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Penalty Functions for Handling Large Deviation of Quadrature

States in NMPC

Sébastien Gros and Mario Zanon

Abstract—Nonlinear Model Predictive Control for mechanical
applications is often used to perform the tracking of time-
varying reference trajectories, and is typically implemented using
quadratic penalty functions. Controllers for mechanical systems,
however, are often required to handle large deviations from
the reference trajectory. In such cases, it has been observed
that NMPC schemes based on quadratic penalties can have
undesirably aggressive behaviours. Heuristics can be developed to
tackle these issues, but they require intricate and non-systematic
tuning procedures. This paper proposes an NMPC scheme based
on a specific class of penalty functions to handle large deviations
of quadrature states from their reference, offering an intuitive
and easy-to-tune alternative. The behaviour of the proposed
NMPC scheme is analysed, and the conditions for its nominal
stability are established. The control scheme is illustrated on a
simulated quadcopter.

Index Terms—Nonlinear model predictive control, Huber
penalty function, large deviation from the reference, mechanical
systems

I. INTRODUCTION

Nonlinear model predictive control (NMPC) is an effective

way of tackling problems with constraints and nonlinear

dynamics. NMPC re-calculates at every sampling instant a

control policy that minimizes a penalty function defined over

a horizon window in the future. The properties of NMPC

have been studied for the general class of penalty functions,

which are lower bounded by a K∞ function [1], [2]. In

practice quadratic penalties are preferred because they are

straightforward to implement, can be efficiently treated using

Gauss-Newton Hessian approximations, and yield controllers

having an intuitive behaviour.

NMPC has been extensively used in the process industry [3],

where it is often assumed that the error between the system

state and its fixed reference is relatively small. However,

NMPC is more and more used for mechanical applications.

Controllers for mechanical applications are often required

to track infeasible trajectories, handle large reference jumps,

or perform obstacle avoidance, potentially resulting in large

deviations form their reference.

In such situations, it has been observed that NMPC based on

quadratic penalties can become very aggressive, i.e. it yields a

significant activation of the inputs bounds and state constraints,

and taps strongly into the system nonlinearities. The latter

often requires an expensive line search to ensure the conver-

gence of the underlying Newton-type scheme. More crucially,

whenever a state deviates largely from its reference, the control

solution computed by an NMPC scheme based on quadratic

penalties is chiefly influenced by the associated penalty, while
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the competing penalties have a marginal influence. This is

especially a problem when such competing penalties must

weigh in the cost function regardless of the deviation of

quadrature states from their reference. This is e.g. the case

for penalties associated to the alleviation of structural fatigue

[4], which are momentous in many mechanical applications.

Heuristics such as smoothing and saturation of the regula-

tion error, or a temporary reduction of the quadratic penalties

weighting matrices can be used to tackle such issues [5].

However these heuristics can be difficult to set up, and can

result in intricate and non-intuitive closed-loop behaviours.

Alternatively, ad-hoc input and state bounds can address the

problem by limiting the control action of the NMPC scheme

when the states are far from their reference. Such bounds,

introduced for the purpose of taming the behaviour of the

NMPC scheme, are however artificial in the sense that they

do not necessarily correspond to actual physical limitations of

the system at hand, and can therefore be counterproductive

since they arbitrarily limit the control authority of the NMPC

scheme.

The undesirable NMPC behaviour previously described is

typically due to large deviations from a given reference of a

specific type of states, labelled as quadrature states in this

paper. Quadrature states are states that do not influence the

system dynamics and are the result of a pure integration of

states and controls. As an example, a car position is purely

defined by the integral of its velocity over time, and the

position does not impact the other dynamics. We remark that

the class of systems of interest having quadrature states is

relatively large.

Based on this observation, in this paper, we propose to

tackle the aforementioned issues via a specific design of the

cost function associated to the quadrature states. We define

the class of P-penalty functions, the most known of which is

the Huber penalty, displayed in Figure 1. The main feature of

P-penalty functions is that, while small deviations from the

reference can still be quadratically penalised, large deviations

from the reference are penalised less than quadratically. This

paper proposes to use a P-penalty function for the quadrature

states and a traditional quadratic function for the remaining

states and the controls. It will be shown in the following that

for this choice of cost function, the feedback law stemming

from the NMPC scheme becomes insensitive to the quadrature

states when they are far from their reference.

The paper is organized as follows. The class of P-penalty

functions is introduced in Section II. Section III details the

proposed NMPC scheme. Section IV proposes an analysis

of the behaviour of the proposed scheme for large tracking

errors of the quadrature state, Section V establishes its nominal

stability, Section VI provides insights on the implementation
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of the proposed scheme. Section VII presents an illustrative

example.

Contributions of the paper: an extension of the work

proposed in [6] to multi-quadrature states is proposed, and

the proposed approach based on the Huber penalty function is

generalised to a larger class of functions. A smooth and effi-

cient problem formulation is proposed to handle the proposed

scheme in a standard QP solver.

II. PRELIMINARIES

A. Quadrature states

The following form of discrete-time system will be studied:

xi+1 = f (xi,ui), qi+1 = qi + I(xi,ui), (1)

where f : R
n ×R

nu → R
n and I : R

n → R
nq are continuous,

possibly nonlinear functions representing the system dynam-

ics, [x,q] ∈ R
n+nq is the system state vector, u ∈ R

nu the input

vector. The states labelled q are those we refer to as quadrature

states, since they can be construed as an integration of the other

states x and the inputs u via the function I, while function f

does not depend on the quadrature states q.

We observe that this situation arises for any mechanical

system for which the generalised forces are independent of

a subset of the generalised coordinates, and for which the

Lagrange function is linearly dependent on that subset of

generalised coordinates. In such a case, Equation (1) results

from the discretisation of the continuous dynamics of the

system, regardless of the discretisation method used.

B. P-penalty functions

As a systematic way of dealing with large tracking errors

of quadrature states, i.e. states that do not enter the system

dynamics, this paper proposes to use a special type of penalty

functions, P : R
n → R+ having the following properties:

1) P is lower-bounded by a K∞ function;

2) ∇zP(z) exists everywhere;

3) ∇zP(z) 6= 0, ∀z 6= 0 and ∇zP(0) = 0;

4) ∇2
P(z)d j = 0, ∀z /∈ X j, where X j=1,... is a collection of

non-empty, compact and open sets that contain the origin,

and d j=1,... is a collection of unitary constant vectors.

We will further label a quasi P-penalty function a function

that fulfils conditions 1-3, and that fulfils condition 4 asymp-

totically for z large, more precisely:

∥
∥∇2

P(z)d j

∥
∥≤ c‖z‖−1

M , ∀z /∈ X j, (2)

for some constant c > 0 and positive-definite matrix M. The

concept of quasi P-penalty function allows us to capture

another useful class of penalty functions that yield “well-

behaved” responses of the NMPC controller for large errors

in the quadrature states.

We provide next an example of a P-penalty function and of

a (not strictly) convex P-penalty function.
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Fig. 1. Huber penalty function Hρ (z) for z ∈ R and ρ = 0.3.
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Fig. 2. Huber penalty function P(z) for z ∈R
2, ρ = [0.3 0.1] and w = [1 3].

