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Abstract: This paper is concerned with guaranteed parameter estimation in nonlinear dynamic
systems in a context of bounded measurement error. The problem consists of finding—or
approximating as closely as possible—the set of all possible parameter values such that the
predicted outputs match the corresponding measurements within prescribed error bounds. An
exhaustive search procedure is applied, whereby the parameter set is successively partitioned
into smaller boxes and exclusion tests are performed to eliminate some of these boxes, until a
prespecified threshold on the approximation level is met. In order to enhance the convergence
of this procedure, we investigate the use of optimization-based domain reduction techniques
for tightening the parameter boxes before partitioning. We construct such bound-reduction
problems as linear programs from the polyhedral relaxation of Taylor models of the predicted
outputs. When applied to a simple case study, the proposed approach is found to reduce the
computational burden significantly, both in terms of CPU time and number of iterations.

Keywords: Parameter estimation · Dynamic systems · Bounded-error estimation ·
Measurement noise · Taylor models · Polyhedral relaxations · Domain reduction

1. INTRODUCTION

Process model development has become an integral part of
modern process design methodologies as well as for control
system design and operations optimization. A typical
model development procedure is divided into two main
phases, namely specification of the model structure and
estimation of the unknown/uncertain model parameters.
The latter phase, also known as model fitting, normally
proceeds by determining parameter values for which the
model predictions closely match the observed process.
Failure to find an acceptable agreement calls for a revision
of the model structure, and the parameter estimation is
then repeated.

Most commonly, the parameter estimation problem is
posed as an optimization problem that determines the
parameter values minimizing the gap between the mea-
surements and the model predictions, for instance in the
least-square sense. Nonetheless, several factors can jeopar-
dize a successful and reliable estimation procedure. First of
all, structural model mismatch is inherent to the modeling
exercise, and it would be an illusion to seek for the ‘true’
parameter values in this context. Even in the absence
of model mismatch, fitting a set of experimental data
exactly is generally not possible due to various sources of
uncertainty. A measurement’s accuracy is always tied to

the resolution of its corresponding measuring apparatus.
Moreover, measured data are typically corrupted with
noise, for instance Gaussian white noise or more generally
colored noise.

Among the possible approaches that account for uncer-
tainty in parameter estimation, the focus in this paper is
on guaranteed parameter estimation [Jaulin and Walter,
1993], namely the determination of all parameter values—
referred to as the solution set subsequently—that are con-
sistent with the measurements under given uncertainty
scenarios. Specifically, we consider the case that the un-
certainty enters the estimation problem in the form of
bounded measurement errors. In small-scale applications,
the problem of approximating the solution set by a box
partition, at an arbitrary precision, has been shown to
be tractable by Walter and coworkers [Jaulin and Wal-
ter, 1993, Kieffer and Walter, 2011] using a set-inversion
algorithm based on exhaustive search.

The same authors [Kieffer and Walter, 2011] also identify
that the main bottlenecks, in terms of convergence speed
and accuracy, of such a set-inversion algorithm are: (i)
the need to compute tight bounds on the solutions of
the dynamic system; and, (ii) the need to apply efficient
domain-reduction strategies as a part of the exclusion
tests. The first issue was addressed recently, e.g., in Lin
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and Stadtherr [2007b] and Paulen et al. [2013], by ap-
plying novel bounding techniques for parametric dynamic
systems based on Taylor model arithmetic or ellipsoidal
calculus. Large improvements of the rate of convergence
of the set-inversion algorithm could be obtained this way.

The main focus in this paper is on domain-reduction
strategies as a means to enhance the convergence of the
set-inversion procedure. Interval contractor schemes were
presented in [Jaulin et al., 2001] and applied to dynamic
guaranteed parameter estimation problems in [Kieffer and
Walter, 2011]. Instead, the approach used here is inspired
from recent developments in global dynamic optimiza-
tion Sahlodin [2012]. We construct bound-reduction op-
timization problems in the form of linear programs (LPs)
from the polyhedral relaxation of Taylor models of the
predicted outputs. In other words, we exploit the available
measurement bounds so as to indirectly exclude parts of
the corresponding parameter subset.

