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A collective chaotic phase with power law scaling of activity events is observed in a disordered mean
field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity.
The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes
to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the
system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two
dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches
exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity.
Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the
combination of disorder and deterministic underlying chaotic dynamics.
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Networks of spiking neurons feature a wide range of
dynamical collective behaviors that are believed to be crucial
for brain functioning [1]. Next to uncorrelated and asyn-
chronous dynamics, quasisynchronous phases and regimes
of irregular activity have been observed, showing a still
unexplained degree of correlation that could encode part of
the neural function [2–7]. Understanding the mechanisms
that generate such experimentally observed collective behav-
iors and the transition between them is a major goal in
theoretical neuroscience [1,8–15]. A particularly interesting
dynamical signature of collective irregular regimes are
avalanches or bursts of spiking neurons with heavy-tailed
distributions of activity [6,16,17]. Interestingly, in cortical
networks, irregular activity at the collective level [18,19] and
avalanches characterized by power law distributions have
been widely observed both in vitro and in vivo [20–23].
These regimes are thought to be closely related to informa-
tion processing in the cortex [24–26] and to adaptive [27] and
healthy [28] behavior.
Several mechanisms leading to irregular dynamics and

bursts in networks of spiking neurons have been proposed.
Irregular dynamical phases have been related to a balance
between excitatory and inhibitory inputs [29,30] or to a
disorder in the network or in the couplings [11,31] as crucial
ingredients. Power law distributed avalanches have been
attributed to synaptic plasticity with a stochastic noise in the
charging [32–36] or to dynamical mechanisms inspired by
self-organized criticality (SOC) [27,37,38]. The balance
between excitation and inhibition plays an important role
in the latter dynamical regime as well [39], and a relation
between uncorrelated dynamics in a network of stochastic
units and power law scaling has been proposed [40,41].
In this Letter we show that correlated irregular dynamics

can be observed in homogeneous deterministic networks of

N identical purely excitatory spiking neurons endowed with
synaptic plasticity, coupled by an all to all, mean field (MF),
interaction. In this case, all neurons are synchronized but, for
small enough synaptic decay time, the system displays a
period doubling transition from a periodic phase to synchro-
nous chaos [42,43]. Such a transition is determined by the
competition among the system time scales in the strong and
weak coupling limits. For vanishing synaptic decay time, the
dynamics can be reduced to a one dimensional map.
In the presence of disorder in the couplings, we show that

the dynamics exhibits three phases, depending on the
interaction strength and synaptic decay time. In particular,
next to the quasisynchronous and the asynchronous
regimes [44], a phase characterized by power law distrib-
uted avalanches emerges in correspondence to the chaotic
phase of the homogeneous MF model. Chaos is preserved
in this dynamical phase, as confirmed by the computation
of the Lyapunov exponents, and it is characterized by the
onset of strong temporal correlations and high complexity.
Our analysis uncovers a connection between dynamical
stability and emergent avalanche activity in the presence of
short-term synaptic plasticity, that may go beyond our
particular case of study.
We consider a disordered random network of leaky

integrate-and-fire (LIF) neurons [45] connected via the
Tsodyks-Uziel-Markram (TUM) model for short term
synaptic plasticity [46]. Within a degree based mean field
approximation (DMF), for each neuron i ¼ 1…N the
dynamic is defined by three differential equations:

_viðtÞ ¼ a − viðtÞ þ gkiYðtÞ; ð1Þ

_yiðtÞ ¼ −
yiðtÞ
τin

þ u½1 − yiðtÞ − ziðtÞ�SiðtÞ; ð2Þ
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_ziðtÞ ¼
yiðtÞ
τin

−
ziðtÞ
τR

; ð3Þ

where viðtÞ is the membrane potential of neuron i while
yiðtÞ, ziðtÞ, and xiðtÞ ¼ 1 − yiðtÞ − ziðtÞ represent the
active, inactive, and available fraction of resources of the
corresponding synapses. The potential viðtÞ is reset to 0 at
times tiðmÞ when it reaches the threshold vi½tiðmÞ� ¼ 1. At
tiðmÞ, a spike activates a fraction u of the available
resources, and the activation is modeled as a spike train
SiðtÞ ¼