1) Example of P-penalty function: We propose here an

example of such penalty function constructed using the Huber

penalty function [7] that has arguably very good properties

to deploy the proposed idea in practice. The Huber penalty

function Hρ(z) : R → R reads as: (see Fig. 1):

Hρ(z) =

{
1
2
z2, |z| ≤ ρ

ρ(|z|− 1
2
ρ), |z|> ρ

, (3)

for the given parameter ρ ∈ R. It is quasi-convex, equivalent

to a quadratic penalty within the region [−ρ ,ρ ], and similar

to an ℓ1 norm outside. One can then construct from Hρ(z) a

P-penalty function P(z) : R
nq → R as follows

P(z) =
nq

∑
j=1

w jHρ j
(z j) (4)

for the given set of parameters ρi=1,...,nq ∈ R, and the set

of weights w1,...,nq ∈ R. Here a quadratic penalty 1
2
z⊤Wz is

implemented in a neighbourhood of z = 0, where W is a

diagonal weighting matrix formed by the weights w1,...,nq . It

can be easily verified that (4) satisfies the properties of a P-

penalty function as:

d j = 1 j, X j =
{

z
∣
∣

∣
∣z j

∣
∣≤ ρ j

}
, ∀ j

verifies condition 4, where 1 j is a unit vector with element j

equal to 1.

If a quadrature penalty based on a non-diagonal weighting

matrix W is desirable, a state-space transformation diagonal-

ising the weighting matrix of the quadrature states can be
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deployed, so as to recover a function of the form (4). Then

all the results presented thereafter are valid in the transformed

space. For the sake of brevity, we will not further detail this

aspect of the problem.

2) Example of quasi P-penalty function: we provide here

an example of quasi P-penalty function based again on the

Huber penalty function, reading as:

P(z) =Hρ (‖z‖M) =

{
1
2
‖z‖2

M if ‖z‖M ≤ ρ
ρ(‖z‖M − 1

2
ρ) otherwise

.

We can verify here that for ρ < ∞ condition 4 holds asymptot-

ically for any d and for X= {z | ‖z‖M ≤ ρ}. Indeed, for z /∈X,

it can be verified that

∥
∥∇2

P(z)d j

∥
∥= ρ

∥
∥∇2 ‖z‖M d j

∥
∥≤ c‖z‖−1

M (5)

holds for c = ρ
(

‖M‖+‖M‖2
)

and any unitary vector d j.

III. NMPC BASED ON P-PENALTY FUNCTIONS

In the following, the index i is reserved for the current time

instants, while the index k is used for the predicted times. In

order to clearly distinguish between them, we will use xi, qi as

the physical states of the system and sk, Ik as their predictions

in the future via the model (1), i.e. we will have:

s0 = xi, I0 = qi (6a)

sk+1 = f (sk,uk), Ik+1 = Ik + I(Ik,uk). (6b)

In the following, for referring to a specific state j in qi and

Ik, we will use qi, j and Ik, j respectively.

In order to formulate the NMPC problem, let us denote the

stage cost related to the non-quadrature states and controls as

φ(x,u). Without loss of generality, we will consider here the

problem of driving the system to the origin, therefore φ (0,0)=
0. A classical form of NMPC scheme with terminal equality

constraints for system (1) then reads as:

ϕ2(xi,qi) = min
s,u,I

N−1

∑
k=0

φ(sk,uk)+
1

2
I⊤k WIk (7a)

s.t. sk+1 = f (sk,uk), s0 = xi, (7b)

Ik+1 = Ik + I(sk,uk), I0 = qi, (7c)

sN = 0, IN = 0, (7d)

h(sk,uk)≤ 0, k = 0, ...,N −1. (7e)

where h stands for the set of state and input constraints, and

the stage cost is commonly chosen as φ(sk,uk) =
1
2
s⊤k Qsk +

1
2
u⊤k Ruk where Q and R are user-defined weighting matrices.

As anticipated in the previous sections, classical NMPC

schemes like (7) can result in excessively aggressive control

actions for large deviations of the quadrature states from the

given reference. We propose next an NMPC scheme which is

stabilising but at the same time insensitive to large deviations

of qi from the origin. In order to achieve this goal, we (a)

replace the quadratic penalty function ∑N−1
k=0

1
2
I⊤k WIk in the

NMPC scheme (7) by a P-penalty function and (b) remove

the terminal constraint IN = 0. The proposed scheme takes the

following form:

ϕ(xi,qi) = min
s,u,I

N−1

∑
k=0

φ (sk,uk)+
N

∑
k=0

P(Ik, IN) , (8a)

s.t. sk+1 = f (sk,uk), s0 = xi, (8b)

Ik+1 = Ik + I(sk,uk), I0 = qi, (8c)

sN = 0, h(sk,uk)≤ 0, (8d)

where

P(Ik, IN) = max{P(Ik), P(IN)} . (9)

Removing the terminal constraints IN = 0 from the proposed

scheme (8) is required in order to establish Theorem 1, which

will state that when the system state is far enough from the

reference, the NMPC control solution is not affected anymore

by further changes in the system states. At a more intuitive

level, the need for removing this terminal constraint should

come as fairly clear. Indeed, if the NMPC scheme has to

steer the system state to the origin in the allotted prediction

horizon N, then a very large deviation of the system states from

their reference has to trigger an aggressive response from the

NMPC scheme, as a very large correction of the system state

is required within that horizon. A too large deviation leads

typically to the NMPC scheme being infeasible. In order for

the NMPC scheme to not deliver an aggressive response to

a large deviation of the system state from the reference, this

terminal constraint has to be removed.

One can observe the peculiar form of the penalty P applied

to the quadrature states Ik=0,...,N . Since no terminal penalty

nor terminal set is used on the terminal quadrature state,

this formulation plays the role of a terminal cost, and is

instrumental in establishing a proof of stability for the NMPC

scheme (8). In the following, we will use the notation

Φ(s,u) =
N−1

∑
k=0

φ (sk,uk) , (10)

and we will assume throughout this paper that:

α(s,u)≥ Φ(s,u)≥ α(s,u) and ∇Φ(0,0) = 0, (11)

where α, α are K∞ functions. E.g. positive-definite quadratic

cost functions fulfil these criteria.

IV. INSENSITIVITY TO LARGE ERRORS OF THE

QUADRATURE STATES

In this section, we will show that the control input u

delivered by the NMPC scheme (8) is insensitive to the initial

conditions qi when they are sufficiently large. The definition

of insensitivity to the quadrature state we will use here is

∂u⋆

∂qi

= 0, (12)

where u⋆ is the control input computed by the NMPC scheme

for the given system states xi,qi.

In the following, for the simplicity of the analysis it will

be useful to consider problem (8) in the context of single

shooting, where the states are eliminated from the problem
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via simulating the dynamics (8b)-(8c), so that s and I can be

viewed as functions of the inputs u and the initial conditions

xi, qi only. Furthermore, we consider a slack formulation [7]

of (9) so as to construct a reformulation of (8) based on differ-

entiable functions only. We then rewrite (8) in the equivalent

form:

ϕ(xi,qi) = min
u,w

Φ(s(u,xi) ,u)+
N

∑
k=0

wk, (13a)

s.t. sN (u,xi) = 0, (13b)

h(sk (u,xi) ,u)≤ 0, (13c)

wk ≥ P(Ik (u,xi,qi)) , (13d)

wk ≥ wN . (13e)

In this subsection, it will be established that the control policy

delivered by the NMPC scheme (13) becomes insensitive to

qi for large values of |qi|. This statement is further discussed

at the end of the following theorem.

