback

7 Overlapping games for OPT
7 Distinct games for OPT

No Feedback

Overlapping BRO

Distinct BRO

7 Overlapping games for BRO
7 Distinct games for BRO

No Feedback

14 Overlapping games for BRO
Feedback

14 Distinct games for BRO
Feedback

7 Overlapping games for BRO
7 Distinct games for BRO

No Feedback

Overlapping FP

Distinct FP

7 Overlapping games for FP
7 Distinct games for FP

No Feedback

14 Overlapping games for FP
Feedback

14 Distinct games for FP
Feedback

7 Overlapping games for FP
7 Distinct games for FP

No Feedback

Table 7: Summary of experimental treatments
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The Focal point is a cell with symmetric and high payoffs, having the
highest payoff sum, but not necessarily providing the highest payoff to
either player (row or column). This design avoids possible confounds
with the Optimist strategy. It maximizes social welfare and minimizes
social distance.

Except for the BRO strategy, all non-target heuristic strategies corre-
spond to Row 3. Since it was not possible to place the BRO strategy
in Row 3 by construction, we decided to place it systematically in Row
2. This creates a consistent structure across treatments, allowing for
comparisons.

The matrices are designed such that the best reply structure is the
same across games.

The Distinct and Overlapping baseline matrices for each target heuris-
tic are designed to be as similar as possible, sometimes differing by only
one or two payoffs.

The maximin strategy (maximizing the minimum payoff) is another
possible non-strategic heuristic that players may adopt. Although
this heuristic would not be compatible with the provided information
about the algorithm’s behavior, we designed games so that the max-
imin heuristic coincides with the BRO one to avoid confounds. This
would only impact our assessment of the distraction effect for the BRO
heuristic. In any case, it is worth noting that maximin heuristic players
typically constitute a minimal fraction of the population in experimen-
tal game settings like ours (Costa-Gomes et al., 2001; Spiliopoulos and
Hertwig, 2020).

3.3. Data collection

We conducted our experiment online using Prolific (www.prolific.com),

a dedicated platform for experimental tasks. We collected a sample of 827
subjects (average age 38, SD=12, 49% female) from the UK. The sample
size for each treatment ranged from 73 to 95 participants. Sample sizes dif-
fer among treatments as participants were randomly allocated to them until
a minimum number of 70 was reached (the minimum threshold was chosen
according to an ex-ante power calculation, see Table D.14; sample sizes are
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reported in Table 5). The experiments were incentivized. Participants re-
ceived a show-up fee of £2 plus a bonus based on their decisions (average
bonus £1.6, SD=0.3). Rates were aligned to Prolific standards. The average
completion time of the experiment was 16 minutes (SD=7).

Upon reaching the task page, participants were presented with the in-
formed consent form and instructions. After reading the instructions, partic-
ipants had to pass a multiple-choice comprehension questionnaire - Appendix
B and Appendix C include the instructions and comprehension check. Par-
ticipants had a maximum of three attempts to answer all questions correctly
or were excluded from the experiment. 77 participants failed the comprehen-
sion questionnaire. Participants were informed that the experiment included
three stages, that they would be playing with a profit-maximizing algorithm
assuming they would do the same, and that the algorithm would not adjust
its strategy throughout the experiment.

After successfully answering all comprehension questions, participants
faced the 14 games of the Assessment stage without receiving feedback. At
the end of the Assessment, participants were informed that a new stage
would start and that after each game, they would receive feedback about
their choice and that of the algorithm, along with the corresponding payoffs.
At the end of the Learning stage, participants were informed that the Re-
assessment stage would begin and that they would not receive any feedback.
The games order, as well as the order of the rows and columns of each game,
was randomized for each participant. After the experiment, the outcome
from three games (one from each stage) was randomly selected to determine
the participants’ bonuses.

