
Model Predictive Control for Safe Autonomous
Driving Applications

Ivo Batkovic, Mario Zanon, and Paolo Falcone

AbstractAlthough Model Predictive Control is widely used in motion planning and
control for autonomous driving applications, accommodating closed-loop stability
w.r.t. an arbitrary reference trajectory and avoidance of pop-up or moving obstacles
is still an open problem.
While it is well-known how to design a closed-loop stable MPC w.r.t. a reference
trajectory that satisfies the system dynamics, this chapter discusses how to guar-
antee stability of a vehicle motion planner and controller when a user-provided
arbitrary reference is used. Furthermore, the proposed MPC scheme enables recur-
sive collision-avoidance constraint satisfaction in the presence of pop-up or moving
obstacles (e.g., pedestrians, cyclists, human-driven vehicles), provided that their pre-
dicted future motion trajectory is available together with some uncertainty bound
and satisfies some mild requirement.
The proposed motion planner and controller is demonstrated through simulations.
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1 Introduction

In order to fully deploy highly automated driving technologies, vehicles need to
be able not only to reliably sense their surrounding environment, but also to safely
interact with it. To that end, challenging problems need to be solved that span
from robust and reliable sensors design (e.g., cameras, lidars, radars, GPS, HD-
maps) to the development of robust perception and motion planning and control
algorithms. While safe autonomous driving in complex environments still remains
an open problem, research is progressing in the fields of localization [46, 47], object
detection and tracking [10, 15, 33], and planning [23, 41, 45], to move beyond the
current state of the art.

In this chapter, we focus on the vehicle motion planning and control problems
for autonomous driving applications. We build our results on the Model Predictive
Control (MPC) technique, as it has been proven to be a convenient design tool for
self-driving applications including, e.g., optimal coordination [11, 12, 32], energy
consumption minimization [31, 48, 52], and planning [5, 6, 13, 14, 24, 38, 29,
40]. The theory of MPC is equipped with well-known, well-established tools to
enforce closed-loop stability w.r.t. a reference trajectory, while ensuring constraint
satisfaction [9, 44]. However, these results build upon assumptions that can be
challenging, or impossible, to satisfy in practical autonomous driving applications.

Such challenges include: a) enforcing closed-loop stability w.r.t. reference trajec-
tories that do not satisfy the system dynamics; and b) providing recursive feasibility
guarantees in uncertain environments (e.g., in presence of pop-up or moving obsta-
cles). Indeed, if the MPC controller is provided with a reference trajectory that does
not satisfy the system dynamics, then the well-known results for asymptotic stability
of the closed-loop system do no longer hold. Furthermore, in an autonomous driving
setting, the vehicle needs to interact with other road users that may appear almost
anywhere and at any point in time within the sensor range. Ensuring that the vehicle
motion planner can persistently be able to avoid collisions with other road users at
all future times in such uncertain settings still remains an open problem. To address
a) we resort to Input-to-State Stability (ISS) analysis to prove closed-loop stability
also when infeasible (in the sense that they do not satisfy the system dynamics)
references are used; and to address b) we provide a scheme which enables recur-
sive collision-avoidance constraint satisfaction in the presence of pop-up or moving
obstacles, provided that the uncertainty on their predicted motion is not growing as
new information is available about the environment and the road users therein.

This chapter is structured as follows. In Section 2 we introduce the problem
of safely planning and controlling the vehicle within an uncertain environment,
while Section 3 outlines the Model Predictive Flexible trajectory Tracking Con-
trol (MPFTC) framework. In Section 4 we show how stability can be ensured when
an infeasible reference trajectory is used, and in Section 5 we provide recursive feasi-
bility guarantees for uncertain settings with suddenly appearing (pop-up) obstacles.
Finally, in Section 6 we provide clarifying examples that illustrate the results derived
in Sections 4 and 5.
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1.1 Notation

We denote a discrete-time nonlinear system by

x:+1 = 5 (x: , u: ), (1)

where x: ∈ R=x and u: ∈ R=u are the state and input vectors at time : , respectively.
The state and inputs are subject to two categories of constraints: a-priori known
constraints ℎ(x, u) : R=x × R=u → R=ℎ ; and a-priori unknown constraints 6(x, u) :
R=x ×R=u → R=6 , i.e., the state and inputs must satisfy ℎ(x, u) ≤ 0 and 6(x, u) ≤ 0,
where the inequalities are defined element-wise.

We use the notation 6
= |: (x, u) to denote function 6 at time =, given the information

available at time : . Moreover, we will denote by 6= (x, u) := 6= |∞ (x, u) = 6= |: (x, u),
∀ : ≥ = the actual constraint, while in general 6

= |: (x, u) ≠ 6= (x, u), ∀ : < =. Note
that for a-priori known constraints ℎ= |: (x, u) := ℎ= (x, u) holds ∀ : by definition. We
apply the same notation to state and inputs, e.g., x= |: and u= |: denote the predicted
state and input at time = given the information available at the current time : . In
addition, to denote a set of integers, we use I10 := {0, 0 + 1, ..., 1}.

2 Problem Description

In this section we formulate the problem of safely planning and controlling the
motion of a vehicle within an environment with static and moving obstacles, as a
Model Predictive Control Problem.

The dynamical model of the vehicle, and the state and input constraints it is
subject to, are denoted as in Section 1.1. Function ℎ includes actuator limitations,
design and safety (e.g., distance from the lane boundaries) constraints and is known
beforehand. Function 6 models a-priori unknown constraints such as, e.g., pop-up
(suddenly appearing) or moving obstacles, whose exact future motion trajectories
are unknown. Our aim is then to control the vehicle motion described by (1) such that
both known constraints ℎ: (x, u) ≤ 0 and a-priori unknown constraints 6: (x, u) ≤ 0
are satisfied at all times : .

Our first and essential objective is to guarantee safety of (1), which we define
formally as follows.

Definition 1 (Safety)
A controller is said to be safe in a given setS ⊆ R=x if∀x ∈ S it generates control

inputs U = {u0, ..., u∞} and corresponding state trajectories X = {x0, x1, ..., x∞}
such that ℎ: (x: , u: ) ≤ 0 and 6: (x: , u: ) ≤ 0, ∀ : ≥ 0.

