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Study Objectives: Sleep slow wave activity, as measured using EEG delta power ( < 4 Hz), undergoes significant 

changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent varia- 

tions in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at 

characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the 

transition between childhood and adulthood. 

Methods: We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing 

children ( N = 21, 10.3 ± 1.5 years old) and young healthy adults ( N = 18, 31.1 ± 4.4 years old). All recordings 

were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated 

algorithms. The threshold for statistical significance was set at p = 0.05. 

Results: The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, 

they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the 

slow waves of children also displayed a tendency to more strongly involve and originate from the right than the 

left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency 

showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence 

on different generation and synchronization mechanisms. 

Conclusions: Changes in slow wave origin, synchronization, and propagation at the transition between child- 

hood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain 

connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and 

interpret physiological and pathological development. 
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. Introduction 

During childhood and adolescence, the human brain undergoes
everal significant structural and functional adaptations. White-matter
olume increases with age till young adulthood ( Keshavan et al.,
002 ) according to region-specific trajectories ( Lynch et al., 2020 ).
ice versa, starting after 7 years of age, gray matter volume declines
assively and asynchronously, especially over fronto-parietal associa-

ive areas, following a posterior-anterior trajectory ( Piekarski et al.,
017 ). This decline seems to result from the combination of selec-
ive synaptic pruning, programmed cell death, and progressive intra-
ortical myelination ( Paus, 2005 ). Importantly, a derangement of
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uch delicate and complex processes is supposed to underlie sev-
ral psychiatric disorders that typically emerge during adolescence
 Paus et al., 2008 ). 

Sleep electroencephalography (EEG) has been proposed as a reli-
ble tool to track maturation-dependent brain adaptations occurring
rom infancy to young adulthood ( Gorgoni et al., 2020 ; Ricci et al.,
021 ; Ringli and Huber, 2011 ; Schoch et al., 2018 ; Timofeev et al.,
020 ). Indeed, brain activity recorded during the sleep state is only
arginally affected by confounds related to motivational, attentional,

nd contextual influences, thus allowing for an unbiased assessment
f brain activity. Moreover, properties of sleep hallmarks such as
REM slow waves ( < 4 Hz) and spindles (10–16 Hz) appear to directly
 April 2023 
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eflect brain organization and connectivity and may thus allow to track
hysiological and pathological maturational changes ( Buchmann et al.,
011 ; Shaw et al., 2008 ). Sleep slow waves are especially interesting
n this respect because of their dependence on short- and long-range
onnectivity. Specifically, local changes in synaptic strength and
fficiency are thought to affect neuronal synchronization and thus
low-wave properties such as amplitude, slope, and number of negative
eaks ( Esser et al., 2007 ; Riedner et al., 2007 ; Vyazovskiy et al., 2007 ).
ifferently, long-range (e.g., transcallosal) connectivity seems to affect

ong-range slow wave traveling at the cortical level ( Avvenuti et al.,
020 ; Massimini et al., 2004 ; Murphy et al., 2009 ). 

In line with these considerations, slow wave activity (SWA) - ex-
ressed as the mean EEG signal power within in the delta range ( < 4 Hz)
 decreases progressively with age ( Campbell and Feinberg, 2009 ;
enni and Carskadon, 2004 ; Kurth et al., 2010 ), while its topo-
raphic distribution displays a shift from posterior to anterior scalp re-
ions ( Kurth et al., 2010 ). These changes occur in parallel with (mi-
ro)structural variations in regional myelination and cortical volume, as
ell as with the acquisition of region-specific skills ( Kurth et al., 2012 ).

n addition, changes in the myelination of longitudinal and interhemi-
pheric fibers are associated with an increase in the speed and distance
raveled by slow waves ( Kurth et al., 2017 ). 

Interestingly, previous work suggested the existence of at least two
low wave sub-types that are presumably generated by distinct synchro-
ization processes ( Bernardi et al., 2018 ; Siclari et al., 2014 ): 1) a likely
ubcortical-cortical, arousal-related process (type I) may be responsible
or the emergence of widespread, large, and steep slow waves that pre-
ominate early in the falling asleep period and tend to originate from
entro-frontal areas; 2) a cortico-cortical process may underlie the gen-
ration of more circumscribed, smaller, and shallower slow waves (type
I) that predominate during stable NREM sleep and may originate every-
here in the cortex. The study of these slow wave sub-types across de-
elopment could offer an important window on the maturation of both
ortical and subcortical structures involved in sleep and slow-wave reg-
lation. 

While the above observations hint at a potential value of slow waves
s markers of brain maturation, a detailed and comprehensive analy-
is of how topographic slow-wave characteristics and different slow-
ave sub-types change from childhood to adulthood has never been
erformed. Notably, a better understanding of the mechanisms that reg-
late slow waves in relation to developmental processes could have
ore general implications for the use of slow waves as a marker of
eurodevelopmental disorders. Indeed, the emergence of specific psy-
hopathologies during adolescence or young adulthood has been sug-
ested to derive from anomalies or exaggerations of typical maturation
rocesses ( Paus et al., 2008 ), which may be reflected in alterations of
low wave expression patterns ( Tesler et al., 2013 ). Therefore, here we
nalyzed and compared night-sleep high-density EEG data (256 elec-
rodes) collected in healthy children and young adults to investigate po-
ential maturation-dependent changes in topographic slow-wave char-
cteristics. In particular, we used automated methods to detect individ-
al slow waves and analyzed their origin, regional synchronization, and
ropagation patterns. The following hypotheses were formulated based
n known developmental brain adaptations, and on previously observed
low-wave properties. First, both slow wave origin and distribution (in-
olvement) shift from posterior to anterior areas, thus reflecting changes
n the ability of frontal areas to generate and be reached by traveling
low waves. Second, slow waves of children are less widespread and
ore asymmetric across the two hemispheres, as a possible consequence

f an incomplete development of inter-hemispheric white-matter tracts
 Bernardi et al., 2018 ; Siclari et al., 2014 ; Spiess et al., 2018 ). Third,
ifferent slow waves sub-types present dissociable properties and mat-
ration patterns in line with their predominant dependence on distinct
ynchronization mechanisms and brain structures (subcortical and corti-
al, respectively) ( Bernardi et al., 2018 ; Siclari et al., 2014 ; Spiess et al.,
018 ). 
2 
. Methods 

.1. Participants 

For this observational, cross-sectional investigation, we studied
ealthy children and young adults recorded for one single night with
he same EEG system and with similar procedures. Children were re-
ruited at the Sleep Unit of the Civic Hospital of Lugano as control partic-
pants for a study on sleep alterations in Attention-Deficit/Hyperactivity
isorder (ADHD) ( Castelnovo et al., 2022 ; Miano et al., 2019 ), while
oung adults were drawn from a study conducted at the University
f Wisconsin-Madison sleep laboratory, as control subjects for a study
valuating the effects of meditation on sleep ( Dentico et al., 2016 ;
errarelli et al., 2013 ). 

