
Inference of Probabilistic Programs with Moment-Matching

Gaussian Mixtures

FRANCESCA RANDONE, IMT School for Advanced Studies Lucca, Italy

LUCA BORTOLUSSI, University of Trieste, Italy

EMILIO INCERTO, IMT School for Advanced Studies Lucca, Italy

MIRCO TRIBASTONE, IMT School for Advanced Studies Lucca, Italy

Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all
solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a
bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program
location with the moment order to be matched in the approximation. We provide two main contributions.
The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can
approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to
second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian
mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number
of case studies from the literature. We show that it can provide accurate estimates in models not supported
by other approximation methods or when exact symbolic techniques fail because of complex expressions or
non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs
involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms
alternative techniques in terms of accuracy and computational time.

CCS Concepts: • Theory of computation → Denotational semantics; • Mathematics of computing →
Probabilistic reasoning algorithms.

Additional Key Words and Phrases: probabilistic programming, inference, Gaussian mixtures

ACM Reference Format:

Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone. 2024. Inference of Probabilis-
tic Programs with Moment-Matching Gaussian Mixtures. Proc. ACM Program. Lang. 8, POPL, Article 63
(January 2024), 31 pages. https://doi.org/10.1145/3632905

1 INTRODUCTION

Probabilistic programming languages are programming languages augmented with primitives
expressing probabilistic behaviours [Gordon et al. 2014]. Examples are random assignments (“pro-
gram variable G is distributed according to the probability distribution �”), probabilistic choices
(“do %1 with probability ? else %2) or conditioning (“variable G is distributed according to � , under
the constraint that it can only take positive values”). This has enabled a variety of applications such
as the analysis of randomized algorithms, machine learning and biology [Gordon et al. 2014].

Given a probabilistic program, there are different equivalent ways in which its semantics can be
defined [Kozen 1983]. Following Kozen’s Semantics 2 [Kozen 1979], in this paper we see a program
as a transformer: given an initial joint distribution over the program variables, each instruction

Authors’ addresses: Francesca Randone, IMT School for Advanced Studies Lucca, Italy, francesca.randone@imtlucca.it; Luca
Bortolussi, University of Trieste, Italy, lbortolussi@units.it; Emilio Incerto, IMT School for Advanced Studies Lucca, Italy,
emilio.incerto@imtlucca.it; Mirco Tribastone, IMT School for Advanced Studies Lucca, Italy, mirco.tribastone@imtlucca.it.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART63
https://doi.org/10.1145/3632905

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0002-3489-9600
HTTPS://ORCID.ORG/0000-0001-8874-4001
HTTPS://ORCID.ORG/0000-0001-6895-6517
HTTPS://ORCID.ORG/0000-0002-6018-5989
https://doi.org/10.1145/3632905
https://orcid.org/0009-0002-3489-9600
https://orcid.org/0000-0001-8874-4001
https://orcid.org/0000-0001-8874-4001
https://orcid.org/0000-0001-6895-6517
https://orcid.org/0000-0002-6018-5989
https://doi.org/10.1145/3632905
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632905&domain=pdf&date_stamp=2024-01-05

63:2 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

in the program transforms that joint distribution into a possibly different one, for example, due
to the presence of probabilistic assignments or conditional statements. In this framework, we are
interested in the inference problem: given a program % and an initial distribution � over program
variables, what is the distribution over program variables after executing %? Borrowing from
Bayesian inference, we will sometimes refer to the initial distribution� as the prior distribution over
program variables and to the distribution obtained after executing % as the posterior distribution.
Then, the inference problem boils down to computing the posterior.

Over the years, many approaches have tackled this problem: numerical methods based on Monte
Carlo Markov chain (MCMC) sampling [Chaganty et al. 2013; Goodman et al. 2008; Hastings 1970;
Mansinghka et al. 2014; Nori et al. 2014; Pfeffer 2001], variational inference (VI) [Bingham et al.
2019; Jordan et al. 1999; Kucukelbir et al. 2015], symbolic execution [Gehr et al. 2016; Narayanan
et al. 2016; Saad et al. 2021], volume computation [Filieri et al. 2013; Holtzen et al. 2020; Huang
et al. 2021], and approaches based on moment-based invariants [Barthe et al. 2016; Bartocci et al.
2020; Chakarov and Sankaranarayanan 2014; Katoen et al. 2010; Moosbrugger et al. 2022].

1.1 Motivating Example

1: G = 2, ~ = −1
2: for 8 in A0=64 (=) do
3: G = G + 60DBB (0, 1)
4: ~ = ~ + 60DBB (0, 1)
5: end for

6: 38BC = G2 + ~2

7: if 38BC > 10 then

8: >DC = 1

9: else

10: >DC = 0

11: end if

12: if >DC = 1 then

13: >1B_38BC = 10

14: else

15: >1B_38BC = 60DBB (38BC, 1)
16: end if

17: observe(>DC == 1)
18: return >1B_38BC

As a motivating example, let us consider the Tracking_n model
reported in left inset and adapted from Wu et al. [2018]. It de-
scribes a Gaussian process evolving on a bi-dimensional space
for = steps and starting from coordinates (2, -1) (lines 1-5). A
radar is positioned in (0,0), and can sense the process if it is at a
squared distance (38BC , line 6) of less than 10 units from the radar.
Therefore the process can be either out of scope (>DC = 1, line 8)
or in scope (>DC = 0, line 10). When the process is out of scope,
the radar returns an observed distance of 10 (line 13) and a noisy
measurement of the true distance else (line 15). Therefore, the
distribution over >1B_38BC is a mixture of X10, i.e., a Dirac delta
centered in 10, and a Gaussian with mean 38BC . However, if we
observe that the process is out of scope (line 17), the posterior
over >1B_38BC is just X10 because any continuous distribution
puts zero mass on a single point. Therefore, the exact posterior
over >1B_38BC is a distribution placing probability 1 on 10. While
this program may seem quite simple, performing inference may
be challenging.
Using PSI [Gehr et al. 2016], an exact symbolic solution re-

turns a formula for the posterior mean of >1B_38BC in less than
a second, which, however, contains several non-simplified integrals. This is because, in line 6,
computing 38BC requires computing the probability density function (pdf) of the product of two
continuous distributions, and this requires symbolic integration. Attempting to integrate it numeri-
cally using Mathematica [Wolfram Research, Inc.] did not terminate after 30 minutes on common
machine. One can resort to approximate approaches; however, many methods, such as AQUA’s
quantization [Huang et al. 2021] and STAN’s MCMC sampling [Carpenter et al. 2017] and Pyro’s
VI [Bingham et al. 2019] do not support discrete posteriors, therefore this particular program cannot
be encoded in their syntax. BLOG is a probabilistic programming language relying on probabilistic
relational model representation and likelihood weighting sampling [Milch et al. 2004], that has
been extended by Wu et al. [2018] for mixtures of continuous and discrete distribution such as the
one in our example. It computes the exact posterior in 0.516 s for = = 1 and about 5 s for = = 100.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:3

Fig. 1. Le� part: general approximation scheme used in Gaussian Semantics. In program location %8 the exact
semantics of the program transforms a GM � into a non-GM distribution � . In the same program location,
Gaussian Semantics transform � into another GM �� , that approximates � using moment-matching. Right
part: concrete example. The Gaussian distribution � is transformed by the exact semantics into a truncated
Gaussian � and by the second-order Gaussian Semantics into the red Gaussian distribution �� .