Theorem 1: if P is a P-penalty function, for any given initial

conditions xi, the solution to (13) is insensitive to changes in

the initial quadrature state qi in the direction d j if the predicted

quadrature state Ik (u
∗,xi,qi) /∈ X j, ∀k, where u∗ is solution of

(13).

Proof: We define the Lagrange function:

L= Φ(s(u,xi) ,u)+
N

∑
k=0

wk (14)

+µ⊤h(sk (u,xi) ,u)+λ⊤
N sN (u,xi)+

+
N

∑
k=0

νk (P(Ik (u,xi,qi))−wk)+
N−1

∑
k=0

ηk (wN −wk) ,

where we omit the arguments in L for the sake of brevity. The

solution to (13) satisfies the stationarity conditions [8]:

∇uL= 0, ∇wL= 0. (15)

We will show next that if the current quadrature state qi is such

that Ik (u
∗,xi,qi) /∈ X j, ∀k, the conditions (15) are insensitive

to variations of the initial conditions qi along the direction d j,

i.e. a small change in the direction ∆qi = d j does not impact

the control actions of the proposed NMPC scheme.

First we can observe from (14) that ∇wL is independent of

qi, and therefore insensitive to variations in qi in any direction.

Additionally,

∇2
u,qi

L=
N

∑
k=0

νk∇2
u,qi

P(Ik (u,xi,qi)) ,

and we observe that since the quadrature state trajectory I0,...,N

depends linearly on the initial conditions of the quadrature

state, i.e. qi:

∂ Ik (u,xi,qi)

∂qi

= I, (16)

for any time k. It follows that for any input u j:

∂

∂u j

∂ Ik (u,xi,qi)

∂qi

= 0 (17)

holds, and consequently:

∇2
u,qi

P(Ik (u,xi,qi))

=
∂ Ik (u,xi,qi)

∂u

⊤ ∂ 2
P(z)

∂ z2

∣
∣
∣
∣
∣
z=Ik(u,xi,qi)

∂ Ik (u,xi,qi)

∂qi

=
∂ Ik (u,xi,qi)

∂u

⊤ ∂ 2
P(z)

∂ z2

∣
∣
∣
∣
∣
z=Ik(u,xi,qi)

. (18)

Using property 4 of the P-penalty functions, it then holds that

∇2
u,qi

P(Ik (u,xi,qi))d j = 0, (19)

and, in turn,

∇2
u,qi

L(u,xi,qi)d j = 0, (20)

such that (15) is insensitive to changes in the initial conditions

of the quadrature state qi in the direction d j. We additionally

observe that the constraints:

h(sk (u
∗,xi) ,u)≤ 0, sN (u∗,xi) = 0, (21)

are insensitive to qi, such that they remain feasible upon

perturbing the initial conditions qi.

Implications of Theorem 1:

1) The NMPC control policy loses its sensitivity to the initial

condition qi, j for every value of the quadrature state j far

enough from its reference, such that the optimal control

trajectory of the prediction corresponding to that state,

i.e. Ik, j, k = 0, ...,N + 1, lies entirely outside the central

set X j.

2) In order to get that effect, one shall design convex central

sets X j=1,...,nq such that qi, j /∈ X j for large values of qi, j.

Additionally, it is reasonable to design the collection

of central sets X1,..,nq such that
(
⋃

j=1,...,nq
X j

)c

is non

empty, and such that qi /∈
⋃

j=1,...,nq
X j when ‖qi‖ is

large. One may observe that the example of P-penalty

constructed from the Huber penalty function fulfils these

criteria, and is arguably a good choice of P-penalty (see

Figure 1 for an illustration).

3) In practice, the NMPC control policy enters a gradual

insensitivity to the current value qi, j of a quadrature state

j as it gets further away from the reference and as more

and more elements k of the predicted trajectories Ik, j leave

the central set X j.

We now turn to extending Theorem 1 to quasi P-penalty

functions. In this case, the insensitivity holds asymptotically,

i.e. for qi large.

Theorem 2: Consider a quasi P-penalty function P. For any

given initial conditions xi, the solution to (13) is asymptotically

insensitive to changes in the direction d j if Ik (u
∗,xi,qi) /∈

X j, ∀k, where u∗ is the solution of (13). We moreover assume

that
∂ Ik(u,xi,qi)

∂u
is bounded at the optimal solution for any xi, qi.

Proof: The proof proceeds along the same lines as The-

orem 1, yielding

∥
∥∇2

u,qi
P(Ik (u,xi,qi))d j

∥
∥≤ c

∥
∥
∥
∥

∂ Ik (u,xi,qi)

∂u

∥
∥
∥
∥
‖Ik (u,xi,qi)‖

−1
Q ,
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where we used (16), such that
∥
∥∇2

u,qi
L(u,xi,qi)d j

∥
∥≤

c
N

∑
k=0

|νk|

∥
∥
∥
∥

∂ Ik (u,xi,qi)

∂u

∥
∥
∥
∥
‖Ik (u,xi,qi)‖

−1
Q .

V. NOMINAL STABILITY OF NMPC BASED ON

P-PENALTIES

It shall be observed here that the proposed scheme is a

mixture of NMPC with and without terminal constraints. Re-

moving all terminal constraints in the proposed scheme would

allow one to use stability results for NMPC without terminal

constraints [1]. However, the relatively simple assumptions

required here to establish the nominal stability of the proposed

scheme would be turned into the fairly convoluted ones

resulting from the analysis of stability for NMPC without

terminal constraints. Our goal here is to obtain a stability proof

that is as similar as possible to the classic proof of nominal

stability for NMPC with terminal constraints. The proposed

NMPC scheme will be instrumental in achieving that goal.

In this section, the nominal stability of the NMPC scheme

(8) is investigated. First we consider the case of a terminal

point constraint. Second, we extend the stability theory to the

case of a terminal cost and set constraint.

1) Terminal point constraint : The following theorem es-

tablishes that, under some conditions, ϕ (xi,qi) is a Lyapunov

function of system (1) controlled by the NMPC scheme (8).

First, four key assumptions are introduced.

1) I(0,0) = 0 and f (0,0) = 0.

2) The origin is feasible.

3) The min-max problem:

max
D∈D

min
∆u,∆s,∆I,∆w

Φ(∆s,∆u)+
N

∑
k=0

∆wk (22a)

s.t. ∆sk+1 = A∆sk +B∆uk, (22b)

∆Ik+1 = ∆Ik +C∆sk, (22c)

∆s0 = 0, ∆sN = 0, ∆I0 = 0, (22d)

∆wk ≥ D∆Ik, ∆wk ≥ ∆wN , (22e)

where

A = ∇s f (0,0)⊤ ∈ R
n×n, B = ∇u f (0,0)⊤ ∈ R

n×m,

C = ∇I(0)⊤ ∈ R
nq×n

yields a negative cost. Here D= {P(z) |z ∈ R
nq}.