Physicians board-certified in Sleep Medicine thoroughly interviewed
hildren and adults to screen for any known sleep disorder, or any medi-
al condition affecting sleep. Selected subjects were then referred to the
leep laboratory for a sleep video-PSG with extended EEG monitoring
o screen for the presence of obstructive sleep apnea syndrome (OSAS)
nd periodic limb movements (PLM). 

Selection criteria were: 1) age between 7 and 14 for the pediatric
roup and between 20 and 40 for the adult group; 2) negative personal
istory for sleep disorders; 3) good technical quality of the sleep record-
ngs; 4) a respiratory disturbance index (RDI) < 5 events/hour. 

The pediatric group was composed of 21 subjects (10.3 ± 1.5
ears old, 9 females), while the adult group consisted of 18 subjects
31.1 ± 4.4, 11 females). 

All study procedures were reviewed and approved by the local In-
ependent Ethics Committee ‘Comitato Etico Cantonale’ (02.26.2015 –
.2881) and by the University of Wisconsin Health Sciences Institutional
eview Board. All participants provided written consent upon partici-
ation. All research activities were conducted in accordance with the
elsinki Declaration. 

.2. Sleep recordings 

All participants underwent an in-laboratory overnight hd-EEG
ecording (256 channels; Electrical Geodesics Inc., Eugene, OR) with
 250 Hz or 500 Hz sampling rate, coupled with traditional video-
SG ( Berry et al., 2020 ). Recordings performed at 500 Hz were down-
ampled to 250 Hz before data preprocessing and analysis. Lights out
as within one hour of the participants most consistently reported bed-

ime, and wake-up time was between 6 and 7 am for all participants. 
Sleep stages and sleep events were scored according to standard

riteria by a board-certified sleep physician using the Embla® Rem-
ogic Software (Neurolite), based on 30-second epochs for 6 bipolar
e-referenced EEG channels (F3/M2, F4/M1, C3/M2, C4/M1, O1/M2,
2/M1), electrooculogram (EOG), and submental electromyogram

EMG) ( Berry et al., 2020 ). Supplementary Table S1 reports the sleep
acrostructure of children and adults. 

.3. EEG data preprocessing 

Before spectral analysis, we pre-processed the data according to
tandard routines for hd-EEG. We imported all EEG signals and other
elevant information (including sleep scoring), extracted NREM sleep
stages N2 and N3) epochs, and analyzed them in MATLAB (The Math-
orks Inc., Natick, MA) using the EEGLAB toolbox ( Delorme and
akeig, 2004 ). We first-order high-pass filtered at 0.1 Hz (IIR filter re-

roducing a single resistor capacity) and subsequently band-pass filtered
he EEG signal (0.5 – 45 Hz, Kaiser window-based FIR with zero-phase
istortion). An interactive open-source tool for data visualization and
ata-cleaning ( https://github.com/CSC- UW/csc- eeg- tools.git ) was used
o visually inspect data in MATLAB and mark bad channels and artifac-
ual signals. Data segments containing an arousal or movement-related
rtifacts affecting the majority ( > 50%) of all the channels were marked

https://github.com/CSC-UW/csc-eeg-tools.git
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(  
s ‘bad’ and not considered for subsequent analyses (i.e., slow waves
ccurring during bad segments were discarded). On average, bad seg-
ents were shorter than 30 s and overall represented less than 20% of

he recorded NREM signal. We additionally removed channels with dis-
inctly greater power relative to neighboring channels upon inspection
f power spectra and topographic power maps. An Independent Com-
onent Analysis (ICA) was performed on N2 and N3 data separately
o remove ocular (e.g., rolling eye movements), electrocardiograph,
weating, and muscular artifacts using EEGLAB routines ( Delorme and
akeig, 2004 ). We excluded only ICA components with specific activ-

ty patterns and component maps characteristic of artifactual activity,
ased on the components’ topographies and time series. Finally, we re-
overed removed bad channels using non-linear spherical interpolation.

.4. EEG signal power in NREM sleep 

Spectral analysis was performed on the average-referenced signal
sing artifact-free 6-second epochs (Welch’s averaged modified peri-
dogram with Hamming windows, 8 segments, 50% overlap). For topo-
raphic analyses, we computed the average delta power across epochs
SWA; 1–4 Hz) and examined both absolute and normalized power (z-
core across channels, calculated using the formula z = (x-μ)/ 𝜎, where
 is the raw value for a specific electrode and μ and 𝜎, are the mean and
tandard deviation computed across electrodes, respectively). 

.5. Slow wave detection 

The EEG signals were referenced to linked-mastoids (right mastoid:
hannel 190, left mastoid: channel 94) and slow waves were detected au-
omatically using a validated method ( Bernardi et al., 2018 ; Siclari et al.,
014 ). First, we calculated the signal negative envelope by selecting for
ach time-point the fifth most negative sample across 191 ‘internal’ elec-
rodes, i.e., after exclusion of channels placed on the face and neck. This
pproach minimizes the risk of including in the envelope potential resid-
al high-amplitude oscillations of artifactual origin. 

We then applied a negative half-wave detection procedure based on
he identification of consecutive zero-crossings on the zero-mean cen-
ered signal envelope ( Vyazovskiy et al., 2007 ). Only half-waves with
 duration of between 0.25 and 1.0 s were retained for further analy-
es. No amplitude thresholds were applied ( Bernardi et al., 2019 , 2018 ;
astelnovo et al., 2020 , 2016 ; D’Agostino et al., 2018 ; Mensen et al.,
016 ; Spiess et al., 2018 ; Vyazovskiy et al., 2007 ). For all the detected
low waves, we computed and stored the following parameters of inter-
st: duration (time between zero-crossings in seconds; s), amplitude of
he maximum negative-peak (μV), down-slope (between the first zero-
rossing and the maximum negative peak; μV/s), up-slope (between the
aximum negative peak and the second zero-crossing; μV/s), involve-
ent (mean EEG signal calculated across all electrodes in a 40 ms win-
ow centered on the wave peak; μV). 

.6. Slow wave origin and propagation 

For each detected slow wave, we computed its pattern of propaga-
ion by determining the topographic distribution of each local maximum
egative peak relative delay ( Massimini et al., 2004 ). We used a ‘like-
ess constraint’ method ( Menicucci et al., 2009 ) to discard channels in
hich the negative wave was excessively dissimilar from a ‘prototype’

low wave, defined as the wave with the largest negative peak at the
ime of the maximum wave peak detected on the signal negative enve-
ope. This method is based on the cross-correlation between the instan-
aneous phases (estimated using the Hilbert transform) of the prototype
ave and the instantaneous phases of each EEG signal (within a symmet-

ical 300 ms time-window) ( Menicucci et al., 2009 ). Events falling above
he 25th percentile of the distribution of the maximal cross-correlation
alues were retained to create a scalp delay map. Then, we applied a
patiotemporal clusterization procedure to exclude potential propaga-
ion gaps (islands of channels that likely reflect artifacts in the local
3 
EG signal). According to this procedure, we considered the local peaks
f two neighboring electrodes separated by less than 10 ms as part of the
ame propagation cluster. Finally, we identified the propagation cluster
ncluding the prototype wave, extracted the final delay map, and set to
ero the minimum delay. 