The paper is organized as follows. The problem of guaran-
teed parameter estimation and the set-inversion algorithm
are reviewed in Sect. 2. The Taylor model-based approach
for ODE bounding and the optimization-based domain
reduction approach are described in Sect. 3. The benefits
of using optimization-based domain reduction are then
illustrated with numerical case studies and discussed in
Sect. 4. Finally, Sect. 5 concludes the paper.

2. GUARANTEED PARAMETER ESTIMATION

2.1 Problem Statement

Consider a model of the observed process described by
parametric ODEs of the form

ẋ(t;p) = f(x(t;p),p), x(t0;p) = h(p), (1a)

ŷ(t;p) = g(x(t;p),p), (1b)

where x denotes the nx-dimensional vector of process
states; p, the np-dimensional vector of process (a priori
unknown) parameters; and ŷ, the ny-dimensional vector
of model outputs (predictions).

Given a set of output measurements ym at N time points
t1, . . . , tN , classical parameter estimation seeks for one
particular instance pe of the parameters for which the
(possibly weighted) normed difference between these mea-
surements and the corresponding model outputs ŷ is mini-
mized. In contrast, guaranteed (bounded-error) parameter
estimation accounts for the fact that the actual process
outputs, yp, are only known within some bounded mea-
surement errors e ∈ E := [eL, eU ], so that

yp(ti) ∈ ym(ti) + [eL, eU ] =: Y i, (2)

where the superscripts L and U represent the lower and
upper bounds of an interval box (understood component-
wise throughout).

Depicted in red on the top plot of Figure 1 is the set of all
output trajectories satisfying ŷ(ti;p) ∈ Y i, i = 1, . . . , N .
Here, the main objective is to estimate the set P e of all
possible parameter values p that yield those trajectories;
that is,

yi(t)

t
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p2
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P ∈ Pout

P e

P ∈ Pbnd

P 0

Fig. 1. Illustration of guaranteed parameter estimation
concepts in the space of output trajectories (top plot)
and parameters (bottom plot).
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∃x, ŷ such that:
ẋ(t;p) = f(x(t;p),p),
x(t0;p) = h(p),
ŷ(ti;p) = g(x(ti;p),p),
ŷ(ti;p) ∈ Y i,
∀t ∈ [t0, tN ], ∀i ∈ {1, . . . , N}







. (3)

The projection of P e onto the (p1, p2) space is illustrated
on the bottom plot of Figure 1. Obtaining an exact
characterization of the set P e is not possible in general,
and one has to resort to approximation techniques to
make the problem computationally tractable. The focus
in the remainder of the paper is on algorithms that
provide approximations of P e by exploiting set-inversion
techniques.

2.2 Algorithmic Procedure

We consider a variant of the Set Inversion Via Interval
Analysis (SIVIA) algorithm by [Jaulin and Walter, 1993]
in order to approximate the solution set P e to a desired ac-
curacy; see also Kieffer and Walter [2011] for applications
of this algorithm in the context of guaranteed parameter
estimation.
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Let F t denote the mapping associated to the ODE
model (1), such that

∀p ∈ P 0 : F t(p) = ŷ(t;p), (4)

for each t ∈ [t0, tN ]. It follows that characterizing P e

via (3) is equivalent to intersecting the inverse image sets
F

−1
ti

(Y i) of Y i for each i = 1, . . . , N ; that is,

P e =

(
N⋂

i=1

F
−1
ti

(Y i)

)

∩ P 0. (5)

The set-inversion algorithm proceeds as follows:

Input: Termination tolerances ǫbox > 0 and ǫbnd > 0
Initialization: Set partitions Pbnd = {P 0}, Pint = ∅,
Pout = ∅; Set iteration counter k = 0

Main Loop:
(1) Select a parameter box P in the partition Pbnd and

remove it from Pbnd

(2) Compute enclosures Ŷ (ti;P ) ⊇ F ti(P ), for each
i = 1, . . . , N and ∀p ∈ P

(3) Exclusion Tests:

