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Abstract

Economic Model Predictive Control (MPC) dissipativity theory is central to discussing the stability of policies resulting from
minimizing economic stage costs. In its current form, the dissipativity theory for economic MPC applies to problems based
on deterministic dynamics or to very specific classes of stochastic problems, and does not readily extend to generic Markov
Decision Processes. In this paper, we clarify the core reason for this difficulty, and propose a generalization of the economic
MPC dissipativity theory that circumvents it. This generalization focuses on undiscounted infinite-horizon problems and is
based on nonlinear stage cost functionals, allowing one to discuss the Lyapunov asymptotic stability of policies for Markov
Decision Processes in terms of the probability measures underlying their stochastic dynamics. This theory is illustrated for the
stochastic Linear Quadratic Regulator with Gaussian process noise, for which a storage functional can be provided explicitly.
For the sake of brevity, we limit our discussion to undiscounted Markov Decision Processes.
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1 Introduction

The use of optimization-based policies is widespread in
control, with the notable example of Model Predictive
Control (MPC) which has gained increasing popularity
in the last decades. In the deterministic setting, MPC
schemes are often used to steer a system to a given feasi-
ble reference input and state. In that context, the stage
cost minimized in the MPC scheme is typically convex,
taking its minimum at the reference. Quadratic costs are
the most common choice. This type of MPC scheme is
commonly referred to as tracking MPC.

In a control context, the system stability in closed loop
with a policy is a crucial feature. In particular, an asymp-
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totically stable policy ensures that the closed-loop sys-
tem will be steered to a specific steady-state. The sta-
bility of tracking MPC schemes for deterministic sys-
tems is fairly straightforward to establish, and—under
a mild controllability assumption—simply requires the
MPC stage cost to be lower-bounded by a class-K∞ func-
tion, with the possible addition of a terminal cost and
constraint set in the finite-horizon setting. When these
criteria are fulfilled, a stability argument can be easily
constructed via the Lyapunov stability theory [9,19].

TrackingMPC schemes are, however, fairly restrictive as
to which stage cost can be used, and using stage costs be-
longing to a broader class of functions can be beneficial.
Indeed, the recent literature on MPC argues for the use
of economic stage costs, representing directly the per-
formance of the system with regard to the overall con-
trol goals, rather than the specific objective of steering
the system to a given reference, see, e.g., [7,10,21]. Such
economic objectives often correspond to the energy, the
time or the financial cost of performing a given task. It is
commonly argued that a policy minimizing an economic
stage cost is more conducive to maximizing the system
performance than a policy optimizing a tracking stage
cost can be [18].

While appealing, economic stage costs typically do not

Preprint submitted to Automatica 18 July 2022



satisfy the criteria required to conclude the stability of
the resulting optimal control policy. To address that is-
sue, a new stability theory has been developed, com-
monly referred to as dissipativity theory in the context
of economic MPC. We ought to stress here that this dis-
sipativity framework is very specific, as it focuses on the
analysis of systems in closed-loop with optimal control
policies. This framework ought not be mistaken for the
general dissipativity theory for dynamical systems. The
key idea behind economic MPC dissipativity theory is
to transform the economic stage cost into one that is
lower-bounded by a class-K∞ function, while leaving the
resulting policy unchanged. This transformation is often
referred to as cost rotation, and performed via a so-called
storage function. If this transformation is possible, i.e., if
strict dissipativity holds, then the stability of economic
MPC can be analyzed via the Lyapunov stability the-
ory [1,5,6,8,15,24]. A strong point of the economic MPC
disspativity theory is that it is based on the interplay
between stability and optimality, and therefore provides
a natural way of discussing the stability of optimal poli-
cies without requiring the construction of the actual pol-
icy. The aforementioned dissipativity theory applies to
systems having deterministic dynamics, and is not yet
extended to general stochastic systems, with the notable
exceptions of [3,20] which, however, only apply to rather
specific settings.

MPC for stochastic systems is often treated within the
Robust MPC (RMPC) or Stochastic MPC (SMPC)
frameworks. The former is equipped with stability the-
ories, but the analysis is usually restricted to tracking
MPC formulations, to the exception of [2,3], which dis-
cuss the economic setting. However, the stability results
found in the RMPC context are limited to proving the
stability of the closed-loop trajectories to a set [4,12,23]
under the assumption of bounded support. That set can
be arbitrarily large and the behavior of the trajectories
within the set is not discussed by the theory. SMPC
often targets the minimization of the given stage cost
in terms of its expected value taken over the stochas-
tic predicted trajectories and the associated stability
theories are less mature [13].

Minimizing the expected value of a stage cost subject
to stochastic trajectories is generally referred to as a
Markov Decision Process (MDP). MDPs can be formu-
lated in a variety of settings. For the sake of brevity, we
will focus on discrete-time bias-optimal undiscounted
MDPs over an infinite horizon and continuous state
spaces, which are the closest ones to economic MPC and
to the current deterministic economic MPC dissipativ-
ity setup. The extension of our results to other settings
is the subject of current research.

The stability of MDPs can be arguably analyzed in the
broader context of Markov Chains [14]. Unfortunately,
this framework provides results that are not easily re-
lated to optimality and therefore to the original MDPs.

A discussion on the stability of MDPs in the context
of economic MPC would therefore be beneficial, as they
would bridge that gap. Unfortunately, for reasons that
we detail in this paper, the direct extension of the estab-
lished economic MPC dissipativity theory to MDPs is
restricted to some very specific problems, see, e.g., [20].

As an alternative to a direct extension of the existing
theory, we propose in this paper to form a generalization
of the economic MPC dissipativity theory built on the
measure space underlying the MDP rather than on the
state space itself. This approach yields stronger results
than stability to a set, and is not restricted to a specific
class of stochastic dynamics. For the sake of clarity, we
ought to stress here that the dissipativity theory we will
develop is to be understood as a generalization of the
dissipativity theory for economic MPC, rather than as
a general dissipativity theory for stochastic systems in-
vestigated in, e.g., [17,11].

Contributions: In this paper we propose a generaliza-
tion of both the established dissipativity theory and
the stochastic dissipativity theory of [20], and provide a
stronger discussion on the stability of MDPs than con-
vergence to a set, and a more specific stability theory
than the generic discussions on the stability of Markov
Chains. We show that the philosophy underlying the es-
tablished dissipativity theory for economic MPC is valid
in the MDP context, but its application requires gener-
alizing the concept of stage cost and storage functions to
functionals operating on the set of probability measures
(or densities). The classic notion of norm must then be
replaced by the notion of dissimilarity measures such as,
e.g., the Kullback-Leibler divergence, the Wasserstein
metric, or the total variational distance [14]. Strong sta-
bility results follow, where dissipativity ensures that the
measures underlying the MDP converge asymptotically
to the steady-state optimal measure. This generalization
is illustrated in the Linear Quadratic Regulator (LQR)
case subject to a Gaussian process noise, for which an
explicit storage functional is provided.