Our second objective is to control the system such that the state and input x: , u:

track a parameterized reference trajectory r(g) := (rx (g), ru (g)) as closely as safety
allows. If the reference parameter g is selected to be time, its natural dynamics are
given by
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g:+1 = g: + Cs, (2)

where Cs is the sampling time for sampled-data systems and Cs = 1 in the discrete-
time framework. Given the presence of nonlinear dynamics and constraints, we
frame the problem in the context of MPC. Note that if g is forced to follow its
natural dynamics (2), then the reference tracking problem in the absence of a-
priori unknown constraints 6 is a standard MPC problem and, therefore, inherits all
stability guarantees, but also a possibly aggressive behavior when the initial state
is far from the reference. In order to tackle that issue and be able to deal with a-
priori unknown constraints, we adopt next the concept ofModel Predictive Flexible
Trajectory Tracking Control introduced in [4].

3 Model Predictive Flexible Trajectory Tracking Control

The main idea in Model Predictive Flexible trajectory Tracking Control (MPFTC) is
to avoid aggressive behaviors by adapting the dynamics of the reference trajectory
by means of the parameter g, which acts as a fictitious time for the reference, through
relaxed dynamics given by

g:+1 = g: + Cs + E: , (3)

where E is an additional auxiliary control input and g becomes an auxiliary state.
Note that the system dynamics are unchanged and the fictitious time g makes only
the reference dynamics deviate from the natural ones.

We formulate the MPFTC problem as the following MPC problem

+ (x: , g: ) :=min
x,
g,

u
E

:+#−1∑
==:

@r (x= |: , u= |: , g= |: ) + FE2
= |:

+ ?r (x:+# |: , g:+# |: )
(4a)

s.t. x: |: = x: , g: |: = g: , (4b)

x=+1 |: = 5 (x= |: , u= |: ), = ∈ I:+#−1
: , (4c)

g=+1 |: = g= |: + Cs + E= |: , = ∈ I:+#−1
: , (4d)

ℎ= (x= |: , u= |: ) ≤ 0, = ∈ I:+#−1
: , (4e)

6
= |: (x= |: , u= |: ) ≤ 0, = ∈ I:+#−1

: , (4f)

x:+# |: ∈ Xf
r (g:+# |: ), (4g)

where : is the current time, # is the prediction horizon, and F > 0 is the weight
defining the cost associated with the auxiliary input E= |: . In tracking MPC, typical
choices for the stage and terminal costs are
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@r (x= |: , u= |: , g= |: ) =
[
Δx= |:
Δu= |:

]>
,

[
Δx= |:
Δu= |:

]
, (5)

?r (x:+# |: , g:+# |: ) = Δx>
:+# |:%Δx:+# |: , (6)

Δx= |: := x= |: − rx (g= |: ), Δu= |: := u= |: − ru (g= |: ),

where the matrices , ∈ R(=x+=u)×(=x+=u) and % ∈ R=x×=x are symmetric positive-
definite and r(g= |: ) = (rx (g= |: ), ru (g= |: )) is a user-provided reference trajectory.
Note that the cost functions @r and ?r depend on g= |: only through the reference
trajectory and that the cost is built with convex quadratic forms just for simplicity,
while the proposed framework can accommodate more general cost definitions. The
predicted state and controls are defined as x= |: , g= |: , and u= |: , E= |: respectively, and
are subject to constraints (4b)-(4f). Constraint (4b) initializes the state prediction to
the current system state x: , (4c)-(4d) impose that the predicted states generated from
the system dynamics and the controls u= |: , (4e) enforces constraints stemming from,
e.g., actuator physical limitations and reference trajectory bounds, while constraint
(4f) forces the predicted state and controls to satisfy constraints imposed to avoid the
collision with obstacles detected by a perception layer, hence, not known a-priori.
Finally, (4g) is a terminal set constraint, which, differently from standard formula-
tions, depends on the auxiliary state g:+# |: relative to the reference parameter. Note
that, while the introduction of one additional state and control results in an increased
computational complexity, such increase is typically small, since these variables
have decoupled linear dynamics.

The stability proof forMPFTC has been provided in [4]. However, in Section 4 we
will recall the necessary assumptions and state the stability theorem for completeness.
We ought to stress that, in the absence of a-priori unknown constraints, the necessary
assumptions for stability reduce to those commonly used to prove stability in standard
MPC schemes. In the presence of a-priori unknown constraints, these assumptions
may become too restrictive leading to the lack of recursive feasibility. Hence, in [4]
we proposed to relax the standard assumptions while introducing new ones which
can be summarized as follows. We first require one to “be able to predict a (possibly
conservative) worst-case scenario” for the a-priori unknown constraints. Since the
uncertainty typically becomes too large in rather short times, we need a second
assumption which postulates the existence of a safe set, consisting of states for
which the a-priori unknown constraints can be neglected. We will provide a more
detailed discussion on this aspect in Section 5, where we will also discuss how to
enforce these assumptions for autonomous driving.

4 Tracking an infeasible reference

We recall that our objective is to control the system (1), such that the state x: tracks a
user-provided parameterized reference trajectory r(g) = (rx (g), ru (g)) as closely as
possible. For the remainder of the chapter, we assume that the reference trajectory is
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parameterized with the time parameter C, and that it follows the natural dynamics (2).
Furthermore, we will refer to any time dependence of the reference using the notation
(rx

:
, ru

:
) := (rx (g: ), ru (g: )), where g is the fictitious time introduced in (3).

In order to prove stability, we recall the following standard assumptions, see,
e.g., [26, 44].

Assumption 1 (System and cost regularity)
The system model 5 is continuous, and the stage cost @r : R=x ×R=u ×R→ R≥0,

and terminal cost ?r : R=x × R → R≥0, are continuous at the origin and satisfy
@r (rx

:
, ru

:
, g: ) = 0, and ?r (rx

:
, g: ) = 0. Additionally, @r (x: , u: , g: ) ≥ U1 (‖x: − rx

:
‖)

for all feasible x: , u: , and ?r (x: , g: ) ≤ U2 (‖x: − rx
:
‖), where U1 and U2 are

K∞-functions.

This assumption is common in MPC [26, 44] and can be relaxed in case one wants
to account for so-called “economic” costs, see, e.g., [1, 19, 25, 39, 54, 55, 59, 53] for
a generic theory and [31, 53] for applications to autonomous driving. The MPFTC
framework can be extended to yield an approximate economic MPC, similar to the
one proposed in [56, 57, 58, 16].

Assumptions 2, 3 are introduced as for standard MPC formulations, where no dif-
ference is made between a-priori known ℎ and unknown constraints 6. Nevertheless,
we distinguish the case where the assumption is required to hold for ℎ only from
the case where the assumptions hold for both constraints, which is too restrictive in
practice.