4. Results

4.1. Emergence of learning

As a preliminary question, we wanted to determine whether the Distinct
and Overlapping treatments resulted in a significantly increased proportion
of equilibrium choices. The equilibrium rate is significantly larger in the
Reassessment than in the Assessment (two-sided paired t-test, p < 0.01),
in the Distinct feedback treatments as well as in the Overlapping feedback
treatments - see Table 8 for more details. Results also hold for each of the
10 treatments taken individually, when correcting for multiple testing (cor-
recting with Bonferroni, p = .05/10 = .005), except the BRO treatments.
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Figure 1: Equilibrium choice rates in the Assessment and Reassessment stage
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Two-sided paired t-test

Feedback  Heuristic
Estimate Statistic Degrees of freedom p-value

All All 0.160 14.3 826 <1073
Overlapping All 0.175 11.5 427 <1073
Distinct All 0.144 8.76 398 <1073
Overlapping L1 0.200 6.36 82 <1073
Overlapping L2 0.327 8.84 94 <1073
Overlapping OPT 0.103 3.39 75 0.0011
Overlapping BRO 0.095 2.71 79 0.0082
Overlapping FP 0.126 4.44 93 <1073
Distinct L1 0.160 5.23 82 <1073
Distinct L2 0.222 5.21 77 <1073
Distinct OPT 0.136 3.51 87 0.0007
Distinct BRO 0.076 2.49 76 0.0151
Distinct FP 0.126 3.23 72 0.0019

Table 8: Difference in equilibrium choice rate between the Assessment and Re-Assessment
stages, by treatment

Overall, these initial results show an increased tendency to play the equi-
librium strategy, which we will better qualify in the following sections. The
average choice rate for each row in each treatment, for the Assessment and
Reassessment phase, is reported in Table F.15.

Result 1. The equilibrium choice rate in the Reassessment is statistically
significantly higher than in the Assessment for all treatments (correcting for
multiple testing), except only for the BRO target heuristic.

4.2. Differences in learning

Our data demonstrate that receiving feedback increases the rate of equi-
librium choices. However, whether this increase reflects learning a more
rational way to play games remains an open question. Looking at Figure 1,
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Two-sided two-sample t-test

Heuristic treatment
Estimate Statistic Degrees of freedom p-value

All 0.011 0.50 808 0.62
L1 -0.028 -0.64 163 0.52
L2 0.047 0.85 156 0.40
OoPT 0.014 0.27 156 0.79
BRO 0.058 1.16 154 0.25
FP -0.051 -1.06 132 0.29

Table 9: Difference in equilibrium choice rate in the Re-Assessment stage, between the
Overlapping and Distinct treatments

there does not appear to be large variations in the equilibrium choice rates
comparing the Distinct and Overlapping treatments in the Reassessment.
Indeed, a t-test does not reject the null hypothesis that these equilibrium
choice rates are equal, be it for each heuristic treatment taken individually
or at the aggregate level (see Table 9).

However, it is important to note that in both the Assessment and Re-
assessment stages, players encountered a mixture of Overlapping and Distinct
types of games. Consequently, players in Overlapping treatments may have
improved their performance in the Overlapping-type games (games where
they trained during the Learning stage); similarly, players in the Distinct
treatments may have enhanced their performance in the Distinct-type games.
If this is the case, similar overall rates of equilibrium choices could mask very
different types of learning. A first insight is provided by Figure 2, which sep-
arately shows the equilibrium choice rates for the Overlapping and Distinct
games. The difference in the equilibrium choice rates in the two types of
games is evident.

To test this possibility, we compared the rates of equilibrium choices in
the Overlapping-type games in the Reassessment stage between the Over-
lapping and Distinct treatments. The differences are significant, with the
equilibrium being chosen significantly more frequently in the Overlapping-
type games of the Overlapping treatments (two-sided t-test, Overlapping vs
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Two-sided two-sample t-test

Game Type
Estimate Statistic Degrees of freedom p-value
Overlapping 0.080 3.04 821 0.002
Distinct -0.057 -2.20 816 0.028

Table 10: Difference in equilibrium choice rate in the Re-Assessment stage, between Over-
lapping and Distinct treatments

Distinct treatments for Overlapping-type games, p < 0.01). The same holds
for the Distinct-type games; the equilibrium strategy is chosen significantly
more often in the Distinct-type games of the Distinct treatments (two-sided t-
test, Overlapping vs Distinct treatments for Distinct-type games, p = 0.028,
see Table 10).