A similar behavior is exhibited by applying Pyro’s variable elimination [Obermeyer et al. 2019],
which computes the exact posterior in 0.192 s for = = 1 and about 9 s for = = 100 (see Section 7.3).

1.2 Proposed Approach

The difficulty in performing inference on the previous program stems from various factors: PSI’s
exact engine returns non-simplified integrals, requiring computationally expensive numerical
integration. STAN’s MCMC, Pyro’s VI and AQUA’s quantization cannot be applied in this case, but
in general, can incur long computational times and out-of-memory errors (see Section 7). BLOG’s
and Pyro’s ad hoc sampling perform best, but increasing the number of steps hinders scalability.
To complement all these techniques, we present a new approximate analytical method that

does not require integration or sampling and that relies on a compact representation of the joint
distribution using moment-matching Gaussian mixtures (GMs). Our choice of representation is
based on some desirable properties of GMs, and in particular the following three: i) they can
encode both continuous and discrete distributions (using degenerate GMs); ii) their moments can be
computed exactly and efficiently; iii) they are universal approximators, so we can always increase
the number of components in our representation to get a better approximation. These considerations
lead to the definition of a family of approximating semantics called Gaussian Semantics.
More in detail, we define Gaussian Semantics so that it is closed with respect to the class of

(degenerate) GMs, meaning that, at every program location, the Gaussian Semantics of a program
transforms a GM into a GM. In particular, we proceed as in the general approximation scheme
proposed by Boyen and Koller [1998]: given a GM � , the exact semantics of a program location
would transform it in a different distribution � , which is not necessarily a GM. However, we
approximate � with a new GM �� and define the Gaussian Semantics as semantics that transform
� into �� at that program location. This process is represented in Figure 1. Performing this at
every program location approximates the whole program semantics. In particular, we choose to
approximate � with �� using moment-matching, meaning that �� is a GM having the same
moments of � up to a certain order A . This is convenient for two reasons: first, it avoids computing
the full pdf of � , as only its first A moments are needed to find�� ; second, since � is obtained as a
transformation of a GM, it can be expressed as a linear combination of transformed Gaussians, and
its moments can be computed analytically using the results summarized in Table 1.
To sum up, in a Gaussian Semantics each program location is associated with an integer A , and

the semantics acts on a GM � performing two steps: first, it computes the first A order moments of
the transformed distribution � , using the results in Table 1; then, it finds a new GM �� having
same moments as � up to order A . More than one moment-matching GM �� can exist, therefore,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:4 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Table 1. Summary of the theoretical results used to compute the moments of transformed Gaussian Mixtures.
N(`, Σ) denotes a Gaussian distribution with mean ` and covariance matrix Σ, 2 is any real constant and 0, 1

are vectors in R3 defining the hyper-rectangle [0, 1] = {G ∈ R3 : 08 ≤ G8 ≤ 18 }.

Operation Theoretical Result Computes moments for:

Sum of Gaussians
Closed w.r.t linear transformations

21N(`1, Σ1) + 22N(`1, Σ2)[Billingsley 2008]

Conditioning Gaussians
to G8 == 2

Closed w.r.t. conditioning
N(`, Σ | G8 == 2)[Bishop and Nasrabadi 2006]

Conditioning Gaussians
to G ∈ [0, 1]

Iterative formulas
N(`, Σ | G ∈ [0, 1])

[Kan and Robotti 2017]

Product of Gaussian
Isserlis’ Theorem

N(`1, Σ1)N (`2, Σ2)[Wick 1950]

we give a heuristic to determine a unique �� for any A . In particular, we base our heuristics, called
max entropy matching, on the maximum entropy principle [Kullback and Leibler 1951].
Our first technical contribution is theoretical: we provide a universal approximation result

stating that, under mild conditions, when the order of moments matched at each program location
grows, the family of Gaussian Semantics converges to the exact probabilistic semantics. While our
result exploits the well-known universal approximation power of GMs [Lo 1972], it is a non-trivial
consequence of it. The density of GMs guarantees the existence of a GM arbitrarily close to a target
distribution; however, for a probabilistic program the target distribution is generally not known.
Here we give a constructive method to build the approximating GM.

Besides the definition of Gaussian Semantics, we look at how they can be practically computed.
Unfortunately, it turns out that while the formulas in Table 1 allow us to compute moments up to
any order, finding a moment-matching GM is a hard task. In fact, finding a moment-matching GM
for moment orders higher than two requires the solution of a constrained system of polynomial
equations, for which no analytical solution is known [Lasserre 2009]. Despite this, when only the
first two orders of moments are matched, our matching boils down to using a single Gaussian
distribution with a given mean and covariance, and no system of equations needs to be solved.
We call this particular instance Second Order Gaussian Approximation (SOGA) and present an

algorithm that implements it. In our motivating example, at line 6, to approximate the distribution
of 38BC after the assignment 38BC = G2 + ~2, SOGA proceeds as follows. It first computes the means
and covariance matrices of G2 and ~2 using Isserlis’ theorem [Wick 1950] (observe that G and ~ are
Gaussian, but G2 and ~2 are not). Then, it approximates the distributions of G2 and ~2 with two
Gaussians having the computed means and covariance matrices. Finally, it exploits the closedness of
Gaussians with respect to sum to approximate the distribution of 38BC with the sum of the Gaussians
approximating G2 and ~2. Therefore, while in the exact semantics, after line 6, 38BC does not have a
GM distribution, in SOGA it does. This significantly simplifies the subsequent computations. Indeed,
when entering the if statement at line 7, 38BC is conditioned to 38BC > 10. Performing conditioning
in the exact semantics requires computing the integral of the pdf of 38BC over the set of vectors
satisfying 38BC > 10. Instead, in SOGA 38BC is Gaussianly distributed, therefore we can compute
the moments of the conditioned distribution using the formulas from Kan and Robotti [2017], and
then approximate the conditioned distribution with a Gaussian having given mean and covariance
matrix. Overall, for Algorithm 1 SOGA computes the output, which in this case is exact, in 0.042 s
for = = 1 and in 0.192 s for = = 100, performing significantly better than BLOG and Pyro.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:5

In general, the posterior computed by SOGA is a GM whose number of components grows
exponentially in the number of conditional statements. To help cope with this, we introduce a
pruning strategy that keeps the number of components in the GMs below a user-specified threshold
by merging components with minimal cost. Using a prototype implementation, we compare SOGA
on a corpus of benchmarks against state-of-the-art tools representative of different inference
methods: MCMC sampling (STAN), symbolic execution (PSI), quantization (AQUA), VI (Pyro). Even
when it is not the best-performing method, it still provides the flexibility to model both continuous
and discrete posteriors, unlike STAN, Pyro and AQUA, which only support the former. Additionally,
it enables reaching numerical solutions in reasonable runtimes when PSI returns non-simplified
integrals that demand computationally prohibitive times for numerical integration. When applied to
the analyzed benchmarks, pruning significantly reduced the computational time without incurring
noticeable approximation errors.