Assumption 2 (Reference feasibility)
The reference is feasible for the system dynamics, i.e., rx (C + Cs) = 5 (rx (C), ru (C)),

and:

a) the reference satisfies the known constraints (4e), i.e., ℎ= (rx (C=), ru (C=)) ≤ 0,
for all = ∈ I∞0 ;

b) the reference satisfies the unknown constraints (4f), i.e., 6
= |: (r

x (C=), ru (C=)) ≤ 0,
for all =, : ∈ I∞0 .

Assumption 2b is a strong assumption since it assumes that the reference is
feasible for the unknown constraints for all future times, i.e., at time : the constraint
6= |:+1 is also assumed to be satisfied. This is clearly unrealistic for autonomous
driving, since pedestrians and other vehicles may at some time cross the road and
make the reference infeasible. Therefore, Assumption 2a serves as a relaxed version
which is more realistic and will be used later, while dropping Assumption 2b.

Assumption 3 (Stabilizing Terminal Conditions)
There exists a parametric stabilizing terminal set Xf

r (C) and a terminal control
law ^f

r (x, C) yielding:

x^
+ = 5 (x, ^f

r (x, C)), C+ = C + Cs,

such that ?r (x^
+, C+) − ?r (x, C) ≤ − @r (x, ^f

r (x, C), C), and
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a) x ∈ Xf
r (C) ⇒ x^

+ ∈ Xf
r (C+), and ℎ= (x, ^f

r (x, C)) ≤ 0, for all =, : ∈ I∞0 ;
b) x ∈ Xf

r (C) ⇒ 6= |: (x, ^f
r (x, C)) ≤ 0, for all =, : ∈ I∞0 .

Similarly to Assumption 2b, Assumption 3b is also difficult to verify due to the
unknown constraints. Hence, the milder Assumption 3a, which is standard in MPC
settings, will be used later on whereas Assumption 3b will be dropped.

In order to track the reference (rx
:
, ru

:
), we temporarily consider the following

tracking MPC Problem

+ (x: , g: ) :=min
x,u

:+#−1∑
==:

@r (x= |: , u= |: , g=) + ?r (x:+# |: , g:+# ) (7a)

s.t. x: |: = x: , (7b)

x=+1 |: = 5 (x= |: , u= |: ), = ∈ I:+#−1
: , (7c)

ℎ(x= |: , u= |: ) ≤ 0, = ∈ I:+#−1
: , (7d)

x:+# |: ∈ Xf
r (g:+# ). (7e)

where, as opposed to Problem (4), g follows the natural dynamics (2) instead of (3)
and 6= |: is removed, i.e., we consider a setting where there are no pop-up or other
moving obstacles, or wemake the restrictive assumption that these constraints cannot
become active.

Assumptions 1-3make it possible to derive the following standard (i.e., for feasible
references) stability result.

Proposition 1 (Nominal Asymptotic Stability [3])
Suppose that the constraints 6= |: are inactive, the Assumptions 1, 2a, and 3a hold,

and that the initial state (x: , g: ) at time : belongs to the feasible set of Problem
(7). Then the system (1) in closed loop with the solution of (7) applied in receding
horizon is an asymptotically stable system.

Proof Since constraints 6= |: are inactive by assumption, disregarding them in Prob-
lem (7) does not jeopardize feasibility. The rest of the proof follows from standard
arguments, see, e.g., [9, 44]. �

Proposition 1 recalls the known stability results from the existing literature, which
apply to tracking MPC schemes. We emphasize that, the design procedure resulting
from Proposition 1 requires precomputing a feasible reference trajectory (rx

:
, ru

:
) that

satisfies Assumption 2. However, in practice, it may be convenient to use a reference
trajectory that is infeasible w.r.t. the system dynamics, yet simpler to define. For
example, in the design of a motion planner and controller for an autonomous vehicle
driving on public roads, it would be convenient to just use as a reference trajectory an
easily available lane centerline, which in general would not be feasible for kinematic
or dynamic vehicle models.

While in standard MPC settings the stability with respect to an unreachable
set point has been studied in [43], the approach therein applies to time-invariant
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infeasible references. In order to overcome such a limitation, we consider a setting
where the reference can be time-varying and does not need to satisfy Assumption 2,
and the terminal conditions (7e) do not need to hold at the reference trajectory, but
in a neighborhood. To lay down the main result of this section (Theorem 2), we need
to first introduce a few preliminary results.

Consider the optimal state and input trajectories obtained as the solution of the
optimal control problem (OCP)

(xr, ur) := lim
"→∞

arg min
/ ,.

"−1∑
==0

@r (/=, .=, g=) + ?r (/" , g=) (8a)

s.t. /0 = x0, (8b)

/=+1 = 5 (/=, .=), = ∈ I"−1
0 , (8c)

ℎ(/=, .=) ≤ 0, = ∈ I"−1
0 . (8d)

Note that, since constraints 6= |: are considered to be inactive in this section, we do
not include them in the OCP formulation in order to simplify the following analysis.
Let yr := (xr, ur) denote the solution of (8) and its optimal multipliers as ,r, -r.
Hereafter, we will refer to the reference yr as the feasible reference, as it satisfies
Assumption 2.

The result in Theorem 2 builds upon the stability theory for economic MPC
schemes, where the cost is not of the tracking type. While the interested reader is
referred to [1, 17, 21, 54] for an in-depth understanding of the stability analysis tools
for economic MPC schemes, in this chapter we just recall that the main difference
between economic and tracking MPC schemes is in the cost function, which satisfies

@r (xr
: , u

r
: , g: ) = 0, @r (x: , u: , g: ) > 0, ∀ x: ≠ xr

: , u: ≠ ur
: , (9)

in tracking schemes but not in economic ones. While the MPC scheme built on
a reference trajectory satisfying Assumption 2 is of a tracking type, an infeasible
reference trajectory yields an economic scheme. Hence, in order to retrieve a tracking
cost from the economic one, we introduce the following rotated costs

@̄r (x= |: , u= |: , g=) := @r (x= |: , u= |: , g=) − @r (xr
=, ur

=, g=)
+ ,r>

= (x= |: − xr
=) − ,r>

=+1 ( 5= (x= |: , u= |: ) − 5= (xr
=, ur

=)),
(10)

?̄r (x= |: , g=) := ?r (x= |: , g=) − ?r (xr
=, g=) + ,r>

= (x= |: − xr
=), (11)

which are commonly used in economic MPC. The rotated cost essentially shifts
the stage and terminal costs @r and ?r, so that the minimum is attained at the
feasible reference (xr, ur), i.e., @̄r (xr

:
, ur

:
, g: ) = 0, ?̄r (xr

:
, g: ) = 0. However, in order

to ensure that the rotated costs remain positive definite, we must assume that the
system dynamics are linear time-varying, i.e., that Assumption 4 (whichwe introduce
next) must hold.