Result 2. The frequency of equilibrium choices in the Distinct-type games
in the Reassessment is significantly higher in the Distinct treatments than
in the QOuverlapping ones. Vice-versa, the frequency of equilibrium choices in
the Overlapping-type games in the Reassessment is significantly higher in the
Qverlapping treatments than in the Distinct ones.

Result 2 supports both Hypotheses 1 and 2. To further analyze learning
differences across treatments, we conducted four two-way, repeated-measure
ANOVA tests. These tests examined the equilibrium choice rate in the As-
sessment and Reassessment stages, considering the main effects of stage and
heuristic (L1, L2, FP, OPT, and BRO), and their interaction. We analyzed
the equilibrium rate for four combinations: Overlapping games in Overlap-
ping treatments, Overlapping games in Distinct treatments, Distinct games
in Overlapping treatments, and Distinct games in Distinct treatments. This
approach helps identify different learning patterns across game types and
treatment conditions.

Table 11 presents the test results. Correcting for multiple testing, we con-
sider significant a p = .0125 (Bonferroni correction p = .05/4 = .0125). In
the Overlapping treatments (for both Overlapping- and Distinct-type games),
we found significant main effects for both heuristic and stage. The heuristic
effect demonstrates that different heuristics lead to varying degrees of dis-
traction from identifying the equilibrium strategy. The stage effect shows an
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Dependent variable: Equilibrium choice rate

(1) (2) (3) (4)
Feedback Treatment Overlapping Overlapping Distinct Distinct
Game Type Overlapping Distinct Overlapping  Distinct
Stage p < 0.001 p < 0.001 p < 0.001 p < 0.001
Heuristic p < 0.001 p = 0.001 p<0.001 p=0.047
Heuristic x Stage p < 0.001 p < 0.001 p=0.017 p=0.489
Observations 856 856 764 764
Subjects 428 428 382 382

Notes: The Heuristic variable has five levels (L1, L2, OPT, BRO, and FP). The Stage
variable has two levels (Assessment and Reassessment). The outcome variable is the equi-
librium choice rate at the (subject, stage, game type) level. The number of observations
per column equals the number of stages x the number of participants in the treatment

group.

Table 11: Two-way ANOVA. Difference of equilibrium choice by stage across feedback and
heuristic treatments

overall increase in equilibrium choice rates from Assessment to Reassessment,
indicating learning. Additionally, the significant interaction effect between
heuristic and stage suggests that different heuristics lead to varying degrees
of distraction from learning the equilibrium strategy.

For the Distinct treatments, we observed different patterns. In Overlapping-
type games, the rate of equilibrium choices increased significantly across
stages (significant stage effect). The heuristic main effect was significant,
indicating that players’ ability to play equilibrium varies across target heuris-
tics. The interaction effect between heuristic and stage albeit low, was not
significant if correcting for multiple testing, showing a tension between the
desire of players to follow the heuristic and learning the equilibrium.

Regarding Distinct-type games in the Distinct treatment, only the stage
main effect was significant, highlighting an increase in equilibrium choice
rates across stages. The lack of significant effects for the heuristic main
effect and the stage::heuristic interaction is expected given our experimental
design. In these settings, the Distinct-type games observed in all three stages
(Assessment, Learning, and Reassessment) are structurally identical across
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treatments, and feedback information consistently reinforces the equilibrium
choice strategy. For this reason, we did not expect to observe any effect due
to the nature of the heuristics.

Overall, the results from the ANOVA strongly support both Hypotheses
1 and 2.

4.3. Heterogeneity in learning outcomes

Results so far suggest that the presence of the target heuristics greatly
affects the learning process. It remains to be discussed how the different
heuristics interfere with learning. To address this point, we focus only on
the Overlapping treatments, and observe how learning rates differ by target
heuristic and game type. To measure learning, we compute the difference
between the rate of equilibrium choices in the Reassessment and Assessment
stages separately for Overlapping and Distinct games. These data allow us
to verify a) how learning differed across game types, and b) the extent to
which each heuristic was hindering the learning of the equilibrium strategy.