P
mδ½t − tiðmÞ�. Neurons are characterized by the

coupling constant gki, randomly extracted from the dis-
tribution PðkiÞ. Nki can be interpreted as the effective
number of neural synapses interacting with neuron i, i.e.,
its in degree [44]. In this framework, ki is the only relevant
topological feature of the neural network and it justifies the
DMF name. In a mean field description, the incoming
synaptic current can be written as the average of the active
resources YðtÞ ¼ N−1PN

i¼1 yiðtÞ.
By introducing an event driven map [47], the DMF

approach allows for very effective numerical simulations
and it has been shown to reproduce the relevant collective
dynamics for networks with large finite connectivity and
metrical features [48] (see Supplemental Material [49]).
Equations (1)–(3) are characterized by three time scales:

the period of the oscillating noninteracting neuron
T ¼ log½a=ða − 1Þ�, the recovery time τR, and the synaptic
decay time τin. The regime τin ≲ T has been studied in detail
in Refs. [44,48,55,56], and it features a transition from a
quasisynchronous to an asynchronous phase as a function
of g and of the shape of PðkiÞ. Here we will focus instead on
the regime τin ≪ T ≪ τR, setting a ¼ 1.3, τR ¼ 10 and
varying τin between 10−1 and 10−5. These parameters are
consistent with those selected in Ref. [46], where they have
been chosen on the basis of biological motivations.
Mean field.—The presence of a further nontrivial phase

can be put into evidence by considering the simple in-degree
distributionPðkiÞ ¼ δðki − k0Þ. In this fullyMF case, where
all the coupling constants are equal, all neurons become
completely synchronized after an initial transient state, as
shown in the Supplemental Material [49]. Hence, Eqs. (1)–
(3) reduce to the equations of a single neuron with coupling
k0 and YðtÞ ¼ yðtÞ. The dynamics can be rewritten as an
event driven Poincaré map in zn and yn, representing the
inactive and active resources before the nth synchronous
spiking event (see Supplemental Material [49]),

ynþ1 ¼ e−ðΔn=τinÞ½yn þ uð1 − yn − znÞ�; ð4Þ

znþ1 ¼ −e−ðΔn=τinÞ yn þ uð1 − yn − znÞ
1 − τin=τR

;

þ e−ðΔn=τRÞ
�

zn þ
yn þ uð1 − yn − znÞ

1 − τin=τR

�

; ð5Þ

where the time intervalΔn between the nth and the (nþ 1)th
spiking event is obtained from

1 ¼ a − e−ðΔn=τinÞ gτink0½yn þ uð1 − yn − znÞ�
1 − τin

− e−Δn

�

a −
gτink0½yn þ uð1 − yn − znÞ�

1 − τin

�

: ð6Þ

When τin ≪ T ≪ τR, an insight on the dynamics can be
achieved by considering the opposite regimes of weak and
strong interaction, i.e., when gk0YðtÞ or a − vk0ðtÞ are
negligible in Eq. (1), respectively. In both extreme regimes,
the map in Eqs. (4)–(6) can be solved, and it features a fixed
point corresponding to a periodic solution in the continuous
dynamics (see Supplemental Material [49] for details). In
particular, in the weak coupling regime, the periodicity is
trivially T, and the interaction term remains negligible if
gk0τin ≪ τR=T. On the other hand, if the a − vk0ðtÞ term
can be ignored, the system displays a much faster perio-
dicity: Tf ¼ τR=ðgk0τinÞ and the approximations hold only
if gk0τin ≫ τR=τin.
If τR=T ≪ gk0τin ≪ τR=τin, neither the weak nor the

strong coupling conditions are satisfied, and the competi-
tion between the terms with a slow and a fast dynamics
plays a nontrivial role, destroying the presence of a periodic
evolution. Such a behavior can be analyzed by means of the
bifurcation diagram [57] of Δn as a function of g at fixed
τin. Figure 1 shows the presence of a stable fixed point for
small and large values of g, describing a slow and a fast
periodic regime, respectively. For an intermediate value, a
period doubling appears first; then, at g > g0ðτinÞ, the
distribution of Δn becomes continuous. The Δn becomes
again delta-distributed for g > g00ðτinÞ. In the Supplemental
Material [49] we show that for g0ðτinÞ < g < g00ðτinÞ the