The issue of tracking an infeasible time-varying reference has been studied in [3],
under the additional assumption of linear time-varying (LTV) system dynamics. This
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assumption is technical and in practice we expect that the results can be extended to
the fully nonlinear case, which will be the subject of future research.

Assumption 4 The system dynamics 5 are linear time-varying, i.e.,

x:+1 = 5: (x: , u: ) = �:x: + �:u: . (12)

In order to construct a problem that tracks the feasible reference obtained from (8),
we formulate the following ideal formulation

+ i (x: , g: ) = min
x,u

:+#−1∑
==:

@r (x= |: , u= |: , g=) + ?ỹr (x:+# |: , g:+# ) (13a)

s.t. (4b) − (4e), x:+# |: ∈ Xf
yr (g:+# ), (13b)

where

ỹr
: := arg min

x
?yr (x, g: ) − ,r>

: (x − xr
: ). (14)

We refer to this formulation as being ideal since the terminal conditions are in general
not known, unless one solves OCP (8).

Theorem 1 Suppose that

1. Assumption 1 holds,
2. Problem (8) is feasible,
3. Assumption 3 holds for @̄r and ?̄ỹr , with terminal set Xyr ,
4. Assumption 4 holds for the system dynamics.

Then, the system (1) in closed-loop with the ideal MPC (13) is asymptotically stabi-
lized to the optimal trajectory xr. �

Theorem 1 establishes that an MPC problem can be formulated using an infea-
sible reference, which stabilizes system (1) to the feasible reference obtained from
Problem (8), provided that appropriate terminal conditions are used. The remaining
issue, however, is to express the terminal constraint set as a positive invariant set
containing xr, and a terminal control law that stabilizes the system to xr. To that end,
one needs to have prior knowledge of the feasible reference, i.e., Problem (8) needs
to be solved. Instead, we consider expressing terminal conditions that are based on
an approximately feasible reference. In that case, asymptotic stability in the sense of
Proposition 1 cannot be proven. We will therefore resort to input-to-state stability
for the closed-loop system, where the input will be a terminal reference yf satisfying
the following assumption.

Assumption 5 (Approximate feasibility of the reference)
The reference yf satisfies the constraints (4e), i.e., ℎ(xf

=, uf
=) ≤ 0, = ∈ I:+#−1

:
, for

all : ∈ N+. Additionally, recursive feasibility holds for both Problem (7) and (13)
when the system is controlled in closed-loop using the feedback from Problem (7).
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Assumption 5 sets a rather mild requirement from a practical standpoint. Using an
infeasible reference for simplicity, or approximating system dynamics to capture the
most relevant dynamics of the system (‖xf

=+1 − 5= (xf
=, uf

=)‖ ≤ n , for some small
n) is not uncommon in practice. In particular, in a practical setting we can select
yf = r(C:+# ), or in an ideal setting yf = yr (C:+# ). To that end, we define the
following closed-loop dynamics

x:+1 (yf) = 5: (x: , uMPC (x: , yf)) = 5̄: (x: , yf), (15)

where uMPC is obtained as u★
: |: solving Problem (7) in case yf = r; and as ui

: |:
solving the ideal Problem (13) in case yf = yr.

We are now ready to state the main results of this section.

Theorem 2 Suppose that

1. Problem (8) is feasible,
2. Assumptions 1 and 3 hold for the reference yr with costs @̄r and ?̄yr and terminal

set Xyr ,
3. Problem (7) and Problem (13) are feasible at time : with initial state (x: , C: ),
4. the reference yf , with terminal set Xf

yf , satisfies Assumption 5.

Then, system (15) obtained from (1) in closed-loop with MPC formulation (7) is ISS.
�

This theorem proves that if an infeasible reference is used, system (1) does
not converge exactly to the (unknown) optimal trajectory from OCP (8), but to a
neighborhood around it which depends on how inaccurate the terminal reference
is. We note, however, that the effect of the terminal condition on the closed-loop
trajectory decreases as the prediction horizon # increases [21, 54].

This section has so far considered the a-priori unknown constraint 6= |: to be
inactive, i.e., no road users or other obstacles are present, in order to simplify the
analysis. In the next section, we consider settings where 6= |: may not be ignored,
e.g., one has to ensure collision-avoidance w.r.t other road users.

5 Safety-Enforcing MPC

The aim of this section is to tackle the issues posed by the presence of the a-priori
unknown constraints (4f), which in Section 4 have been assumed to always remain
inactive. While we cast the problem in the framework of MPFTC, we stress that the
developments proposed to enforce safety are independent of the specific tracking
scenario, i.e., flexible trajectory, path, setpoint, etc., and can also be deployed in the
context of Model Predictive Path Following Control (MPFC) proposed in [18, 20].

We introduce the following assumption, imposing some structure on 6 that is
needed in order to ensure that the feasibility of a solution is preserved between
consecutive time instances.
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Fig. 1 The top panel shows an initial prediction for a pedestrian at time :, while the middle and
bottom panels show different predictions at time : + 1. The middle panel illustrates a model that
satisfies (18), i.e., satisfying Assumption 6, while the bottom panel does not satisfy (18), hence,
Assumption 6 is also not satisfied.

Assumption 6 (Unknown constraint dynamics)
The a-priori unknown constraints satisfy 6= |:+1 (x= |: , u= |: ) ≤ 6= |: (x= |: , u= |: ),

for all = ≥ : .

While Fig. 1 gives a visual interpretation of the requirement in Assumption 6,
at this stage it is natural to wonder how function 6 should be constructed such that
Assumption 6 is satisfied. In order to answer this question, we will first provide a
formal description of how 6 can be constructed, and then provide some examples
which are relevant to autonomous driving to provide more intuition on the meaning
of Assumption 6.

We introduce the function W(x, u,w) : R=x ×R=u ×R=w → R=6 and the uncertain
variable w= |: ∈ W= |: ⊆ R=w whose bounded support is a subset of set W= |: ,
lumping all the uncertainty related to the a-priori unknown constraints. Note that we
only require knowledge on a superset of the support of w= |: , which can in principle
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even be deterministic, in which case its probability distribution is a Dirac and the
supersetW= |: can be any set of measure 1.

Then we define

6
= |: (x= |: , u= |: ) := max

w=|: ∈W=|:
W= |: (x= |: , u= |: ,w= |: ). (16)

This formulation implies robust constraint satisfaction, i.e.,

6
= |: (x= |: , u= |: ) ≤ 0 ⇔

{
W= |: (x= |: , u= |: ,w= |: ) ≤ 0,
∀ w= |: ∈ W= |: .

