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Characterization of spatial networklike patterns from junction geometry
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We propose a method for quantitative characterization of spatial networklike patterns with loops, such as surface
fracture patterns, leaf vein networks, and patterns of urban streets. Such patterns are not well characterized by
purely topological estimators: also patterns that both look different and result from different morphogenetic
processes can have similar topology. A local geometric cue—the angles formed by the different branches
at junctions—can complement topological information and allow the quantification of the large scale spatial
coherence of the pattern. For patterns that grow over time, such as fracture lines on the surface of ceramics, the
rank assigned by our method to each individual segment of the pattern approximates the order of appearance of
that segment. We apply the method to various networklike patterns and find a continuous but sharp dichotomy
between two classes of spatial networks: hierarchical and homogeneous. The former class results from a sequential
growth process and presents large scale organization, and the latter presents local, but not global, organization.
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I. INTRODUCTION

A central issue in complex systems research is to understand
the formation and the properties of spatio-temporal patterns
found in physics and biology. To this end, an essential
step is the definition of appropriate measures of their form:
quantitative estimators that allow the comparison of different
patterns and the objective validation of models. This paper
focuses on the family of spatial patterns that are “networklike.”

Networklike patterns are common in natural and artificial
systems: they are found in leaf veins, fractures on the surface
of materials, patterns of urban streets and animal trails or
galleries, river networks, and blood vessels and circulatory
systems. The factors underlying the formation of these patterns
are different from system to system. Surface cracks result
from the shrinkage and stress of materials; urban streets
are generated by human activity, etc. In spite of intrinsic
differences, a few simple morphogenetic events describe the
formation of all these patterns: nucleation of new network
components, elongation of existing segments, branching and
intersection. The final topology of the pattern is completely
determined by the sequence of such growth events plus a
pruning event, which is the cut or removal of already-formed
segments.

Many studies have used topological estimators to describe
the form of networklike patterns and better understand their
morphogenesis and functional properties. One of the first
advances in this direction goes back to the Horton-Strahler
coefficients [1,2], which is a simple but powerful tool to
quantitatively describe the form of hydrogeologic networks.
The coefficients, which work by assigning rank numbers to
every branch of a tree-like network, were successfully applied
to the study of different systems, from river networks [3–5], to
leaf patterns [6], and even to ant trail [7] and termite gallery [8]
patterns. Unfortunately, Horton-Strahler’s coefficients cannot
be computed on networks with cycles. This has a profound
impact on the applicability of the method, because many
real-world networklike patterns have cycles.

General graphs are characterized by a whole set of measures
of the local and global organization: node degree, assortativity
between nodes, clustering coefficient, frequency of specific
subgraphs, presence and number of cycles, diameter, path
length, etc. [9–11]. Several studies have computed graph
measures and used them to quantify the local and large scale
organization of real-world spatial patterns, such as urban street
patterns [12–20], systems of animal trails [21] and galleries
[22–26], networks of channels in trabecular bones [27,28],
and networks of fungal hyphae [29].

Unfortunately, purely topological estimators, however use-
ful, do not fully account for the organization of two-
dimensional (2D) networklike patterns which undergo specific
constraints. For instance, in planar graphs, the average node
degree cannot be higher than six [11]. In addition, for a number
of networklike patterns, the degree distribution is even more
regular than what is imposed by planarity: the large majority
of nodes is found to have degree equal to three in very different
systems, such as two-dimensional foams [30], honeycomb pat-
terns and biological epithelia [31], leaf vein networks [32], and
fracture patterns [33]. In self-organized, “bottom-up” towns
[12,15] the majority of junctions between streets also have de-
gree three (although the same does not hold for planned towns,
where the majority of crossroads have degree four [15] or even
higher [34]). The homogeneity of degree is reflected by a ho-
mogeneity in the length of network cycles that are composed by
six edges on average in all the aforementioned systems. Simi-
larly, network distances are not very informative because they
basically scale with euclidian distances in all these systems.

Here we want to use spatial information to provide a
deeper understanding of the pattern. We focus in particular
on information carried by the angles formed at junctions. This
choice is motivated by two complementary arguments: one that
is about the physics of the growth of the networklike pattern,
which can directly influence the branching angles, and the
other that is about dynamic properties (e.g., navigation) that
may be associated with the resulting network.
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FIG. 1. (Color online) Drawing of the evolution of a fracture
pattern in a solution of latex particles [35]. In each image, the
yellow (light gray) lines indicate the newly appeared fractures.
When new lines of fracture appear, their growth is affected by the
already-existing fractures (for instance, newer fractures do not cross
older ones). Conversely, the position of older lines does not change
when new ones appear.

Throughout the text, as we consider spatial networks, we
will make extensive use of the words edge, arc, and segment
with the following definitions: an edge is a curve—generally
almost linear—-between two consecutive junctions (classical
network edge); an arc is a directed edge when an orientation
is added to the network; a segment is a series of contiguous
edges grouped together as described later in Sec. II and used
to reveal a structuration at a larger scale.

A. Growth

Networklike patterns often are formed as the result of a
sequential process, where new segments appear at different
times [33] without undergoing further reorganization. One
example of such patterns is provided by the fracture lines
on the glaze of ceramics illustrated in Fig. 1. Bohn et al.
[33] suggested that urban street patterns fall into this same
morphological class.

The appearance, elongation, and termination of new seg-
ments is affected by the older segments; the older segments,
however, do not undergo further reorganisation as a conse-
quence of the appearance of new ones. Under these conditions
(sequential process, growth with no deletion of edges, and
absence of reorganization) the temporal hierarchy in the
appearance of segments is reflected in the spatial hierarchy
of lengths and arrangements of the final pattern [35]. Across a
junction, the edges belonging to the older segment are the
straight continuation of one another. Conversely, the edge
belonging to the newer segment typically forms a large angle
with the others.