The obtained delay maps were used to compute slow-wave density,
lobality, probabilistic origin and termination. Specifically, slow-wave
ensity was defined for each channel as the number of times the con-
idered channel participated in a slow wave per minute. This index
as computed in each sleep epoch after exclusion of artifactual or non-
hysiological activity and then averaged across epochs. Slow-wave glob-
lity was computed as the number of channels involved by individual
low waves, as extracted from the delay map. Slow-wave origin and ter-
ination were respectively defined for each slow wave as the channels

howing the lowest (i.e., 0 ms) or the highest propagation delay. Thus,
he probabilistic origin/termination is the percentage of slow waves that
riginate/terminate in each electrode. 

In order to investigate whether slow waves originated with a differ-
nt incidence across the two hemispheres, we classified individual slow
aves as having a left (or right) hemisphere origin if 75% of the origin

hannels were located in the left (or right) hemisphere. Then, we deter-
ined the overall proportion of slow waves with a clear origin in the left

r in the right hemisphere with respect to the total number of detected
low waves. Finally, we computed a ‘channel recruitment symmetry in-
ex’ ( Avvenuti et al., 2020 ), defined as the number of channels in the
emisphere with less involved electrodes, divided by the total number
f involved channels (%). A value of 50% indicates a symmetric distri-
ution, while a value of 0% indicates a unilateral wave. 

.7. Principal component analysis of slow wave involvement 

Previous work ( Bernardi et al., 2018 ) used Principal Component
nalysis (PCA) to investigate the possible existence of a small number of

stereotypical) scalp involvement patterns explaining most of the vari-
nce in topographic slow-wave distribution. In adults, 95% of the vari-
nce related to slow-wave scalp involvement is explained by 3 principal
omponents (PCs) - with maxima in the centro-frontal area ( ∼70% of to-
al variance), anterior or posterior areas ( ∼20%), and left or right hemi-
pheres ( ∼5%) ( Bernardi et al., 2018 ). These PCs may reflect distinct
odes of slow-wave expression depending on the involvement of dif-

erent wave origins or propagation patterns. Indeed, type I slow waves
ppeared to mainly fall into the first (centro-frontal) PC, while type II
low waves showed a more similar distribution across the three PCs.
o investigate how maturational processes affect such modes of slow
ave expression, here we analyzed the involvement distribution (across

hannels) of all slow waves using principal component analysis (PCA),
s described in previous studies ( Avvenuti et al., 2020 ; Bernardi et al.,
018 ). First, we confirmed through visual inspection that the same 3
ain PCs observed in previous work were found in our samples of young

dults and children. Then, the PC-space of each subject was rotated into
 common PC space using the Procrustes transformation ( Bernardi et al.,
018 ). The Procrustes transformation is an orthogonal transformation
hat minimizes the Euclidean distance between two sets of paired vec-
ors. The reference space was selected by iteratively applying the trans-
ormation over pairs of subjects and then identifying the coordinate sys-
em (i.e., the subject) presenting the smallest distance with respect to
he coordinate systems of all subjects ( Haxby et al., 2011 ). Finally, we
pplied the Procrustes transformation to remap the original PC-space of
ach subject (adult and children subjects), into the new reference PC-
pace. This procedure allowed us to compare the explained variance of
he PCs across individuals. 

In addition, we performed source modeling of the first 100 slow
aves that weighed the most on each PC using Brainstorm. For

his, we selected age-appropriate MRI templates ( Richards et al.,
016 ) segmented using the SPM12/CAT12 MATLAB toolbox
 Tzourio-Mazoyer et al., 2002 ). A symmetric Boundary Element
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odel (BEM) of the head having 3 realistic layers (scalp, inner skull,
uter skull) 

( Maureen, 2010 ) and a standard co-registered set of electrode posi-
ions were used to construct the forward model. The inverse matrix was
omputed using the sLORETA Minimum Norm ( Pascual-Marqui, 2002 )
ith sources constrained to be perpendicular to the cortical surface and

etaining only diagonal elements of the noise covariance matrix. 

.8. Slow wave synchronization 

Previous work showed that, in adults, slow wave sub-types having
istinct properties and regulation, and likely reflecting distinct synchro-
ization mechanisms (type I/II), could be heuristically distinguished
ased on their synchronization efficiency ( Bernardi et al., 2018 ). Specif-
cally, a ‘synchronization score’ was computed for each wave as the
ercentage of channels showing a negative averaged current value of
 − 5 μV multiplied by the wave mean slope (i.e., the mean of down-
lope and up-slope). Based on evidence derived from animal and com-
utational models, this index may be expected to depend on both the
umber of areas/neurons contributing to the slow waves and the ra-
idity of their synchronization ( Esser et al., 2007 ; Riedner et al., 2007 ;
yazovskiy et al., 2007 ). 

Here, the same approach was used to calculate the synchronization
core of each detected slow wave. Then, in order to allow for inter-
retable comparisons between children and adults, we selected for each
articipant an identical number of slow waves with high and interme-
iate synchronization efficiency, respectively assumed to be represen-
ative of type I and type II slow waves. From the whole distribution of
ynchronization scores, we identified those falling between the 90th and
o the 100th percentile (top10% - putative type I), and those between
he 45th and to the 55th percentile (mid10% - putative type II). We
hen computed the origin and scalp involvement of slow waves classi-
ed as mid10% or top10%. Involvement values of each slow wave were
ormalized through z-score transformation across electrodes to account
or inevitable amplitude differences between slow wave sub-types. This
nalysis was performed only on data of the first NREM cycle to avoid
ossible confounds related to homeostatic changes in slow wave syn-
hronization. Sleep cycles were defined according to the criteria pro-
osed by Feinberg and Floyd ( Feinberg and Floyd, 1979 ). 

.9. Statistical analysis 

Statistical between-group comparisons were performed using un-
aired 2-tailed t-tests, Mann–Whitney U tests, or 𝜒2 tests, as appropriate.
ormality of data and homogeneity of variance were first assessed us-

ng the Shapiro/Wilk’s test and Levene’s test, respectively. Mixed model
nalyses of variance (ANOVA) were used to investigate interaction ef-
ects between group (children, adult) and within-group factors. 

For scalp topographic analyses, we corrected for multiple compar-
sons using a cluster-based method ( Nichols and Holmes, 2002 ), as de-
cribed in previous work ( Castelnovo et al., 2022 ). Specifically, for each
erformed t -test, a null distribution was generated by randomly shuf-
ing subjects across groups. At each iteration of the permutation proce-
ure, the test-statistics was computed for each electrode and the size of
he largest significant electrode-cluster (uncorrected p < 0.05) was stored
n a frequency table. Given the impracticality of computing all possible
ata re-combinations, the full null distribution was approximated using
0,000 iterations. Finally, the 95th percentile (5% significance level)
as used as the critical cluster-size threshold. Correlations were per-

ormed using Spearman correlation. 
Alpha significance was set to p < 0.05. Partial Eta-squared ( 𝜂2)

nd Cohen’s d were used as measures of effect size ( Cohen, 1988 ).
n case of non-significant results, we computed bayesian statistics
 https://www.github.com/klabhub/bayesFactor ), where a Bayes Factor
 3 was considered supportive for the null hypothesis. 
4 
All statistical analyses were performed in MATLAB. Data and code
re only available on request via a formal request to the corresponding
uthors due to the need for a formal data sharing agreement. 