(a) If Ŷ (ti;P ) ⊆ Y i for all i ∈ {1, . . . , N}, insert
P into Pint

(b) Else if Ŷ (ti;P ) ∩ Y i = ∅ for some i ∈
{1, . . . , N}, insert P into Pout

(c) Else bisect P and insert subsets back into Pbnd

(4) Termination Tests:
(a) If Pbnd = ∅, stop
(b) If Vbnd :=

∑

P∈Pbnd
volume(P ) < ǫbnd, stop

(c) If width(P ) < ǫbox for all P ∈ Pbnd, stop
(5) Increment counter k+=1; return to step 1

Output: Partitions Pint and Pbnd; Iteration count k

An illustration of parameter subboxes belonging to the
partitions Pint, Pbnd, and Pout is shown on the bottom
plot in Figure 1, together with the corresponding output
trajectories on the top plot using the same color code.
Upon termination, this algorithm returns partitions Pint

and Pbnd such that

⋃

P∈Pint

P ⊆ P e ⊆

(
⋃

P∈Pint

P

)

∪

(
⋃

P∈Pbnd

P

)

. (6)

A number of remarks are in order:

• Multiple heuristics can be used regarding the selec-
tion of a parameter box in step 1 or the bisection in
step 3c. Here, we select the widest parameter box in
step 1 and bisect it at the mid-point along the least
reduced axis in step 3c.

• Step 2 involves bounding the solution set of the
parametric ODEs (1) for the current box P . In this
study, we employ verified ODE methods based on
Taylor models to compute such over-approximations
[Sahlodin and Chachuat, 2011]. Note that the result-

ing enclosures Ŷ (ti;P ) shrink as width(P ) → 0 and
the set-inversion algorithm thus terminates finitely for
any finite tolerances ǫbox > 0 and ǫbnd > 0.

• Test 4b is an addition to the original SIVIA algo-
rithm [Jaulin and Walter, 1993], which interrupts the
iterations when a specified level of approximation of
the solution set P e is reached. The level of approxi-

mation is measured here as the total volume Vbnd of
the boxes in the partition Pbnd, with corresponding
threshold ǫbnd. In contrast, stopping the algorithm
when a minimum box width is reached cannot give
any guarantee on the approximation level because of
the overestimation in step 2.

3. BOUNDS FOR PARAMETRIC ODE AND
OPTIMIZATION-BASED DOMAIN REDUCTION

3.1 Taylor Model-based Bounds

Given a non-empty set P ∈ Rnp and a Cq+1 function
φ : P → R, with q ≥ 0, T q

φ,P := Pq
φ,P + Rq

φ,P is called

a qth-order Taylor model of φ on P if [Bompadre et al.,
2012]

• the np-variate polynomial Pq
φ,P is such that

∀p ∈ P : Pq
φ,P (p) =

∑

κ∈N
np ,

|κ|≤q

∂κφ(p∗)

κ!
(p− p

∗)κ, (7)

for some p
∗ ∈ P (using multi-index notation);

• the remainder interval Rq
φ,Y is such that

∀p ∈ P : φ(p)− Pq
φ,P (p) ∈ Rq

φ,P . (8)

Taylor models can be constructed recursively for factorable
functions, which are defined by a finite recursive composi-
tion of binary sums, binary products, and a given library
of univariate intrinsic functions such as exp(·),

√
·, etc.

This recursive procedure is initiated with a known Taylor
model, which can be the Taylor model of a variable or, in
the case of a composite function, of the inner function.

Verified ODE integration based on Taylor models [Lin and
Stadtherr, 2007a, Sahlodin and Chachuat, 2011] constructs
a Taylor model T q

x(ti),P
of the state variables x(ti; ·) on P

at given times ti ∈ [t0, tN ]; that is,

∀p ∈ P : x(ti;p) ⊆ T q

x(ti),P
. (9)

This technique proceeds in two steps:

(1) Predictor step. Given a Taylor model T q

x(tj),P
of

x(tj ; ·) on P , this step computes a stepsize hj and an

a priori (interval) enclosure X̃j of x on [tj , tj+1]×P ,
with tj+1 := tj + hj . Existence and uniqueness of the
parametric ODE solutions on [tj , tj+1] is also verified.