FIG. 1. Feigenbaum bifurcation diagram for the MF TUM
model in Eqs. (4)–(5) with τin ¼ 10−3. The attractor for the
interspike interval of the network Δn is shown as a function of the
coupling g. Upper panel: bifurcation diagram in the full relevant
range of the parameter g. Lower-left panel: magnification on the
period doubling cascade at the first transition. Lower-right panel:
magnification on the second transition. The blue rectangles in the
upper panel indicate the zooming regions of the lower panels.
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maximum Lyapunov exponent [58] becomes positive, a
signature of the presence of chaos. In the fully MF system
with N neurons, this is an example of synchronous chaos
[42,43]. The phase diagram in Fig. 2 shows that the τin
dependence of the boundaries of the chaotic phase
(squares) is consistent with the continuous lines, obtained
by the weak and strong coupling limit arguments. The
critical values for g and τin depend on a, i.e., the intrinsic
period of the neuron; the chaotic dynamics is observed at
higher τin by considering smaller a (see Supplemental
Material [49]). Taking the limit τin → 0 with geff ¼ gk0τin
constant in Eqs. (4)–(6), one obtains a single variable map
as a function of geff , a and τR only, that can be studied
analytically (see Supplemental Material [49]). This simpler
map confirms the presence of a genuine chaotic dynami-
cal phase.
Degree based mean field.—Let us now focus on the

multisite DMF model with heterogeneous couplings
extracted from the distribution PðkiÞ. We consider a
Gaussian PðkiÞ with average μ ¼ 0.7 and standard
deviation σ ¼ 0.077, although our results are robust for
different distributions (see Supplemental Material [49] for a
discussion). A relevant quantity describing the level of
synchronization of the neurons is the Kuramoto parameter
[59]: RðtÞ ¼ ð1=NÞjPN

i¼1 e
{ϕiðtÞj, where ϕiðtÞ is the phase

of neuron i at time t:

ϕiðtÞ ¼ 2π
t − tiðmÞ

tiðmþ 1Þ − tiðmÞ ; ð7Þ

where tiðmÞ is the mth spike of neuron i and
t ∈ ½tiðmÞ; tiðmþ 1Þ�. In Fig. 3, the time average hRi of
the Kuramoto parameter and its fluctuations σR are dis-
played as a function of g. At small couplings, hRi ≈ 1 and

the fluctuations are small, as the systems is in a quasisyn-
chronous phase. At large g, hRi becomes very small
(hRi → 0 with increasing N), consistently with a periodic
asynchronous phase. In the irregular, bursty, regime, hRi
exhibits moderate values and, more significantly, its fluc-
tuations grow abruptly by an order of magnitude; this is a
signal of a complex dynamical phase, illustrated in the
raster plot in the inset of Fig. 4 (each dot corresponds to a
spike of neuron i at time t). The fluctuations of hRi
originate from the alternations of synchronous events with
asynchronous phases characterized by smaller bursts where
only a subset of the neurons fires simultaneously. The main
plot of Fig. 4 shows that the size s of such bursts, or
avalanches, is broadly distributed (see Supplemental
Material [49] for a detailed definition of burst size).

FIG. 2. Dynamical phase diagram of the MF and DMF models
in terms of the coupling constants g and of the synaptic time scale
τin. MF model: The squares indicate the g values at which the
transition to chaos (along with the discontinuity of the interspike
time standard deviation) takes place (see Supplemental Material
[49]). The black lines are linear fits. DMF model: Each colored
point corresponds to a simulation, the color code indicating σR at
the corresponding value of (g, τin). The intervals of g containing
the discontinuity (cf. Fig. 3) are signaled with black circles.

FIG. 3. Standard deviation of the Kuramoto parameter, σR
versus g for the DMF model with τin ¼ 10−3 and five values of N.
In the quasisynchronous and bursty phases the data correspond-
ing to the two larger values of N overlap within their statistical
errors, indicating convergence in size, while deep in the asyn-
chronous phase they decrease as ∼N−1=2. Inset: temporal average
of RðtÞ, showing that the larger sizes have attained their
asymptotic value in all the phases. The vertical stripes are
common to all the figures in the article and indicate the apparent
discontinuity of hRi for the largest sizes.

FIG. 4. Avalanche size histogram hðsÞ of the DMF model,
τin ¼ 10−3 and g ¼ 3.5 × 105 in the bursty regime, for several
values ofN. Upper inset: a fragment of the raster plot for the same
system. Lower inset: log10 hðsÞ forN ¼ 104 and various values of
g across the bursty phase.
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Interestingly, the distribution is compatible with a power
law hðsÞ ∼ s−γ followed by a bump. The power γ, close
to 2 (see Supplemental Material [49]), does not depend
significantly on N, nor on g for a wide g range in the
bursty phase. Finally, the peaks at large s in the
distributions correspond to synchronous events where
all neurons fire quasisimultaneously, and their position
scales with the system size.
The natural issue is the relation between the chaotic