The paper is organized as follows. Section 2 proposes a
discussion of the difficulties of extending the established
dissipativity theory to MDPs. Section 3 proposes a gen-
eralization of the classical Lyapunov-based stability ar-
guments for optimal policies toMDPs, using a functional
approach. The resulting stability theory shows that the
cost function normally used in MDPs, made of the ex-
pected sum of stage costs, does not satisfy the neces-
sary criterion for stability, and that a cost rotation is in
general needed. Section 4 generalizes the concept of ro-
tation, dissipativity and storage function, allowing for
a discussion of MDP stability in the Lyapunov context.
In section 5, these concepts are deployed in the stochas-
tic LQR context, showing that the proposed approach is
sensible. Section 6 concludes the paper.
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2 Markov Decision Processes and Dissipativity
Theory

In this section, we detail the Markov Decision Processes
considered in this paper, and provide a brief introduc-
tion to the state of the art on dissipativity for Economic
MPC, providing a framework to discuss the closed-loop
stability of optimal control policies. We then discuss
and detail formally why the established dissipativity
theory cannot readily apply to stochastic problems, see
Lemma 1 and Remark 2, and hence motivate the ex-
tension of the established dissipativity theory to MDPs,
which is provided in this paper.

We consider discrete dynamical systems evolving on a
continuous state space over R

n, with stochastic states
sk ∈ R

n, where k denotes the discrete time. The un-
derlying measure space for sk is Rn equipped with the
Lebesgue measure υ as reference measure, and the set of
Lebesgue-measurable sets as σ-algebra S. The actions
(control inputs) ak are taken in the continuous space
R

m. We then consider stochastic dynamics defined by
the conditional probability measure ξ:

ξ [B | sk,ak] , sk+1 ∈ B, (1)

defining the conditional probability of observing a tran-
sition from a given state-action pair sk,ak to a subse-
quent state sk+1 in the Lebesgue-measurable set B ⊆
R

n. Furthermore, we consider deterministic causal poli-
cies π : Rn → R

m such that:

ak = π (sk) . (2)

We labelM the set of probability measures over Rn and
Π the set of policies, i.e., π ∈ Π. A policyπ in closed loop
with dynamics (1) generates a closed-loopMarkovChain
with the underlying sequence of probability measures
ρk ∈ M, k = 0, ...,∞ describing the stochasticity of
the MDP states sk. Hence, in the following, for each
k = 0, . . . ,∞, sk will be a sequence of random variables,
and ρk the associated sequence of probability measures,
i.e., sk ∼ ρk. We then define the transition operator
Tπ : M × Π → M as the map from a measure ρk
to its successor ρk+1 via (1) and under policy π. More
specifically, Tπ is formally defined as [14]

ρk+1(·) = Tπ ρk(·) =

∫

ξ [ · | s,π (s)] ρk (ds) . (3)

In the following, we will restrict our policies π to be
in the set P ⊆ Π such that the integral in (3) is well-
defined for all Borel sets. The triple (Ss,Ss,Pπ) defines
the probability space associated with a Markov chain,
where Ss =

∏∞

k=0 R
n, with associated σ-field Ss, and

Pπ is the probability measure defined by (1)-(2) [14].

Note that for most of the discussions in this paper,
the sequence of probability measures ρ0,...,∞ can also

be interpreted as a sequence of probability densities if
the measures ρ0,...,∞ have a Radon-Nykodim derivative
with respect to the Lebesgue measure. In that case,
we will assume that the associated probability densi-
ties are all in Lp (Rn,S, υ). The use of measures in-
stead of densities here is a technicality aimed at provid-
ing a generic discussion. Let us label Es∼ρk

[·] the ex-
pected value operator with respect to probability mea-
sure ρk ∈ M. Furthermore, let us define the stage cost
function L : R

n × R
m → R. We then consider undis-

countedMDPs [16] over an infinite horizon, of the classic
form:

J⋆ [ρ] = min
π∈P

∞∑

k=0

Es∼ρk
[L (s,π (s))− L0] (4a)

s.t. ρk+1 = Tπ ρk, ρ0 = ρ, (4b)

where J⋆ : M → R, and the argument of J⋆, i.e., ρ ∈ M,
specifies the initial condition of the Markov Chain (4b).
Constant L0 ∈ R is the optimal cost of the optimal
steady-state problem

L0 = min
π∈P, ρ

Es∼ρ [L (s,π (s))] (5a)

s.t. ρ = Tπ ρ, (5b)

which also delivers the corresponding optimal steady-
state measure ρ⋆ ∈ M. We assume that ρ⋆ exists and
is unique. Problem (4) defines an optimal policy π⋆ :
R

n → R
m in P .

For simplicity, we assume throughout the paper that
Problem (4) has a unique minimizer. We do not expect
the theory presented hereafter to change if π solution of
(4) is not unique or defined via an infimization rather
than a minimization problem. This would arguably re-
quire additional technicalities, though, which we avoid
here for the sake of simplicity.

Remark 1 In order to frame Problem (4) in the general
context of undiscounted MDPs, we observe that, in case
L0 is also the optimal average cost, given by

L0 = min
π∈P

lim
N→∞

1

N

N−1∑

k=0

Es∼ρk
[L (s,π (s))] (6a)

s.t. ρk+1 = Tπ ρk, ρ0 = ρ, (6b)

∀ ρ, then Problem (4) yields bias optimality, a formal def-
inition of which is available in, e.g., [16]. This observa-
tion is only provided to give additional context and does
not impact the remainder of this paper.

We ought to observe that, while in this paper we focus
on undiscounted MDPs of the form (4), we expect that
our framework can be readily extended to cover the dis-
counted case by building on the ideas proposed in [22].
This extension is the subject of current research.
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In this paper, we are interested in characterizing condi-
tions on the MDP dynamics and stage cost L such that
the optimal policy π⋆ solution of (4) is stabilizing the
closed-loop Markov Chain to the optimal steady-state
solution of (5), i.e., such that

lim
k→∞

ρk = ρ⋆, (7)

in some sense that we will discuss.

We recall that in the special case where (4) is determinis-
tic, such that ρk reduces to a sequence of Dirac measures,
the stability of (4) can be discussed in the framework of
the established dissipativity theory for economic MPC,
using the concept of storage function. In that context, a
storage function λ : Rn → R is sought, such that

L (sk,π (sk))− λ (sk+1) + λ (sk) ≥ ̺ (‖sk − s⋆‖) (8)

holds over the deterministic system trajectories for an
optimal steady state s⋆ of the system and a class-K∞

1

function ̺ : R+ → R+. Under the condition that the
storage function remains bounded over the prediction
horizon, the optimal value function JR

⋆ resulting from
the rotated cost LR : Rn × R

m → R+ defined as

LR (sk,π (sk)) = L (sk,π (sk))− λ (sk+1) + λ (sk)
(9)

is a Lyapunov function for the system. The general phi-
losophy of the dissipativity theory is to transform the
stage cost L of an economic optimal control problem (4)
into a new stage cost LR that yields the same optimal
policy, while resulting in a value function JR

⋆ that is a
Lyapunov function for the closed-loop trajectories.