4) The system is stabilisable and the value function ϕ(xi,qi)
is upper bounded by a K function α̃2 in an arbitrarily

small neighbourhood N of the origin.

5) Function h constrains the states x and controls u to be in

a compact set, while the quadrature states q are possibly

unconstrained.

Note that Assumptions 4 and 5 are rather standard in the

literature on MPC stability, see e.g. [9]. Assumption 3 can

be checked offline and, as shown in [6], it is straightforward

to check in the case nq = 1. However, to the authors best

knowledge, checking it in case several quadrature states

need to be handled requires solving (22), which can be

computationally demanding. From a practical point of view,

it appears that Assumption 3 is typically satisfied for N

sufficiently long. In order to gain some intuition on this

statement, note that Assumption 3 entails that a trajectory

x = 0, u = 0 and q 6= 0 is not a solution of the problem. It

follows that there exists a feasible perturbation around x = 0,

u = 0 that allows the quadrature state for approaching the

origin. A typical condition in which this fails to be the case is

when the horizon is so short that there is not enough control

authority to do so.

Theorem 3: Let X be the set of feasible initial conditions

(x0,q0) for problem (8). Then, under Assumptions 1-5, the

optimal cost function ϕ (xi,qi) is a Lyapunov function for the

nominal closed-loop system:

xi+1 = f (xi,u
∗ (xi,qi)), qi+1 = qi + I(xi,u

∗ (xi,qi))

in the set X, where u∗ (xi,qi) is the control delivered by the

NMPC scheme (8), i.e. the first element of the optimal control

input sequence u∗0,...,N(xi,qi) delivered by (8).

Proof: By design of the stage cost, the cost function

ϕ (xi,qi) is bounded from below, i.e. ϕ (xi,qi) ≥ α1(‖xi‖+
‖qi‖) with α1(·) ∈K∞.

Proving the existence of the upper bound ϕ (xi,qi) ≤
α2(‖xi‖+ ‖qi‖) with α2(·) ∈ K∞ is in general more difficult

and some additional assumptions are needed. Using Assump-

tion 4, i.e. ϕ (xi,qi) ≤ α̃2(‖xi‖+ ‖qi‖) on N, [9, Proposition

11] and Assumption 5, we can extend the upper bound to

any arbitrarily large compact set N2 on which ϕ (xi,qi) is

bounded, i.e. ϕ (xi,qi)≤ ᾱ2(‖xi‖+‖qi‖), for all (xi,qi) ∈N2.

As there are no bounds on qi, we will make use next of

Theorem 1 to establish that ϕ (xi,qi)≤ α2(‖xi‖+‖qi‖) on the

domain of Problem (8). Let us denote the j-th component of

vector qi as qi, j. Choose N2 large enough such that, for any

point (xi,qi) on the boundary ∂N2, Ik(u
∗,xi,qi) /∈ X j, ∀k =

0, . . . ,N. Then, for any q̄i with one or more components

j such that q̄i, j ≥ qi, j, it holds that ϕ (xi, q̄i) = ϕ (xi,qi) +
N (P(q̄i)−P(qi)) ≤ ϕ (xi,qi) + NP(q̄i). Then, by choosing

α2(‖xi‖+‖qi‖) = ᾱ2(‖xi‖+‖qi‖)+NP(qi), one finally gets

ϕ (xi,qi)≤ α2(‖xi‖+‖qi‖).

This proves that the MPC value function is upper and lower

bounded by K∞ functions. In the following we will prove

descent of the MPC value function along all closed loop

trajectories.

First an upper bound for ϕ (xi+1,qi+1)−ϕ (xi,qi) is com-

puted. In the absence of perturbation and model error, the

initial values at time i+ 1 match the predicted trajectories,

i.e.:

xi+1 = s∗1(xi,qi), qi+1 = I∗1 (xi,qi).
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We then consider the shifted trajectories (where the arguments

xi, qi are omitted):

s+ =







s∗1
...
s∗N

0n×1






, I+ =







I∗1
...
I∗N
I∗N






, u+ =







u∗1
...

u∗N−1

0nu×1






, (23)

which, from Assumptions 1-2, are feasible for Problem (8)

with the initial values xi+1, qi+1. This observation ensures the

recursive feasibility of (8). The trajectories (23) yield the cost

function ϕ+ given by:

ϕ+ =ϕ (xi,qi)−φ(xi,u
∗
0)−P(I∗0 , I

∗
N)+P(I∗N) ,

and by optimality

ϕ+ ≥ ϕ (xi+1,qi+1)

holds. It follows that:

ϕ (xi+1,qi+1)−ϕ (xi,qi,N)≤ ξ (xi,qi),

with

ξ (xi,qi) =−φ (xi,u
∗
0)−P(qi, I

∗
N)+P(I∗N) . (24)

Finally, from (9)

P(qi, I
∗
N)≥ P(I∗N) , (25)

it follows that

ϕ (xi+1,qi+1)−ϕ (xi,qi)≤ ξ (xi,qi)≤−φ (xi,u
∗
0)≤−ᾱ (‖xi‖) ,

i.e. ϕ (xi,qi) is decreasing with the rate −ᾱ (‖xi‖).
Next, it is established by contradiction that ϕ (xi,qi) is non-

decreasing only at the reference, i.e.

ξ (xi,qi) = 0 ⇒ xi = 0, qi = 0. (26)

First it can be verified that the implication:

ξ (xi,qi) = 0 ⇒ xi = 0, P(I∗0 , I
∗
N) = P(I∗N) , (27)

follows from (24)-(25), I∗0 = qi, φ(·, ·)≥ 0 and P(·)≥ 0. Using

Definition (9), it further yields:

ξ (xi,qi) = 0 ⇒ xi = 0, P(I∗0 )≤ P(I∗N) . (28)

We then observe that the trajectory u = 0, s = 0, I = qi is

feasible for (8) with xi = 0, and provides the upper bound:

ϕ (0,qi)≤ Φ(0,0)+
N

∑
k=0

P(qi,qi) = (N +1)P(qi) . (29)

It follows that, noting s∗, u∗, I∗ the optimal trajectory of (8)

for xi = 0:

(N +1)P(qi)≥ ϕ (0,qi) =

Φ(s∗,u∗)+
N

∑
k=0

P(I∗k , I
∗
N)≥ Φ(s∗,u∗)+

N

∑
k=0

P(I∗N)≥

Φ(s∗,u∗)+
N

∑
k=0

P(I∗0 ) = Φ(s∗,u∗)+(N +1)P(qi) ,

which implies that Φ(s∗,u∗) = 0. Hence, if ξ (xi,qi) = 0, then

the optimal trajectory is

u∗ = 0, s∗ = 0, I∗ = qi. (30)

We now turn to proving that if ξ (xi,qi) = 0 then qi = 0

necessarily follows. We proceed with showing by contradiction

that the trajectories (30) are not a solution of (8) unless qi = 0.