In a general setting, w= |: is the state of the dynamical system

w=+1 |: = l(w= |: , b= |: , x= |: , u= |: ), (17)

with associated control variable b= |: ∈ Ξ ⊆ R<b , acting as a source of (bounded)
noise. The function l describes the dynamics, and the explicit dependence on x= |: ,
u= |: models possible interactions between the uncertainty and system (1). This can
be the case, for example, of a pedestrian, a bicycle or a human-driven car which
interacts with the vehicle whose motion needs to be planned and controlled. With
model (17) reachability analysis tools can be used to predict the future evolution of
the outer-approximations of the setsW= |: .

W=+1 |: (x= |: , u= |: ) :⊇ {l(w= |: , b=, x= |: , u= |: ) | w= |: ∈ W= |: , ∀ b= ∈ Ξ }, (18)

for some initialW: |: = w: |: .
The introduction of the uncertainty sets (18) allows one tomodel road users which

(a) are detectable by the sensors, and (b) are either beyond the onboard sensors range
or hidden by other obstacles, as depicted in Fig. 2. For type (a), the model (16), (17)
does not underestimate the set of future states that can be reached by the road users.
For type (b), the uncertainty model must predict the possibility that a road user
appears at any time either at the boundary of the sensor range or from behind an
obstacle.

We can now state the following result.

Lemma 1 Suppose that 6
= |: is defined according to (16) withW= |: satisfying (18).

Then, Assumption 6 holds.

Note that this lemma amounts to assuming that the uncertainty in 6
= |: cannot in-

crease as additional information becomes available (from either the onboard sensors
or through communication links). Furthermore, a direct consequence of Assump-
tion 6 is 6

= |: (r
x (C=), ru (C=)) ≤ 0 =⇒ 6

= |:+1 (r
x (C=), ru (C=)) ≤ 0. We provide

the following clarifying illustrations in order to better understand Lemma 1 and
Assumption 6.

Fig. 1 shows the difference between having a model that satisfies Lemma 1, and
one that does not. The middle panel shows that the predictions made at time : + 1
belong to a subset of the previous predictions made at time : , i.e.,W= |:+1 ⊆ W= |: ,
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Fig. 2 Due to limited sensing capabilities, it is not possible to directly measure all road users in
the environment. Therefore, one must assume that hidden road users may appear outside the sensor
range at all times.

which satisfies Lemma 1. The bottom panel on the other hand illustrates predictions
made at time : + 1, where Lemma 1 does not hold. Fig. 2 illustrates the fact that
road users in the environment may be occluded due to limited sensing capabilities.
In that case, in order to satisfy Assumption 6 at all times, one needs to model the
possibility that a road user might appear at the boundary of the sensor range.

We recall that, in the context of autonomous driving, the constraints 6= |: could
enforce avoiding collisions with obstacles (e.g., other road users) detected by the
sensors, whose behavior can just be predicted to some limited extent. Hence, As-
sumption 6 amounts to assuming that the uncertainty on, e.g., position and velocity
estimates of the detected objects at a specific time instance cannot increase as ad-
ditional information becomes available. We note however that limited sensor range
makes it impossible to detect obstacles which are too far away. To ensure satisfac-
tion of Assumption 6 one can adopt a worst-case approach which ensures that the
predicted trajectory x= |: may never leave the sensor range, and by also assuming
that new obstacles appear at the boundary of the sensor range at all times. A visual
example of this shown in Fig. 3, where the planned trajectory is forced to remain
within the sensor range at all times.

Enforcing safety of the controller (4) according to Definition 1 requires the con-
troller to be recursively feasible. Hence, the terminal constraint (4g) needs to be
designed in order to guarantee its satisfaction despite of the presence of the con-
straints (4f), which can grow unbounded in time, such that no state is safe, see Fig. 4.
We therefore design the terminal conditions by assuming the existence of a safe set,
where the constraints (4f) are guaranteed to be satisfied regardless. This will allow us
to rely on standard approaches in MPC [9, 34, 51] which are based on the existence
of a robust invariant set.
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Fig. 3 Since it is impossible to know what lies ahead of the sensing range, the planned trajectory
{x: |: , x:+1|: , . . . , x:+# |: } must be forced to remain within the sensor range.

Fig. 4 As the uncertainty of the pedestrian predictions grow in time, the collision-free region of
the vehicle drastically shrinks. Hence, after some time, any model will predict that a pedestrian can
be anywhere, such that no state is safe.

Assumption 7 There exists a robust invariant set denoted Xsafe (g= |: ) ⊆ R=G such
that for all x= |: ∈ Xsafe (g= |: ) there exists a safe control set Usafe (x= |: , g= |: ) ⊆
R=D+1 entailing that 5 (x= |: , usafe) ∈ Xsafe (g= |: + Cs + Esafe), and ℎ= (x= |: , usafe) ≤
0, for all (usafe, Esafe) ∈ Usafe (x= |: , g= |: ) and for all = ≥ : . Moreover, for all
x= |: ∈ Xsafe (g= |: ) the a-priori unknown constraints can never be violated, i.e., by
construction 6

= |: (x= |: , usafe) ≤ 0 for all x= |: ∈ Xsafe (g= |: ) and (usafe, Esafe) ∈
Usafe (x= |: , g= |: ).

While this assumption might seem strong, it only postulates the existence of
known safe configurations for system (1). However, if no such configurations exist,
then the controller based on Problem (4) is intrinsically unsafe. On the other hand, if
such configurations do exist for (1), then the safe setXsafe is non-empty and invariant.
Note that the safe configuration depends on system (1), the problem setting, and must
be known a-priori.
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Example 1 Many practical settings where safety is emphasized consider a system to
be safe at steady state, in which case the safety set Xsafe can be formulated as

Xsafe (g: ) := { x | x = 5 (x, u), ℎ: (x, u) ≤ 0, <: (x, u) ≤ 0 }, (19)

where function <: defines additional constraints which might be needed in the set
definition. A notable example for automotive settings is that a vehicle parked in a safe
configuration, e.g., a parking lot, emergency lane or any other safe environment that
can be modeled by <: , is not responsible for collisions with other road users. This
reasoning can be applied to the setting illustrated in Fig. 4, where the uncertainty
grows such that the only safe thing to do is to force the vehicle to a complete stop.