Importantly, we highlight that SOGA is particularly useful for performing inference on two classes
of programs: those involving mixtures of continuous and discrete distributions and collaborative
filtering models. Most state-of-the-art approaches do not support the first class, even though it
is known that this kind of distribution arises in various application domains [Gao et al. 2017;
Kharchenko et al. 2014; Pierson and Yau 2015]. Thanks to its GM representation, SOGA can easily
encode these distributions. When tested on benchmarks introduced specifically for this problem,
SOGA is able to perform inference faster than dedicated methods such as Wu et al. [2018], while
identifying the exact posterior. Collaborative filtering models are an established framework to
model recommendation systems and have been extensively investigated in the machine learning
community [Koren et al. 2021]. SOGA can deal with a large number of variables without incurring
large computational times or out-of-memory errors, as happens with alternative methods.

Contributions. In summary, the contribution of this paper is threefold:

i) From the theoretical point of view, we define a family of approximating semantics called Gauss-
ian Semantics and prove that they approximate the exact semantics of a bounded probabilistic
program arbitrarily well.

ii) From the practical perspective, we present an implementation of a particular instance of
Gaussian Semantics, called SOGA, and evaluate it against other state-of-the-art implementations
of alternative techniques (PSI [Gehr et al. 2016], STAN [Carpenter et al. 2017], AQUA [Huang
et al. 2021], Pyro [Bingham et al. 2019]) on a set of benchmarks taken from the literature. While
not always the best performer, SOGA can handle models with discrete posteriors while STAN,
AQUA and Pyro only support continuous ones. On the other hand, SOGA can provide accurate
and computationally tractable approximations when symbolic analysis by PSI may fail due to
complex formulas or non-simplified integrals that cause high computational costs for their
numerical integration.

iii) We focus on two classes of models taken from the machine learning literature — collaborative
filtering and inference involving mixtures of continuous and discrete distributions — where
SOGA clearly outperforms the other methods, complementing the current state-of-the-art.

Paper Structure. Notation and background notions are presented in Section 2. Control-flow syntax
and exact semantics are introduced in Section 3. Gaussian Semantics is introduced in Section 4,
while the universal approximation theorem is presented in Section 5. We present SOGA in Section 6
and evaluate it in Section 7. We cover further related works in Section 8, while conclusions and
future works are drawn in Section 9.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:6 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.1

0.2

0.3

0.4

0.5

0.6

a)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

c)

Fig. 2. Plot of: a) a non-degenerate 2-dimensional Gaussian; b) a degenerate Gaussian whose covariance
matrix has rank 1; c) a degenerate Gaussian with null covariance matrix (Dirac delta). Considering mixtures of
possibly degenerate Gaussians, allow us to capture (mixtures of) both continuous and discrete distributions.

2 BACKGROUND

We now introduce some of the notation and the concepts that will be used in the rest of the paper
(we refer the reader to the Supplementary Material for additional background material).

Notation. Given a Boolean value �, ¬� denotes its negation. For a vector G ∈ R3 , G \ G8 denotes a
vector in R3−1 obtained from G by suppressing the 8-th component; G [G8 = � (G)] denotes a vector
G ∈ R3 in which the 8-th component is replaced with the expression � (G); ∥G ∥ denotes the 2-norm;
diag(31, . . . , 3B) denotes the RB×B diagonal matrix having 31, . . . , 3B as diagonal elements.

Probability Distributions. We always deal with distributions over R3 and use G ∼ � to denote
that the stochastic vector G is distributed according to distribution � . We always assume that
a distribution � can be specified by its probability density function (pdf) 5� : R3 → R≥0. For
G ∼ � and a set � ⊆ R3 , the probability of � under � , denoted by %� (�), can be expressed as
the Lebesgue integral %� (�) =

∫
�
5� (G)3G . Sometimes, we will find it more convenient to refer

to the probability measure induced by � on the measurable space (R3 ,B(R3)), where B(R3) is
the Borel f-algebra on R3 . By probability measure, we mean a function< : B(R3) → [0, 1] that
satisfies the following two properties: i)<(∅) = 0 and<(R3) = 1; ii)<(∪8∈N�=) =

∑
8∈N<(�=)

for any countable collection of disjoint sets �= ⊂ R3 . For a distribution � , the associated measure
<� (�) is given by <� (�) = %� (�) =

∫
�
5� (G) 3G for every � ∈ B(R3). Moreover, due to the

presence of conditional branches and observe statements in a probabilistic program, we consider
distributions conditioned to subsets of R3 . Letting I� be the characteristic function of a set � ⊂ R3

such that %� (�) > 0, � |� will denote the distribution of � truncated (or conditioned) to �, whose
pdf is given by 5� |� =

1
%� (�) 5� I�. Observe that 5� |� is obtained by setting 5� to 0 outside �, and

then, by dividing it by %� (�), so that the induced measure is still a probability measure. Given a
3-dimensional random vector G ∼ � and a subvector G ′ = (G81 , . . . , G8B) with 81, . . . , 8B ∈ {1, . . . , 3},
we denote by MargG ′ (�) the marginal distribution of � , obtained integrating out the components
not in G ′, i.e. G ′ ∼ MargG ′ (�) =

∫
R3−B

5� (G)3 (G \ G ′).

Gaussian Distributions and Mixtures. Gaussian distributions with mean ` and covariance matrix
Σ are denoted by N(`, Σ). We assume that Σ can be singular, which corresponds to Gaussian
distributions having support in a subspace of R3 , as shown in Figure 2. In particular, when Σ is the
null matrix we consider the associated random variable to be a Dirac delta centered in `, referred

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:7

to as X` . Gaussian distributions enjoy many useful properties; some that we will use are listed in
Table 1 while we refer to [Bishop and Nasrabadi 2006, Chapter 2.3] for a detailed treatment.

We refer to mixtures as the scalar products of two vectors (?1, . . . , ?�) and (�1, . . . , ��) such
that

∑�
8=1 ?8 = 1, 0 < ?8 ≤ 1, and �8 is the distribution of the 8-th component, with 8 = 1, . . . ,� . The

numbers ?8 are called mixing coefficients. We will denote a mixture as" = ?1�1 + . . . + ?��� , thus
indicating that" has pdf 5" (G) = ?1 5�1

(G) + . . . + ?� 5��
(G). When� = 1, we recover the case of a

single distribution. A special case is given by Gaussian Mixtures (GMs) in which �8 = N(`8 , Σ8)
for 8 = 1, . . . ,� , with mean vectors and covariance matrices `8 , Σ8 . We assume (`8 , Σ8) ≠ (` 9 , Σ 9)
for 8 ≠ 9 . The set of GMs is dense in the set of probability distributions with respect to the weak
topology [Lo 1972], meaning that for any probability distribution one can always find a GM that
approximates it arbitrarily closely with respect to a particular metric, the Levy-Prokhorov distance.
Since we consider Dirac deltas as particular Gaussian distributions, discrete distributions over a
finite set of values are included in the set of GMs.