A direct extension of this philosophy to treat the stabil-
ity of MDPs in the form (4) is appealing. This approach
has been followed in [20] for Markovian switching sys-
tems, where the rotated cost is given by

Es∼ρk

[
LR (s,π (s))

]
= (10)

Es∼ρk
[L (s,π (s))] + Es∼ρk,s+∼ρk+1

[λ (s+)− λ (s)] .

and the stage cost Es∼ρk

[
LR − L0

]
is used in (4). Note

that if (5) is formulated by replacing L with LR, its
optimal cost is still L0. In order to prove that JR

⋆ is non-
increasing using the standard approach, one then needs

Es∼ρk

[
LR (s,π (s))− L0

]
≥ Es∼ρk

[̺ (‖s− s⋆‖)]
(11)

1 We define R+ := { x ∈ R | x ≥ 0 }. Function ̺ : R+ → R+

satisfies ̺ ∈ K if it is continuous, zero at zero and strictly
increasing. If additionally ̺ ∈ K is radially unbounded, then
̺ ∈ K∞.

to hold along the system trajectories. This condition
has been called strict stochastic dissipativity in [20].
However, except for some special cases (e.g., Markovian
switching systems), LR − L0 cannot be non-negative
everywhere, such that by construction (11) cannot hold.
This statement is supported in a more formal way by
the following lemma. Note that the lemma discusses the
case of a rotated cost LR, but also applies to the original
MDP (4) if one selects λ(s) = 0, such that LR = L.

Lemma 1 For infinite-horizon, undiscounted MDPs on
the continuous state space R

n, the following statements
cannot be all simultaneously true:

1. LR (s,π (s)) − L0 = 0 on a set S0 ⊂ R
n of zero

Lebesgue measure and LR (s,π (s))−L0 ≥ ̺ (‖s‖S0
)

holds for all s ∈ R
n, where ̺ is a continuous class K∞

function, and ‖ · ‖S0
a continuous distance to S0.

2. JR
⋆ [ρ0] exists and is bounded for a non-empty set of

initial probability measures ρ0.
3. There is a k0 ∈ N+ and a constant 0 < b < ∞ such

that for every k ≥ k0 the measures ρk are equipped
with probability density functions fk : Rn → R+ such
that fk(s) ≤ b, ∀ s ∈ R

n.

In order to keep the proof accessible, the argument is de-
veloped using calculus, making it fairly long but simple.

PROOF. By contradiction. In order for JR
⋆ [ρ0] to exist

and be bounded (statement 2.), the limit

lim
k→∞

Es∼ρk

[
LR (s,π (s))− L0

]
= 0 (12)

must hold. In order to prove the contradiction, let us
assume that statements 1. and 3. hold. Let us define the
sub-level set Sα ⊆ R

n as:

Sα = { s ∈ R
n s.t. ̺ (‖s‖S0

) ≤ α} . (13)

Because ̺ and ‖ · ‖S0
are continuous, and ̺ (‖s‖S0

) = 0
for some s, Sα has a non-zero Lebesgue measure for any
α > 0. Let us further define the set S ⊂ R

n as:

S = Sᾱ where ᾱ > 0 is s.t.

∫

Sᾱ

ds = b−1, (14)

whose existence is guaranteed by the continuity of ̺ and
‖ · ‖S0

. Let us then define the probability density fb as

fb (s) =

{

b if s ∈ S

0 if s /∈ S
. (15)

Note that fb is indeed a probability density, since by
construction

∫

Rn fbds = 1. We will show next that
density fb yields a strictly positive lower bound for
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Es∼ρk

[
LR (s,π (s))− L0

]
. We first observe that since

S0 is of zero Lebesgue measure, ̺ (‖s‖S0
) > 0 almost

everywhere in S, and S has a strictly positive Lebesgue
measure, there is a constant c such that

∫

Rn

̺ (‖s‖S0
) fb (s) ds = b

∫

S

̺ (‖s‖S0
) ds = c > 0

(16)

holds. Let us define ∆ (s) = fk (s) − fb (s). We observe
that since fk and fb are both probability densities, equal-
ity

∫

Rn ∆(s) ds = 0 holds, such that

∫

S

∆(s) ds = −

∫

Sc

∆(s) ds ≤ 0, (17)

where Sc is the complementary set to S, and where the
inequality holds because for all s ∈ S

∆(s) = fk (s)
︸ ︷︷ ︸

≤b

− fb (s)
︸ ︷︷ ︸

=b

≤ 0. (18)

Furthermore, from the definition of S, using (13) we have
that:

0 ≤ ̺ (‖s‖S0
) ≤ ᾱ ∀s ∈ S, (19a)

̺ (‖s‖S0
) > ᾱ ∀s ∈ Sc. (19b)

Using (19) and (17), we then observe that

0 ≥

∫

S

̺ (‖s‖S0
)∆ (s) ds ≥ ᾱ

∫

S

∆(s) ds, (20a)
∫

Sc

̺ (‖s‖S0
)∆ (s) ds ≥ ᾱ

∫

Sc

∆(s) ds (20b)

= −ᾱ

∫

S

∆(s) ds ≥ 0

Hence by summing (20a)-(20b) we observe that:

∫

Rn

̺ (‖s‖S0
)∆ (s) ds ≥ 0. (21)

Using (21), (16) and the definition of ∆ yields:

∫

Rn

̺ (‖s‖S0
) fk (s) ds ≥

∫

Rn

̺ (‖s‖S0
) fb (s) ds = c.

(22)

We can finally conclude by observing that for all k ≥ k0:

Es∼ρk

[
LR (s,π (s))− L0

]
≥

∫

Rn

̺ (‖s‖S0
) fk (s) ds

≥ c > 0. (23)

This last inequality is in contradiction with (12), such
that statements 1., 2. and 3. cannot hold together. ✷

Remark 2 The consequence of Lemma 1 is that the
stage cost L of an MDP can be rotated such that the re-
sulting value function is a Lyapunov function in some
very specific cases only, i.e.:

• The MDP state sk converges to a set of zero Lebesgue
measure in R

n. If the sequence of measures ρk, k =
0, . . . ,∞ admits probability densities, these densities
are unbounded as k → ∞. If, e.g., S0 is a point in
R

n, the limit of the sequence ρk, k = 0, . . . ,∞ is a
Dirac measure. This requires the MDP dynamics to
have very specific properties, such as, e.g., vanishing
perturbations. Another instance in which this situation
can occur is if (1) represents a Markovian switching
system, see [20].

• The cost rotation makes LR (s,π⋆(s)) − L0 = 0 on
a measurable set S0 ⊆ R

n. The stability discussion is
then limited to stating that the sequence of probability
measures ρk, with k = 0, . . . ,∞will converge to a prob-
ability measure ρ∞ that has its entire support in S0,
i.e., ρ∞(S0) = 1. Concretely, the MDP state sk will
then converge to S0 with probability 1, but nothing can
be said of the evolution of sk within S0. Such situations
are typical of robust MPC, as studied in, e.g., [2,3].

A direct extension of the established dissipativity theory
cannot apply to a more general context.

In this paper, we will show that the issues detailed above
do not stem from the philosophy underlying the estab-
lished dissipativity theory, but simply from considering
a cost rotation (10) that is restricted to being linear in
the probability measures ρk.