Figure 3 reports the increase of equilibrium rate for the five different
heuristics, in the Distinct- and Overlapping-type games separately. We see
large differences across treatments in two dimensions: first, how much the
equilibrium rate increases; second, how large is the difference between the
increase in equilibrium choices in Overlapping and Distinct games. The in-
crease in equilibrium rate varies from a minimum of 2% (BRO Distinct), to
a maximum of 38% (L2 Overlapping); while the difference spans from 2%
(OPT) to 15% (FP and BRO). In all cases the rate of equilibrium choices in-
creases more in the Overlapping games, suggesting that indeed some subjects
learn to apply the target heuristic rather than equilibrium play. Nonetheless,
the impact of the heuristics is very diverse. The BRO and FP treatments
show similar effects. In both, we observe a large increase of choices compati-
ble with both the equilibrium and the heuristic in the Overlapping treatments
(17% for BRO and 20% for FP), but a very small increase of equilibrium
choices in Distinct treatments (2% for BRO and 5% for FP). This suggests
that both heuristics are widely recognized and adopted by players, and tend
to distract from the selection of the equilibrium choice when reinforced. Con-
versely, the OPT heuristic is not much recognized and adopted by players,
as the increase in equilibrium rate is similar across the two types of games.
Both L1 and L2 strategies are observable by some players (an increase of
6% in equilibrium choices in Overlapping games for L1, and an increase of
10% for L2), but do not prevent other players from learning the equilibrium
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Two-sided paired t-test

Heuristic treatment
Estimate Statistic Degrees of freedom p-value

All 0.100 5.28 427 <1073
L1 0.062 1.53 82 0.129
L2 0.101 2.85 94 0.005
OPT 0.023 0.52 75 0.605
BRO 0.157 3.34 79 0.001
FP 0.149 3.27 93 0.002

Table 12: Difference in equilibrium rate between Overlapping and Distinct games for
Overlapping treatments

strategy (17% for L1 and 28% for L.2). Table 12 compares systematically the
difference in equilibrium rate between the Overlapping and Distinct feedback
treatment for each given heuristic using a two-sided two-sample t-test. This
leads to Result 3, which supports Hypothesis 3:

Result 3. When heuristic and equilibrium strategies overlap, the strength
with which the heuristic interferes with the learning of equilibrium wvaries
depending on the type of heuristic.

4.4. What do subjects learn?

These results suggest that feedback from Overlapping-type games en-
courages some participants to learn simpler heuristics rather than the more
cognitively demanding equilibrium strategy. However, the real impact of
heuristics remains to be investigated. How often subjects prefer to solve
a complex situation through the use of heuristics, or whether people that
make use of heuristics are willing to give them up remains to be seen. To
generalize our claims, we designed a more precise measure of heuristic play,
which we call the "target-heuristic index”. The index is so calculated: For
each player, we approximated the tendency to select the target heuristic by
summing the rates of R1 choices in Overlapping-type games and R2 choices
in Distinct games (the rows where the target heuristics lay). We then de-
biased this sum by subtracting: a) The rate of R1 choices in Distinct-type
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games, assuming players who selected R1 in Distinct-type games behaved
similarly in Overlapping-type ones, aiming, e.g., for the Equilibrium. b) The
frequency of R2 choices in Overlapping games, assuming agents who chose
R2 in Overlapping games may have done so consistently in Distinct-type
games as well>. The index is then divided by 2 for normalization. Thus,
our measure of compatibility of choices with a target heuristic is defined as
follows:

Target-heUUSth index = ( le in Overlapping games + fR2 in Distinct games

_le in Distinct games — fR2 in Overlapping games ) / 2

Figure 4 offers a dynamic picture of how heuristics are played before and
after learning has occurred. It illustrates how the tendency to play a target
heuristic is affected by training on Overlapping and Distinct types of games.
The arrow origins (square for treatments with training with Overlapping
games, circle with Distinct ones) show the rate of heuristic-based choices in
the Assessment stage. The arrow tips indicate the rate of heuristic-based
choice after the learning stage, with the direction showing whether the use
of heuristics increased or decreased.