. Results 

.1. Slow wave activity 

The children group showed higher absolute NREM SWA than the
dult group over the entire scalp (cluster size = 256, p < 0.05; Supple-
entary Fig. S1). After normalization, though, SWA was higher over

entro-posterior regions (cluster size = 30, p < 0.05) and lower over
rontal regions (cluster size = 69, p < 0.05) in the children group com-
ared to the adult group (Supplementary Fig. S1). We obtained similar
esults in additional exploratory analyses focusing on N2 or N3 sepa-
ately (Supplementary Fig. S1), and on the first sleep cycle ( data not

hown ). 

.2. Slow wave density and involvement 

Absolute slow-wave density (cluster size = 158, p < 0.05) and in-
olvement (cluster size = 169, p < 0.05) were significantly higher in
hildren than in adults ( Fig. 1 , Supplementary Fig. S2). After normal-
zation across electrodes, we found significantly higher values of den-
ity and involvement over posterior regions (cluster size = 72, p < 0.05,
luster size = 83, p < 0.05, respectively) and lower values over frontal
egions (cluster size = 86, p < 0.05, cluster size = 98, p < 0.05,
espectively) in children compared to adults. In addition, we found
hat slow-wave negative amplitude (2-tailed paired t -test, p < 0.001,
t(1,37)| = 11.69; M children = 73.2 ± 10.2, M adults = 38.8 ± 7.7, M

ifference = 34.4, C.I. = 28.4 - 40.4, ր 2 = 0.79), down-slope ( p < 0.001,
t(1,37)| = 7.99; M children = 1846.6 ± 263.4, M adults = 1220.1 ± 219.4,
 difference = 626.5, CI = 467.7 - 785.5, ր 2 = 0.63), and up-

lope ( p < 0.001, |t(1,37)| = 9.66; M children = 1620.1 ± 206.8, M

dults = 1035.8 ± 163.7, M difference = 584.3, C.I. = 461.8 - 706.8,
 

2 = 0.72) were significantly higher in children compared to adults
 Fig. 1 ). On the other hand, slow-wave globality was lower in children
han in adults ( p < 0.001, |t(1,37)| = - 6.13; M children = 31.9 ± 1.9, M

dults = 36.9 ± 3.1, M difference = 6, C.I. = − 6.7 - − 3.4, ր 2 = 0.50). Given
hat slow-wave slope and globality are thought to respectively reflect
hort-range ( Esser et al., 2007 ; Riedner et al., 2007 ; Vyazovskiy et al.,
007 ) and long-range ( Kurth et al., 2017 ; Mensen et al., 2016 ) synchro-
ization efficiency, we further explored the relationship between these
roperties in the two age groups. When adjusted for age, slow wave
own-slope positively correlated with globality in adults ( p = 0.012,
 = 0.59), but not in children ( p = 0.665, r = 0.10), and the correlation
oefficients differed significantly between groups ( p = 0.049, Fisher’s
 = 1.66; see Supplementary Fig. S3). 

.3. Principal component analysis of slow wave involvement 

In both children and adults, most of the variance related to slow-
ave involvement was explained by 3 PCs, with maxima in the centro-

rontal area (adults: 72.4%; range 63.0% - 84.0%; children: 52.2%;
ange 36.4% - 67.1%), anterior or posterior area (adults: 21.0%; range
2.5% - 31.2%; children: 38.5%; range, 22.5% - 55.5%), and the left or
ight hemisphere (adults: 6.7%, range: 3.5% - 10.6%; children: 9.3%;
ange, 5.4% - 11.4%), respectively ( Fig. 2 , Supplementary Fig. S4). All
Cs were characterized by a maximal slow wave expression in inferior
rontal and inferior temporal areas, though they differed in terms of
verall extent and relative distribution (also see Supplementary Figs.
5–8). 

In the children group, compared to the adult group, we observed
 significant increase in the variance explained by the second (ante-
ior/posterior: p < 0.0001, Cohen’s d = 2.52) and third (left/right:
 < 0.0001, Cohen’s d = − 2.22) PCs, at the expense of the first PC

https://www.github.com/klabhub/bayesFactor
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Fig. 1. Slow wave density, involvement, globality, 

amplitude and slopes 

Slow wave density and involvement were higher 

and distributed more posteriorly in children com- 

pared to adults. Upper panel: Slow wave density 

and involvement topography. Values are color 

coded and plotted on the planar projection of the 

hemispheric scalp model. First row: slow wave 

density (waves/minute). Second row: slow wave in- 

volvement (μV). First and second column: average 

values for children and adults, respectively. Higher 

values are shown in red, lower in blue. Third and 

fourth column: t-value (two-tailed, unpaired) maps 

for the comparison between the two groups in 

terms of absolute and normalized (z-score across 

all electrodes) values, respectively. Blue: children 

< adult. Red: children > adult. White circles: signif- 

icant electrodes ( p < 0.05, cluster-size correction). 

Lower panel: Boxplots for specific slow-wave prop- 

erties: top-left, maximum negative-peak amplitude 

(μV); top-right, slow wave globality (%); bottom- 

left, down-slope (μV/s), bottom-right: up-slope 

(μV/s). Orange dots: children. Blue dots: adults. 

The bottom and top of each boxplot are the 25th 

and 75th percentiles of the sample, respectively. 

The distance between the bottom and top of each 

box is the interquartile range. The green line in 

the middle of each box is the sample median. The 

whiskers extending above and below each box go 

from the end of the interquartile range to the fur- 

thest observation. The asterisks represent statistical 

significance at p < 0.05. (For interpretation of the 

references to color in this figure legend, the reader 

is referred to the web version of this article.) 

5 
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Fig. 2. PC-based analysis of slow-wave involvement. 

The centro-frontal (first) component was more repre- 

sented in adults, while the antero-posterior (second) 

and left-right (third) components were more repre- 

sented in children. In children, the first component was 

positively correlated with age, while the second com- 

ponent was negatively correlated with age. Left panel: 

The involvement distribution (mean EEG signal calcu- 

lated across all electrodes in a 40 ms window centered 

on the wave peak) of all slow waves was entered in a PC 

analysis. The average variance explained is shown for 

each PC and group (after the Procrustes transformation 

computed to ‘align’ PCs across subjects and groups). 

PC1: first component; PC2: second component; PC3: 

third component. Right panel: correlation between age 

and variance explained by each PC. Orange dots: chil- 

dren. Blue dots: adults. Gray Line: least-squares regres- 

sion line. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 3. Slow wave channel recruitment symmetry index 

Slow waves were more asymmetrically distributed in children compared to 

adults, especially over frontal regions. Left Panel: Symmetry index computed 

taking into account all channels involved in each slow wave. 