3 Lyapunov Stability for MDPs

The previous section details why the established dissipa-
tivity theory does not readily apply to stochastic prob-
lems. In this section, we will show that the issue can be
addressed within the general philosophy of the estab-
lished dissipativity theory, but that it requires an exten-
sion where the classic state-space of deterministic sys-
tems must be replaced by the set of probability measures
underlying the stochastic systems. In order to develop
this extension, let us generalize MDP (4) into the fol-
lowing optimal control problem:

V⋆ [ρ] = min
π∈P

∞∑

k=0

L [ρk,π] (24a)

s.t. ρk+1 = Tπ ρk, ρ0 = ρ, (24b)

where V⋆ : M → R, and the argument of V⋆, i.e., ρ,
specifies the initial condition of the Markov Chain (24b).
The stage cost L ∈ M × P → R is a (possibly non-
linear) functional over the probability measures ρk, and
the policy π. We assume here that V⋆ [ρ] is finite for a
non-empty set of measures ρ. One can readily observe
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that Problem (4) is a special case of (24), obtained by
selecting

L [ρk,π] = Es∼ρk
[L (s,π (s))− L0] . (25)

Note that the condition L [ρ⋆,π⋆] = 0 is required for
V⋆ to be bounded. In the specific case of Problem (4),
this can further be seen by using the definition of Equa-
tion (5) in (25). We will see in this paper that the free-
dom of using more general functionals than (25) for L is
the key to generalizing the economic NMPC dissipativ-
ity theory to MDPs.

We detail next how (24) makes it possible to build a
fairly straightforward and classic Lyapunov stability re-
sult on the set of probability measures. To that end, let
us introduce the following key concepts.

Definition 1 (Dissimilarity measure) Let us define
a dissimilarity measure D (· ||·) : R × R → R as an
application from a subset of probability measures to the
real positive numbers, such that:

D (ρ || ρ′) ≥ 0 and D (ρ || ρ) = 0, ∀ ρ, ρ′ ∈ R ,
(26)

where R ⊆ M is (a subset of) the set of probability mea-
sures.

A useful example of dissimilarity measures is the
Kullback-Leibler divergence (DKL) defined as

DKL (ρ || ρ
′) =

∫

log
dρ

dρ′
dρ =

∫

f(s) log
f(s)

f ′(s)
ds,

(27)

where dρ
dρ′

is the Radon-Nykodim derivative of ρ with

respect to ρ′ and the second equality holds if ρ, ρ′ have
underlying probability densities f, f ′. Other useful ex-
amples in control are the Wasserstein metric, and the
total variational distance [14]. The notion of stability on
the set of probability measures can then be formalized
as follows.

Definition 2 (D-Stability) A Markov Chain is D-
stable with respect to probability measure ρ⋆ and dissimi-
larity measure D if, for any ǫ > 0 there exists a δ(ǫ) > 0
such that D (ρ0 || ρ⋆) < δ implies D (ρk || ρ⋆) < ǫ for
all k ≥ 0. If, moreover, the probability measure ρ⋆ is
D-attractive, i.e.,

lim
k→∞

D (ρk || ρ⋆) = 0, (28)

holds, then the Markov Chain isD-asymptotically stable.

�

Note that D-stability is introduced as a practical way
to encompass many commonly used stability concepts.
If, e.g., D is the total variational distance, then the ob-
tained stability is often referred to as ergodicity [14]. If,
e.g., D is the expected value under ρ of the square of
s, then one obtains asymptotic stability for determinis-
tic systems [19] and mean square stability for stochastic
systems [20].

The next theorem formalizes the stability of OCP (24)
on the set of probability measures, following the same
arguments as classic Lyapunov stability for optimal poli-
cies over deterministic problems.

Theorem 1 Assume that the inequalities

L [ρk,π⋆] ≥ ̺1 (D (ρk || ρ⋆)) , (29a)

V⋆[ρk] ≤ ̺2 (D (ρk || ρ⋆)) , (29b)

hold for some class-K∞ functions ̺1,2 and for all ρ ∈ Ξ ⊆
R, where set Ξ is a non-empty set such that V⋆ < ∞ on Ξ.
Then the Markov chain is D-asymptotically stable with
respect to the probability measure ρ⋆ and dissimilarity
measure D for any ρ0 ∈ Ξ.

�

Remark 3 Note that assumption (29b) corresponds to
a standard assumption in the context of MPC—referred
to as a form of weak controllability [19]—which requires
that the value function is upper-bounded by a class-K∞

function of a norm of s− s⋆.

Remark 4 Condition (29a) can bemistaken for the sim-
ple requirement that the cost functional L should corre-
spond to a stochastic tracking MPC scheme. This inter-
pretation is, however, not necessarily correct. Indeed, a
stochastic tracking MPC scheme would typically use a
cost functional of the form

L [ρk,π⋆] =
1

2
Es∼ρk

[

s⊤Qs+ π⋆ (s)
⊤
Rπ⋆ (s)

]

, (30)

which typically does not satisfy condition (29a) unless ρ⋆
is a Dirac measure centered at s = 0. The latter requires
that some very specific properties are satisfied by the sys-
tem dynamics (1), and hence does not hold in general.
See Lemma 1 and the following remarks.

PROOF. (of Theorem 1) We first observe that because
V⋆ is bounded on Ξ, Ξ is positive invariant for system ξ
defined in (1) under policy π⋆ solving (24) and

V⋆[ρk+1]− V⋆[ρk] = −L [ρk,π⋆] ≤ −̺1 (D (ρk || ρ⋆))
(31)
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holds on Ξ. Furthermore, we observe that from (29a),
the bound

V⋆[ρk] ≥ L [ρk,π⋆] ≥ ̺1 (D (ρk || ρ⋆)) ≥ 0 (32)

holds for any ρk ∈ Ξ. Hence V⋆[ρk] ≥ 0 is bounded
and monotonically decreasing on Ξ, such that it must
converge to a finite positive value V̄ as k → ∞. We then
need to prove that V̄ = 0. To that end, consider δ, ǫ > 0
selected as

D (ρ0 || ρ⋆) ≤ δ, ǫ = ̺−1
1 (̺2(δ)), (33)

such that

V⋆[ρ0] ≤ ̺2(δ) = ̺1(ǫ). (34)

Using (31) and (32), we observe that for all k:

D (ρk || ρ⋆) ≤ ̺−1
1 (V⋆[ρk]) ≤ ̺−1

1 (V⋆[ρ0])

≤ ̺−1
1 (̺1(ǫ)) = ǫ, (35)

which proves stability. In order to prove attractivity, we
proceed by contradiction. Assume that

lim
k→∞

V⋆[ρk] = V̄ > 0, (36)

then using (29b) and (35), the inequalities

̺−1
2 (V̄ ) ≤ lim

k→∞
D (ρk || ρ⋆) ≤ ̺−1

1 (V̄ ) (37)

hold. Using (31) we obtain:

V⋆[ρk] ≤ V⋆[ρ0]−
k∑

j=0

̺1 (D (ρj || ρ⋆)) . (38)

SinceD (ρk || ρ⋆) converges to the interval [̺
−1
2 (V̄ ), ̺−1

1 (V̄ )],
then

lim
k→∞

̺1 (D (ρk || ρ⋆)) ≥ ̺1
(
̺−1
2 (V̄ )

)
> 0, (39)

such that V⋆[ρk] → −∞ as k → ∞, which is in contra-
diction with (32). Consequently, V̄ = 0, and (28) must
hold. ✷

Note that the stability result of this theorem can carry
several meanings, depending on the properties of D. If,

e.g., D(ρ1||ρ2) =
∥
∥
∥Es∼ρ1

[s]− Es∼ρ2
[s]

∥
∥
∥, then only the

expected value of the state is guaranteed to converge. In
case the selected dissimilarity measure carries stronger
properties, stronger stability results arise. Let us detail
a useful special case in the next corollary.