(2) Corrector step. Given a Taylor model T q

x(tj),P

of x(tj ; ·) on P and an a priori enclosure X̃j of x
on [tj , tj+1] × P , this step computes a Taylor model
T q

x(tj+1),P
of x(tj+1; ·) on P , based on a high-order

Taylor expansion of the solution in combination with
the mean-value theorem for wrapping mitigation.

In turn, the required enclosures Ŷ (ti;P ) over a given box
P can be obtained in the form of qth-order Taylor models
Ŷ (ti;P ) = T q

ŷ(ti),P
:= Pq

ŷ(ti),P
+ Rq

ŷ(ti),P
, via Taylor

model propagation through the output function (1b). A
key feature of these enclosures is their explicit dependence
in the parameters p, thereby making it possible to apply
advanced domain-reduction techniques.
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3.2 Optimization-based Domain Reduction

Variants of the set-inversion algorithm have been devel-
oped in order to improve its convergence properties. For
instance, domain contractors based on interval gradients
have been considered in [Kieffer and Walter, 2011]. The
downside of this approach, however, is the need to compute
enclosures of the first-order sensitivities of the ODEs (1),
which can cause a significant computational overhead.

In this paper, we propose optimization-based domain
reduction techniques that exploit the Taylor models of the
predicted model outputs. Given a parameter box P as well
as qth-order Taylor models T q

ŷ(ti),P
of the model outputs

ŷ(ti; ·) on P =: [pL,pU ], the bounds p
L and p

U can be
tightened by solving optimization problems of the form

p
L/U

j = max
p∈P

/min
p∈P

pj (10a)

s.t. Pq

ŷ(ti),P
(p) + r

q,L

ŷ(ti),P
≤ Y

L
i , i = 1, . . . , N (10b)

Pq

ŷ(ti),P
(p) + r

q,U

ŷ(ti),P
≥ Y

U
i , i = 1, . . . , N. (10c)

This way, a reduced box P is obtained after solving 2×np

optimization problems—one problem for the lower bound
and one for the upper bound of each parameter.

Since the polynomial part of a qth-order Taylor model
is in general nonconvex whenever q ≥ 2, the bound-
reduction problems (10) are themselves nonconvex in gen-
eral. Instead of solving these problems directly, we con-
struct polyhedral relaxations in the form of linear pro-
grams (LPs), similar to the approach used in deterministic
global optimization for computing lower/upper bounds—
see, e.g., [Tawarmalani and Sahinidis, 2004, Sahlodin,
2012]. This relaxation procedure follows three steps:

(1) Decomposition. The multivariate polynomials
Pq

ŷ(ti),P
are decomposed into elementary factors (bi-

nary sums and products and univariate compositions)
via the introduction of auxiliary variables. The con-
straints in the reformulated optimization problem are
either linear or contain a single bilinear term pj × pk
or integer power term (pj)

k.
(2) Relaxation. The nonconvex terms in the reformu-

lated problem are relaxed so as to obtain convex opti-
mization problems. This relaxation involves replacing
bilinear and power terms with their convex/concave
envelopes.

(3) Polyhedral outer approximation. Since the con-
vex/concave envelopes of power terms are nonlinear
in general, polyhedral outer-approximation are con-
structed via linearization at a number of points—
usually chosen so as to meet a given level of accuracy.

By construction, the relaxed optimization problems are
fully linear, making it possible to exploit the robustness,
efficiency and speed of state-of-the-art LP solvers such as
GUROBI or CPLEX.

In practice, this domain reduction procedure can be per-
formed as an extra step between the steps (2) and (3) of
the set-inversion algorithm in Sect. 2.2. Moreover, in case
the reduction of a parameter box P is larger than a given
threshold, for instance≥ 20% in volume, it can be repeated
multiple times. Nonetheless, repeating the reduction sev-

eral times requires recomputing the Taylor models T q

ŷ(ti),P

of the model outputs on the reduced box P . This defines
a trade-off between the extra computational burden and
the reduction in the size of the partition, which is clearly
problem dependent.