Distributions Determined by Their Moments. Let G ∼ � . For A = (A1, . . . , A3), with A8 ∈ N, ∀ 8 define

E[GA] =

∫

R3

GA11 . . . G
A3
3
5� (G)3G.

Letting A vary over all vectors in N3 such that A1 + . . . + A3 = A we obtain the set of all A -th order
central moments of � . Observe that, for any � , E[G0] = 1. Since the construction of our semantics
relies on the Method of Moments, we need to assure that this converges to the correct distribution.
This is true only if no other distribution has all moments equal to those of the target one [Billingsley
2008]. We say that in this case, the target distribution is determined by its moments, formalized next.

Definition 2.1. A distribution � is determined by its moments, if for any other distribution � ′

such that for all A1, . . . , A3 ≥ 0
∫

R3

GA11 . . . G
A3
3
5� (G)3G =

∫

R3

GA11 . . . G
A3
3
5� ′ (G)3G

it holds that<� =<� ′ .

3 SYNTAX AND EXACT PROBABILISTIC SEMANTICS

3.1 Syntax

Following Kozen [1979], we will consider probabilistic programs as transformers over distributions
� defined over a vector of variables taking values in R3 . Similarly to Chaudhuri and Solar-Lezama
[2011], we represent programs in a control flow-graph (cfg) syntax [Cousot and Cousot 1977]. We
use as explanatory example the simple program in Algorithm 1.
A program is a directed graph % = (+ , �) where + is set of nodes and � is the set of edges.

Specifically, we consider directed acyclic graphs (DAGs) of bounded depth. Each node belongs to
one of five types in Γ = {entry, state, test, observe, exit}.We denote the fact that a node E ∈ + is of
a given type W ∈ Γ with E : W . The nodes satisfy the following properties.

• A node E : 4=CA~ has no incoming edge and one outgoing edge.
• A node E : BC0C4 has any number of incoming edges and one outgoing edge. A function 2>=3
is defined on the set of state nodes, such that 2>=3 : {E ∈ + | E : BC0C4} → {CAD4, 5 0;B4, =>=4}
and 2>=3 (E) = =>=4 if and only if the parent of E is not a test node.

• A node E : C4BC has one incoming edge and two outgoing edges toward state nodes E1, E2 such
that 2>=3 (E1) = CAD4 and 2>=3 (E2) = false.

• A node E : >1B4AE4 has one incoming edge and one outgoing edge.
• A node E : 4G8C has any number of incoming edges and no output edge.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:8 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Moreover, for each program, there is exactly one E ∈ + such that E : 4=CA~ and one E ∈ + such that
E : 4G8C , and they correspond to the root and the only leaf of the DAG representing the program,
respectively. The control-flow syntax for Algorithm 1 is represented in Figure 3.

Algorithm 1 Example

1: entry {E0 : 4=CA~}
2: G1 = 60DBB (0, 1) {E1 : BC0C4}
3: if G1 > 0 {E2 : C4BC }
4: G2 = 2G1 + 1 + 60DBB (0, 0.1) {E3 : BC0C4}
5: else

6: G2 = −2G1+1+60DBB (0, 0.1) {E4 : BC0C4}
7: end if

8: skip {E5 : BC0C4}
9: observe(G2 < 3) {E6 : >1B4AE4}
10: exit {E7 : 4G8C }

v0 : entry

v1 : state
x1=gauss(0,1)
cond(v1)=none

v2 : test
x1>0

v3 : state
x2=2x1+1+gauss(0,0.1)

cond(v3)=true

v4 : state
x2=-2x1+1+gauss(0,0.1)

cond(v4)=false

v5 : state
skip

cond(v5)=none

v6 : observe
x2 < 3

v7 : exit

Fig. 3. Cfg representation of Algorithm 1

Variables are defined as

z := x | g g := gm([c1, . . . , cs], [`1, . . . , `s], [f1, . . . , fs]) | gauss(`, f)

where x is an output variable, i.e., a variable on which to compute the posterior distribution, and g

denotes a fresh read-only variable distributed according to univariate GMs with mixing coefficients
c8 , means `8 and variances f28 , 8 = 1, . . . , B . For the sake of brevity, in our examples, we will also use
read-only variables denoted by gauss(`, f) which is syntactic sugar for gm([1], [`], [f]). We use
read-only variables to perform random assignments, as it is done in lines 2, 4, and 6 of Algorithm 1
and to encode Boolean conditions depending on arbitrary distributions.
The vector of output variables is denoted by G = (G1, . . . , G3). The vector I augmented with

read-only variables is denoted by I = (G1, . . . , G3 , 61, . . . , 6=−3). We denote the distribution of the
augmented vector with �I . We assume read-only variables are dropped after the assignment is
performed or the condition is evaluated, marginalizing them out. For example, in line 4 of Algorithm
1, the assignment G2 = 2G1 + 1 + 60DBB (0, 0.1) is performed by augmenting the vector G = (G1, G2)
to I = (G1, G2, 6), with 6 being an independent standard Gaussian, and assigning G2 with 2G1 + 1 + 6.
After the new posterior on I is computed, 6 is marginalized out, returning to the vector G = (G1, G2).

State nodes are labelled by either skip or assignment instructions of the type xi = E(z), where
E(z) is an expression of the following form:

E(z) := c1 · z1 + . . . + cn · zn + c | zi1 · zi2 (1)

where c, c1, . . . , cn are scalar.
Test and observe nodes are labelled by linear Boolean conditions (LBCs) of the following form:

B(z) := true | false | c1 · z1 + . . . + cn · zn ⊲⊳ c | zi □ c (2)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:9

where c, c1, . . . , cn are scalar constants, ⊲⊳ ∈ {<, ≤, ≥, >} and □ ∈ {==, !=}. We associate an LBC
with the set, defined on the space of augmented variables,

⟦B(z)⟧ = {I ∈ R= s.t. B(I) holds }. (3)

where ⟦true⟧ = R
= and ⟦false⟧ = ∅. Observe that an expression or LBC can have at most 3

output variables but any finite number of read-only variables.

3.2 Supported Programs

Our syntax rules out general distributions depending on non-constant parameters, unbounded
loops, and non-polynomial functions. We briefly comment on the limitations of this approach, how
they can be mitigated, and when they are shared by other techniques.