However, the local angle information is not sufficient in
itself to attribute the edges to the same or a different segment.
Consider the case of a junction like the one in Fig. 2(a). In
the absence of any information, the most natural inference is
to group edges e1 and e2 into the same, older, segment. The
attribution is more problematic if one already knows that e3 is

FIG. 2. (Color online) (a) Small graph, involving a single
junction. (b) Weighted directed line graph built from the graph in.
Weights are as follows: red (dark gray) → weight = 0; green (light
gray) → weight = 1.

older. In this case, it would be more natural to group e3 and
e1 into the same old segment and assume e2 appeared later.
In summary, the best inference about what network edges
should be grouped into the same segment depends not only
on the continuity between adjacent edges, but also on the
information already available about the order of appearance of
other segments. It can be constructed only sequentially.

B. Navigation

When the networklike pattern is also the support for a
transportation function, as is, for instance, the case with
patterns of urban streets, the angles of edges at intersections
and junctions play a role for navigation and orientation.

In architecture, this concept has been theorized under the
name of “space syntax” [36]. With the space syntax method of
analysis, urban street patterns are fragmented into a number of
straight segments (ideally the minimum number of segments
in which the line of view is conserved), and one analyzes
the network obtained by representing straight segments as
nodes and intersections between segments as edges. Then,
by selecting a line (a street) as a starting point, one can
number each line in the map according to how many direction
changes separate it from the starting line. This measure is
generally referred to as “depth” and is a measure of distance.
It represents the minimum number of changes of direction to
go from the origin to any other place in the street network. This
kind of measure has been correlated with different aspects of
social life; patterns of pedestrian movement, traffic, property
value, etc. [37]. Nevertheless, the process of fragmenting street
patterns into segments with the same line of sight was not
proven to always have a computable solution and it might be
too sensitive to small differences in orientation of the urban
grid [38].

In the physics literature, analogous ideas are followed
through what is usually called a “dual network” approach
(though a more appropriate definition would be “line network”
approach), where named streets [18,39,40] or contiguous seg-
ments [16] are mapped into network nodes and there is an edge
whenever two streets intersect or bifurcate. Dual networks also
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provide a convenient representation for measuring the amount
of information necessary to navigate inside the network [39],
in particular for navigation strategies relying more upon the
continuity of linear elements than on salient points.

In fact one can imagine describing a path through the
network with instructions of the form: “go straight for N steps
(N junctions or crossroads) or until you find a salient point (a
traffic light, a square,. . .),” followed by information on which
new direction to take. In general a “simple” path will be one
that involves only few deviations from the current direction,
not necessarily a short one. However, the result will not be the
same depending on the direction followed. Let us illustrate this
with reference to the junction of Fig. 2(a). Moving from edge
e1 to e2, or in the opposite direction from e2 to e1 does not
involve any change of direction. Going from e1 to e3 requires
one change of direction (i.e., to abandon the straightest path
and take an alternative one), but the opposite is not true since
e1 is the more direct continuation of movement when coming
from e3.

Both the argument about network growth and the argument
about navigation illustrate the interest of classifying the
edges of networklike patterns using information provided by
junctions’ angles. Our examples also indicate that the process
is not symmetric with respect to the starting point used for
classification.

In the following (Sec. II) we introduce an algorithm that,
given a local rule (namely, an evaluation of the angles at
each junction) and a set of arbitrarily chosen root edges,
assigns a rank (expressed by an integer number) to each
edge of the networklike pattern. Contiguous edges with the
same rank can then be grouped together into segments. The
numbers of segments for each given rank and their average
properties provide a quantitative statistical characterization of
the morphology of the pattern. Possible applications to lattices
and real-world spatial networks are explored in the remaining
Secs. III to VII.

II. ALGORITHM DESCRIPTION

The classification and numbering of segments involves two
steps. First, given a root edge, or a set of root edges, a rank
number is assigned to each edge. Then, the contiguous edges
with the same rank are grouped into segments.

A. Computing edge ranks

Let us denote by G a graph which models a networklike
structure. Given a root edge er in G, the rank of an edge ei of G

expresses the minimum number of direction changes needed to
reach ei when coming from er . We can also take into account a
set Sr of root edges; in this case, the rank of ei is the minimum
number of direction changes when coming from the closest
root edge in Sr .

The propagation of ranks across a junction depends on
the direction in which the junction is traversed. For instance,
in the graph of Fig. 2(a), if we set the rank of edge e1 to
zero [r(e1) = 0 by convention], then the rank of e3 is equal
to 1 [r(e3) = 1], but the same relation does not hold in the
opposite direction: if we set the rank of e3 to zero [r(e3) = 0 by
convention], then the rank of e1 is also equal to zero [r(e1) = 0:

no deviation from the straightest path when going from
e3 to e1].

Generally speaking, each edge ei can be crossed in two
directions; by convention, we denote by eR

i (eL
i ) the arc

associated to ei when it is crossed to the right (left). To
make the computation of all the ranks easier, we consider
the directed line graph GD [Fig. 2(b)] which models the
connections between all the arcs. The vertices of GD are the
arcs {eR

i ,eL
i } associated to any edge of G, and two vertices e∗

i

and e∗
j (the star means either R or L) are linked together in

GD if the destination of e∗
i is also the origin of e∗

j .
For instance, the crossing of the path e1 − e2 from the left is

modeled by eR
1 → eR

2 in GD , and the crossing in the opposite
direction by eL

2 → eL
1 . There is no connection between eL

1 and
eR

2 as the navigation eL
1 → eR

2 is not directly possible.
Weights are assigned to the arcs of GD as follows.