Corollary 1 Assume that the assumptions of Theorem 1
hold, and the dissimilarity measureD (ρ || ρ⋆) is such that
D (ρ || ρ⋆) = 0 implies that ρ = ρ⋆ almost everywhere.
Then

lim
k→∞

ρk (·) = ρ⋆ (·) (40)

holds almost everywhere.

�

PROOF. The limit (28) follows from Theorem 1. By
the properties assumed on the dissimilaritymeasure, this
directly entails (40). ✷

Examples of dissimilarity measure satisfying Corollary 1
include DKL and the total variational distance. It may
be useful here to discuss what form of stability is estab-
lished in Theorem 1. Stability proofs in the context of
Classic MPC and Economic MPC discuss the behavior
of single trajectories, starting from arbitrary initial con-
ditions in a set, and proves the convergence to an optimal
steady-state. In Robust MPC one discusses the behav-
ior of all possible stochastic trajectories, and proves the
convergence to a set, without describing the behavior
inside that set. In contrast, Theorem 1 discusses the be-
havior of trajectories by showing that their asymptotic
behavior is to be distributed according to a distribu-
tion with zero dissimilarity with respect to the optimal
steady-state measure of the MDP. For suitably selected
dissimilarity measures (see, e.g., Corollary 1), this en-
tails that these two distributions must coincide almost
everywhere.

We now turn to discussing how the stability of the MDP
resulting from a generic stage cost functional L can be
discussed in terms of (29a) via functional cost rotations.

4 Functional Cost Rotations

Making a Lyapunov stability argument on problem (24)
requires the cost functionalL [ρk,π] to satisfy (29a). Fol-
lowing the arguments of Lemma 1, one can readily ob-
serve that, in general, for MDP (4) to be well-posed, the
MDP stage cost L − L0 cannot be strictly positive. As
a result, when recasting a given MDP (4) in its equiva-
lent functional form (24) using identity (25), the result-
ing functional stage cost L [ρ,π] cannot be positive for
all probability measures ρ, such that (29a) cannot hold.
This challenges by construction the extension of classi-
cal Lyapunov stability to general MDPs. As a result, a
classic rotation in the form (10) is not applicable in gen-
eral.

Fortunately, it is possible to tackle these difficulties by
adopting a more general cost rotation than (10). More

7



specifically, we will consider functional cost rotations of
the form:

LR [ρk,π] = L [ρk,π]− λ [ρk+1] + λ [ρk] , (41)

where λ : M → R is a (possibly) nonlinear functional.
Rotation (10) is then a special case of (41), where the
form

λ [ρk] = Es∼ρk
[λ (s)] (42)

is imposed. Following the arguments presented above,
the form (42) is in general not able to deliver a Lyapunov
function.

Similarly to classical cost rotations, we observe that (41)
leaves the policy solution of (24) unchanged, as long as
λ[ρk] is bounded for all k. A generalized dissipativity
criterion can then be formulated as follows.

Definition 3 (Functional Strict Dissipativity)
There exists a functional λ : M → R and a class-K∞

function ̺ such that LR [ρk,π] defined by (41) satisfies
(29a), i.e.,

L [ρk,π]− λ [ρk+1] + λ [ρk] ≥ ̺ (D (ρk || ρ⋆)) (43)

holds for all ρk ∈ R such that V⋆ (ρk) is finite.

As we will prove next, the functional dissipativity crite-
rion (43) then yields D-asymptotic stability. Indeed, let
us define a rotated problem as:

V R
⋆ [ρ] = min

π∈P
lim

N→∞

N−1∑

k=0

LR [ρk,π] + λ [ρN ] (44a)

s.t. ρk+1 = Tπ ρk, ρ0 = ρ, (44b)

where V R
⋆ : M → R, and the argument of V R

⋆ , i.e., ρ,
specifies the initial condition of the Markov Chain (44b).
We then establish D-asymptotic stability in the next
theorem. Under the assumption that functional strict
dissipativity holds for a bounded storage functional λ,
the existence of the limit in (44a) will become clear in
equation (46) in the proof of the next theorem.

Theorem 2 Assume that there exists a storage func-
tional λ bounded from above and below, and satisfy-
ing (43). Assume moreover that

V R
⋆ [ρk] ≤ ̺2(D (ρk || ρ⋆)). (45)

with V R
⋆ : M → R defined in (44). Then, the rotated

problem (44) and the original problem (24) deliver the
same optimal policy. Moreover, the Markov chain is D-
asymptotically stable with respect to the probability mea-
sure ρ⋆ and dissimilarity measure D.

Remark 5 We observe that (45) can be interpreted as a
controllability assumption, since it holds whenever ρk can
be steered to ρ⋆ (in the sense of the dissimilarity measure
D) with finite cost. This is equivalent, mutatis mutandis,
to the deterministic case, see Remark 3.

Remark 6 A reader well acquainted to the dissipativity
theory for economic MPC will recognize in Theorem 2 a
generalization of the theory applicable in the determin-
istic case, where a criterion similar to (43) and a bound
similar to (45) entail the convergence of the system state
to the optimal steady-state. Theorem 2 extends these con-
cepts to the convergence of the system in the sense of
the probability measures underlying the dynamics rather
than in the sense of the states themselves.

PROOF. (of Theorem 2) The first claim follows from
standard arguments, since boundedness of λ[ρk] entails

N−1∑

k=0

LR [ρk,π] + λ [ρN ] =

N−1∑

k=0

L [ρk,π] + λ [ρ0] . (46)

By taking the limit N → ∞, (which exists if the orig-
inal problem (24) is well-posed, since λ is bounded by
assumption) the cost of the rotated and original prob-
lem only differ by the constant λ [ρ0], for any evolution
of the density ρk which satisfies the Markov chain (1).
Consequently, we obtain V R

⋆ [ρ0] = V⋆ [ρ0] + λ [ρ0].

We now observe that LR and V R
⋆ satisfy the assumptions

of Theorem 1. Consequently, the rotated problem yields
a policy guaranteeing that the closed-loop system sat-
isfies D-asymptotic stability with respect to density ρ⋆.
Because the optimal policies of the rotated and original
problem coincide, this proves the second claim. ✷

The existence of a bounded functional λ satisfying (43)
entails the stability of (24) in the set of probability
measures. We will show next that such a storage func-
tion exists in the LQR case, and can be explicitly pro-
vided, hence giving credence to this concept. In line with
Lemma 1, the resulting modified cost functional does
not take the linear form (42). It is not trivial, and its
derivation is fairly technical.