We consider the slack formulation of (8):

ϕ(0,qi) = min
u,s,I,w

Φ(s,u)+
N

∑
k=0

wk (31a)

s.t. sk+1 = f (sk,uk) , s0 = 0, sN = 0, (31b)

Ik+1 = Ik + I(sk,uk) , I0 = qi, (31c)

wk ≥ P(Ik) , wk ≥ wN . (31d)

If (30) is a solution to (31) then since QP (22) is the

linearization of NLP (31), it takes the trivial solution ∆s =
0, ∆u = 0, ∆I = 0, ∆w = 0. This latest observation is, however,

in contradiction with Assumption 3 whenever qi 6= 0. Since

QP (22) cannot have a trivial solution, it follows that the cost

function of problem (31) at the solution (30) with qi 6= 0 is not

a local minimum, and therefore not a global one. As a result,

ξ (xi,qi) = 0 entails qi = 0.

We finally turn to bounding ξ (xi,qi) in both its arguments.

First, it can be verified that any trajectory with xi = 0 and

P(I∗N) > P(qi) yields a larger cost in problem (31) than

trajectory (30), which is itself not a solution of (31) if qi 6= 0.

From this fact and Assumption 3, it follows that at the

solution of (31), the inequality P(qi, I
∗
N) =P(qi)>P(I∗N) must

hold for all qi 6= 0. Then function β (qi) := P(qi)− P(I∗N)
is by construction a positive definite function, i.e. β (0) = 0,

β (qi)> 0, for all qi 6= 0. This means that

ξ (0,qi)≤−β (qi).

and function ϕ (xi,qi) has the following properties on X:

ϕ (xi+1,qi+1)−ϕ (xi,qi)≤ ξ (xi,qi),

with

ξ (xi,qi)≤−φ (xi,u
∗
0)

and

ξ (0,qi)≤−β (qi).

Discussion of Theorem 3 :

• It should be observed that the quadrature cost (9) plays

a key role in the stability result established in Theo-

rem 3, since it is needed to ensure that a) ϕ (xi,qi) is

non-increasing, and that b) xi = 0, qi = 0 is the only

point where ϕ (xi,qi) is non-decreasing. Since it gives a

particular importance to the terminal quadrature state IN ,

the penalty on the quadrature state (9) can be in some

sense construed as a special form of terminal cost.

• It is unfortunate that Theorem 3 does not allow the con-

struction of a convergence rate for the quadrature states.

Indeed, while one can arguably expect an exponential

convergence of the regular states xi when the cost function

Φ has the adequate properties, the same cannot generally

be done for the quadrature states. In practice, however, a

linear convergence rate seems to be usually achieved on

the quadrature states.
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• We have assumed in the NMPC schemes (7)-(8) that

the quadrature states are unconstrained. The introduction

of constraints on the quadrature states is however, not

a major problem in the context proposed here. In the

presence of constraints on the quadrature states, the result

of Theorem 1 remains valid as long as the quadrature

state constraints are not active. Moreover, it can be

verified that the stability analysis presented in Theorem 3

is not affected by the introduction of quadrature state

constraints.

• There is no limitation on how short the horizon can be

in order for the proposed NMPC scheme to be stable.

However, for a too short horizon, one typically observes

the failure of Assumption 3, which invalidates the result

of Theorem 3

2) Stability using a terminal set constraint: In this section

we provide the extension of the nominal stability proof to

the case where a terminal set constraint T(IN) and terminal

cost T (sN) is used in the NMPC scheme, i.e. we consider the

problem:

ϕ(xi,qi) = min
s,u,I

T (sN)+Φ(s,u)+
N

∑
k=0

P(Ik, IN) (32a)

s.t. sk+1 = f (sk,uk), s0 = xi, (32b)

Ik+1 = Ik + I(sk,uk), I0 = qi, (32c)

sN ∈ T(IN) , h(sk,uk)≤ 0. (32d)

Nominal stability hinges on the following theorem.

Theorem 4: Assume that the assumptions of Theorem 3

hold. Assume moreover that there exist a control law K (xi)
such that:

• u = K (xi) exists and is feasible ∀xi ∈ T(IN);

• f (xi,K (xi)) ∈ T(IN) holds ∀xi ∈ T(IN);

• T(IN)⊆ X, ∀ IN ;

• The following inequalities holds ∀ xi ∈ T(IN):

T ( f (xi,K(xi)))−T (xi)≤−φ (xi,K(xi)) , (33a)

P(qi + I(xi,K(xi)))−P(qi)≤ 0. (33b)

Then, the optimal cost function of the NMPC scheme (32) is

a Lyapunov function for the nominal closed-loop system:

xi+1 = f (xi,u
∗ (xi,qi)), qi+1 = qi + I(xi,u

∗ (xi,qi)),

in the set X, where u∗ (xi,qi) is the control delivered by the

NMPC scheme (32), i.e. the first element of the optimal control

input sequence u∗0,...,N(xi,qi) delivered by (32).

Proof: First, we observe that Equation (33b) entails that

P(I∗N , I
∗
N + I(s∗N ,uT))≤ P(I∗N) , (34)

where we use the short notation uT =K (s∗N). We then consider

the shifted state and control sequence

s+ =







s∗1
...
s∗N

f (s∗N ,uT)






, I+ =







I∗1
...
I∗N

I∗N + I(s∗N ,uT)






,

u+ =







u∗1
...

u∗N−1

uT






, (35)

which is feasible for problem (32) for xi+1, qi+1. The shifted

trajectories (35) yield the cost

ϕ+ =ϕ (xi,qi)+T ( f (s∗N ,uT))−T (s∗N)

+φ (s∗N ,uT)−φ (s∗0,u
∗
0)+

N

∑
k=1

P(Ik, I
∗
N + I(S∗N ,uT))

−
N

∑
k=0

P(Ik, I
∗
N)+P(I∗N + I(S∗N ,uT)) .

Equation (33a) entails that

T ( f (s∗N ,uT))−T (s∗N)+φ (s∗N ,uT)≤ 0.

Moreover, from (33b), we obtain

P(Ik, I
∗
N + I(S∗N ,uT))−P(Ik, I

∗
N)≤ 0, (36)

such that

N

∑
k=1

P(Ik, I
∗
N + I(S∗N ,uT))−

N

∑
k=0

P(Ik, I
∗
N)≤−P(I0, I

∗
N) ,

and

ϕ+ ≤ϕ (xi,qi)−φ (s∗0,u
∗
0)−P(I0, I

∗
N)+P(I∗N + I(S∗N ,uT)) .

Using (36) it follows from the properties of the function P

that

−P(I0, I
∗
N)≤−P(I0, I

∗
N + I(S∗N ,uT))≤−P(I∗N + I(S∗N ,uT)) ,

and finally

ϕ (xi+1,qi+1)−ϕ (xi,qi)≤−φ (s∗0,u
∗
0) .

The remaining of the proof follows the same arguments as in

Theorem 3.