The ex-ante rates of heuristic-based choices vary significantly across dif-
ferent heuristics. Unsurprisingly, FP and L1 are the most commonly used
heuristics by players initially (approximately 20% and 37% on average, re-
spectively). These strategies are readily detectable and do not require com-
plex considerations about the opponent’s behavior. Instead, the BRO and
OPT heuristics are used less frequently (respectively 10% and 12%, on aver-
age). This is reasonable, as both are based on the assumption that at least
one player will select a strategy because it includes the largest payoff. This
rather naive approach is likely adopted only by players with a high degree
of myopia and egocentrism, making these heuristics rarely observed in previ-
ous studies (Spiliopoulos and Hertwig, 2020). Indeed, while players may not
fully understand the optimal course of action, they generally recognize that
blindly pursuing a payoff advantageous only to themselves is not a reasonable
choice (and do not expect such behavior from their opponent). The reason-
ing behind the FP choice is more sophisticated: the payoffs are advantageous
to both players, making it possible to expect that the counterpart will make

®Such a choice can be driven by applying the BRO or Maximin heuristic, which always
lie in Row 2, or any other rationale we cannot envisage.
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Figure 4: Learning-induced change in the index of heuristic play
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the same choice. L2 is the least commonly used strategy ex-ante (less than
5%). This heuristic requires sophisticated strategic reasoning (implying to
best respond to an L1 opponent) (Nagel, 1995; Stahl and Wilson, 1995; Gill
and Prowse, 2016), and is typically adopted less frequently, especially in
interactive contexts like ours, before learning takes place.

Figure 4 shows how, in all treatments, the rate of heuristic-based choices
systematically increased in the Overlapping treatment group and decreased in
the Distinct ones, except the OPT treatment, which remained substantially
unchanged. This implies that in Overlapping treatments, players tended to
switch to using the heuristic after receiving feedback, whereas in the Distinct
treatment group, several players switched from the heuristic to the equilib-
rium strategy. The largest changes in strategy are observed in the FP and
BRO treatments, where both heuristics are easily detected when feedback
supports them, but also clearly sub-optimal when not coinciding with equi-
librium play. Furthermore, L2 is a strategy that increases significantly when
supported by feedback, showing that people improve their level of strategic
thinking when trained (aligned with results of Marchiori et al. (2021)). OPT
and L1 instead are rather stable, for very different reasons. As mentioned
above, OPT is a rarely observed heuristic, while L1 is by construction a safe
choice under any circumstance, when there is no certainty about the behavior
of the counterpart (Spiliopoulos and Hertwig, 2020).

To test our observations, we grouped subjects by the type of training
they received (Overlapping vs. Distinct), independently of the target heuris-
tic, and compared their index of heuristic play between the Assessment and
Reassessment stages (see Table 13). The index of heuristic play is signifi-
cantly larger after receiving Overlapping feedback (two-sided paired t-test,
p < 0.001) and significantly lower after receiving Distinct feedback (two-sided
paired t-test, p < 0.001). We also tested whether this general pattern holds
for each heuristic taken individually. As suggested by Figure 4, the index of
heuristic play is increased (decreased) after receiving Overlapping (Distinct)
feedback, in all treatments but the OPT. These variations are significant
for the BRO (p < 0.001 for Overlapping, and p = 0.018 for Distinct), FP
(p = 0.002 for Overlapping, and p = 0.009 for Distinct), and Overlapping L2
(p < 0.001) treatments. We can conclude that:

Result 4. Relative to the Assessment stage, the frequency of heuristic-consistent

choices in the Reassessment is higher after learning on Qwerlapping-type
games and lower after learning on Distinct-type ones.
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Two-sided paired t-test

Feedback  Heuristic
Estimate Statistic Degrees of freedom p-value

All All 0.019 1.47 826 0.1412
Overlapping All 0.096 5.47 427 <1073
Distinct All -0.063 -3.43 398 <1073
Overlapping L1 0.065 1.61 82 0.1104
Overlapping L2 0.122 3.56 94 <1073
Overlapping OoPT -0.001 -0.02 75 0.9806
Overlapping BRO 0.157 3.71 79 <1073
Overlapping FP 0.123 3.12 93 0.0024
Distinct L1 -0.059 -1.24 82 0.2199
Distinct L2 -0.027 -0.91 7 0.3660
Distinct oPT -0.005 0.15 87 0.8785
Distinct BRO -0.121 -2.42 76 0.0179
Distinct FP -0.116 -2.69 72 0.0090

Table 13: Difference in index of heuristic choice between the Assessement and Re-
Assessment stages
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Considering Results 1, 2, and 4, we confirm both Hypotheses 1 and 2.