Right Panel: Symmetry index computed separately for channels posterior to Cz 

(ANT: anterior, POST: posterior). Orange dots: children. Blue dots: adults. The 

bottom and top of each boxplot are the 25th and 75th percentiles of the sam- 

ple, respectively. The distance between the bottom and top of each box is the 

interquartile range. The line in the middle of each box is the sample median. 

The whiskers extending above and below each box go from the end of the in- 

terquartile range to the furthest observation. The asterisks represent statistical 

significance at p < 0.05. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

p  

d  

M  

−
 

F  

a  

c  
centro-frontal: p < 0.001, Cohen’s d = − 1.60; Fig. 2 ). Moreover, in chil-
ren, the variance explained by the first and second PCs respectively
howed a positive ( p = 0.034, r = 0.46) and a negative correlation with
ge ( p = 0.027, r = - 0.48). No correlation with age was found for the
hird PC ( p = 0.804, r = 0.06). In the adult group, none of the PCs
ere correlated with age (first PC: p = 0.343, r = − 0.237; second PC:
 = 0.670, r = 0.12; third PC: p = 0.282; r = 0.27; Fig. 2 ) . 

.4. Recruitment symmetry index 

The left-right symmetry (channel recruitment symmetry index) was
ignificantly different between children and adults (2-tailed unpaired
 -test, p < 0.001, |t(1,37)| = − 5.58; M children = 29.9 ± 1.2, M

dults = 32.4 ± 1.6, M difference = 2.5, C.I.: − 3.5 - − 1.6, ր 2 = 0.65; Fig. 3 ).
n addition, the symmetry index computed over anterior channels was
ignificantly higher than the symmetry index computed for posterior
hannels in both groups (2-tailed paired t-tests; children: p < 0.001,
t(20)| = 10.26; M anterior = 28.7 ± 1.6, M posterior = 23.9 ± 1.6,
 difference = 4.8%, C.I. = − 3.8 - 5.8, ր 2 = 0.80; adults: p < 0.001,

t(17)| = 22.52; M anterior = 32.3 ± 1.8, M posterior = 23.9 ± 2.1, M

ifference = 8.4, C.I. = 7.6 - 9.2, ր 2 = 0.97). 
There was a significant interaction (Wilks-lambda = 0.51,

(1,37) = 35.49, p < 0.001, partial ր 2 = 0.49) between group (chil-
ren, adults) and region (anterior, posterior). Indeed, the symmetry
ndex computed for anterior channels was higher in adults relative
o children (2-tailed unpaired t -test, p < 0.001, |t(1,37)| = − 6.57; M

nterior = 28.7 ± 1.6, M posterior = 32.3 ± 1.8, M difference = 3.6, C.I. = − 4.7
 − 2.5, ր 2 = 0.72), while no statistically significant difference emerged
n the symmetry index computed over posterior channels (2-tailed un-
aired t -test, p = 0.932, |t(1,37)| = 0.09; M anterior = 23.9 ± 1.6, M

osterior = 23.9 ± 2.1, M difference = 0.0, C.I. = − 1.1 - 1.2, ր 2 < 0.01; Bayes
actor = 3.17; Fig. 3 ). Thus, anterior slow waves were more asymmetric
n children relative to adults, while the degree of hemispheric asymme-
ry was similar across groups for posterior areas. 

.5. Slow-wave origin and termination 

While the topographic distribution of slow-wave termination did
ot differ significantly between children and adults ( p > 0.05), slow-
aves appeared to originate significantly more often from frontal areas

n adults relative to children (cluster size = 85, p < 0.05; Fig. 4 , Sup-
lementary Figs. S9–10). A complementary statistical trend was also ob-
erved in posterior electrodes, which showed a higher origin probability
n children relative to adults ( p < 0.05, uncorrected). In line with these
bservations, we found that the coordinates of the probabilistic origin
6 
eak on the anterior-posterior axis differed significantly between chil-
ren and adults (2-tailed unpaired t- test, p = 0.005, |t(1,37)| = − 3.01;
 children = 2.1 ± 4.7, M adults = 2.7 ± 2.6, M difference = 2.1, C.I.: − 4.3 -
 0.8, ր 2 = 0.237; Fig. 4 ). 

There was a significant interaction (Wilks-lambda = 0.87,
(1,37) = 5.64, p = 0.023, partial ր 2 = 0.13) between group (children,
dults) and hemispheric origin probability (left, right). In fact, the per-
entage of waves that originated in the right hemisphere was signifi-
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Fig. 4. Slow wave origins and terminations 

Slow-wave origin (but not termination) probability was lower over 

frontal regions and higher in the right hemisphere in children com- 

pared to adults. Upper panel: Slow wave origin and termination. 

Values are color coded and plotted on the planar projection of 

the hemispheric scalp model. First row: distribution of slow-wave 

origins (% of the total). Second row: distribution of slow wave 

terminations (% of the total). First and second columns: average 

values for the children group and the adult group, respectively. 

Higher values are shown in red, lower in blue. Third column: t- 

value (two-tailed, unpaired) maps for the comparison between the 

two groups. Blue: children < adult. Red: children > adult. White 

circles: significant electrodes ( p < 0.05, cluster-size correction). 

Lower panel: Slow-wave origin distribution along the antero- 

posterior axis (left lower panel) and in the right compared to the 

left hemisphere (right lower panel). Orange dots: children. Blue 

dots: adults. The bottom and top of each boxplot are the 25th 

and 75th percentiles of the sample, respectively. The distance be- 

tween the bottom and top of each box is the interquartile range. 

The line in the middle of each box is the sample median. The 

whiskers extending above and below each box go from the end 

of the interquartile range to the furthest observation within the 

whisker length. Observations beyond the whisker length (more 

than 3 times the interquartile range away from the bottom or top 

of the box) are marked as outliers (red crosses). The asterisks rep- 

resent statistical significance at p < 0.05. (For interpretation of the 

references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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antly higher than the percentage of waves that originated in the left
emisphere in children (2-tailed paired t -test, p = 0.029, |t(20)| = 2.35;
 left = 43.0 ± 3.3, M right = 46.0 ± 3.5, M difference = 3.0, C.I. = − 0.3

 5.6, ր 2 = 0.22) but not in adults ( p = 0.386, |t(17)| = − 0.89, M

eft = 43.3 ± 6.0, M right = 42.7 ± 5.8, C.I. = − 2.0 - 0.8, M difference = 0.6,
artial ր 2 = 0.04). The percentage of slow waves that originated in the
ight hemisphere was higher in children compared to adults (2-tailed
npaired t -test, p = 0.040, |t(20)| = 2.13; M children = 45.7 ± 3.5, M

dults = 42.5 ± 3.3, M difference = 3.2, C.I. = − 0.2 - 6.3, ր 2 = 0.19), while
he percentage of slow waves that originated in the left hemisphere did
ot statistically differ between groups ( p = 0.827, |t(17)| = − 0.22; M

hildren = 28.7 ± 1.6, M adults = 23.9 ± 1.6, M difference = 0.33, C.I. = − 3.4
 2.7, ր 2 < 0.01, Bayes factor = 3.135; Fig. 4 ). 