Discussion of Theorem 4: The dependence of the terminal

set T on IN is arguably crucial in order to be able to construct a

control law that achieves conditions (33). Indeed, in general,

the quadrature states may be very insensitive to the control

inputs u, the extreme case being that function I is not function

of u. In such a case, (33b) hinges on having an adequate

terminal state sN such that

P(I∗N + I(s∗N))≤ P(I∗N)

always holds. This cannot generally hold if the terminal set T

is independent of I∗N . Indeed, let us e.g. assume that I(s∗N) =
s∗N ∈ R, such that

P(I∗N + s∗N)≤ P(I∗N)

must always hold. Such a condition clearly enforces I∗N-

dependent restrictions on s∗N .
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VI. IMPLEMENTATION

It this section, we discuss the implementation of (8) using

the P-penalty (4) based on the Huber penalty function. A

difficulty arising from using Huber penalties is their non-

smoothness. Indeed, on can observe that the Hessian of the

Huber penalty function is not Lipschitz continuous at zi = ρi,

i.e.:

lim
ε→0+

∣
∣∇2

Hρi
(ρi + ε)−∇2

Hρi
(ρi)

∣
∣=Wi, (37)

and requires extra care in the context of Newton-type tech-

niques. To tackle that issue, non-smooth Newton techniques

or first-order techniques can be deployed. In this section, we

investigate instead the deployment of a classical reformulation

of the Huber penalty function [7] into a smooth problem

for tackling numerically the NMPC scheme (8). We observe,

however, that some of the constraints proposed in [7] can be

removed, as they are unnecessary and counterproductive for a

real-time implementation.

We aim here at providing a smooth reformulation of (8)

when a Huber penalty is used, which is suitable for Newton-

type methods, and minimising the computational demand.

Note that here we ought to assume that functions f and I

are everywhere at least twice differentiable. We provide it in

the form of the following proposition:

Proposition 1: The NMPC scheme

ϕ(xi,qi) = min
s,u,I,µ ,ν

Φ(s,u)+
N

∑
k=1

ρ⊤Wνk +
1

2
µ⊤

k W µk (38a)

s.t. sk+1 = f (sk,uk), Ik+1 = Ik + I(sk,uk),

I0 = qi, s0 = xi, sN = 0,

h(sk,uk)≤ 0, ∀k,

νk ≥ 0, ∀k > 0, (38b)

−µk −νk ≤ Ik ≤ µk +νk, ∀k > 0, (38c)

µN +νN ≤ µk +νk, ∀0 < k < N, (38d)

is equivalent to (8). Here the slack variables have the di-

mension µk, νk ∈ R
nq , such that all constraints are imposed

element-wise.

Proof: We will proceed by showing that the slack vari-

ables µk, νk together with the associated constraints yield the

cost function (8). It is helpful to note that:

ρ⊤Wνk +
1

2
µ⊤

k W µk =
nq

∑
j=1

Wj

(
1

2
µ2

k, j +ρ jνk, j

)

, (39)

since W is diagonal, such that in the following we will

investigate the terms 1
2

µ2
k, j +ρ jνk, j individually.

First, we observe that because of the ℓ1 penalty on νk=1,...,N

and the ℓ2 penalty on µk=1,...,N , at every time stage k =
1, . . . ,N in (38), either |Ik| ≤ µk + νk or µk + νk ≥ µN + νN

are necessarily active for every quadrature state. Therefore

µk +νk = max{|Ik|,µN +νN}= max{|Ik|, |IN |}.

In the following, in order to prove some properties of the

optimisation Problem (38), we will use the following modified

slack variables

µ̃k, j = µk, j −∆, ν̃k, j = νk, j +∆,

where ∆ will be defined differently for each property that

we will prove. Note that this choice results in µ̃k, j + ν̃k, j =
µk, j +νk, j, which makes slack variables µ̃k, j, ν̃k, j feasible with

respect to Constraint (38c) and (38d). Feasibility w.r.t. Con-

straint (38b) will be proven for each specific case individually.

We proceed then with showing that any solution to (38)

satisfies 0 ≤ µk ≤ ρ . First suppose that (38) yields µk, j > ρ j

for some time stage k and quadrature state j. Then define

∆ = µk, j −ρ j > 0 and consider the modified slack variables:

µ̃k, j = µk, j −∆ = ρ j, ν̃k, j = νk, j +∆ > 0,

so that slack variables νk, j are feasible w.r.t. Constraint (38b).

The contribution of µ̃k, j, ν̃k, j to the cost function reads:

1

2
µ̃2

k, j +ρ jν̃k, j =
1

2
µ2

k, j +ρ jνk, j +∆

(

ρ j −µk, j +
1

2
∆

)

=
1

2
µ2

k, j +ρ jνk −
1

2
∆2

<
1

2
µ2

k, j +ρ jνk, j,

hence a solution to (38) cannot admit a µk, j > ρ .

Secondly, suppose that (38) yields µk, j < 0 for some time

stage k and quadrature state j. Defining ∆ = µk, j < 0, the

modified slack variables read as:

µ̃k, j = µk, j −∆ = 0, ν̃k, j = νk, j +∆ = νk, j +µk, j.

Constraint (38c) enforces ν̃k, j = µk, j + νk, j ≥ |Ik, j| ≥ 0, so

that the modified slack variables ν̃k, j are feasible w.r.t. Con-

straint (38b). The contribution of µ̃k, j, ν̃k, j to the cost function

reads:

1

2
µ̃2

k, j
︸︷︷︸

=0

+ρ jν̃k, j = ρ jνk, j + ρ j∆
︸︷︷︸

<0

<
1

2
µ2

k, j +ρ jνk, j,

since ∆ < 0 and ρ j > 0. Therefore a solution to (38) cannot

admit a µk, j < 0.

We then turn to proving that Constraint (38d) entails that

µN ≤ µk and νN ≤ νk. Suppose that (38) yields µN, j > µk, j

for some time k and quadrature state j. We define ∆ = µk, j −
µN, j < 0, and the modified slack variables as:

µ̃k, j = µk, j −∆ = µN, j,

ν̃k, j = νk, j +∆ = νk, j +µk, j −µN, j ≥ νN, j ≥ 0,

so that slack variables ν̃k, j are feasible w.r.t. Constraint (38b).

The contribution of µ̃k, j, ν̃k, j to the cost function reads:

1

2
µ̃2

k, j +ρ jν̃k, j =

=
1

2
µ2

k +ρ jνk, j +∆

(

ρ j −µk, j +
1

2

(
µk, j −µN, j

)
)

=
1

2
µ2

k, j +ρ jνk, j +∆

(

ρ j −
1

2
µk, j −

1

2
µN, j

)

︸ ︷︷ ︸

<0

<
1

2
µ2

k, j +ρ jνk, j,

since ∆ < 0 and µk, j < µN, j ≤ ρ j. Hence a solution to (38)

cannot admit µk < µN . Suppose now that (38) yields νN, j >
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νk, j ≥ 0 for some time k and quadrature state j. Then defining

∆ = ρ j −µN, j > 0, the modified slack variables read as:

µ̃N, j = µN, j −∆, ν̃N, j = νN, j +∆ > 0,

so that slack variables ν̃N, j are feasible w.r.t. Constraint (38b).

The contribution of µ̃k, j, ν̃k, j to the cost function reads:

1

2
µ̃2

N, j +ρν̃N, j =
1

2
µ2

N, j +ρνN, j +∆

(

ρ j −µN, j +
1

2
∆

)

=
1

2
µ2

N, j +ρ jνN, j −
1

2
∆2

<
1

2
µ2

N, j +ρ jνN, j,

hence a solution to (38) cannot admit νk, j < νN, j.

We finally turn to prove that if µk, j < ρ j, then νk, j = 0.