Probabilistic Assignments. Probabilistic assignments are performed by assigning univariate read-
only variables to output variables. This is not a limitation since dependence between variables can
be encoded using multiple assignments. For what concerns the restriction on GM distributions,
instead, we exploit the already discussed density of GMs in the space of distribution [Lo 1972], and
assign a GM arbitrarily close to the target distribution. In this sense, we will assume that we are
approximating non-GM distributions with a GM whenever we refer to non-GM distributions.
Finally, probabilistic assignments will involve only distributions depending on constant pa-

rameters. This restriction is more difficult to overcome and is shared with other tools based on
moment-based techniques, such as Bartocci et al. [2020] and Moosbrugger et al. [2022]. This is
because it is not always possible to derive how the moments change if one or more parameters of a
distribution are probabilistic. As in Moosbrugger et al. [2022], this limitation can be mitigated by
performing suitable reparametrizations (see Supplementary Material).

Iterations. We restrict our attention to loops bounded by deterministic constants (as in our
illustrating example in Algorithm 1), similarly to Gehr et al. [2016], Huang et al. [2021], Holtzen et al.
[2020], Albarghouthi et al. [2017] and Nori et al. [2014]. If guarantees on almost sure termination
can be given, the true distribution of the loop could be approximated by a bounded unrolled loop
with a sufficiently large number of iterations [Kozen 1979].

Polynomial Programs. Differently from Carpenter et al. [2017]; Gehr et al. [2016]; Huang et al.
[2021], we consider programs involving only the arithmetic operations +,−,∗, and ^. This assumption
is common to other approaches relying on moment-based techniques such as Bartocci et al. [2020]
and Moosbrugger et al. [2022], due to the fact that non-polynomial functions (such as the logarithm)
may generate distributions that are not determined by their parameters. We remark that from
expressions such as (1) and (2), general polynomial expressions and Boolean conditions can be
obtained, respectively, by chaining state nodes and nesting conditional statements. A probabilistic
choice, i.e., G is assigned 41 with probability ? or 42 with probability 1 − ? , is encoded using the
LBC ~ < @ where ~ is a standard Gaussian and @ is the Gaussian ?-quantile.

3.3 Exact Probabilistic Semantics

The “exact” semantics follows Kozen’s Semantics 2 [Kozen 1979]. Since we are using the control-flow
syntax of Cousot and Cousot [1977], we are close to the collecting semantics in Chaudhuri and
Solar-Lezama [2011]: we combine the semantics of the nodes to define the semantics of the paths,
then define the semantics of the program as a sum over the semantics of the paths. This semantics
is particularly convenient for our method because it gives the posterior distribution as a mixture,
similarly to Zhou et al. [2020].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:10 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Given a program % = (+ , �), we define a path c as an ordered sequence of nodes c = E0 · · · E=
with E0 : 4=CA~, E= : 4G8C and (E8−1, E8) ∈ �, ∀ 8 = 1, . . . =. The successor of node E8 in path c is
denoted as Bc (E8) = E8+1. The set of all paths of % is denoted by Π

% . We define the semantics of a
path c , denoted by ⟦c⟧, as a pair (?, �), where ? ≥ 0 and � is a probability distribution on R3 . The
semantics ⟦c⟧ composes the semantics of the nodes along path c , i.e., ⟦c⟧ = ⟦E=⟧c ◦ . . . ◦ ⟦E0⟧c .
The semantics of each node is defined as follows.

• The entry node outputs the pair (1, X0), X0 being a Dirac delta centered on the zero vector:

if E : 4=CA~ then ⟦E⟧c = (1, X0).

• A state node E takes as input a pair (?, �) and returns a pair (?, � ′) depending on its label. If
it is labelled by skip, it returns (?, �). If it is labelled by xi = E(z), it returns (?, � ′) with � ′

the distribution of the vector G [G8 = � (I)]:

if E : BC0C4 then ⟦E⟧c (?, �) =

{
(?, �) if E is labelled by skip

(?, � ′) if E is labelled by xi = E(z).

• A test node E labelled by B(z) takes as input a pair (?, �) returns (?′, � ′) depending on the
value of 2>=3 (Bc (E)). In particular, first, the augmented vector I and its distribution �I are
considered. If 2>=3 (Bc (E)) = true, then the node computes the probability of the Boolean
condition evaluating to true, i.e. %�I

(⟦B(z)⟧). Then, it conditions the current distribution to
such event, i.e.�I | ⟦B(z)⟧. The result is the output pair (? ·%�I

(⟦B(z)⟧),MargG (�I | ⟦B(z)⟧)).
Similarly, if 2>=3 (Bc (E)) = 5 0;B4 the output is (? · %�I

(⟦¬B(z)⟧),MargG (�I | ⟦¬B(z)⟧)). To
overcome conditioning with respect to zero-probability events we assume that whenever
%�I

(⟦B(z)⟧) = 0 (resp. %�I
(⟦¬B(z)⟧) = 0) the output pair is (0, �):

if E : C4BC then ⟦E⟧c (?, �) =

(? · %�I
(⟦B(z)⟧),MargG (�I | ⟦B(z)⟧))

2>=3 (Bc (E)) = true∧ %�I
(⟦B(z)⟧) ≠ 0

(? · %�I
(⟦¬B(z)⟧),MargG (�I | ⟦¬B(z)⟧))

2>=3 (Bc (E)) = false∧ %�I
(⟦¬B(z)⟧) ≠ 0

(0, �) else.

• For an observe node E labelled by B(z) we condition the current distribution to ⟦B(z)⟧.
Observe that if B(z) only contains read-only variables, conditioning does not affect the
distribution of the output variables G . If �(I) = xi == c the node returns a distribution
� ′ having pdf 1

�
5� (G, G8 = 2)X2 (G8) with � =

∫
R3−1

5� (G, G8 = 2)3 (G \ G8). In all other cases
conditioning is treated as usual:

if E : >1B4AE4 then ⟦E⟧c (?, �) =

(? · � , � ′) �(I) = xi == c

(? · %�I
(⟦B(z)⟧), � | ⟦B(z)⟧)

�(I) ≠ xi == c∧ %�I
(⟦B(z)⟧) > 0

(0, �) else

• The exit node E takes as input (?, �) and outputs the same pair (?, �):

if E : 4G8C then ⟦E⟧c (?, �) = (?, �).

The semantics of the program % is then defined as:

⟦%⟧ =

∑

(?,�)=⟦c⟧

c∈Π%

?
∑

(?′,� ′)=⟦c⟧

c∈Π%

?′
�. (4)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:11

Example 3.1. For the program in Algorithm 1 we have only two paths, c) = E0E1E2E3E5E6E7 and
c� = E0E1E2E4E5E6E7 corresponding to evaluations of the conditional statement as true or false,
respectively. To compute the semantics of c) we start from E0, that outputs (1, X0). This pair is
taken as input by E1, which is a state node assigning 60DBB (1, 0) to G1, so its output is (1,N(0, Σ1))
with Σ1 = diag(1, 0) (corresponding to the distribution in Figure 2b). This pair is taken as input
by the test node E2. Since we are considering c) , for which Bc) (E2) = E3, and 2>=3 (E3) = CAD4 , the
semantics of E2 in this path conditions N(0, Σ1) to G1 > 0. Therefore in this path the output of
E2 is (0.5,N(0, Σ1) |⟦G1 > 0⟧), where 0.5 = %N(0,Σ1) (⟦G1 > 0⟧). This pair is taken as input by E3,
which updates the distribution of G2 and therefore outputs a new pair (0.5, �3). We can proceed
until we compute the output of E7, which gives the final pair ⟦c)⟧ = (?) , �)). In the same way,
we compute ⟦c�⟧ = (?� , ��), and finally, the semantics of the whole program as the mixture
(?)�) + ?���)/(?) + ?�).