The weight w(e∗
i ,e

∗
j ) is equal to 0 when the path formed in

the initial graph by the edges ei and ej is the straightest one
and 1 otherwise. We can also introduce a threshold on the
maximum angle, implying that, if the straightest pairing of
edges still involves an excessively large angle, then it also will
have weight equal to 1. Formally, w(e∗

i ,e
∗
j ) = 0 when (i) the

angle formed in the initial graph G by e∗
i and e∗

j is the minimum
angle formed by e∗

i and its adjacent edges, and (ii) this angle
is smaller than a given threshold (45 degrees in our analysis).

Once a root edge er is defined in the initial graph whose
rank is equal to 0 by convention, the rank r(ei) of any other
edge ei can be easily obtained by a distance computation in
GD:

r(ei) = min
{
d
(
eL
r ,eL

i

)
,d

(
eL
r ,eR

i

)
,d

(
eR
r ,eL

i

)
,d

(
eR
r ,eR

i

)}
, (1)

where d is the shortest path length in the directed line graph GD

weighted by w. When a set Sr of root vertices is considered,
the rank of ei is the minimum of the ranks computed from all
the edges of Sr with the above formula.

B. Grouping edges into segments

Several adjacent edges with the same rank can be grouped
together into “segments.” A segment is a series of edges all
having the same rank and with exactly two ends (not including
junctions). The segment is initialized with any edge of G.
Its continuation is determined by pairing together adjacent
edges of the same rank until one of the following conditions
is encountered:

(1) There are no more edges with the same rank at one
extremity.

(2) The segment intersects an edge of lower rank.
In the special case when three or more edges with the same

rank are incident to the same junction, the continuation of the
segments is determined by pairing together the two edges that
provide the straightest continuation of one another. Then, we
proceed in a similar way: pairing together all the other edges
incident to the node. If an odd number of edges with the same
rank meet at a junction, one edge remains excluded from all
the pairings and the segment containing that edge is ended at
the junction.

We can give an intuitive justification for the above rules.
Imagine the case of a networklike pattern resulting from a
sequential growth process, such as, for instance, fracture lines
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ANDREA PERNA, PASCALE KUNTZ, AND STÉPHANE DOUADY PHYSICAL REVIEW E 83, 066106 (2011)

FIG. 3. (Color online) Illustration of the procedure for grouping
together edges into segments. (a1) The red (near-horizontal) edges
have lower rank than the yellow (near-vertical) edges. The edges are
grouped in (a2) into three segments: a green (near-horizontal) lower
rank segment and two (black and cyan, near-vertical) segments with
higher rank. (b1) All edges have the same rank. In this case, two
straight segments are identified in (b2). If an odd number of segments
with the same rank meet at a junction (c1), the one that deviates more
from the direction of the others forms a distinct segment (c2).

on ceramics. Grouping edges into segments is equivalent to
identifying those network edges that belong to the same line
of fracture. With condition 2 we impose that younger lines
of fracture (higher ranks) never cross already-formed fracture
lines. A parallel can also be found with what happens for urban
street patterns, where small streets usually change their name
when crossing larger ones.

Figure 3 shows examples of how segments are grouped
together. In Fig. 3(a1) the near-horizontal edges have lower
rank than the near-vertical edges. In this case, the near-vertical
edges form two distinct segments Fig. 3(a2), in spite of being
in direct continuity. Figure 3(b1) presents exactly the same
pattern, except that all the edges now have the same rank. In
this case, the edges are grouped together in two intersecting
segments: one near-horizontal and one near-vertical Fig. 3(b2).
When there is an odd number of edges incident to a junction,
as in Fig. 3(c1), the edge couple or couples that deviate less
from each other’s direction are paired together in the same
segment or segments and the remaining edge forms a segment
by itself, which is ended at the junction Fig. 3(c2).

To summarize, the straight contiguity of edges is well
represented by a directed line graph GD whose arcs are
weighted with appropriately chosen weights. The arbitrary
selection of a set of root edges in G allows us to express
changes of direction in terms of a distance measure, allowing
us to assign each edge of G a ranking number. Edges that
are more likely to belong to the same spatio-temporal event
of network formation can be grouped together into segments.
The C++ computer code implementing the rank computation
and segment mapping is available as online supplementary
material, alongside with sample networks to test it [41].

III. LATTICE MODELS

In this section we explore the distribution of segment ranks
and edge ranks in a simple lattice model. In particular, we
introduce a class of lattice models that we call “Mondrian”
lattices (Fig. 4), which are intended to mimic the growth

FIG. 4. (Color online) Mondrian pattern generated by iterated
domain divisions. Here, divisions are alternating: all the cuts made at
division t + 1 are orthogonal to the cuts at division t . In all figures,
the color (shade of gray) of the edges reflects their rank; a periodic
rainbow colormap is used. For this example, all the edges in the
bottom of the figure are selected as roots.

process and the characteristics of hierarchical networklike
patterns. In order to build the lattice, we start with a single
rectangular domain and we iterate the following operation:
each rectangular cell of the lattice is divided in two smaller
rectangles by introducing a new cut parallel to one of its sides
(let us say horizontal or vertical) at a random position chosen
from a normal distribution around its center. The cuts can either
be “alternating,” where horizontal cuts at time t are followed by
vertical cuts at time t + 1, and vice versa, or “random,” where
the horizontal or vertical direction of cut is chosen randomly
for each cell and each division.