.6. Slow waves with high and low synchronization efficiency 

For each slow wave, a synchronization score was computed based
n the mean slope and proportion of involved electrodes, as a measure
f slow-wave synchronization efficiency. The synchronization score dis-
ribution was non-Gaussian and right skewed in both groups ( Fig. 5 ).
owever, on average, children had higher synchronization scores (Me-
7 
ian = 1.6, range = 0.3 - 4.5) compared to adults (Median = 0.9,
ange = 1.3 - 2.2; Mann-Whitney U Test, z = - 5.23, U = 174, p < 0.01,
 

2 = 0.848). The synchronization score distributions remained simi-
ar across NREM cycles, but also showed a clear leftward shift com-
atible with the effects of homeostatic changes in slow-wave ampli-
ude and globality ( Fig. 5 ). Thus, to avoid possible confounds re-
ated to homeostatic changes, we focused further analyses on the first
REM cycle only. We then classified and separately analyzed slow
aves with high (top10%) and intermediate (mid10%) synchronization

fficiency. 
Given that slow waves were classified based on their slope and glob-

lity, we first analyzed the relative contribution of these two parame-
ers to synchronization efficiency (Supplementary Fig. S11). We found
o significant interaction between group (children, adults) and slow-
ave sub-type (mid10%, top10%) for globality (Wilks- lambda = 0.99,
(1,37) = 0.47, p = 0.499, partial ր 2 = 0.01, Bayes factor for
he difference between top% and mid10% in adults and in chil-
ren = 2.660). However, we identified a significant main effect of group
F(1,37) = 21.65, p < 0.001, partial ր 2 = 0.37) ???indicating that slow
aves were overall more global in adults compared to children, and a
ain effect of wave sub-type (Wilks- lambda = 0.11, F(1,37) = 301.16,
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Fig. 5. Slow wave synchronization score 

Slow-wave synchronization efficiency was higher in children compared to adults. In both groups, slow wave synchronization decreased across sleep cycles. Left panel: 

The two curves represent the distribution of synchronization scores (group average) during the first NREM sleep cycle in children (orange) and adults (blue). Right 

panels: The three curves represent the average distribution of synchronization scores during the first, second and third NREM sleep cycle in children (upper right 

panel) and adults (right lower panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 < 0.001, partial ր 2 = 0.89), with both groups showing more global
op10% slow waves than mid10% slow waves. 

We then analyzed slow-wave down-slope and found a significant
nteraction (Wilks-lambda = 0.70, F(1,37) = 37.00, p < 0.001, par-
ial ր 2 = 0.30) between group (children, adults) and slow wave
ub-type (mid10%, top10%). We also found a main effect of group
F(1,37) = 84.45, p < 0.001, partial ր 2 = 0.696), indicating that
low waves were overall steeper in children compared to adults
top10%: p < 0.001, |t(37)| = − 8.74; M children = 2981.5 ± 434.5,
 adults = 1873.6 ± 342.3, C.I. = − 1364.8 - − 850.9, ր 2 = 0.68;
id10%, p < 0.001, |t(37)| = − 8.35; M adults = 1210.3 ± 225.0,
 children = 1973.6 ± 327.0, C.I. = − 948.59 - − 578.01, ր 2 = 0.65),

nd a main effect of slow-wave sub-type (Wilks-lambda = 0.090,
(1,37) = 375.46, p < 0.001, partial ր 2 = 0.91), with both the adult
2-tailed paired t -test, p < 0.001, |t(17)| = 11.53, C.I. = 542.0 -
84.7, ր 2 = 0.88) and the children (tailed paired t -test, p < 0.001,
t(20)| = 16.06, C.I. = 876.9 - 1138.8, ր 2 = 0.93) groups showing steeper
op10% than mid10% slow waves. 

Slow waves with high and intermediate synchronization efficiency
ere then analyzed and compared for probabilistic origin and nor-
alized scalp involvement ( Fig. 6 ). Both mid10% and top10% slow
aves had a more posterior involvement in children than in adults.
e found a significant interaction between group (children, adults) and
ave type (mid10%, top10%) for normalized involvement in a frontal

63 channels, p < 0.05) and a parieto-occipital cluster (77 channels,
 < 0.05, Fig. 6 ). Specifically, adults had higher involvement values
ompared to children in the frontal cluster for both top10% (2-tailed
npaired t -test, p < 0.001, |t(37)| = 7.47; M children = 0.4 ± 0.2, M

dults = 0.8 ± 0.1, C.I. = 0.1 - 0.2, ր 2 = 0.60) and mid10% slow waves
2-tailed paired t -test, p < 0.001, |t(37)| = 6.17; M right = 0.4 ± 0.1,
 adults = 0.6 ± 0.1, C.I. = 0.3 - 0.5, ր 2 = 0.51). Moreover, adults dis-

layed significantly higher involvement values for top10% compared to
id10% slow waves within the same cluster ( p < 0.001, |t(17)| = 5.20;
8 
.I. = 0.1 - 0.2, ր 2 = 0.615), while no statistical difference emerged in
hildren ( p = 0.120, |t(20)| = − 1.62; C.I. = − 0.1 - 0.0, ր 2 = 0.11; Bayes
actor = 1.425; Fig. 6 C). Similar differences - though opposite in sign -
ere found in the posterior cluster (Supplementary Fig. S11). 

Both mid10% and top10% slow waves showed a tendency to origi-
ate from central and frontal electrodes, but a clear origin hot-spot was
vident only for top10% slow waves of adults. We found a significant in-
eraction between group and wave sub-type for slow-wave probabilistic
rigin in a central cluster of electrodes (14 channels, p < 0.05, Fig. 6 ).
ost-hoc analyses showed that, within this cluster, adults had a higher
rigin probability compared to children for top10% (2-tailed unpaired t -
est, p < 0.001, |t(37)| = 4.81; M children = 3.0 ± 1.1, M adults = 4.9 ± 1.3,
.I. = 1.1 - 2.6, ր 2 = 0.46) but not for mid10% slow waves ( p = 0.971,
t(37)| = − 0.04; M children = 3.0 ± 0.9, M adults = 3.0 ± 0.8, C.I. = − 0.6
 0.5, ր 2 < 0.01, Bayes Factor = 3.18). Moreover, adults were char-
cterized by a significantly higher origin probability for top10% than
id10% slow waves within the same electrode cluster ( p < 0.001,

t(20)| = 6.30, C.I. = 1.2 - 2.5, ր 2 = 0.67). A similar difference was
ot found in children ( p = 0.935, |t(20)| = − 0.08; C.I. = − 0.5 - 0.4,
 

2 < 0.01, Bayes factor = 3.010; Fig. 6 , Supplementary Figures S12–
3). 