The introduction of Assumption 7, allows us to drop Assumption 3b, so that we
can build our approach based on standard strategies inMPC [9, 34, 51], i.e., we rely on
stabilizing terminal control laws ^s

r (x, C) and setsXs
r (C) satisfying Assumption 3a. In

order to obtain recursive feasibility also with respect to a-priori unknown constraints,
we rely on the safe set Xsafe to introduce the following terminal set

Xf
r (g:+# |: ) := {x:+# |: | ∃ u= |: , E= |: , (20a)

g=+1 |: = g= |: + Cs + E= |: , (20b)
x=+1 |: = 5 (x= |: , u= |: ), (20c)
ℎ= (x= |: , u= |: ) ≤ 0, (20d)
6
= |: (x= |: , u= |: ) ≤ 0, (20e)

x= |: ∈ Xs
r (g= |: ), (20f)

x:+" |: ∈ Xsafe (g:+" |: ) ⊆ Xs
r (g:+" |: ), (20g)

(20a) − (20f), ∀= ∈ I:+"−1
:+# }, (20h)

where " ≥ # is a degree of freedom. Note that the construction of (20) implies that
Xsafe (g) ⊆ Xs

A (g), ∀g ≥ 0. If (20) is a non-empty set we are guaranteed that for all
x ∈ Xf

r (g) a terminal control law exists, which steers the states to the safe set.
In order to provide a practical approach to design the terminal control law, we

propose to first design a control law ^s
r as onewould do in standardMPC formulations,

i.e., by ignoring a-priori unknown constraints 6 and by forcing the time in the
reference to evolve according to its true dynamics. We can then define the terminal
control law (^f

r (x:+# |: , g:+# |: ), af
r (x:+# |: , g:+# |: )) by using ^s

r , as the solution of

min
u,a
‖u − ^s

r (x:+# |: , g:+# |: )‖2 + a2 (21a)

s.t. 5 (x:+# |: , u) ∈ Xf
r (g:+# |: + Cs + a), (21b)

ℎ:+# (x:+# |: , u) ≤ 0, (21c)
6:+# |: (x:+# |: , u) ≤ 0. (21d)
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The idea behind the terminal set (20) is to ensure safety by forcing the system
to be able to reach a safe set Xsafe in a finite amount of time " − # ≥ 0, while
always remaining inside a stabilizing set Xs

r (C) around the reference. Note that "
is a parameter which can be used to tune the stabilizing terminal safe set and,
consequently, the NMPC scheme (4). If " = # , then the terminal set coincides
with the safe set, possibly limiting the capabilities of the terminal control law, i.e.,
^f

r (x, g) ≠ ^s
r (x, g) and af

r (x, g) ≠ 0. On the other hand, if" � # , the computational
complexity of Xf

r can become excessive.

Theorem 3 (Recursive Feasibility)
Suppose that Assumptions 1, 2a, 3a, 6, and 7 hold, and that Problem (4) is feasible

for the initial state (x: , g: ), with terminal set and terminal controllers given by (20)
and (21), respectively. Then, system (1)-(3) in closed loop with the solution of (4)
applied in receding horizon is safe (recursively feasible) at all times.

While Theorem 3 only proves recursive feasibility, the presence of obstacles
makes it more difficult to discuss closed-loop stability. We note, however, that if the
a-priori unknown constraints become inactive, then the proposed formulation yields
nominal asymptotic stability.

Next we consider two simulation examples to illustrate the theory from Sections 4
and 5.

6 Simulations

In this section we present two simulations related to autonomous driving settings
in order to illustrate the theory from Sections 4 and 5. In Section 6.1 we first show
how the closed-loop behavior is affected when an infeasible reference is used. Then,
in Section 6.2 we introduce moving and pop-up obstacles to show how recursive
feasibility is ensured through Theorem 3.

For both simulations we consider the single-track vehicle model with kinematics
¤G
¤H
¤k
¤X
¤E


=


E cos(k)
E sin(k)
E
;

tan(X)
l

0


, (22)

where G, H are the position coordinates in a global frame, E is the velocity, k is the
orientation angle, ; is the wheelbase length, X is the steering wheel angle, and 0 and
l denote the acceleration and steering wheel angle rate, respectively. Since one of
the objectives is to track a user-defined reference r, it is possible to geometrically
derive the following vehicle kinematics in the frame of the reference path [37]
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¤B
¤4H
¤4k
X

¤E


=


E cos(4k) (1 − ^r (B)4H)−1

E sin(4k)
E;−1 (tan(X) − tan(Xr (B)))

l

0


, x =


4H
4k
X

E

 , u =
[
0

l

]
(23)

where B is the longitudinal position along the path, ^r is the path curvature, 4H is the
lateral displacement error, 4k is the yaw error with respect to the reference r and
Xr is the reference steering angle. Note that we consider B to be an auxiliary state
since we are only interested in tracking the velocity and not the longitudinal position.
For both simulations, we assume that system (23) is subject to the following known
constraints

‖4H ‖ ≤ 0.4, ‖4k ‖ ≤ 0.16, ‖X‖ ≤ 0.53,
0 ≤ E ≤ 50/3.6, −5 ≤ 0 ≤ 3, ‖l‖ ≤ 0.35,

while the stage cost matrices in (5) are

, = blockdiag(&, '), & = diag(1, 10, 1, 1), ' = diag(1, 1). (24)

In order to compute the stabilizing terminal set Xf
s (C), we decouple the longitudinal

and lateral kinematics. Using an an LQR controller with costs &lon = 1, 'lon = 50
one can then obtain the feedback gain  = 0.14 a terminal cost %long = 72.63 with
corresponding terminal set

Xlon
B (g) := {E | − 5 ≤ −  (E − rxE (g)) ≤ 3 }. (25)

For the terminal set of the lateral kinematics, we consider the velocity to be an
uncertain parameter and linearize the system (23) on the reference to obtain theLinear
Parameter Varying (LPV) system (�(E), �(E)) ∈ R3×3 × R3. Then, by considering
a nominal velocity Enom = 28/3.6 m/s, we use the feedback gain  , obtained from
an LQR controller with tuning &lat = blockdiag(1, 100, 2) and 'blockdiag = 1, to
stabilize the LPV system by considering the following polytopic system

Γ := {(�, �) ∈ R3×3 × R3 : � = �(E), � = �(E), E ∈ [1, 50/3.6] }, (26)

for velocities E ∈ [1, 50/3.6] m/s. We then use the MPT toolbox [30] to compute
the terminal set [8] for the polytopic system (26) and obtain that

- lat
r (g) := {� ( [4H , 4k , X]> − [0, 0, Xref (g)]>) ≤ 1}. (27)

We note that, while we compute the terminal set for the polytopic system (26), one
can also use the methods presented in [27, 28] to compute low-complexity invariant
sets for linear parameter-varying models. By solving the linear matrix inequalities
that satisfy the Lyapunov equations for the polytopic system, we also obtain the
terminal cost
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%lat =


402.37 839.90 323.00
839.90 7272.88 2781.57
323.00 2781.57 2556.74

 (28)

Finally, the terminal set Xf
s (g) can then be constructed as

Xf
s (g) := {x | [4H , 4k , X] ∈ Xlat

r (g), E ∈ X
long
r (g)}, (29)

with terminal cost % = blockdiag(%lat, %lon).
The following simulations were implemented in Matlab and interfaced with Aca-

dos [49] and CasADi [2], together with solvers IPOPT [50] and HPIPM [22].