Here, and in the rest of the paper, we will focus mainly on
two kinds of statistics. The first is the histogram of segment
ranks (the frequency of occurrence of segments with a given
rank). The second measure relies on edges (not segments) and
looks at how the ranks of individual edges increase with their
topological distance from the roots. The topological distance
between an edge ei and a root er is the minimum number
of junctions on a path between er and ei in G. Intuitively,
the rank measures the number of direction changes needed to
reach a particular edge and the topological distance measures
the number of vertices crossed. Hence, if we plot the rank r(ei)
of each network edge ei against its topological distance from
the roots td(ei), we obtain a characteristic distribution that can
be fit with a linear function of the form

r(ei) = αtd(ei) + β. (2)

The slope of the fitting line is tan(α), and its inverse 1
tan(α)

gives the average length of the straight segments. This can also
be interpreted as the largest scale at which spatial organization
is observed.

Figure 5, top row, displays the histogram of segment ranks
for Mondrian lattices after 6, 12, and 18 iterations of divisions.
The orange and cyan histograms are for alternating and random
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FIG. 5. (Color online) Top row: Histogram of segment ranks for
Mondrian lattices of different size [from left to right the number of
cells C is equal to 26, 212, and 218]. Orange (dark gray) bars show
alternating divisions. Cyan (light gray) bars show random divisions
(in the case of random divisions, different realizations are possible: the
whiskers on top of the histogram give the standard error of the mean).
Bottom row: Distribution of the rank vs the topological distance
of lattice edges for the same “alternating” Mondrian lattices. Red
continuous line: Linear fit to the data of the form r(ei) = αtd(ei) + β,
with td(ei) being the topological distance of edge ei from the root
edges. The slope [tan(α)] is 0.148 for the lattice with C = 26, 0.018
for the lattice with C = 212, and 0.002 for the lattice with C = 218.

divisions, respectively. For random divisions the asymptotic
distribution can be approximated by a normal distribution:

N (r) = Ae
− (r−r)2

2σ2 , (3)

where r = 2 + � (t−2)
6 � (where t is the number of iterations of

the division process), A = 2t+1√
t+1

(1.043) and σ = (1.020)
√

t+1
4 .

(Details on how the parameters A, r , and σ were estimated
are provided in the Appendix.) In practice, for a pattern
observed at a given time, t is usually unknown, and it is
easier to approximate it in terms of the number of cells C,
assuming that the relation C = 2t holds. The number of cells
for a planar graph, in turn, is obtained from the number of
edges and vertices in the network through Euler’s formula
V − E + C = 1 (where V is the number of vertices and
E is the number of edges). In this way we can compute
the theoretical rank distribution for lattices of given size. Such
theoretical distributions are reported as dotted lines on top
of the histograms of Fig. 5, top row, as well as in different
figures throughout the paper.

Figure 5, bottom row, plots the rank r(ei) vs the topological
distance td(ei) for each network edge ei of alternating
Mondrian lattices of different sizes (6, 12, and 18 iterations
of division), together with a linear fit of the distribution
(continuous red line). We can see that, when the number of
iterations of division increases, the overall slope decreases,
revealing in fact a curved relation. This is not surprising,
because topological distances typically scale with the square

FIG. 6. (Color online) The same lattice as in Fig. 4 where the
position of each node is shifted by associating to all the adjacent
edges a vector of unit length and centrifugal direction and computing
the vectorial sum over all the adjacent edges. The pattern in (a) and
(b) correspond to different numbers of degradation iterations.

root of the lattice size, whereas ranks increase with the
logarithm of the size.

These simple lattice models may not be representative of
the configurations of real-world patterns with less regular
edge orientations. In order to assess the robustness of rank
indices when the edge orientations are altered, we proceeded
as follows. Starting from a lattice of 212 cells, obtained through
alternating divisions, we iterated the following operation: At
each time step the node positions are shifted by computing
the resultant of vectors directed along the incident edges
and oriented centrifugally. Each vector has its magnitude
arbitrarily fixed to L

30 000 , where L is the length of the side of
the grid. This progressively transforms the Mondrian lattice
of Fig. 4(a) into the foam-like patterns of Figs. 6(b) and
6(c). In order to prevent the lattice from shrinking during
this process, we impose periodic boundary conditions by
merging together the opposite sides of the lattice. After the
degradation phase, the boundaries are separated again, and
the rank computation proceeds normally, except that new
nodes have been introduced along the perimeter of the lattice,
doubling the nodes already existing on the opposite side of the
lattice.
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(a) (b) (c)

FIG. 7. (Color online) From left to right: Same plots as in
Fig. 5 corresponding to three lattices with 212 cells each but with
different levels of degradation (0, 70, and 140 degradation iterations,
respectively). When the local junction geometry is destroyed, the
histogram of segment ranks (plots on the top) shifts from peaked
to uniform. The fitted slope of the rank vs distance plot [tan(α)]
(bottom plots) is 0.014 for (a), 0.355 for (b), and 0.707 for (c). Small
differences between the graphs in (a) here and the corresponding
ones in the middle column of Fig. 5 are due to the additional nodes
introduced by imposing periodic boundary conditions during network
degradation.

Such an evolution from orthogonal to symmetric junctions
is not a purely geometric artifice. Many real-world patterns
do actually evolve from an orthogonal to a symmetric con-
figuration as a result of forces that minimize the local length
of the network edges. For instance, in basaltic lava rocks,
the junctions, initially appearing at right angles, progressively
evolve toward a symmetric configuration with angles of 120
degrees as the joints grow inward during solidification of
lava [42,43]. In a similar way, leaf veins seem to intersect
at right angles when they first appear, but then to evolve
continuously toward more symmetric foam-like junctions [32].