Suppose that we have µk, j < ρ j, and νk, j > 0 for some time k

and some quadrature state j. Then defining ∆ = ρ j −µk, j > 0,

the modified slack variables read as:

µ̃k, j = µk, j −∆ = ρ j, ν̃k, j = νk, j +∆ = µk, j +νk, j −ρ j ≥ 0,

The modified cost function reads as:

1

2
µ̃2

k, j +ρ jν̃k, j = ρ jµk, j +ρ jνk, j −
1

2
ρ2

j

=−
1

2

(
µk, j −ρ j

)2
+

1

2
µ2

k, j +ρ jνk, j

<
1

2
µ2

k, j +ρ jνk, j,

such that µk, j < ρ j, and νk, j > 0 cannot hold.

We summarise next the previous observations and conclude.

At a solution of (38) the following holds ∀k = 1, ...,N:

0 ≤ µk ≤ ρ , µN ≤ νk, νN ≤ νk, (40a)

µk, j < ρ j ⇒ νk, j = 0, (40b)

µk +νk = max{|Ik|, |IN |}. (40c)

The above result entails that µN + νN = |IN |. Using the

definition of Huber penalty, we obtain

nq

∑
j=1

w j

(
1

2
µ2

N, j +ρ jνN, j

)

= P(IN).

Moreover, from Equation (40c) we obtain

w j

(
1

2
µ2

k, j +ρ jνk, j

)

= max{P(Ik),P(IN)}.

We remark here that reformulation (38) allows one to use

state-of-the-art solvers for NMPC also for P-penalty NMPC

in an efficient way. However, an increase in the computational

time is to be expected, compared to standard NMPC formula-

tions. The development of new tailored algorithms is expected

to reduce this gap and is the object of ongoing research.

VII. ILLUSTRATIVE EXAMPLE

The problem of managing large deviations of the quadrature

states from a given reference is crucial in the context of

airborne applications, where the reference position provided

to the NMPC scheme can be arbitrarily far away from the

current position of the machine, resulting in very aggressive

manoeuvres when a classical NMPC scheme is used. Such

difficulties have been e.g. observed in the context of NMPC-

based aircraft control [5]. In this section, we offer a compar-

ison of the proposed approach on a simulated quadcopter, for

which we want to be allowed to provide an arbitrary position

reference.

A. Quadcopter Model

We use here a quaternion-based model, which avoids the

singularity of a classical approach based on Euler angles [5].

The quadcopter dynamics read as:

ṗ = v, (41a)

v̇ = m−1RF −g1z, (41b)

ω̇ = J−1 (T +ω × Jω) , (41c)

q̇ =
1

2
E⊤ω, (41d)

Ω̇k = J−1
p

(

Tk +(−1)k 1

2
ρACDΩ2

k

)

, (41e)

where p ∈ R
3 is the quadcopter position, which coincides

with the only three quadrature states of the model, v ∈ R
3

its linear velocity, ω ∈ R
3 its angular velocity, and q ∈

R
4 is the quaternion vector defining its orientation. Vectors

Ωk ∈ R
3, k = 1, ...,4 are the propellers angular velocities, and

Tk ∈ R, k = 1, ...,4 are the motor torques. Matrix R ∈ R
3×3 is

the rotation matrix between the inertial reference frame and

the quadcopter reference frame, and is given by:

R = EG⊤, (42a)

G =





−q2 q1 q4 −q3

−q3 −q4 q1 q2

−q4 q3 −q2 q1



 , (42b)

E =





−q2 q1 −q4 q3

−q3 q4 q1 −q2

−q4 −q3 q2 q1



 . (42c)

The vectors T, F ∈ R
3 are the torque and force acting on the

quadcopter in its own reference frame, they read as:

T =
4

∑
k=1

Lek ×1z

1

2
ρACLΩ2

k −1z (−1)k 1

2
ρACDΩ2

k , (43a)

F =
4

∑
k=1

1z

1

2
ρACLΩ2

k . (43b)

Here 1z =
[

0 0 1
]⊤

and

e1 =





1

0

0



 , e2 =





0

1

0



 , e3 =





−1

0

0



 , e4 =





0

−1

0



 .

The model and control parameters are summarized in Table I.
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TABLE I
MODEL PARAMETERS

Parameter Value Unit

m 10 (kg)

J





0.25 0 0
0 0.25 0
0 0 1



 (kg ·m2)

JP 10−2 (kg ·m2)
g 9.81 (ms−2)

ρ 1.23 (kg ·m−3)
A 0.1 (m2)

CD 0.075 (Nm2s2 ·kg−1)

CL 0.25 (Nms2 ·kg−1)
L 0.5 (m)

B. Control Problem and Simulation Results

Without loss of generality, we consider the problem of

driving the quadcopter to the position p = 0 from an arbitrary

starting point. The states and inputs read as:

s =











v

ω
q

Ω1

...
Ω4











, I = p, u =





T1

...
T4



 .

We discretise the dynamics (41) using a multiple-shooting

approach [10], with a sampling time ∆t = 0.2s. The position

dynamics then take the form

pk+1 = pk +
∫ tk+1

tk

v(τ)dτ ,

such that we look at the function I(sk,uk) as:

I(sk,uk) =

∫ tk+1

tk

v(τ)dτ ,

where v(τ) , τ ∈ [tk, tk+1] is given by the position-independent

dynamics (41b)-(41e). The problem reads as:

min
s,u,I

1

2

N−1

∑
k=0

(

s⊤k Qsk +u⊤k Ruk + I⊤k WIk

)

+
N

∑
k=0

P(Ik, IN) (44a)

s.t. sk+1 = f (sk,uk), s0 = xi, (44b)

Ik+1 = Ik + I(sk,uk), I0 = qi, (44c)

sN = 0, (44d)

h(sk,uk)≤ 0, k = 0, ...,N −1, (44e)

where function h enforces the following constraints:

T ∈ [−8.83,8.83]4, Ṫ ∈ [−10,10]4. (45)

We considered 4 different controllers:

(a) standard NMPC formulation, with P(Ik, IN) = 0 and W =
diag(

[
1 1 1

]
);

(b) P-penalty NMPC formulation, with ρ = 0.15, P(Ik, IN) =
max(∑3

i=1Hρ(Ik,i),∑
3
i=1Hρ(IN,i)) and W = 0;

(c) ℓ2 quasi P-penalty formulation, with ρ = 0.25,

P(Ik, IN) = max(Hρ(‖Ik‖2),Hρ(‖IN‖2)) and W = 0;

(d) ℓ∞ quasi P-penalty formulation, with ρ = 0.25,

P(Ik, IN) = max(Hρ(‖Ik‖∞),Hρ(‖IN‖∞)) and W = 0.

TABLE II
CONTROL PARAMETERS

Parameter Value Unit

∆t 0.2 [s] Sampling time
Th 10 [s] Time horizon

ρx, ρy 0.15 Quad. zone for x and y

ρz 0.25 Quad. zone for z

wx,y,z 1 Huber weights
R diag([5 ... 5]) Input weights
Q diag([0.1 ... 0.1]) ℓ2 penalty weights
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Fig. 3. Three-dimensional trajectory of the quadcopter using the P-penalty
approach (b), displayed in red, and the classical NMPC scheme (a), displayed
in blue. The classical NMPC scheme overshoots the reference position.