4 GAUSSIAN SEMANTICS

Gaussian Semantics is a family of semantics closed with respect to GMs. Each node takes as input
and returns a GM over the program variables. This is done by composing the exact semantics of a
node with an operator)�"

A acting on the output distribution of ⟦E⟧c . In particular,)�"
A transforms

any distribution � into a GM � , having the same moments of � up to order A . Therefore, we call
)�"
A the moment-matching operator. Formally, we use a map ' : + → N0 to associate each node
E ∈ + with the highest order of moments that will be matched at E . The semantics of a node is then:

⟦E⟧'c =

{
⟦E⟧c if E : 4=CA~, 4G8C(
I,)�"

' (E)

)
◦ ⟦E⟧c if E : BC0C4, C4BC, >1B4AE4

(5)

where I is the identity acting on the first element of the pair (?, �), and)�"
' (E)

is the moment-

matching operator. The Gaussian Semantics of paths and programs are defined similarly to the
exact semantics as:

⟦c⟧' = ⟦E=⟧
'
c ◦ . . . ◦ ⟦E0⟧

'
c and ⟦%⟧' (�0) =

∑

(?,�)=⟦c⟧'

c∈Π%

?
∑

(?′,� ′)=⟦c⟧'

c∈Π%

?′
�.

Example 4.1. We have seen in Algorithm 1 that the exact semantics is not closed with respect
to GMs. For example, node E2 takes as input a Gaussian but returns a truncated Gaussian, which
is not a GM. If, instead, we consider Gaussian Semantics with '(E2) = 3 the output of E2 will be
a GM matching the first three order moments of N(0, Σ1) | ⟦G > 0⟧. Two steps are required to
compute ⟦E2⟧

'
c . In the first step, we compute the first '(E2) = 3 order moments of the output

distribution of ⟦E2⟧c . Therefore, we compute the first order moments E[G1] = 0.7979 and E[G2] = 0,
the second order moments E[G21] = 1,E[G1G2] = E[G

2
2] = 0 and the third order moments E[G31] =

1.5958,E[G21G2] = E[G1G
2
2] = E[G32] = 0. Observe that, thanks to the results in Table 1, this is

significantly easier than computing the whole pdf of the output distribution. The second step
involves finding a GM having the computed moments. This is generally more complex and is
performed by the operator)�"

A . In the rest of the section, we will assume that the computation of
the moments is done using the aforementioned formulas, and we focus on the definition of the
operator)�"

A and the derivation of its properties.

Moment-Matching Operator. In general, the operator)�"
A (�) acts on distributions � =

∑�
8=1 ?8�8

that are mixtures (possibly of a single component). The moments of � are computed as a linear
combination of the moments of its components: if G ∼ � =

∑�
8=1 ?8�8 and G8 ∼ �8 , then E[G=] =

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:12 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

∑�
8=1 ?8E[G

=
8]. Therefore, when computing the moments of � , we first compute the moments of

every component �8 . Then, it makes sense to define)�"
A (�) so that when it acts on a mixture �

(� > 1), it recursively acts on each component of the mixture, moment-matching each of them.
When, instead,)�"

A acts on a non-mixture distribution � (� = 1), it returns a GM having moments
up to order A equal to those of � . This second action is encoded by a second operator matchA .

)�"
A (�) =

{
?1)

�"
A (�1) + . . . + ?�)

�"
A (��) if � = ?1�1 + . . . + ?��� and � > 1

matchA (�) otherwise.
(6)

We require thatmatchA (�) satisfies the following two conditions:

R1) for any distribution � , matchA (�) is a GM;
R2) matchA (�) has central moments up to order A equal to those of � .

The existence of the operatormatchA is guaranteed by the following result, derived from Schmüdgen
[2017, Theorem 17.2], stating that that, for any finite sequence of moments, there exists a moment-
matching discrete distribution putting positive mass on a number of points smaller than or equal
to the number of matched moments. Since discrete distributions are GMs, the Proposition holds.
For detailed proof, see the Supplementary Material.

Proposition 4.2. For any A ∈ N0, there exists an operator matchA satisfying R1 and R2.

Example 4.3. In our example, we want to match a total of 10 moments, a zeroth-order moment
(which is always 1), two first-order, three second-order, and four third-order moments. Theorem
17.2 in Schmüdgen [2017] ensures that there exists at least one discrete distribution (therefore a
GM) with � ≤ 10 components that has exactly the given moments.

Proposition 4.2 ensures the existence of at least one GMmatching the moments of� up to order A .
In general, letting�"A (�) denote the set of all finite GMs matching the moments of � up to order
A , we may have that |�"A (�) | > 1. For matchA to be well-defined, we need to uniquely identify a
moment-matching GM in �"A (�). This can be done using different heuristics: we propose one
based on the principle of maximum entropy, which we call the max entropy matching (MEM).

Max Entropy Matching. MEM can be summed up as follows: if |�"A (�) | > 1 we choose the GM
� having the least number of components (in order to minimize the number of parameters to be
fit) and minimizing a certain cost function. Any remaining tie is resolved by comparing the vectors
of parameters % that identify the GMs with respect to lexicographic ordering (we give an ordering
on the parameters of GMs in the Supplementary Material). We select our cost function as the sum
of the opposite of the differential entropy plus a penalty term, where the differential entropy for a
distribution � with pdf 5� is defined as [Cover 1999]

� (�) = −

∫

R3

5� (G) log(5� (G)) 3G. (7)

Intuitively, the principle of maximum entropy asserts that the distribution maximizing entropy is
the one that minimizes the number of assumptions on the distribution [Cover 1999]. Therefore,
maximizing � (�) we are choosing the most general moment-matching distribution. We add to
� (�) a penalty term to avoid uncontrolled growth of the parameter values.

Then, the procedure to compute matchA (�) is the following.

1) Find 2∗ = min
{
2 : ∃� =

∑2
B=1 ?BN(`B , ΣB) ∈ �"A (�)

}
.

2) Find the set P such that % = (?1, . . . , ?2∗ , `1, . . . , `2∗ , Σ1, . . . , Σ2∗) ∈ P if and only if the GM
with parameters % matches the moments of � up to the A -th order.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:13

3) Find the set P∗ given by:

P∗
= argmin

P

{

−�

(
2∗∑

8=1

?8N(`8 , Σ8)

)

+
2∗∑

8=1

(
∥`8 ∥

2
2 + ∥Σ8 ∥

2
2

)
}

. (8)

4) If |P∗ | > 1 choose %∗ ∈ P∗ maximum with respect to lexicographic ordering.