Figure 6 shows two snapshots—at different steps of
degradation—of the lattice in Fig. 4. The three lattices
(Figs. 4(a), 6(b), and 6(c)) all correspond to a portion
of the orthogonal Mondrian lattice with 212 cells from which
the plots of Fig. 7 are drawn. The plots in Fig. 7 report
the statistics of segment histograms (top) and edge rank vs
edge distance (bottom) for the three levels of degradation of
Figs. 7(a) (no degradation), 7(b) (70 degradation iterations),
and 7(c) (140 iterations). With increasing degradation, the
histogram of segment ranks becomes flatter and its center
shifts far to the right of the theoretical peak expected for
pure Mondrian lattices. The slope of edge rank vs edge
distance, which is nearly zero for the original lattice of
Fig. 7(a), increases progressively. Figure 8 shows that the
slope undergoes a continuous transition on a relatively large
scale (i.e., it is still relatively low also for networks, such as
the lattice of Fig. 7(b), whose histogram of segment ranks is
already flat). This means that, once the large scale coherence
is lost, the length over which coherence persists (inverse of

FIG. 8. (Color online) When the angles at junctions are altered
by applying forces to the edges (as shown in Fig. 6), the global
organization of the pattern is rapidly lost. Correspondingly, the slope
of the edge rank vs distance [tan(α)] increases toward 1. The plot
reports this slope as a function of the number of degradation iterations
of the original orthogonal Mondrian lattice with 212 cells. The three
letters A, B, and C mark the values of slope found for the three lattices
of which Figs. 4 and 6 show a portion.

the slope), decreases continuously. In other words the slope
is a quantitative measure of the amount of disorder between
the two extremes of a Mondrian lattice [tan(α) ≈ 0] and a
foam-like pattern [tan(α) ≈ 1]. In the case of this latter, the
rank increases at almost every junction.

In general, real-world patterns are expected to deviate in
various ways from these simple lattice models. In the rest of
the paper we explore the distribution of ranks and segment
statistics in three different examples of real-world networklike
patterns: the pattern of fracture on the surface of materials,
patterns of leaf veins in dicotyledon plants, and the pattern of
urban streets in (unplanned) towns.

IV. FRACTURE PATTERNS

Crack patterns often form on the surface of materials as a
result of the shrinking of one material layer being frustrated by
its deposition on a nonshrinking substrate. This kind of pattern
formation has been extensively observed and reproduced in
controlled settings on a variety of materials, including mud,
ceramics, and coffee grounds. The final patterns result from
the combination of two distinct processes: the nucleation of
new fractures and the propagation of already-existing ones
[44–46]. Nucleation of new fractures usually involves the
formation of tripartite junctions with equal angles of about
120 degrees [46]. Conversely, junctions formed by propagating
fractures are the result of either two fractures meeting at a
point (usually with an orthogonal angle), or of the branching
of one growing fracture (in this latter case the angles formed
at the junction are less predictable). If the crack pattern is
produced in a nonelastic material, there is no reorganization
after its formation and the final form of the pattern reflects the
mechanisms of formation. Depending on the characteristics
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FIG. 9. (Color online) Edge ranks computed for the fracture
pattern of Fig. 1. The root edges for rank computation are the two
horizontal lines that cut the whole figure. The color coding is the
same as for other figures. The � and © symbols are referred to in
the main text.

of the material, either nucleation of new fractures will be
the most frequent process or propagation of already-formed
fractures over long distances. Nucleation is more frequent
in the case of very thin layers or inhomogeneous materials;
propagation is predominant in brittle, homogeneous materials
such as ceramics.

Patterns resulting mainly from the propagation of already-
formed fracture lines present a well defined hierarchy due to
the sequential formation process. One such pattern is shown
in Fig. 1. Figure 9 shows the ranks inferred by our algorithm
when the two long horizontal lines are selected as roots. There
is a partial mismatch between real and inferred hierarchy. This
is in part due to the fact that, when a cell is cut in two halves
by a fracture, then the two halves become independent and it is
no longer possible to establish a temporal relation between the
new fracture events within a cell and those in the neighboring
one. In the case of perfect hierarchical organization (as is
the case for the pattern shown in Fig. 9) one could also gain
information by considering the organization of angles at both
extremities of a segment. The fracture line marked with ©
terminates the fracture marked with �, indicating that this
latter one is actually more recent. Unfortunately, a method that
considers both extremities would lose generality and could
not resolve a “circular configuration” where a segment “A”
is terminated by another segment “B,” and segment “B” is
terminated by “C,” and segment “C” is terminated by “A.”

Once acknowledged that, depending on the characteristics
of the material, some fracture patterns are mostly dominated
by the nucleation of new fractures and others by the elongation
of existing ones, we want to test if our algorithm gives
different classification results in the two cases. To this end,
let us consider the crack patterns formed in three different
materials: paint, desiccating clay, and ceramics (Fig. 10 from
top to bottom). The patterns were photographed with a digital
camera, converted to grayscale images, high-pass filtered to re-
move inhomogeneities in the illumination, binarized by simple
thresholding, and cleaned by applying a binary morphological
majority filter (see [47,48] for a review of common image
processing techniques). The images of the fracture patterns
were then skeletonized with a topology-preserving algorithm

based on distance transformation [49] to obtain an 8-connected
skeleton (a skeleton where two pixels are considered to be
connected if they share either a face or a corner, as opposed
to a 4-connected skeleton where only pixels that share a face
are considered to be connected). For each skeleton pixel, we
counted the number of pixels in their 8 neighborhood that also
belonged to the skeleton, and all the pixels having a number of
neighbors not equal to 2 were marked. All the connected sets
of marked skeleton pixels were mapped into a network node.
Whenever there was in the image an unmarked 8-connected
path between two clusters of pixels identified as nodes we
introduced an edge between the corresponding nodes. The
orientation of each edge was estimated from the coordinates
of the two endpoints. In a subsequent step, edges shorter than
a threshold length (3 pixels) were removed and the nodes at
the two endpoints merged together.