6.1 ISS: Stability with Infeasible Reference

In this section we show the closed-loop behavior of Problem (7) when using an
infeasible reference. To that end, we consider a reference with a discontinuous
curvature, i.e., the steering angle reference is discontinuous,

rx (g) = [0, 0, Xr (g), 50/3.6]>, ru (g) = [0, 0]>, (30)

where

^(g) =
{

0.0452 if 7.5 ≤ g < 12.5,
0 otherwise.

(31)

In order to obtain the feasible reference yr = (xr, ur), we linearize model (23)
to obtain an LTV system and approximate the infinite horizon Problem (8) with a
prediction horizon of " = 600 and sampling time Cs = 0.05 s. For the closed-loop
simulations, we use the control input obtained from formulations (7) and (13) with
horizon # = 10 and sampling time Cs = 0.05 s.

Fig. 5 shows the closed-loop trajectories for the initial condition C0 = 0 and
x0 = [0.1, 0.02, 0, 50/3.6]>, where the gray lines denote the infeasible reference
r, and the black lines denote the optimal reference yr from (8). The blue lines show
the closed-loop evolution of each state for ideal MPC formulation (13), i.e., when
the terminal conditions are based on the feasible reference yf = yr. The orange
lines, on the other hand, show the closed-loop trajectories for the practical MPC
formulation (7), which has the terminal conditions based on the infeasible reference,
i.e., yf = r. The bottom right plot of Fig. 5 shows the closed-loop error with respect
to yr for the two MPC formulations. It is visible that for times C ≤ 5 s, the reference
trajectory is feasible and both formulations manage to stabilize towards the optimal
trajectory. For 5 s ≤ C ≤ 15 s, the discontinuity of the reference r affects how
the two formulations behave. The ideal formulation manages to track the optimal
reference yr (black trajectory) since it is formulated with proper terminal conditions.
The practical formulation (orange trajectory) on the other hand tries to track the
infeasible reference r, and therefore deviates from the optimal trajectory and ideal
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Fig. 5 Closed-loop simulationwith initial conditions x0 = [0.1, 0.02, 0, 50/3.6]> and initial time
C0 = 0. The gray trajectories show the infeasible reference r = (rx, ru) , while the black trajectories
show the optimal trajectory yr = (xr, ur) obtained from Problem (8). The orange trajectories show
the closed-loop behavior for the practical MPC Problem (7), while the blue trajectories show the
closed-loop behavior for the ideal MPC Problem (13).

formulation. After the discontinuity, the rest of the reference trajectory is feasible,
and both formulations are asymptotically stabilizing.

In order to verify in simulation the theoretical result of [21, 54] stating that
the effect of the terminal condition on the closed-loop trajectory decreases as the
prediction horizon # increases, we ran the same simulation with # = 60 and ob-
served that the closed-loop trajectory obtained with the infeasible reference becomes
indistinguishable from the optimal one by eye inspection.

Whilewe have shown how an infeasible reference affects the closed-loop system in
section, we consider next a setting where the reference trajectory becomes infeasible
due to pop-up obstacles in the environment. To that end, in the next section we show
recursive feasibility guarantees from Theorem 3 are enforced.
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Fig. 6 The simulation setting includes a vehicle driving down a road with a crosswalk where
pedestrians might cross.

6.2 MPFTC: Ensuring Safety of the Controller

In this sectionwe illustrate the benefits of the safe terminal set by considering an urban
driving environment. In particular, we consider the setting shown in Fig. 6, where
the vehicle needs to safely navigate the road and avoid collisions with pedestrians
that may be occluded by the environment. To that end, we will show next that when
the conditions required our safe framework, i.e., Theorem 3, are satisfied, we are
able to avoid collisions with suddenly appearing road users.

For simplicity and ease of illustration, we consider the following reference trajec-
tory

rx (g) = [Erefg, 0, 0, 0, Eref]>, ru (g) = [0, 0]>, (32)

which models a constant velocity trajectory with no turning, i.e., the road center line
from Fig. 6. In order show constraint satisfaction of our framework while tracking
this reference, we need to introduce a model that predicts the future motion of
other road users. Hence, to simplify the analysis and presentation of the results, we
consider only pedestrians that may appear from the bottom side of the crosswalk in
Fig. 6. Therefore, we model the pedestrian dynamics as following the red straight
line in Fig. 6. By defining the uncertain variable related to the pedestrian position as
w: := [Bped

:
, =

ped
:
], we formulate the pedestrian kinematics as two single integrators

w:+1 = l(w: , ') =
[

1 0
0  

]
w: +

[
1.3
0

]
Cs + Cs' , (33)

where the lateral states =ped
:

are stabilized if < 1, and ' ∈ Z, withZ = {' |‖' ‖∞ ≤
0.75}, relates to some bounded uncertainty in the pedestrian movement. We stress
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Fig. 7 Four different time instances of the simulation environment. The two top panels show that
the sensors (shaded region) cannot see behind a wall, and that the vehicle as such plans a trajectory
within the sensing range. The two last panels show that a pedestrian, who was not visible for the
sensors, shows up and forces the vehicle to perform an emergency braking.

that we use this model for simplicity, and for real autonomous driving scenarios,
model (33) is far from realistic and one should instead consider more advanced
pedestrian models like the ones proposed in, e.g., [7, 35, 36, 42].

With model (33), it is straightforward to follow the steps from (18) in Section 5
and propagate the future uncertainty from an initial measurement w: as

W=+1 |: = {l(w= |: , ') | w= |: ∈ W= |: ,∀' ∈ Z}, (34)

withW: |: = w: . However, we note that even though prediction model (34) ensures
that the predicted sets satisfyW= |:+1 ⊆ W= |: , we are still faced with the problem



22 Ivo Batkovic, Mario Zanon, and Paolo Falcone

0 2 4 6
-0.4

-0.2

0

0.2

0 2 4 6

-0.1

0

0.1

0 2 4 6

-0.5

0

0.5

0 2 4 6

-0.2

0

0.2

0 2 4 6
0

5

10

15

0 2 4 6

-4

-2

0

2

Fig. 8 Closed-loop evolution of the unsafe MPC controller shown in Figure 7. Just before C ≤ 2 s,
a pedestrian appears and forces the vehicle to perform an emergency braking.