The following proposition guarantees that MEM leaves us with a well-defined operator matchA .
It is again proved using Theorem 17.2 from Schmüdgen [2017], and by noticing that P is a compact
set, therefore Eq. (8) is well-defined. Again, we defer a detailed proof to the Supplementary Material
while we explain how MEM works using an example.

Proposition 4.4. For any � and A the max entropy matching uniquely identifies matchA (�).

We remark that the choice of MEM is arbitrary, as other cost functions could be introduced.
However it has various benefits. (i) To guarantee that Proposition 4.4 holds, one needs a bounded
cost function. (ii) Using entropy leads to a parallelism with VI: SOGA itself can be seen as a form of
VI since it involves the minimization of the reverse differential entropy [Kullback and Leibler 1951].
However, correspondence with VI is lost when higher-order moments are considered, because
the minimizer of the reverse differential entropy is not analytically expressible for GMs. (iii) In
the spirit of minimizing the number of assumptions made on the approximating distribution, the
approach looks more pleasing mathematically.

Example 4.5. While Schmüdgen [2017] ensures that we can find a moment-matching GM with
10 components, it is easy to check that 2∗ = 2 is the minimum number of components required to
match three order moments. In fact, 2∗ > 1, since for a single Gaussian, given the mean and the
covariance matrix, all the other moments are fixed (so, we can match the first two order moments
but not the third). For 2 = 2 instead we can consider the GM� with pdf ?N(<, () + (1−?)N (<′, (′)
such that<,<′, (, (′ satisfy the following system:

?<8 + (1 − ?)<′
8 = E[G8] for 8 = 1, 2

? (<2
8 + (8,8) + (1 − ?) (<′2

8 + (′8,8) = E[G
2
8] for 8 = 1, 2

? (<1<2 + (1,2) + (1 − ?) (<′
1<

′
2 + (

′
1,2) = E[G1G2]

? (<3
8 + 3<8(8,8) + (1 − ?) (<′3

8 + (′8,8) = E[G
3
8] for 8 = 1, 2

? (<1(2,2 + 2<2(1,2 +<1<
2
2) + (1 − ?) (<′

1(
′
2,2 + 2<′

2(
′
1,2 +<

′
1<

′2
2) = E[G1G

2
2]

? (2<1(1,2 +<2(1,1 +<
2
1<2) + (1 − ?) (2<′

1(
′
1,2 +<

′
2(

′
1,1 +<

′2
1 <

′
2) = E[G

2
1G2]

0 < ? < 1, (1,1(2,2 − (
2
1,2 ≥ 0, (′1,1(

′
2,2 − (

′2
1,2 ≥ 0

In the system we equate the moments of� (l.h.s) with those of G ∼ � (r.h.s, computed in Example
4.1). Moreover, we look for solutions such that 0 < ? < 1 and (, (′ are positive semidefinite (last
line). Since the system is polynomial, using SMT solvers over reals we can check it is satisfiable;
therefore, 2∗ = 2. Now we should determine the set P of all solutions and find those that minimize
the cost function. Since finding all solutions is generally impossible, we directly proceed to optimize
our cost function numerically, constraining the variables to satisfy the previous system. We find
the approximate solution ? = 0.572, < = (0.471, 0), <′

= (1.236, 0) and (= diag(0.066, 0),
(′ = diag(0.426, 0). The approximating GM is shown in the green line of Figure 4, while the blue
line shows the true non-Gaussian distribution.

The example shows that the difficult step in computing a Gaussian Semantics of arbitrary order
is 2). Finding the parameters of a moment-matching GM requires the solution of a system of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:14 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

polynomial equations, like the one in the example. This problem is notoriously hard to solve, as no
analytical solution exists [Lasserre 2009]. Performing numerical optimization can solve the problem
approximately, but is in general numerically unstable and requires relatively long computational
times (in our example, using scipy [Virtanen et al. 2020], it took around 7 s to match a single
Gaussian!). While we leave open the problem of solving 2) efficiently in the general case, the
following lemma gives two important properties of matchA , which will be used to derive our
second-order approximation. The proof is quite trivial and reported in the Supplementary Material.

Lemma 4.6. The following two properties hold:

i) when A = 2, match2 (�) is a single Gaussian distribution with mean and covariance matrix

equal to those of � ;

ii) if � is Gaussian, for any A ≥ 2 matchA (�) = �.

We conclude the section with a consequence of Lemma 4.6. It follows from ii) that)�"
A has the

desirable property of leaving GMs unaltered, i.e. if " is a GM)�"
A (") = " for all A ≥ 2. As a

consequence, Gaussian Semantics coincides with the exact semantics for programs only involving
GMs, and in particular, for programs involving only discrete distributions (mixtures of deltas).

Proposition 4.7. Let % = (+ , �) be such that every read-only variable in the program is a finite

discrete distribution. Then, for any ', ⟦%⟧' = ⟦%⟧.

Proof. Since truncations, linear combination and products of discrete distributions are discrete
distributions, only discrete distributions are generated in the execution of ⟦%⟧. By Lemma 4.6
applying the moment-matching operator)�"

A to them leaves them unaltered, so conclusion follows.
□

Example 4.8. Consider a second Gaussian semantics that maps E2 to '(E2) = 2. In this case, we
want to match only the first two order moments, namely E[G1],E[G2],E[G21],E[G

2
2],E[G1G2]. As

noticed before, in this case 2∗ = 1, since we can take the Gaussian N(`, Σ) with ` = (0.7979, 0) and
Σ = 3806(1, 0) and it will have required moments. Observe that we do not need to solve any system
or optimization problem.

In general, for a fixed number of momentsmatched, we expect Gaussian Semantics to approximate
reasonably well the matched moments but not necessarily the whole distribution (see Section 7.2 for
further discussion). Indeed, let us compare the exact posterior distribution with the ones obtained
distribution when ' = 2, 3, 4, respectively, using Kullback-Leibler (KL) divergence [Kullback and
Leibler 1951]. The KL divergence between two distributions % and & is a standard way to evaluate
the error committed in approximating % with & . In our case, we take as % the truncated Gaussian
and as& the GMs obtained matching different order moments. The respective values are 2.29 (R=2),
1.71 (R=3) and 1.36 (R=4), so indeed higher-order Gaussian semantics improve the approximation.
Figure 4 compares the true marginal pdf of G1 at node E2 (blue solid line) with the second- (orange
dashed), third- (green dash-dotted) and fourth (red dotted) approximations. The advantages of
fitting only a small number of moments are mainly computational. Indeed, it can be seen from the
legend that as the number of moments matched grows, the increased KL accuracy comes with an
increased computational cost.