A rectangular section of the pattern is studied and all the
edges crossing one side of the rectangle are selected as roots
for the assignment of ranks. Figure 10 reports the statistics
obtained on the three patterns, together with a snapshot of a
small region of the original patterns (on the right), where the
structure is colored according to the rank of the corresponding
network edge.

Very different distributions are observed for the cracks
formed in paint and clay versus cracks formed in ceramics. In
the former two, the lack of large scale organization is reflected
in the linear increase of ranks with the topological distance
from the root and in a flat histogram of segment ranks. Indeed,
the junctions originating from nucleation of new fractures,
whose angles are ∼120 degrees, always determine an increase
in the rank of edges across the junction. The inverse of the slope
of the curve fitting the data gives an indication of the length
over which crack elongation proceeds: about three junctions.
Conversely, for cracks formed in ceramics, the edge ranks are
almost completely independent of the topological distance of
edges from the roots because of the large scale organization
typical of these patterns. The slope of the rank vs distance
distribution (Fig. 10, bottom plot, central column) is thus close
to zero, but we can still see a deviation of the rank histogram
toward the left of the theoretical normal distribution expected
for a pure Mondrian lattice (Fig. 10, bottom left plot). Such a
small deviation is probably due to the fact that the analyzed
region is a portion of a larger pattern and the cuts introduced by
the arbitrary frame disconnected some edges from the network
path that gives them their real rank. This also shows that rank
distribution is a quite sensitive measurement.

V. LEAF VENATION NETWORKS

Leaf veins in the leaves of flowering plants form char-
acteristic patterns that can be used by botanists as keys for
taxonomic identification. However, this identification is done
by eye and does not rely on quantitative measurements. The
pattern is hierarchical, and the diameter of a vein roughly
reflects its order of appearance during leaf morphogenesis,
with larger veins being older than smaller ones [50]. Botanists
define discrete vein orders by looking at vein width at the
point of branching from its parent vein: the large primary
vein or midvein is continuous with the stem vascular bundles;
secondary veins branch from the primary vein; tertiary veins
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ANDREA PERNA, PASCALE KUNTZ, AND STÉPHANE DOUADY PHYSICAL REVIEW E 83, 066106 (2011)

FIG. 10. (Color online) Crack patterns formed in a layer of paint (top), in thin desiccating clay (middle), and in ceramic glaze (bottom).
The graphs on the left plot the histograms of segments with different ranks (as in previous figures). In the case of ceramics, we also plot the
theoretical distribution for a Mondrian lattice of the same size. The graphs in the central column plot the ranks of edges vs the topological
distance of the same edges from the roots. The slope of the best fitting straight line is 0.246 for paint, 0.356 for clay, and 0.022 for ceramics.
The images on the right are portions of the original patterns, where the fractures have been colored according to the rank of the corresponding
network edge. The same periodic rainbow colormap as in Fig. 4 is used. The roots for rank computation are all the edges at the left of the
picture.

are defined by their narrower width where they branch from
the secondary veins, and so on.

We tested our ranking algorithm on the vein patterns of
angiosperm leaves. The leaves were skeletonized with 10%
sodium hydroxide solution and the pattern was scanned with
a commercial scanner in transmission mode with a resolution
superior to 2000 pixels/inch and 256 gray levels. A network
representation was extracted from the images in a similar way
to what we described for cracks. In the ranking procedure, the
leaf stem is selected as root edge. This is in agreement with
its special role for both transportation and leaf morphogenesis.
The leaf stem is both the source (through xylem) and the sink

(through phloem) of all transportation taking place in the leaf
vein network, as well as the first vein to form during leaf
morphogenesis [51].

Figure 11 shows a portion of leaf of Hymenanthera
chathamica with highlighted vein ranks obtained from our
algorithm. Veins with rank 1 or 2 are shown in color in
Fig. 11(a), veins with rank 1 to 3 are highlighted in Fig. 11(b)
and veins with rank 1 to 4 in Fig. 11(c). The classification
does not take into account the diameters of the veins, but
only the orientation of the edges. Nevertheless, the results of
classification match well with the diameter of the veins. From
the figure, we can see that veins marked with higher ranks

FIG. 11. (Color online) (a) Vein pattern of a dicotyledon: Hymenanthera chathamica. Only veins with rank 0 and 1 are shown in color
(nonwhite lines). (b) Only veins of rank 0, 1, and 2 are colored. (c) Only veins of rank 0 to 3 are colored. (The whole leaf was analyzed, but
for clarity only a small portion of the vein network is shown here.)
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FIG. 12. (Color online) Top: Segment and edge statistics for
Hymenanthera chathamica (Hc, top) and Ficus religiosa (Fr, bottom).
Network size is ∼12 000 nodes for Hc and ∼130 000 for Fr. The
slope of the fit for the graphs on the right is 0.019 for Hc and 0.000
For Fr.

have, in general, smaller size (which roughly corresponds to
saying that they appeared later). In this sense, we also recover
the vein patterns as derived from the botanical classification.
This is consistent with the hypothesis that the older veins are
not only larger but also straighter, as can be derived from the
relation existing between vein sizes and junction angles [32].
However, some small veins attached to the main vein are given
a small rank, while one would intuitively ascribe them to a
higher rank. This illustrates well the incomplete reversibility
of the fragmentation process: for each vein we can infer the
order of appearance with respect to the parent vein, but not
the exact age. Technically, the botanical classification–based
on diameters—also has the same problem because of the
existing correlation between branching angles and diameter of
veins.