5. Discussion and conclusion

Our study challenges the assumption that providing complete feedback
in repeated strategic interactions necessarily leads to an increase in rational
play. We argue that even when feedback is provided and there is no uncer-
tainty about the game structure and incentives, the structure of the game
itself can introduce ambiguity that influences players’ decision strategies.

Our experimental design introduces a novel approach by constructing a
set of games with theoretically similar structures. We categorize these games
into two types: Overlapping, where the equilibrium action aligns with a
heuristic strategy, and Distinct, where it does not. We hypothesized that
feedback in Overlapping games would reinforce heuristic play rather than
equilibrium strategies, despite providing accurate and unambiguous infor-
mation. Notably, from a theoretical standpoint, in all our games, feedback
information consistently reinforces the equilibrium action. However, our hy-
pothesis suggests that players’ interpretation and use of this feedback may
vary depending on the game structure.

Our findings support this hypothesis. Consistently with Hypothesis 1,
when learning with Overlapping-type games, players’ behavior aligns more
closely with heuristic play than with equilibrium strategies (Results 2, 3, and
4). We attribute this to the combination of near-optimal returns and lower
cognitive demands associated with heuristic play, factors that are widely
considered to contribute to the ecological validity of these heuristics (Hertwig
and Ortmann, 2001; Todd and Gigerenzer, 2012; Mousavi and Kheirandish,
2014; Callaway et al., 2021).

Conversely, confirming Hypothesis 2, feedback from Distinct-type games
leads to behavioral outcomes more consistent with rational play (Results 2
and 3). However, the highest rate of equilibrium-compatible choices is not
always induced by training with distinct games. Under certain (heuristic-
dependent) circumstances, it is possible that training with overlapping games
induces a higher rate of equilibrium-compatible choices. Thus, the effective-
ness of feedback in promoting equilibrium play ultimately depends on the
joint effect of equilibrium and heuristic strategy.

Interestingly, we observed variations in the ”distraction from equilibrium”
effect across different heuristics (Hypothesis 3 supported by Results 3 and
4). Whereas this effect is generally present and statistically significant for
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most heuristics, its magnitude varies, suggesting an interplay between game
structure and specific heuristic strategies.

Our results have two key implications for future behavioral game the-
ory research and the interpretation of past studies. First, we extensively
show that an increase in equilibrium actions does not necessarily indicate
an increased level of rationality or an improved ability to analyze a game.
Players may simply have learned a heuristic that happens to align with the
equilibrium strategy. Second, the game structure itself can be a source of
ambiguity in repeated strategic interactions, significantly influencing what
players learn.

These insights suggest that to effectively induce learning of rational play,
it may be more beneficial to design situations where the equilibrium choice
is incompatible with common heuristics. This approach would be particu-
larly valuable, for example, when policymakers aim to encourage agents to
generalize rational strategies to similar situations. Such generalization could
enhance decision-making across various contexts. Conversely, if the specific
learning outcome is less critical and the focus of a policy is instead that of
inducing a desired behavior in a specific strategic setting, such an outcome
could be better and more easily achieved by designing the strategic setting
so that the desired choice behavior overlaps with some salient heuristics.

In conclusion, our study highlights the relationship between feedback,
game structure, and learning outcomes in strategic interactions. We strongly
underscore the need for careful consideration of these factors in both research
design and the interpretation of results from past studies.
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Appendix A. Ethical approval

The experiment was approved by the ”"Research Ethics Committee” of the
University of Southern Denmark, Case nr. 20/39561.

Appendix B. Instructions

Please read these instructions carefully and then press the button on the bot-
tom of this page to proceed

This study includes three parts. In each part, you will face a sequence of
interactive decisions in which you will be asked to choose among three possible
actions. "Interactive” means that the outcome of your decisions depends on
both your choice and that of a counterpart.