4. CASE STUDIES

This section illustrates the benefits of using optimization-
based domain reduction within the guaranteed parame-
ter estimation algorithm with two simple numerical case
studies. We note that the current implementation does not
account for round-off and numerical errors, e.g., when LP
problems are solved.

The set-inversion algorithm presented in Sect. 2.2 is
implemented in a C++ program, and linked to the
MC++ library (http://www3.imperial.ac.uk/people/
b.chachuat/research), which features a collection of
C++ classes for computations in interval and Taylor model
arithmetics. The verified ODE integration method de-
scribed in Sect. 3.1 and the domain-reduction technique
described in Sect. 3.2 are also implemented in this library.
The resulting LP problems are solved with the solver
GUROBI (version 5.1.0) [Gurobi Optimization, 2012], and
all the computations are performed on an Intel Core i7-
3770 workstation with 3.4GHz CPU using GCC (version
4.6.3) compiler.

4.1 Case Study 1

A dynamic model involving two state variables x =
(x1, x2)

T and three uncertain model parameters p =
(p1, p2, p3)

T ∈ [0.01, 1]3 =: P 0 is considered [Kieffer and
Walter, 2011]:

ẋ1 = − (p1 + p3)x1 + p2x2, x1(0) = 1, (11a)

ẋ2 = p1x1 − p2x2, x2(0) = 0. (11b)

The system has a single output variable ŷ, which corre-
sponds to the state variable x2, ŷ(t;p) = x2(t;p), with
N = 15 measurements corresponding to the times ti =
1, . . . , 15. Synthetic experimental data are generated by
simulating the model (11) with parameter values p

0 =
(0.6, 0.15, 0.35)T, and then rounding the output ŷ(ti;p) up
or down to the nearest value by retaining two significant
digits only.

The guaranteed parameter estimation algorithm is applied
with and without the use of domain reduction (reduction
threshold of 20% and maximum of 10 reduction loops),
and Taylor models of orders q = 2, 3, 4 are considered

as enclosures for the model outputs Ŷ (ti;P ). In order
to allow for fair comparisons, the termination criterion
is defined in terms of the level of accuracy ǫbnd of the
solution set, here in the range 5× 10−6 to 10−3, while the
termination criterion in terms of the minimum box size
ǫbox is set to 0.

The number of iterations and the CPU time required
by the set-inversion algorithm to terminate with different
Taylor model orders and with or without the use of domain
reduction are reported on the top and bottom plots of
Fig. 2, respectively, as a function of the termination toler-
ance ǫbnd. It is evident that the number of iterations is sig-
nificantly reduced when using domain reduction—here by
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Fig. 2. Comparison of guaranteed parameter estimation
algorithm for various Taylor model orders and with
or without the use of domain reduction (DR). Top:
Number of iterations vs. convergence threshold. Bot-
tom: CPU time vs. convergence threshold.

one order of magnitude at least for all considered tolerance
levels ǫbnd. Moreover, the higher the order of the Taylor
model, the smaller the number of iterations required by
the algorithm to converge. Nonetheless, a certain trade-
off is observed in terms of CPU time on the lower plot of
Fig. 2, as higher-order Taylor models can incur a possi-
bly large computational overhead. Although higher-order
Taylor models allow tighter approximations, lower-order
Taylor models become computationally advantageous as
the parameter boxes shrink. Another trade-off is observed
in terms of the overhead incurred by the application of
domain reduction (LP problem construction and solution).
The observed trend clearly calls for the development of a
hybrid strategy that would apply domain reduction until
a given level of approximation on the parameter set P e is
reached.

The top and bottom plots of Fig. 3 show the projections
of the solution set outer-approximation in the (p1, p2) and
(p2, p3) subspaces, respectively, for increasing accuracy
levels of ǫbnd = 5× 10−4, 5× 10−5, and 5× 10−6—second-
order Taylor model and domain reduction are used here.