Figure 12 reports the histogram of segment ranks and the
plot of edge rank vs distance for both the Hymenanthera
chathamica (Hc) leaf and for a leaf of Ficus religiosa (Fr).
The Hc network is about one magnitude order smaller than
the Fr network. However, both networks are hierarchical; the
histogram of segment ranks is peaked close to the theoretical
value and the fitted slope of edge rank vs distance is close to
zero.

The larger Fr pattern is very close to the perfect hierarchical
pattern (its segment histogram overlaps quite well with the one
of a perfect Mondrian lattice of the same size). Conversely,
the histogram of segment ranks for Hc deviates slightly from
the theoretical one; it is still a Gaussian but shifted to higher
values. Unlike the case of fractures, this cannot be ascribed to
boundary effects as the whole leaf with the boundary veins is
analyzed, nor to a simple small number of veins, as the network
is large and the distribution is already very well defined. This
shift might be due to the different plasticity of the veins during
their maturation in the two plant species. More measurements
should be made to check if this shift is due to the difference in
species or to the different maturation of the leaves depending
on their sizes.

FIG. 13. (Color online) Cordoba map with edges colored
according to their rank.

VI. URBAN STREET PATTERNS

The growth of urban street systems is a complex process
determined by a series of historical events and involving
feedback and regulation from global network processes, such
as traffic and transportation. However, in a first approximation,
for self-organized cities, the general form of these patterns can
be described in terms of simple models where new streets
appear over time with no reorganisation [17,52,53]. Within
such models, the first streets connect the first houses to the
country. As the urban pattern grows, new streets bifurcate
from existing ones in the direction of not yet urbanized
areas, or to join already-existing streets. In this respect, the
process of growth of urban streets shares similarities with the
growth of fracture patterns [33], which supports the fact of
assigning ranks to streets in a similar way.

We here test our ranking method on the towns of Cordoba
(Spain) and Venice (Italy) and compare the statistics obtained
for the two towns. In both cases we choose the perimeter of
the town as root for the rank computation (the shores of Venice
and the highway ring around Cordoba).

Figure 13 displays a map of the town of Cordoba, where
each edge is colored according to its rank. The highlighted
region in the figure corresponds to the historical city center.
Almost all the edges with highest rank appear to fall inside
this region. Higher ranks often are the mark of lack of global
organization. A possible outlook for future analysis could
be testing if higher ranks correspond to parts of town that
developed in a period of more self-organized, organic growth
(e.g., periods when the central power was weaker). Overall,
the histogram of segment ranks (reported in Fig. 14 top, left)
is still compatible with that of a hierarchical network, that
is, it overlaps with the distribution expected for a Mondrian
lattice of the same size. The distribution of edge ranks vs edge
distance from the root edges is nearly flat, with a slight slope
that can likely be ascribed to the relatively small size of the
network.

When the same analysis is carried out on the street pattern
of Venice, a quite different behavior is found. Segments rank
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FIG. 14. (Color online) Top: Histogram of the number of
segments in Cordoba street pattern, Venice street pattern, and Venice
street and channel pattern. Bottom: Rank of network edges vs their
topological distance from the root edges. The slope of the fitted line
to the bottom plots is 0.094 for Cordoba, 0.239 for Venice, and 0.146
when the channels are also considered in the network.

up to much higher values, suggesting an absence of large scale
organization in this street pattern (Fig. 14, middle column).
This does not seem to be a pure artifact of our method, but
agrees with other elements of the organization of Venice,
where streets are not the principal element of organization
of the town. This is reflected, for instance, in the fact that,
still today, houses and buildings are not numbered according
to their position along a street, but following a subdivision by
districts (“sestieri”).

Interestingly, when for Venice one considers the trans-
portation system including both streets and channels, the
rank distribution gets closer to one of a hierarchical network
(Fig. 14, right). This reveals that the channels are the original
part of the transportation system, and the origin of the town
organization. The houses were first built along the channels
with direct access to them (Fig. 15), and the streets appeared
inside the islands delimited by the channels, as secondary
divisions for inland house access. Thus removing the channels
from the analysis is removing the large coherent structure and
thus has a direct visible impact on the rank distribution. On the
contrary, with the channels included, the hierarchical structure
of successive divisions is recovered. So the rank analysis has
the potential of showing some peculiarities of specific towns
and, at the same time, of pointing to the possible reasons for
these peculiarities.

VII. CONCLUSIONS

In this article we introduced a new method to analyze spatial
networks with loops and define quantitative measurements on
them. The need to characterize quantitatively the form (and the
possible morphogenesis) of networklike patterns motivated us
to introduce a procedure for assigning ranks to all the edges of
the pattern and to group several edges into segments. Using a

FIG. 15. (Color online) Direct access to the channel network
from a house in Venice.

local spatial characteristic (i.e., the branching angles), we are
able to quantify the large scale coherence of the pattern.

The first measurement we propose is the distribution of
segment ranks, which is a very sensitive indicator of the
existence of a large scale spatial coherence and of hierarchical
subdivisions. When this large scale coherence is lost, the
measurement quantifies the scale over which organization
persists, up to the point of purely local organization. This
scale is directly given by the inverse of the slope of edge ranks
vs edge distances from the root. When tested on lattice models,
these measurements show a dichotomy between two types of
network: one with large scale coherence and one with purely
local organization.

The method is efficient on different real patterns of various
origin, from fractures to leaf venation and urban streets. The
obtained measures show the potential to discriminate between
patterns with hierarchical history of growth and patterns grown
out of more local rules. For fracture patterns, the two cases
of many locally generated fractures that reconnect and few
fractures propagating over large distance can be distinguished
with no ambiguity. For the leaf venation pattern, the method
clearly reveals a hierarchical growth mechanism. In addition,
the rank assigned to network segments correlates to some
extent with the temporal order of appearance of the same
segments, and hence the measure is informative on the process
of growth itself. The matching between ranks and order
of appearance, however, is not perfect, and the information
provided by the ranks should be complemented from other
sources for individual systems. For instance, with leaf veins
one could consider both ranks and vein diameter to obtain a
better classification of veins into discrete orders.