In all decisions, your counterpart will be the ”Computer”, that is, an algo-
rithm that uses a pre-determined decision rule. You and the Computer will
choose simultaneously, meaning that at each trial you and the Computer will
take your own decision without knowing in advance that of the other.
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The Computer will choose as to gain as many points as possible under the
assumption that you will do the same, and will adopt the same decision rule
throughout the whole experiment. Thus, the Computer will not adjust its
strateqy of action to your previous choices.

FEach interactive decision, which we will refer to as a game, will be represented
i a table, as shown below.

Game

Computer's actions
Action 1 Action 2 Action 3

31 38 40
Action 1
27 36 47

43 26 31
Your actions Action 2
34 31 32

33 46| 35
Action 3

[
Lh

29 37

In the games you will play in this study, you and the Computer can select
among three possible actions labeled ”Action 17, ”Action 27, and ”Action 3”7
(see the game above for an illustration). Your actions are displayed by row,
and those of the Computer by column. To each combination of actions by you
and the Computer, there corresponds a cell of the table that includes a pair
of numbers: the first number (in red) is your payoff in experimental points,
and the second (in blue) the payoff of the Computer.

To facilitate understanding, hovering your mouse over your and the Com-
puter’s actions highlights cells in the corresponding row and column, and
hovering over a cell highlights the combination of actions that yields it. You
can select one of your actions by clicking on one of the action labels. You
will not be allowed to get back to previous games and revise your actions.

Example: Referring to the game illustrated above, if you choose Action 1
and the Computer chooses Action 3, you will get 47 points (in red) and the
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Computer 40 points (in blue). You can check this by hovering the mouse
pointer over the game cell with payoffs 47 and 40. Earnings

Your performance in this experiment will be assessed based on the points you
get with your choices.

Beside your participation fee of £2, you will get a bonus based on the outcome
of your decisions in three randomly sampled games (one for each part). One
point will be converted to £0.01.

Example: Suppose that in the three games randomly selected, your payoff was
31 points, 62 points, and 44 points. Therefore, you will be paid a bonus of
£0.31 + £0.62 + £0.44 = £1.37. Important points to remember

With your decisions you choose a row of the game, whereas the Com-
puter chooses one of the columns.

Only the combination of the row and column choices determines your
payoff and that of the Computer.

Neither you nor the Computer will know in advance the choice of the
counterpart.

The Computer will choose as to maximize its own payoff, under the
assumption that you will do the same.

The Computer will use the same decision rule throughout the whole
experiment.

You will receive feedback about the computer actions only in Part 2 of
the study. In Part 1 and 3 you will make your choices without being
informed about what the Computer has chosen.

The more points you accumulate with your decisions, the larger your
final bonus.

Appendix C. Comprehension check

Please answer the following questions and press the button on the bottom
of this page to proceed
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Game

Computer's actions
Action 1 Action 2 Action 3

31 38 40
Action 1
27 36 47

43 26 31
Your actions Action 2
34 31 32

33 46 35
Action 3

[
(¥

29 37

1) In the game on the left, if you choose Action 3:
U You get 55 points

O You get 29 points if the Computer chooses Action 2
U The Computer gets its largest payoff
U Don’t know

2) In the game on the left, if you choose Action 1 and the Computer chooses
Action 3, then:

O You get 55 points and the Computer 33
U You get 37 points and the Computer 35
O You get 47 points and the Computer 40
L Don’t know

3) In the game on the left, if you choose Action 2 and the Computer chooses
Action 1, then:

L1 You get 34 points

1 The Computer gets 34 points
L1 You get 36 points

O Don’t know
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Appendix D. Power analysis

Tail(s) One-sided
Effect size d 0.5
Input a error probability 0.05
Power (1 — 3 error probability) 0.9
Allocation ratio N2/N1 1
Noncentrality parameter § 2.958
Critical ¢ 1.656
Degrees of freedom 138
Output Sample size group 1 70
Sample size group 2 70
Total sample size 140
Actual power 0.903

Table D.14: A priori power analysis for choosing the sample size

Appendix E. Data processing

In total, 77 subjects failed to answer correctly all questions of the com-
prehension check three times and were not allowed to continue with the
experimental task.