5 The LQR Case

In this section, we will develop a storage functional λ[ρ]
satisfying (43) for the LQR case with Gaussian process
noise and for the Kullback-Leibler divergenceDKL. Most
proofs are provided in the Appendix. We consider the
dynamics:

s+ = As+Ba+w, (47)
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where s ∈ R
n and w ∼ N (0,Σw) i.i.d., E

[
ws⊤

]
= 0,

E
[
wa⊤

]
= 0 and we consider the stage cost

L(s,a) =

[

s

a

]⊤

H

[

s

a

]

, H =

[

T U⊤

U R

]

≻ 0, (48)

For ρ0 ∼ N (µ0,Σ0), the dynamics of the system are
given by ρk ∼ N (µk,Σk) where the mean and covari-
ance dynamics read as:

µk+1 = Acµk, (49a)

Σk+1 = AcΣkA
⊤
c +Σw, (49b)

and where Ac = A − BK, and K is the regular LQR
matrix gain associated toA,B,H . Furthermore, we have

Es∼ρk
[L (s,π (s))] =Tr (WΣk) + µ⊤

k Wµk, (50)

DKL (ρ || ρ⋆) =
1

2

(
Tr

(
Σ−1

∞ Σk

)
+ µ⊤

k Σ
−1
∞ µk − n

+ log det (Σ∞)− log det (Σk)) ,

where n is the dimension of s,

W =

[

I

−K

]⊤

H

[

I

−K

]

, (51)

and ρ⋆ has the mean µ∞ = 0 and its variance is the
solution of the Lyapunov equation:

Σ∞ = AcΣ∞A⊤
c +Σw. (52)

Note that (52) has a solution only if Ac is stabilizing,
which also entails that µ∞ = 0. We observe that for the
MDP to be well posed

L0 = Tr (WΣ∞) (53)

must hold. We then observe that L, as defined by (25)
reads as

L [ρk,π] = µ⊤
k Wµk +Tr (W (Σk − Σ∞)) . (54)

One can observe that (54) does not necessarily satisfy
(29a), such that a rotation of the LQR stage cost, as per
Section 4, is required in order for the optimal cost V⋆ as-
sociated to the LQR problem, defined according to (24),
to be a Lyapunov functional. Before delivering the stor-
age functional associated to the LQR problem, the fol-
lowing section establishes some basic results confirming
the convergence of the LQR problem under DKL inde-
pendently of the proposed theory.

5.1 Convergence under DKL

The stability of the stochastic LQR in theDKL sense can
be established by the theory proposed above, via provid-
ing a storage functional λ, and as a result a Lyapunov
functional for the problem. This is the approach used by
the established dissipativity theory in economic MPC,
allowing one to build a Lyapunov function directly from
the cost and dynamics of the problem at hand. We will
present this approach in Section 5.2. Unlike general op-
timal control and MPC problems, the LQR problem ad-
mits a simple and explicit policy, allowing one to explic-
itly describe the closed-loop dynamics and discuss their
stability directly. In this section, we will adopt this ap-
proach first and confirm that DKL (ρk||ρ⋆) is monoton-
ically decreasing under the LQR closed-loop dynamics.
This will require several technical results that will also
be needed for building a storage functional. The proofs
of Lemma 2, Lemma 3, Proposition 1, Lemma 4, and
Theorem 3 are provided in the Appendix. In order to
proceed, let us introduce first a useful technical lemma.

Lemma 2 Consider a full-rank matrix M ∈ R
n×n such

that its maximum singular value, i.e., σmax (M) is less
than 1, and consider a symmetric (possibly indefinite)
matrix ∆ ∈ R

n×n. Consider Λ1,...,n(·) the ordered eigen-
values of an R

n×n matrix ·, where the indexing denotes
that order. Then the following holds:

Λi

(
M∆M⊤

)
= αiΛi (∆) , i = 1, . . . , n (55)

for a sequence αi > 0, i = 1, . . . , n with αi ≤ σmax (M).

�

This lemma will be instrumental in showing the conver-
gence of the LQR problem in the DKL sense, i.e.:

DKL (ρk+1 || ρ⋆) < DKL (ρk || ρ⋆) . (56)

In order to obtain this result, the following lemma will
be useful, and follows fairly directly from Lemma 2.

Lemma 3 Under dynamics (49b), the ordered eigenval-
ues of Σ−1

∞ Σk, i.e., Λ1,...,n

(
Σ−1

∞ Σk

)
converge monotoni-

cally to 1 without changing sign. More specifically:

Λi

(
Σ−1

∞ Σk+1

)
− 1 = αi

(
Λi

(
Σ−1

∞ Σk

)
− 1

)
, (57)

for a sequence α1,...,n ∈ R+ with

αi ≤ σmax

(

Σ
− 1

2
∞ AcΣ

1
2
∞

)

< 1, ∀ i. (58)

�

Using Lemma 3, the monotonic decreasing of a class of
dissimilarity measures under the dynamics (49) is estab-
lished next.

9



Proposition 1 Consider any dissimilarity measure
D (ρk || ρ⋆) that can be expressed in the form:

D (ρk || ρ⋆) = c+ µ⊤
k Σ

−1
∞ µk +

n∑

i=1

ζ
(
Λi

(
Σ−1

∞ Σk

))
,

(59)

for some function ζ : R → R+ that is strictly increasing
away from 1, and some constant c. Then D (ρk || ρ⋆) is
strictly decreasing under dynamics (49).

�

Proposition 1 establishes that in the stochastic LQR
case, the measures underlying the stochasticity of the
state space converge in the sense of an entire class of
dissimilarity measures (including DKL). This is a direct
result not relying on the proposed functional dissipativ-
ity theory. However, the mathematical argument estab-
lishing Proposition 1 is central in developing a storage
function showing the functional dissipativity of LQR.

Proposition 1 applies to several dissimilarity measures
including DKL and the Wasserstein metric. For the sake
of simplicity, we focus on DKL in the following.

Corollary 2 Dynamics (49) converge monotonically
under DKL, i.e.,

DKL (ρk+1 || ρ⋆) ≤ DKL (ρk || ρ⋆) , (60)

and the inequalities are strict for ρk 6= ρ⋆.

�

PROOF. We observe that

DKL (ρk || ρ⋆) =
1

2
µ⊤
k Σ

−1
∞ µk (61)

+
1

2

n∑

i=1

(
Λi

(
Σ−1

∞ Σk

)
− log Λi

(
Σ−1

∞ Σk

)
− 1

)
,

and we observe that the scalar function

ζ(x) = x− log x− 1 (62)

is monotonically increasing away from 1. Since DKL dif-
fers from the form (59) only by a factor 1

2 , the monotonic
decrease is conserved. ✷

5.2 A Storage Functional for DKL

Section 5.1 shows the stability of the stochastic LQR
closed-loop trajectories under DKL directly. This can be

done in the LQR case where the closed-loop dynamics
are known explicitly. For general optimal control and
MPC problems, the optimal policy is typically not ex-
plicitly known and the same approach cannot be used.
Dissipativity theory then allows one to study the stabil-
ity of a problem based on the cost and dynamics alone,
i.e., without using the policy explicitly. This section fol-
lows up on dissipativity theory and shows the existence
of a storage functional for the LQR case, hence illustrat-
ing the theory presented in this paper. We need to start
with the following technical lemma.