This analysis is also sensitive to town streets and is able to
reveal the particular organization of streets in Venice, whose
structure can be explained as a secondary construction from the
channels. The town structures are otherwise coherent with that
of a sequential subdivision pattern, indicating some underlying
logic in its development.

We believe that the method can be generally applied to
different types of patterns, revealing not only their structure
but also, in part, the history of their growth. In the present
paper, we built the classification from local angle information.
More generally, however, any other local information can be
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FIG. 16. Schema of the possible cell types in a Mondrian lattice
and of the results of their divisions. A cell is defined by the lowest
rank r found on one of its sides and by the rank on the opposed side
to this (the rank of the sides adjacent to that with rank r is always
r + 1). The cell marked with the letter A has rank configuration
r,r + 1,r,r + 1 over its perimeter and the one marked with B has
configuration r,r + 1,r + 2,r + 1. For each cell type the cut can be
orthogonal to the side with rank r or parallel to it.

used, such as, for instance, the size of the connecting element,
to construct a similar hierarchy. It is thus a new, general,
and efficient way to analyze networks with loops and group
patterns of very diverse origins into the same structure and
development classes.
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APPENDIX

The distribution of segment ranks in a Mondrian lattice
can be computed more easily if one recognizes that the cuts
within a cell only affect the distribution of segment ranks for
that particular cell but not for the neighboring cells. We can
identify two kinds of cells (“A” and “B” in Fig. 16) and two
possible cuts for each cell (either orthogonal or parallel to
the side with the lowest rank). For any given cell and cut
combination, both the resulting cells and the new segments
added are determined. A cell of type “A,” whose minimum
rank is r can give rise either to two cells of type “A” and
with minimum rank r , or to two cells of type “B” also with
minimum rank r . In the first case, the cut will introduce a new
segment with rank r + 1, while in the second it will introduce
a segment with rank r + 2. A cell of type “B” and minimum
rank r can generate two cells of type “B” and rank r; in this
case it will add a new segment with rank r + 1 as well as
a new segment with rank r + 2. This latter results from the
“cut” operated by the new segment with rank r + 1 on the
already-existing segment with rank r + 2 (because we impose
that a segment with higher rank is always ended when it meets
one with lower rank). If the cut is in the other direction, the
same “B” cell can generate one cell B with minimum rank r

and one cell “A” with minimum rank r + 1.

(a) (b)

(c)

FIG. 17. (a) Plot of the position of the peak of the distribution
of segment ranks r as a function of the number of iterations t

of equations (A1). The plot is shown only for a few iterations of
equations (A1) around t = 600, but the staircase pattern is the same
for all values of t . (b) Plot of the rescaled maxima of the distribution
of segment ranks as a function of the number of iterations of equations
(A1). (c) The rescaled distribution after t = 1000 iterations of
equations (A1).

If we assume that all the cuts have the same probability,
that all the cells in the lattice are cut once for each time step
and we take the average realizations, we obtain the following
equations for the evolution of the pattern:

A(r,t + 1) = A(r,t) + 1
2B(r − 1,t),

B(r,t + 1) = 3
2B(r,t) + A(r,t),

Ns(r,t + 1) = Ns(r,t) + B(r − 2,t) + 1
2A(r − 2,t)

+ 1
2B(r − 1,t) + 1

2A(r − 1,t), (A1)

where A(r,t) indicates the number of cells of type “A” with
minimum rank r at iteration t and similarly for B(r,t). Ns(r,t)
is the total number of segments with rank r at iteration t .

We iterate the above equations, starting with a single cell
of type B and minimum rank r = 0. With these formulas it is
painless to go to very high numbers of cells and obtain well
defined distributions. The first observation in the iterations
is that the peaks of the distributions of A, B, and Ns shifts
to the right by one rank unit every six iteration steps. These
shifts have different phases for A, B, and Ns. In particular,
the phase shift for Ns is t − 2; that is, the peak position r of
Ns increases by one unit with pace � (t−2)

6 �. Figure 17(a) plots
the position of the maximum r as a function of the number
of iterations for a few iterations of equations (A1) around
t = 600.

We also guessed the way the maxima increase in amplitude
with simple relationships. The scale of the numbers of cells A,
cells B, and segments Ns is by construction 2t (the number
of cells). However, the maximum value does not simply scale
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in proportion to the number of cells because the distribution
gets larger while it moves to the right for increasing values
of t . In particular, the scaling of standard deviation can be
easily approximated by a simple formula as σ = √

t + 1. We
found that, if the the distribution is normalized by 2t+1√

t+1
, then

the maximum remains nearly stable through iterations (this is
shown for a few iterations of equations (A1) around t = 600
in Fig. 17(b)).

When the distribution is rescaled in this way in width,
position, and amplitude, then it falls onto a perfect parabola
in log coordinates (shown in Fig. 17(c) after 1000 iterations),

without any change when increasing the number of iterations,
except for attenuating fluctuations. So, even if we lack a
theoretical demonstration, we know that the expression of N

in equation (3) is a Gaussian and the dependencies on the
parameters are asymptotically exact. Fitting a Gaussian on this
distribution after a very large number of iterations (t = 1000;
that is, a number of cells of 21000, numerical approximation
problems appear in our code around iteration 1024), give the
fitting parameters used in equation (3) of 1.043 and 1.020,
respectively (these numbers could possibly be approximations
of π/3 and

√
π/3, respectively).
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