Of all the data collected, the first subjects participating in the FP treat-
ments were excluded. A short time after we started the data collection, we
realized that, in the FP treatment, the BRO heuristic was not lying in row
2, as it should have. For this reason, we modified the game and used the
correct, version for all the following sessions, but had to remove the first data
collected for the FP treatments.
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Appendix F. Additional tables

Stage 1 Stage 3
Treatment Assessment Reassessment Sample size

Rl R2 R3 Rl R2 R3

Overlapping L1  0.35 040 0.25 0.55 0.32 0.13 N = 83 subjects
Distinct L1 0.42 0.39 0.19 0.58 0.28 0.14 N = 83 subjects

Overlapping L2  0.22 0.45 0.34 0.54 0.26 0.20 N = 95 subjects
Distinct L2 0.27 0.36 0.37 0.50 0.27 0.23 N = 78 subjects

Overlapping OPT 0.28 0.33 0.40 0.38 0.23 0.39 N = 76 subjects
Distinct OPT 0.23 040 0.37 0.36 0.24 040 N = 88 subjects

Overlapping BRO 041 0.25 0.34 051 023 0.26 N = 80 subjects
Distinct BRO  0.37 0.22 0.41 045 0.13 042 N = 77 subjects

Overlapping FP  0.30 0.32 0.38 0.43 0.22 0.35 N = 94 subjects
Distinct FP 0.35 0.30 0.35 0.48 0.15 0.37 N = 73 subjects

Notes:  Choice rates for the row player’s actions Row 1 (R1), Row 2 (R2), and Row 3
(R3) by stage and treatment group. Because of rounding, they may sum up to 1.01.

Table F.15: Row player’s choice rates by stage and treatment

Appendix G. Games

5.3 6 6.5 2.3 6 6.5
6.4 5.4 6.6 6.4 5.2 6.6

5.5 5.1 7 5.5 5.1 6.1
6.3 7.4 5.2 6.3 7.4 5.4

8 9 7.5 8 9 7
8 5 6.2 8 D 6.2

Table G.16: Example of Distinct- and Overlapping-type payoff matrices for the L2 heuristic
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Table G.17: Example of Distinct- and Overlapping-type payoff matrices for the ”Best-
Response to Optimistic” heuristic

Table G.18: Example of Distinct- and Overlapping-type payoff matrices for the ”Opti-

mistic” heuristic

6.4 9.3 6.9 5.5 3 6.1
5.5 6 7 5.1 6 7.1

6.6 ) 8 6.6 4.5 7
6.1 6.8 5.4 6.5 7.2 6.3

7.5 7.6 5.1 8 9 2.3
7.5 5.2 6.3 8 4 2.6

6.3 6.5 6.8 6.3 6.5 6.8
5.3 6.2 7.7 5.2 6.2 7.6

6.7 5 6.6 6.7 o 6.6
6.7 7.6 5.2 6.7 7.7 5.3

7.5 7.6 6.1 7.5 7.6 6.1
7.5 5.1 7.2 7.5 5.1 7.2

5.5 3 6.1 5.5 5 6.1

6.5 6 7.1 5.1 6 7.1
6.6 4.5 7 6.6 4.5 7

5.1 7.2 6.3 6.5 7.2 6.3
8 9 2.3 8 9 2.3

8 4 2.6 8 4 5.6

Table G.19: Example of Distinct- and Overlapping-type payoff matrices for the ”Focal
Point” heuristic
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L1 L2 OPT BRO FP

O b O D O D O D O D

L1 T M B B B B B B B B
L2 B B T M B B B B B B
OpT B B B B T M B B B B
BRO M M MM MM T MM M
FP B B B B B B B B T M
EQ T T T T T T T T T T

Notes: Letters T, M and B stand for ”Top”, "Middle” and ”Bottom”. Letters O and D
refers to ”Overlapping” and ”Distinct” matrices. These notations specify a matrix and
row in Tables G.16 to G.19. Rows indicate which strategies are consistent with the action
in the case.

Table G.20: Relation between choices and strategies for each payoff matrix
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