. Discussion 

In the present study, we examined changes in slow-wave origin,
ynchronization and propagation from childhood to early adulthood
sing sleep hd-EEG. We found that, from childhood to adulthood: i)
oth the origin and topographic distribution of slow waves move to-
ards more anterior brain regions; ii) slow waves become more global
nd more symmetric across hemispheres; iii) slow waves character-
zed by intermediate and high synchronization efficiency (putative type
 and type II slow waves) display partially dissociated maturational
hanges. 
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Fig. 6. Origin and involvement of slow waves with high and intermediate synchronization efficiency 

Type I slow-waves in adults were distributed more frontally and originated more consistently over a central cluster of electrodes compared to type II slow waves in 

adults and both type I and type II slow waves in children. Slow-wave origin: channels showing zero propagation delay. Slow wave involvement: mean EEG signal in a 

40-ms window around the wave peak. Involvement (top) and origin (bottom) of slow waves with high (top10%) and intermediate (mid10%) synchronization scores. 

Values are color coded and plotted on the planar projection of the hemispheric scalp model. Top10% slow waves of adults displayed a more frontal distribution 

compared to mid10% slow waves and both top10% and mid10% slow waves of children. 

A| Topographic analysis - Average distribution of involvement/origin values for slow waves with high (top10%; first row) and intermediate (mid10%; second row) 

synchronization efficiency. Higher values are shown in red, lower in blue. 

B| Interaction effect of the mixed-model within/between groups ANOVA. Lower F-values are represented in dark-red/black, while higher F- values in yellow/white. 

White circles indicate significant electrodes ( p < 0.05, cluster-size correction). 

C| Dots represent the average of channels within significant clusters of electrodes in Figure B (as two clusters were significant for the involvement, only the frontal 

cluster is represented here, while the posterior cluster is represented in Supplementary Fig. 12). Orange dots: children; blue dots: adults. The bottom and top of each 

boxplot are the 25th and 75th percentiles of the sample, respectively. The distance between the bottom and top of each box is the interquartile range. The line in the 

middle of each box is the sample median. The whiskers extending above and below each box go from the end of the interquartile range to the furthest observation 

within the whisker length. The asterisks represent statistical significance at p < 0.05. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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.1. Slow wave origin and involvement become more anterior from 

hildhood to adulthood 

Previous work demonstrated a progressive anteriorization of the
WA (delta power) peak during normal development ( Kurth et al.,
010 ). Such a change has been suggested to reflect a relative varia-
ion in inter-regional slow wave synchronization/propagation related
o the maturation of frontal brain areas and their connectivity. More
ecently, preliminary observations suggested that the regional propen-
ity to generate slow waves might also change following a posterior-to-
nterior gradient from childhood to adulthood ( Timofeev et al., 2020 ).
onsistent with previous data, our present results show that both slow
ave cortical distribution (involvement) and tendency to generate slow
aves (origin) are stronger in anterior areas in young adults relative

o children. In addition, our PCA-based analysis revealed that slow-
ave scalp topography tends to follow a specific set of patterns that

s common to both children and adults, and that the relative ‘weight’
9 
f these patterns changes across development. Indeed, regardless of
ge, 95% of the variance related to slow wave involvement can be ex-
lained by 3 PCs, with maxima located in the central-frontal area, an-
erior or posterior areas, and left or right hemispheres ( Bernardi et al.,
021 ). However, the relevance of the central-frontal PC appears to in-
rease from childhood to adulthood at the expense of the other two
Cs. These observations suggest that while most slow waves of chil-
ren and adults may involve specific, partly overlapping brain networks,
heir relative propensity to ‘reach’ more anterior areas changes during
evelopment. 

Together, our results indicate that in children, frontal areas have
 lower propensity at both generating and being crossed by slow
aves originating elsewhere relative to what is commonly observed

n adults. Such modifications could reflect partially distinct matu-
ational processes, such as local changes in microstructural orga-
ization and modifications in long-range connectivity, respectively
 Spiess et al., 2018 ). 
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.2. Slow wave interhemispheric asymmetry is more pronounced in 

hildren than in adults 

The PCA-based analysis and the inter-hemispheric involvement anal-
ses revealed that slow waves of children are characterized by a greater
endency to remain unilateral or at least more asymmetric on the left-
ight axis than slow waves of adults. Moreover, the involvement asym-
etry was found to be stronger in anterior than in posterior areas. 

Previous work showed that the degree of cross-hemispheric slow-
ave propagation directly depends on the existence and integrity of

nterhemispheric (callosal) connections. Indeed, slow waves (but not
pindles) of callosotomized epileptic adult patients typically remain cir-
umscribed to the brain hemisphere in which they originate, while this is
elatively uncommon in non-callosotomized individuals ( Avvenuti et al.,
020 ; Bernardi et al., 2021 ). Based on this observation, our present re-
ults could be explained by an incomplete maturation of the corpus cal-
osum in children ( Giedd et al., 1999 ; Luders et al., 2010b ). In fact, the
ize of the corpus callosum is known to increase throughout adolescence
nd up to the middle 20 s ( Keshavan et al., 2002 ), following a posterior-
o-anterior gradient of maturation ( Danielsen et al., 2020 ; Giedd et al.,
999 ; Luders et al., 2010a ; Rajapakse et al., 1996 ; Thompson et al.,
000 ; Westerhausen et al., 2016 ) . 

In addition, here we found in children (and not in adults) a signif-
cant interhemispheric origin asymmetry, with more slow waves origi-
ating in the right than in the left hemisphere. This is, again, consistent
ith findings obtained in callosotomized patients. Indeed, while previ-
us work observed a tendency for slow waves to originate more often in
he right than in the left hemisphere in both non-callosotomized and cal-
osotomized individuals, the asymmetry appeared to be stronger in the
atter group ( Bernardi et al., 2021 ). Interestingly, this effect could de-
end on an accentuation of otherwise small physiological asymmetries
elated to (micro)structural or functional factors due to a reduction in
he synchronization between the two hemispheres. For instance, pre-
ious evidence indicates that the human brain may show lower SWA
n the left than in the right hemisphere during the first night spent in
 new environment ( Tamaki et al., 2016 ), reminiscing the monitoring
unction of unihemispheric sleep in migratory birds and aquatic mam-
als ( Mascetti, 2016 ). This relative asymmetry might become more pro-
ounced when the coordination of activity between hemispheres is re-
uced. Alternatively, the observation of stronger origin asymmetries in
ndividuals with an immature or absent corpus callosum could have
 methodological explanation. Indeed, the reduced cross-hemispheric
ropagation in these individuals may lead to a more accurate localiza-
ion of slow wave origin in the presence of EEG volume conduction.
owever, other explanations not involving the corpus callosum cannot
e ruled out based on our current data. Indeed, for instance, previous
ork described an asymmetric maturation of higher-order association

ortices that may contribute explaining our results ( Gogtay et al., 2004 ).
uture investigation should combine the assessment of electrophysio-
ogical and brain structural changes to determine specific mechanisms
nderlying slow-wave asymmetries in children. 