Lemma 4 Consider the function:

ς (∆) = Tr (∆)− log det (∆ + I) . (63)

For any symmetric matrix ∆ and matrix M such that
σmax (M) < 1, the following inequality holds:

(1− β) ς (∆)− ς
(
M∆M⊤

)
≥ 0, (64)

for any β ≤ 1− σmax (M).

�

Equipped with this lemma, we are now ready to provide
a storage functional for the LQR case.

Theorem 3 The choice:

λ [ρk] = κ
(
Tr

(
Σ−1

∞ Σk

)
+ log det

(
Σ−1

∞ Σk

)
− n

)

− Tr
(

Ω
(

Σ
− 1

2
∞ ΣkΣ

− 1
2

∞ − I
))

(65)

satisfies the functional dissipativity criterion (43) where
matrix Ω is solution of the discrete Lyapunov equation:

MΩM⊤ − Ω+ Σ
1
2
∞WΣ

1
2
∞ = 0, (66)

for M = Σ
− 1

2
∞ AcΣ

1
2
∞ and where κ, ̺ are constants satis-

fying:

κ ≥
1

2 (1− σmax (M))
, ̺ ≤ 2σmin (W )σmin (Σ∞) .

(67)

�

Remark 7 It is useful to note here that (65) cannot be
cast as a linear functional of ρk. This precludes forms
like (10), and confirms the arguments made in the first
part of this paper.

5.3 Illustration

We illustrate next Theorem 1-3 for the LQR case. We
chose a case with n = 2 states, i.e., sk ∈ R

2, and a scalar
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action ak ∈ R having the dynamics

sk+1 =
1

10

[

8 5

−5 7

]

sk +
1

10

[

0

5

]

ak +wk, (68)

where wk ∼ N (0,Σw) and

Σw =

[

2 −1

−1 1.6

]

. (69)

The stage cost is based on the weighting matrices T =
I, R = 1, U = 0 in (48). The corresponding constant L0

solution of (5) reads as:

L0 = 8.92. (70)

The initial density ρ0 = N (µ0,Σ0) was selected, with

µ0 = 1.6

[

1

1

]

, Σ0 =
1

10

[

1 1

1 2

]

. (71)

The optimal steady-state density ρ⋆ = N (0,Σ∞) has
the covariance

Σ∞ =

[

3.73 −1.76

−1.76 3

]

. (72)

The constants κ = 1.72, ̺ = 3.14 then satisfy (67). Fig-
ure 1 provides a graphical illustration of this case, show-
ing the trajectories ρk = N (µk,Σk), in terms of their
mean (center of the ellipsoids in red) and covariance
(ellipsoids). For k → ∞, the densities converge to the
steady-state optimal density ρ⋆, depicted as the green
ellipsoid here, starting from the initial density ρ0 repre-
sented as the light black ellipsoid.

Figure 2 upper graph shows the stage costL [ρk,π] given
by (54).We observe thatL does not satisfy (29a) as it can
take negative values, hence it cannot be used to establish
stability as it violates the assumptions of Theorem1.The
lower graph depicts DKL (scaled by a factor ϕ) and the
rotated cost LR [ρk,π] (41), using the storage functional
(65) prescribed by Theorem 3. One can observe how
LR selected as per Theorem 3 is lower-bounded by the
scaled DKL and satisfies (43). As a result, it satisfies the
conditions of stability (29a) of Theorem 1. One can also
observe how DKL satisfies Proposition 1.

Figure 3 illustrates the evolution of the value function
J⋆ from the original MDP (4) (see red curve). One can
readily see that J⋆ is not a Lyapunov function as it is not
decreasing. The cyan curve represents the evolution of
the value function V R

⋆ of the rotated problem (44), which
decreases monotonically, as established by Theorem 2.

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

Trajectories

s1

s
2

Fig. 1. Illustration of the LQR case. The expected closed-loop
trajectories are depicted in red and the 1σ ellipsoids in black.
The optimal steady-state density ρ⋆ is depicted as the green
ellipsoid, and the initial density ρ0 as the black ellipsoid.
One can observe how the system converges to ρ⋆.

0 5 10 15 20
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0 2 4 6 8 10 12 14 16 18 20

10
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10
0

Rotated cost LR

ϕ ·DKL

Stage cost L

Time step

Time step

Fig. 2. Illustration of the LQR case. The upper graph depicts
the stage cost (54). The lower graph depicts ϕ · DKL and
the rotated cost LR (41), using the storage functional (65),
using ϕ = 3.13, selected according to (67).

Figure 4 illustrates assumption (45) in Theorem 2, and
similarly assumption (29b) in Theorem 1. As detailed
above, these assumptions are difficult to verify formally
even in the deterministic case. One can observe, how-
ever, that they hold on this specific example and on the
proposed trajectories.

6 Conclusion

In this paper, we proposed a generalization of the es-
tablished economic MPC dissipativity theory to Markov
Decision Processes. We explain why this generalization
is not straightforward, and show that it can be done by
extending the notion of storage functions to nonlinear
storage functionals. A classic Lyapunov argument can
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Fig. 3. Illustration of the LQR case. The red curve repre-
sents the evolution of the value function J⋆ from the original
problem (4). The black curve represents the evolution of the
value function V R

⋆
of the rotated problem (44), which is a

Lyapunov function for the system, as established in Theo-
rem 2.
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10
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22.7 ·DKL

V R
⋆ from (44)

Time step

V
R ⋆
a
n
d
D

K
L

Fig. 4. Illustration of the LQR case. The black curve repre-
sents the evolution of the value function V R

⋆
of the rotated

problem (44). The black curve is DKL scaled by a factor 22.7,
and is upper-bounding V R

⋆
, illustrating assumption (45) in

Theorem 2 on these specific trajectories and specific case.

then be used to discuss the asymptotic stability of the
probability measures underlying the Markov Decision
Processes to the steady-state optimal probability mea-
sure. The asymptotic stability can be expressed in terms
of dissimilarity measures such as the Kullback-Leibler
divergence, the Wasserstein metric, or the total varia-
tional distance. The theory is illustrated on the LQR
case with Normal process noise, for which a storage func-
tional can be explicitly provided.