0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64
0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

ε
bnd

=5x10
−4

ε
bnd

=5x10
−5

ε
bnd

=5x10
−6

p1

p
2

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

ε
bnd

=5x10
−4

ε
bnd

=5x10
−5

ε
bnd

=5x10
−6

p2

p
3

Fig. 3. Guaranteed parameter set approximations cor-
responding to different termination tolerances with
2nd-order Taylor models and domain reduction. Top:
Projections into (p1, p2) space. Bottom: Projections
into (p2, p3) space.

Note first that the parameter values p0 = (0.6, 0.15, 0.35)T

used to generate the experimental data are part of the
solution set. Moreover, the solution set turns out to be
disconnected in this problem, thereby suggesting a po-
tential structural identifiability problem—this was already
reported by Kieffer and Walter [2011]. In comparing dif-
ferent approximation levels of the boundary of set P e, it is
seen that setting ǫbnd = 5× 10−5 already provides a tight
approximation of the actual solution set P e, with only 34
boxes and a CPU time of 5 sec. As expected, a much tighter
approximation is obtained by setting ǫbnd = 5× 10−6, yet
this is at the price of a much finer partition comprising
of 11,250 boxes and a corresponding CPU time of over
400 sec. For the sake of comparison, we also note that,
when no domain reduction is used, the partition comprises
of over 2,200 boxes with ǫbnd = 5 × 10−5 and over 70,000
boxes with ǫbnd = 5 × 10−6. These results also suggest
that the efficiency of the guaranteed parameter estimation
algorithm in computing highly-accurate set approxima-
tions could be improved significantly if affine cuts were
enabled in addition to simple bounds contraction during
the domain-reduction procedure. Such cuts would provide
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the extra flexibility needed to closely approximate the
actual parameter set, thereby further reducing the number
of iterations and the CPU time.

4.2 Case Study 2

Consider the same dynamic system and estimation prob-
lem as in Sect. 4.1, with the difference that the initial
condition of the state x2 is now uncertain:

ẋ2 =p1x1 − p2x2, x2(0;p) = p4, p4 ∈ [0, 0.1]. (12)

In order to allow for fair comparisons with this extra
parameter, the termination tolerance ǫbnd in the set-
inversion algorithm is taken in the range 5×10−7 to 10−4.
Moreover, a maximum CPU time of 1 hour is considered.

In the case that no domain reduction is used, the
computations show a dramatic increase in the number
of iterations—more than 200-fold compared to the 3-
parameter problem. In contrast, an increase of around
15 times is observed when applying optimization-based
domain reduction. These results confirm that domain re-
duction techniques hold much promise in the context of
guaranteed parameter estimation, especially for dynamic
systems with a larger number of parameters, and might
become an essential feature in the future.
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Fig. 4. Comparison of guaranteed parameter estimation
algorithm for various orders of Taylor models and with
or without the use of domain reduction (DR). CPU
time vs. convergence threshold.

This improvement is reflected in Fig. 4, which compares
the performance of Taylor models of different orders q =
2, 3, 4, with or without the use of domain reduction, in
terms of CPU time as a function of the termination toler-
ance ǫbnd. The CPU times for these algorithmic variants
is seen to follow the same trend as in the first case study.
In particular, the computation of tight set approximations
within a reasonable time is only possible here when domain
reduction is applied.

5. CONCLUSIONS

This paper was concerned with the problem of guaranteed
parameter estimation, which seeks for all parameter values

of a dynamic model that are consistent with some exper-
imental data, within specified error bounds. Set-inversion
techniques based on exhaustive search are considered,
with special emphasis on the use of optimization-based
domain reduction techniques to enhance the algorithm
convergence. Bound-reduction problems in the form of LPs
are constructed from the polyhedral relaxation of Taylor
models enclosing the predicted outputs. The potential of
this approach, in terms of reducing the number of iter-
ations and the CPU time, is illustrated with two simple
case studies. The results suggest that further improve-
ments could be obtained by switching off domain reduction
during the algorithm, as well as by extending the domain
reduction procedure to encompass affine cuts that better
approximate the actual parameter set.
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