All simulations were performed by solving the NMPC

problems to full convergence. The P-penalty problem was

formulated in a smooth way, i.e. as Problem (38). The quasi-

P-penalty problems were formulated by introducing the slack

variable πk to be used in the Huber penalty, i.e. as Hρ(πk),
with the following additional constraints:

πk ≥ ‖pk‖2, (46)

for the ℓ2 quasi-P-penalty; and

πk ≥±xk, πk ≥±yk, πk ≥±zk, (47)

for the ℓ∞ quasi-P-penalty. Note that constraint (46) is a

(convex) conic constraint, while constraints (47) are linear.

We implemented each controller both using the endpoint

constraint (44d) and no terminal constraint. Note that, when

having no terminal constraint for P-penalty and quasi P-

penalty formulations we replaced P(Ik, IN) with P(Ik, Ik), i.e.

we removed constraint (38d). The first formulation illustrates

the theoretical developments of this paper. The second formu-

lation is very common in practical applications and a proof of

stability can be found in [1], under the main assumption of

having a long enough horizon.

A prediction horizon of N = 51 was used, corresponding to

a time horizon of Th = (N −1)TS = 10 [s]. Trajectories were

simulated, using the initial position [x, y, z] = [30, 30, 10], all

other states being initialised at steady-state. The 3D trajectory

of the quadcopter is reported in Figure 3 and 4, where it can be

seen that the standard NMPC scheme is much more aggressive

than the newly proposed formulations. The evolution of the

inputs, torques, velocity and position are displayed in Figure

7, 6 and 5 respectively. It can be seen that the control inputs

Ṫ1,...,4 are very aggressive and motor torques T1,...,4 undergo



11

302826242230
28

26
24

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

x
y

z

Fig. 4. First 1.5 s of the three-dimensional trajectory of the quadcopter
using the P-penalty approach (b), displayed in red, and the classical NMPC
scheme (a), displayed in blue.Because of the classical ℓ2-penalty on the
position, the classical NMPC scheme adopts much more extreme attitudes
than the proposed NMPC scheme.
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Fig. 5. Position and velocity of the quadcopter. Classical NMPC formu-
lation (a) in blue, P-penalty formulation (b) in red, ℓ2 quasi P-penalty
formulation in magenta, ℓ∞ quasi P-penalty formulation in black; schemes
with terminal point constraint in thick dashed line, schemes without terminal
constraint in continuous line. Note that the magenta lines are almost undistin-
guishable from the red ones by eye inspection. The classical NMPC scheme
adopts significantly higher velocities and yields more oscillations than the
NMPC schemes using the newly proposed formulations.

significant saturation only for the classic NMPC scheme, while

they have a much less aggressive behaviour for the P-penalty

and quasi P-penalty formulations. Moreover, the proposed

schemes deliver a control move that requires less banking

than the classic NMPC scheme. Finally, it can be observed

in Figure 5 that the proposed schemes yield less overshoot

while reaching the reference steady-state within a time similar

to that of the standard NMPC formulation. Note that, while

the ℓ∞ quasi P-penalty formulation takes longer to reach the

steady state, by choosing larger values of ρ , e.g. ρ = 0.5, the

steady state is reached in a time similar to that of the other

formulations.

The much more desirable behaviour of the P-penalty and

quasi P-penalty formulations is explained by Theorem 1:

those penalties penalise large deviations of the position from

its reference less than the corresponding quadratic penalty.
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Fig. 6. Propeller torques of the quadcopter. Classical NMPC formulation (a)
in blue, P-penalty formulation (b) in red, ℓ2 quasi P-penalty formulation in
magenta, ℓ∞ quasi P-penalty formulation in black; schemes with terminal
point constraint in thick dashed line, schemes without terminal constraint in
continuous line. Note that the magenta lines are almost undistinguishable from
the red ones by eye inspection. The classical NMPC scheme uses much higher
propeller torques, reaching the saturation of the actuators than the NMPC
schemes using the newly proposed formulations.

Therefore, less aggressive control actions are preferred, the

non-quadrature states are kept closer to their reference and the

position is initially stabilised at a slower rate and the reference

is attained in a less oscillatory and abrupt way.

C. Real-Time Feasible Implementation

The previous simulation results were obtained by using a

generic implementation of the optimal control solver. In this

subsection, we investigate using an algorithm tailored for fast

NMPC implementations, known as the Real Time Iteration

(RTI) scheme [11]. For all details on the method and its

theoretical justification, we refer to [11] and references therein.

In short, the method consists in taking a single full Newton

step per time instant. For the RTI simulations, we used a code-

generated RK4 integrator, and the QP solver FORCES [12].

The computational times obtained for the quadratic NMPC

scheme and the P-penalty scheme are reported in Figure 8.

It can be observed that, though the implementation of the

P-penalty scheme increases significantly the computational

burden of the NMPC scheme, it does not jeopardize the real-

time feasibility of the proposed example. We did not report the

control and state trajectories since they are undistinguishable

by eye inspection from the ones obtained in the previous

subsection.

Note that the ℓ∞ quasi P-penalty formulation can be im-

plemented in a similar way to the P-penalty formulation, i.e.

using a QP solver. It requires less slack variables, but the same

amount of constraints as the P-penalty formulation.

The ℓ2 quasi P-penalty formulation, requires the same slack

variables as the ℓ∞ quasi P-penalty formulation. However, it

also requires a conic solver, due to constraint (46).

Finally, because of the specific structure of P-penalty and

quasi P-penalty formulations, tailored algorithms should be

investigated in order to increase the computational efficiency.
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Fig. 7. Control inputs of the NMPC schemes, i.e. time derivatives of the
propeller torques of the quadcopter. Classical NMPC formulation (a) in
blue, P-penalty formulation (b) in red, ℓ2 quasi P-penalty formulation in
magenta, ℓ∞ quasi P-penalty formulation in black; schemes with terminal
point constraint in thick dashed line, schemes without terminal constraint in
continuous line. Note that the magenta lines are almost undistinguishable from
the red ones by eye inspection. The classical NMPC scheme uses much more
aggressive control inputs than the NMPC schemes using the newly proposed
formulations.
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Fig. 8. Computational time for the classic NMPC scheme (a), displayed as
blue star signs, and for the P-penalty NMPC scheme (b), using the formulation
(38), displayed as red plus signs. Both schemes were implemented without
terminal constraints.

VIII. CONCLUSION & FUTURE WORK

This paper proposes a class of NMPC schemes based

on a specific type of penalty function that addresses the

shortcoming of more classical quadratic-penalty based NMPC

schemes when dealing with large deviations of quadrature

states from their reference. The proposed scheme behaves as

a standard NMPC scheme when the system is close to its

reference, but yields significantly less aggressive control action

when far from its reference. The tuning is intuitive, and based

on a single parameter. The properties of the P-penalty NMPC

are established formally, including its nominal stability. The

closed-loop behaviour of the proposed scheme is illustrated

using a simulated quadcopter.

The smooth problem formulation introduces extra compu-

tational burden in the NMPC scheme. This computational

burden can arguably be alleviated by using tailored approaches

to solve the underlying QP problems. This question is the

object of current research.
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