.3. Slow waves are larger but less widespread in children than adults 

Consistent with findings indicating that slow waves of children are
ore often asymmetrical or even unihemispheric in children than in

dults, we found that the number of channels involved by each slow
ave (i.e., globality) is on average smaller in children. Therefore, while

low waves of children are typically larger and steeper than those of
dults, they are also less widespread ( Kurth et al., 2017 ; Mensen et al.,
016 ). In addition, we found that slope and globality are positively cor-
elated in adults but not in children, indicating a dissociation between
hese slow-wave properties early during development. 

We hypothesize that slow-wave slope and globality may reflect the
partially) independent maturation of local and long-range connectiv-
ty, respectively. Indeed, slow-wave slope is regarded as an electrophys-
10 
ological marker for neuronal synchronization speed, which is in turn
hought to depend on regional synaptic strength ( Esser et al., 2007 ;
iedner et al., 2007 ; Vyazovskiy et al., 2007 ). On the other hand, slow-
ave globality likely reflects the efficacy of cortico-cortical spreading,
eing directly related to traveled distance ( Kurth et al., 2017 ). Thus,
low waves of children may be locally more synchronous due to a still
ncomplete synaptic pruning and refinement (and thus, greater synaptic
trength ( Kurth et al., 2010 ), but they are globally less widespread, due
o an immature white matter connectome. This interpretation is con-
istent with the previously described correlation between distance trav-
led by slow waves and myelin content in whole-brain/interhemispheric
onnections, and between cortical involvement and myelin content in
he superior longitudinal fascicle ( Kurth et al., 2017 ). Moreover, our re-
ults are in line with the observation of an age-dependent increase in
ifferent functional and structural connectivity measures. For example,
ntra and inter-hemispheric delta and theta EEG coherence (a connectiv-
ty measure that was proposed to reflect white matter connectivity and
yelination) ( Kurth et al., 2013 ), as well as approximate entropy (an

nformation-based connectivity measure) ( Lee et al., 2013 ), positively
orrelate with age. Furthermore, local resting state functional connec-
ivity decreases with age as longer connections are formed ( Kelly et al.,
009 ; Lopez-Larson et al., 2011 ), with a progressive increase in the
trength of functional connectivity and in the extent of functionally con-
ected regions ( Jolles et al., 2011 ). 

.4. Maturation of slow wave synchronization processes from childhood to 

dulthood 

Previous work demonstrated in adults that the transition to sleep
s characterized by at least two main phases: i) an early phase dom-
nated by large and widespread (type I) slow waves (likely including
lassically defined K-complexes) that originate around somatic sensory-
otor areas and peak in frontal regions, and ii) a late phase charac-

erized by the predominance of shallow, local (type II) slow waves that
how variable origin and distribution ( Siclari et al., 2014 ). This temporal
issociation was suggested to reflect the existence of distinct synchro-
ization processes - an efficient, subcortical-cortical process and a less
fficient cortico-cortical process - that come into play at different mo-
ents of the wake-sleep transition. Importantly, though, recent work

evealed that the temporal dissociation between synchronization pro-
esses I and II at sleep onset is absent in children ( Spiess et al., 2018 ).
n line with this, here we found that slow waves characterized by a high
ynchronization efficiency (putative type I) do not present in children
he same origin and distribution as those of adults. Specifically, puta-
ive type I slow waves of children do not present a clear origin hotspot
n centro-frontal electrodes typically observed in adults and have a
redominantly posterior rather than anterior involvement. In other
ords, while larger, steeper, and more global than most slow waves,
ighly synchronous slow waves of children are virtually indistinguish-
ble in terms of origin and involvement from most other (type II) slow
aves. 

Overall, the above observations indicate that the process underly-
ng the synchronization of type I slow waves might be largely immature
n children. This conclusion is in line with previous evidence indicat-
ng that K-complexes, after their appearance at ∼6 months of age, con-
inue their maturation during childhood and reach their ‘adult shape’
nly during adolescence ( Spiess et al., 2018 ). Of note, while the ori-
in and synchronization of type I slow waves is thought to be mediated
y diffuse subcortico-cortical projections from arousal-related structures
 Siclari et al., 2014 ), their cortical spreading may still depend on the
tate and integrity of cortico-cortical connections. Therefore, in chil-
ren, a relative immaturity of arousal-related structures or their con-
ections to the cortex might explain the lack of a well-defined origin
ot-spot as found in adults ( Lynch et al., 2020 ), while the incomplete
aturation of frontal connectivity may determine a preferential propa-

ation to posterior areas ( Gogtay et al., 2004 ). 
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From a more general perspective, our results suggest that previ-
us evidence indicating a centro-frontal origin for NREM slow waves
 Avvenuti et al., 2020 ; Bernardi et al., 2019 ; Massimini et al., 2004 ;
enicucci et al., 2009 ; Murphy et al., 2009 ) was actually driven for the
ost part, if not exclusively, by type I waves. Indeed, type I slow waves

ppear to have a more stereotyped origin and propagation pattern rel-
tive to type II slow waves, and their ‘contribution’ may thus emerge
pon averaging even if they represent a relatively small percentage of
ll slow waves. 

. Limitations 

Some limitations of our study are worth noting. The observational
nd cross-sectional nature of our study does not allow us to prove causal-
ty or exclude mediating factors between age and slow wave properties,
or to show the development of EEG activity, which would require a lon-
itudinal investigation. The lack of brain structural measurements also
revented us from investigating specific associations between EEG and
rain and white matter changes. Furthermore, the children group age
ange was relatively limited (7–14 years old). As cortical development
tarts in the first years of life ( Novelli et al., 2016 ), studying younger
hildren will add crucial information on the link between slow-wave
hanges and cortical maturation. Finally, it should be noted that the two
tudied samples were taken from the control groups of different studies
onducted in two different sleep centers. Nevertheless, all recordings
ere collected using the same EEG system and following the same ac-
uisition, preprocessing, and analysis procedures. 

. Conclusions and future directions 

Taken together, present results indicate that a detailed characteriza-
ion of slow-waves properties may offer valuable information regarding
orpho-functional brain adaptations across childhood and adolescence

hat extend and complement those derived from the simple assessment
f SWA (delta power). In addition, we provide evidence supporting the
xistence of at least two slow-wave sub-types characterized by differ-
nt levels of synchronization efficiency, and show that these waves un-
ergo partially distinct maturational changes. In light of previous ob-
ervations indicating that the generation of such slow-wave subtypes
ay depend respectively on subcortico-cortical and cortico-cortical syn-

hronization mechanisms, our present results suggest that their separate
ssessment could offer a valuable readout regarding the maturation of
istinct anatomo-functional brain networks. 

Overall, the present data support the view that sleep constitutes a
nique window for observing and tracking brain physiological adapta-
ions and their disruption and contribute to the efforts aimed at provid-
ng an accurate yardstick to assess pathological development in clinical
opulations. Indeed, for instance, specific changes of distinct slow-wave
ub-types could be linked to (and thus, track) alterations of particular
rain structures or networks in pathological conditions. In this respect,
lterations in the maturation of type I waves, which are supposed to
eflect the involvement of ascending, arousal-related systems, may es-
ecially occur in conditions presenting functional alterations of such
tructures. 
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