Fig. 9 Constraint evolution for the unsafe MPC controller. The left-hand side shows the constraint
6: |: , while the right-hand side shows the time evolution of the predicted constraint 6=|: .

of accounting for pedestrians that are outside of our sensing range, e.g., occluded by
buildings or other vehicles. To that end, the sensor-suite must provide information, or
have an understanding, where pedestrians might appear. This becomes a crucial part
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in satisfying Assumption 6, which is needed in Theorem 3 for recursive feasibility.
We therefore assume for this simple example, that the sensor-suite has access to
information on locations where pedestrians might appear, e.g., from a map. With the
information of each such “hidden” location, we expect that a pedestrian might be
hidden, and as such, propagate the uncertaintymodel of (34) for the hidden pedestrian
as well. To that end, we must propagate the uncertainty for all measured pedestrians,
and potentially “hidden” pedestrians. Hence, if we can measure 8 pedestrians, and
have 9 hidden locations, we predict the sets w8

= |: ∈ W
I

= |: , ∀I ∈ I
8+ 9
1 , and construct

6= |: as

6
= |: (x= |: , u= |: ) = max

w8
=|: ∈W

8
=|: , ∀8∈I

8+ 9
1

{
B= |: + =ped,8

= |: + B
inter + A if ‖Bped,8

= |: ‖ ≤ Δ
0 otherwise

≤ 0,

where Binter is the intersecting point of the reference trajectory and the walkable path,
i.e., (B, =) = (Binter, 0) and (Bped, =ped) = (0, 0) map to the same point in the global
frame, A is an additional safety distance, and Δ denotes the distance threshold when
the pedestrian should be considered for collision avoidance.

Having formulated the collision-avoidance constraints, we now turn to formulat-
ing the safe terminal set. In a similar light to Example 1 in Section 5, we consider
the safe set to be given when the vehicle is fully stopped, i.e.,

Xsafe (g) = {x |E = 0}. (35)

We note that this may not be a suitable safe set for general autonomous driving
settings, and that it in general can vary for different cases. However, in order to avoid
further technicalities, we consider this safe set to be sufficient for the simplified
setting that we use for illustration.

For the simulations we use the terminal set defined in (20), using the sets (35)
and (29), with # = 40 and " = 80. We use the MPFTC formulation (4) with
sampling time Cs = 0.05 s and nonlinear system model (23). In order to illustrate the
benefits of our proposed safe framework, we implement two controllers: one that
satisfies Theorem 3; and one where Assumption 6 is not satisfied.

Fig. 7 shows four time instances of the MPC controller which only reacts to what
it can sense directly, i.e., the controller does not satisfy Assumption 6. It is visible
that the vehicle believes that it can safely cross the intersection in the first two frames.
In the last two frames the vehicle has moved close enough to the intersection, such
that the sensors can now detect the pedestrian. However, in this case the vehicle
velocity is too high, so that it causes a collision with the pedestrian. The closed-
loop trajectories are shown in Fig, 8. Here it is visible that the vehicle sees the
pedestrian just before C < 2 s, and applies full braking. From the lateral error, and
orientation error, we realize that the MPC controller in fact tries to avoid a collision,
by marginally maximizing the traveled distance by actively steering. Fig. 9 shows
that Assumption 6 is not satisfied since constraint 6= |:+1 � 6= |: for all = > : , which
indeed is needed for safety, i.e., guaranteeing that Theorem 3 holds. The left-hand
side shows the constraints at each time : in closed-loop, where it is visible that just
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Fig. 10 Four different time instances of the simulation environment. The two top panels show that
the sensors (shaded region) cannot see behind a wall, however, the vehicle plans a trajectory as if
there were a pedestrian behind the corner. The two last panels show that a pedestrian, who was
not visible for the sensors, shows up. Since the vehicle was already prepared for this situation, it
manages safely adjust it speed and yield to the pedestrian.

before C < 2 s the constraint shrinks, which causes the vehicle to collide with the
pedestrian.

Fig. 10 shows how the safe MPC controller behaves when Assumption 6 is
satisfied. As opposed to the unsafe controller shown in Fig. 7, the safe controller
approaches the intersection more cautiously, as any rational human driver would
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Fig. 11 Closed-loop evolution of the safeMPC controller shown in Fig. 10. The vehicle approaches
the intersection by reducing its velocity. After C = 6 s the pedestrian passes, and the vehicle is free
to accelerate again.

Fig. 12 Constraint evolution for the safe MPC controller in Fig. 10. The left-hand side shows the
constraint 6: |: , while the right-hand side shows the time evolution of the predicted constraint 6=|: .

do. By adjusting the speed, it anticipates that a moving obstacle may appear behind
the wall. This can be seen in the two last frames. As time moves on, the pedestrian
can safely pass, and the vehicle moves close enough to see that there are no more
remaining pedestrians, so that it can safely accelerate to pass the intersection. Fig. 11
shows the closed-loop velocity and acceleration trajectories. It is worth noting how
the vehicle slows down earlier than the unsafe controller in Fig. 8, since it anticipates
that a pedestrian might appear behind the corner. Note that, the states (4H , 4k , X)
have been omitted since their dynamics essentially remain unchanged. Finally, Fig. 10
shows that the constraint 6 is monotonic, and hence, Assumption 6 is satisfied. The
“jump” in the right plot illustrates the point in time when the pedestrian is no longer
predicted to block the intersection, and the vehicle is free to accelerate again.
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7 Conclusions

The possibility of using infeasible reference trajectories is of great interest in MPC-
basedmotion planning and control algorithms, due to the convenience and simplicity
they offer. In this chapter, we have discussed how such reference trajectories affect the
closed-loop behavior of the system, and proposed conditions sufficient for stability
to hold. While these results are currently limited to LTV systems, future research
will investigate the possibility to also include general nonlinear systems.

Furthermore, we have discussed safety for autonomous driving in a general sense
and presented a new safe MPC framework that enables recursive collision-avoidance
constraint satisfaction at all times, while relying on assumptions that can be verified
in practice on the perception system. Ongoing research is focusing on the practical
real-time implementation of the framework in a full-scale test vehicle.
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