phase in the single site MF model and the bursty-
avalanche regime of the multisite DMF approach. In
the Supplemental Material [49] we show that also the
bursty phase is characterized by a chaotic dynamics with
positive Lyapunov exponents. In Fig. 2 we have super-
imposed the dynamical phase diagrams of the MF and
DMF models. In the DMF, the transitions points (circles)
are set at the g intervals at which the abrupt increments
of the fluctuations of the Kuramoto parameter take place
(cf. Fig. 3). In the MF case, the squares indicate the
values of g at which the transitions to chaos occur. While
the phase diagrams slightly differ, the phase diagram of
the DMF model converges continuously to that of the MF
model in the limit of vanishing width of the distribution
PðkiÞ, as illustrated in the Supplemental Material [49].
This scenario suggests that the bursty regime arises from
the introduction of disorder on a system with synchro-
nous chaos, so that neurons with different coupling ki do
not fire simultaneously and the synchronous solution
loses stability.
In the DMF model, the transition to the bursty collective

behavior also corresponds to the presence of large temporal
correlations. We define the time dependent complex cor-
relation, cðδ; tÞ ¼ ð1=NÞPN

i¼1 e
{ϕiðtÞe−{ϕiðtþδÞ, where ϕiðtÞ

is the Kuramoto phase (7), along with the connected

correlation function, CðδÞ ¼ jhcðδ; tÞitj − jhcðT ; tÞitj, as
the temporal average h·it of c over a sufficiently large
interval of times t, minus its stationary value at a suffi-
ciently large time difference, δ ¼ T (for details at this
regard see the Supplemental Material [49] section). CðδÞ
measures in this way the average amount of correlation
between spike configurations separated by a time delay δ.
The quantity CðδÞ (see Fig. 5, main panel) reveals the
existence of large correlations for times δ much larger than
the average interspike time, IðgÞ, only in the bursty regime
(for 3 × 104 ≲ g≲ 105 at τin ¼ 10−3), while in the syn-
chronous and asynchronous regimes, CðδÞ decays faster to
its asymptotic value.
Another interesting quantity in the temporal series of

neural firing patterns is the amount of information they can
sustain. In information theory, the Kolmogorov complexity
(KC) of a data sequence determines the length of the
minimum computer program generating it, hence being a
measure of the sequence predictability [60]. KC has been
related to the computational power of artificial neural
networks [61], and used in the quantitative characterization
of epileptic EEG recordings [62]. We consider the KC of
the raster plot, interpreting it as an estimation of the amount
of information that can be codified in the dynamical signal
(see the details of the KC estimation in the Supplemental
Material [49] section). The numerical results for the DMF
model reveal that the KC as a function of g (see the inset of
Fig. 5) presents a maximum in the bursty regime (around
g≃ 6 × 104 for τin ¼ 10−3).
In summary, we have reported the existence of a

dynamical phase occurring in a network of purely excita-
tory LIF neurons connected with synaptic plasticity. This
phase, identified by average statistical properties of the
Kuramoto parameter, is strongly chaotic and it differs from
previously known irregular phases for similar models, e.g.,
phases with chaotic transient dynamics [31,63]. The
chaotic phase must also be distinguished from previous
irregular regimes observed in spiking neural models,
namely weak chaos in purely excitatory disordered
networks [64] or stable chaos in inhibitory ones [65–67].
The emergent dynamical regime occurs in a large region of
the phase diagram, and it is separated by two dynamical
transitions from the quasisynchronous and asynchronous
regimes. Chaos is preserved in the presence of disordered
couplings. In that case, interestingly, the chaotic phase also
features characteristic power law distributed avalanches.
By properly defining temporal correlations and tools from
information theory, we show that the additional bursty phase
is strongly correlated and it carries a relevant amount of
information compared to the quasisynchronous and the
asynchronous phases.

We gratefully acknowledge the support of the NVIDIA
Corporation with the donation of the Tesla K40 GPU used
for this research. We warmly thank S. di Santo, R. Livi,
M. A. Muñoz, and A. Politi for useful discussions.

FIG. 5. Main plot: connected correlation function C as a
function of the time difference δ in units of the average interspike
time IðgÞ, for several values of g in the DMF model with
τin ¼ 10−3, N ¼ 800. For values of g in the bursty phase, the
correlation remains high even after large time differences. Inset:
Kolmogorov complexity of the DMF model, τin ¼ 10−3,
N ¼ 103, and the spike time differences Δn stored with 14 digits
of precision.
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