Current work extends this theory to discussing the sta-
bility of Stochastic MPC, the construction of stability-
constrained learning using MPC, and the extension to
the discounted case, by building on the theory proposed
in [22]. Furthermore, an extension to policies based on
finite-horizon MPC schemes will be considered.
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7 Appendix

The proofs of Lemma 2, Lemma 3, Proposition 1, Lemma
4, and Theorem 3 are provided hereafter. Note that
we will denote the ordered eigenvalues of matrix A as
Λ1,...,n(A) and its ordered singular values as σ1,...,n(A).
We will denote the trace of A as Tr (A). We will further
use:

Λi(AB) = Λi(BA), 1 + cΛi(A) = Λi(I + cA),

Λi(AA
⊤) = Λi(A)

2, max
k

σk(A)σi(B) ≥ σi(AB),

Tr(ABC) = Tr(CAB), det(A) det(B) = det(AB),

det(ABC) = det(CAB)

and all such permutations

7.1 Proof of Lemma 2

First, we observe that the following inequality holds:

σ
(
M∆M⊤

)
≤ σmax (M)

2
σ (∆) , (73)

where σ (·) is the vector of singular values. Hence since
∆ is symmetric:

Λi

(
M∆M⊤

)2
≤ σmax (M)2 Λi (∆)2 , (74)

such that

∣
∣Λi

(
M∆M⊤

)∣
∣ = |αi| |Λi (∆)| (75)

holds for some sequence |α1|, . . . , |αn| ≤ σmax (M). We
then need to show that αi > 0, i = 1, . . . , n . We observe
that:

Λi

(
M∆M⊤

)
= Λi (Φ∆) , (76)

where Φ = M⊤M is symmetric, positive definite. Let us
define:

Γ(t) = et log Φ∆, (77)

where we use the matrix exponential and logarithms.
Then

Γ(0) = ∆ and Γ(1) = M⊤M∆ (78)

trivially hold. We further observe that

det (Γ(t)) = det
(
et log Φ

)
det (∆) = etTr(log Φ)det (∆)

(79)

=
(

eTr(log Φ)
)t

det (∆) = det (log Φ)t det (∆) .

Since det (Γ(1)) = det
(
M∆M⊤

)
6= 0 by assumption, it

follows that det (Γ(t)) 6= 0 for all t ∈ [0, 1]. We can then
conclude that the eigenvalues

Λi (Γ(t)) 6= 0, ∀ t, (80)

such that Λi (Γ(t)) does change sign over t ∈ [0, 1]. This
establishes that αi > 0, i = 1, . . . , n and hence (55).

7.2 Proof of Lemma 3

We first observe that the dynamics for Σk can be refor-
mulated as:

Ψk+1 = MΨkM
⊤ +N, (81)

where Ψk = Σ
− 1

2
∞ ΣkΣ

− 1
2

∞ and

M = Σ
− 1

2
∞ AcΣ

1
2
∞, N = Σ

− 1
2

∞ ΣwΣ
− 1

2
∞ , (82)

such that limk→∞ Ψk = I and

MM⊤ +N = I. (83)

We can then observe that

σi (M)
2
= Λi

(
M⊤M

)
= Λi

(
MM⊤

)
= Λi (I −N)

= 1− Λi(N) ≥ 0, (84)

and that

Λi (N) = Λi

(

Σ
− 1

2
∞ ΣwΣ

− 1
2

∞

)

= Λi

(
Σ−1

∞ Σw

)
> 0, (85)

since Σ∞, Σw are positive definite. It follows that

σi (M) ∈ [0, 1). (86)

Let us label

∆k = Ψk − I, (87)

and observe that

∆k+1 = M∆kM
⊤ and Λi (∆k) = Λ (Ψk)− 1. (88)
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Using Lemma 2, we observe that (55) applies, i.e.

Λi (∆k+1) = αiΛi (∆k) , i = 1, . . . , n, (89)

for a sequence αi > 0, i = 1, . . . , n with αi ≤
σmax (M) < 1. Finally, we observe that:

Λi (∆k) = Λi

(

Σ
− 1

2
∞ ΣkΣ

− 1
2

∞ − I
)

= Λi

(
Σ−1

∞ Σk

)
− 1,

(90)

and conclude that (57) holds.

7.3 Proof of Proposition 1

We first observe that the monotonic convergence of the
second term in (59)

n∑

i=1

ζ
(
Λi

(
Σ−1

∞ Σk

))
(91)

follows directly from Lemma 3. The convergence of the
first term follows classic system dynamic theory. We re-
call the argument for completeness. Consider the state
space transformation:

νk = Σ
− 1

2
∞ µk, (92)

following the dynamics:

νk+1 = Mνk, (93)

with

Λi

(
M⊤M

)
≤ σmax (M)2 < 1. (94)

It follows that

µ⊤
k+1Σ

−1
∞ µk+1 = ‖νk+1‖

2 = ν⊤
k M

⊤Mνk < ‖νk‖
2

= µ⊤
k Σ

−1
∞ µk. (95)

7.4 Proof of Lemma 4

We first observe that for any a < 1 the inequality:

ϑa,b(x) (96)

:= (1− b) (x− log (x+ 1))− ax+ log (ax+ 1) ≥ 0

holds on x ∈ (−1,∞) for 0 < b ≤ 1 − a < 1. Indeed,
we observe that ϑa,b(0) = 0 and that on the interval
x ∈ (−1,∞)

dϑa,b

dx
= −

ax ((a+ b− 1)x− 1 + b)

(ax+ 1) (x+ 1)
= 0 (97)

has the unique solution x = 0. Furthermore, the sign of
dϑa,b

dx entails that ϑa,b is monotonically increasing away
from x = 0, which establishes (96). Using Lemma 2, we
then observe that for all i:

Λi

(
M∆M⊤

)
= Λi

(
M⊤M∆

)
= αiΛi (∆) (98)

holds for some sequence α1,...,n ≤ σmax (M). Then

− Λi

(
M∆M⊤

)
+ log

(
Λi

(
M∆M⊤

)
+ 1

)
= (99)

− αiΛi (∆) + log (αiΛi (∆) + 1) .

Hence, using

ς (∆) =

n∑

i=1

Λi (∆)− log (Λi (∆) + 1) (100)

ς
(
M∆M⊤

)
=

n∑

i=1

Λi

(
M∆M⊤

)

− log
(
Λi

(
M∆M⊤

)
+ 1

)
,

we observe that

(1− β) ς (∆)− ς
(
M∆M⊤

)
=

n∑

i=1

ϑαi,β(Λi (∆)),

such that the choice

β ≤ min
i

1− αi ≤ 1− σmax (M) < 1 (101)

ensures that (64) holds.

7.5 Proof of Theorem 3

We first observe that λ [ρ⋆] = 0 holds by construction.
We further observe that:

Tr
(

Ω
(

Σ
− 1

2
∞ ΣkΣ

− 1
2

∞ − I
))

= Tr (Ω∆k) , (102)

and, using (88) and (66), we obtain:

Tr (Ω∆k)− Tr (Ω∆k+1) = −Tr (W (Σk − Σ∞)) .
(103)

Using (103) and (63) we then observe that:

λ [ρk]− λ [ρk+1] = κ(ς (∆k)− ς (∆k+1)) (104)

− Tr (W (Σk − Σ∞)) .

Using (54) and (104) and Lemma 4, it follows that

L [ρk,π[ρk]]− λ [ρk+1] + λ [ρk] (105)

= µ⊤
k Wµk + κ(ς (∆k)− ς (∆k+1))

≥ µ⊤
k Wµk + κβς (∆k) .
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We further observe that

DKL (ρk || ρ⋆) =
1

2
µ⊤
k Σ

−1
∞ µk +

1

2
ς (∆k) . (106)

It follows that for (67), κ ≥ 1
2β , and the inequality

L [ρk,π[ρk]]− λ [ρk+1] + λ [ρk] ≥ ̺DKL (ρk || ρ⋆)
(107)

holds.
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