5 UNIVERSAL APPROXIMATION THEOREM

Our main convergence result states that, for well-behaved programs, it is possible to find a map '
so that the output distribution yielded by the semantics ⟦·⟧' is arbitrarily close to that of ⟦·⟧ in the
Levy-Prokhorov metric [Ethier and Kurtz 2009]. By “well-behaved” we mean that the distributions
in the exact semantics are determined by their moments and that they can measure continuously

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:15

−2 −1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

M
ar

gi
na

l p
df

 o
f v

ar
ia

bl
e
x 1

 a
t v

2

true
R= 2 | KL= 1.29 | time= 0.002s
R= 3 | KL= 1.71 | time= 7.204s
R= 4 | KL= 1.36 | time= 457.7s

Fig. 4. Marginal pdf of G1 at node E2 in Algorithm 1 given by exact semantics (CAD4) and the Gaussian
Semantics with ' = 2, 3 and 4. In the legend we report the KL divergence with the true distribution and the
time need to compute the approximating GM.

sets in the form (3). To formalize the latter requirement we introduce<-continuity sets. Since both
this definition and that of Levy-Prokhorov metric are borrowed from measure theory we refer the
reader to the Supplementary Material for a more detailed background on these concepts.

Definition 5.1. Given a measure<, a set� ⊆ R3 is called an<-continuity set if<(m�) = 0 where,
m� is the boundary of set �, defined as the closure of the set � minus its interior.

Then, we can state our main theorem.

Theorem 5.2. Assume that % = (+ , �) is a program such that for each E ∈ + and each path c ∈ Π
%

the output distribution � of ⟦E⟧c satisfies the following:

H1) � is determined by its moments;

H2) if� is the input distribution for a test or observe node E ′, then the set defined by the LBC labelling

E ′ is an<�I
-continuity set.

Then there exists a sequence of maps (': : + → N0):∈N such that:

⟦%⟧'
: :→∞
−−−−→ ⟦%⟧. (9)

where the convergence is intended in the weak topology, or equivalently, in the Levy-Prokhorov metric.

5.1 Satisfaction of the Hypotheses

Before giving an outline of the proof, we briefly comment on the hypotheses.
First, observe that H1 and H2 are sufficient but not necessary. In particular, if the hypotheses of

Proposition 4.7 are satisfied convergence holds trivially, even when H1 or H2 are violated.
Hypothesis H1 is common to other works considering moment-based approximation, such as in

Bartocci et al. [2020] and Moosbrugger et al. [2022] and is needed to guarantee that the method of
moments converges to the true distribution [Billingsley 2013]. For a given program, it is possible to
perform static analysis to check whether the arising distributions are determined by their moments,
exploiting known results on moment determinacy (see, for example, the moment-generating
function characterization in [Billingsley 2013]). Notably, to apply these results is not necessary
to compute the exact pdf of the arising distributions, but it is sufficient to keep track of their

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:16 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

type. In fact, for some classes of distributions, moment-determinacy is established: this is true for
finite discrete distributions, Gaussians, uniforms, Poissons, exponentials, truncations and mixtures
thereof [Billingsley 2013]. The case studies analyzed in this paper feature such distributions. On
the contrary, log-normal distributions are not determined by their moments. However, as long as
moments are computable, Gaussian Semantics can still be applied: in this case no formal guarantee
of convergence towards the true distribution is given, but the method still provides an analytical
approximation for the moments.

Hypothesis H2 guarantees that when distributions are conditioned to sets in the form (3), weak
convergence is preserved. This requirement can be falsified if � has degenerate components that
place positive probability mass on the boundary of the set defined by the LBC. This could happen,
for instance, if a component is a Dirac measure centered on any point of m⟦B(x)⟧. For example,
consider line 12 of Tracking_= in Section 1.1, where >DC can be 1 or 0 with probability > 0. This
falsifies H2. However, such cases can be statically detected and the program can be transformed into
one that uses the equivalent condition as >DC > 0.5, so that H2 holds. More in general, continuity
corrections such as those performed in Laurel and Misailovic [2020] can be adopted.

Example 5.3. Algorithm 1 satisfies H1 since the joint at each location is either a mixture of
Gaussians or truncated Gaussians, for which moment-determinacy is known. Moreover, the two
LBCs checked in the program are G1 > 0 (line 3) and G2 < 3 (line 9). Before checking G1 > 0, G1
has non-degenerate Gaussian distribution, and therefore the set G1 = 0 (border of ⟦G1 > 0⟧) has
measure 0. Similarly, before line 9, G2 is Gaussian-distributed with f > 0, therefore G2 = 3 (border
of ⟦G2 < 3⟧) has again probability 0. We conclude that also H2 is verified.

For Tracking_= in Section 1.1, each marginal is obtained by Gaussians, performing sums, squares,
or conditioning. Here, to check moment-determinacy, we use a result in Billingsley [2008], which
states that if the moment-generating function (mgf) of a distribution is defined in an interval of 0,
then the distribution is determined by its moments. Using symbolic integration, we can compute
the mgf of the product of two Gaussians and verify that it is defined in an interval of 0. Therefore,
the distribution is determined by its moments and H1 holds. For H2, we have already shown how
to correct the condition in line 12 so that H2 is verified. For the if statement in line 7, observe that
before entering it, the marginal w.r.t. to 38BC is the distribution of G2 + ~2, which is continuous, and
therefore the point 10 has measure 0 with respect to it. Therefore also H2 holds.

5.2 Outline of the Proof

The proof of Theorem 5.2 is rather technical and involves a number of results from measure theory.
Thus, here we provide a sketch, and refer the reader to Supplementary Material for a detailed proof.

First of all, recall that the semantics of a program is defined as a (finite) mixture of the semantics
of the paths in the program. Therefore, (9) holds if it holds for every path c ∈ Π

% . Moreover, it can
be shown that we can consider only the paths such that ⟦c⟧ = (?, �) with ? ≠ 0, since paths for
which ? = 0 contribute to the semantics of the program nor in the exact, neither in the Gaussian
Semantics. So, the proof amounts to showing that for every path c ∈ Π

% such that ⟦c⟧ = (?, �)

with ? ≠ 0 we can choose a sequence of maps ': such that ⟦c⟧'
:

→ ⟦c⟧.
We can build the sequence of maps ': by specifying ': (E) for each E ∈ c . In particular, for E0 we

can choose any value of ': . For E1, if it is not the exit node, we can assume that ⟦E1⟧ transforms the

pair (1, X0) into (?1, �1) with ?1 ≠ 0. Then, by definition of Gaussian Semantics, ⟦E1⟧'
:

transforms
(1, X0) into the pair (?1,)�"

': (E1)
(�1)). To ensure convergence in this case, we use Theorem 5.4 of

Billingsley [2008], which we state below.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:17

Theorem 5.4 (Billingsley [2008]). Suppose - ∼ � , -= ∼ �= , and � is a distribution determined

by its moments, while �= has have moments of all orders. If for all A > 0

lim
=
E[- A

=] = E[-]

then �= → � in the Levy-Prokhorov metric.

Then, if ': (E1) is an increasing sequence in : (for example ': (E1) = :) we can use Theorem 30.2

of Billingsley [2013] and H1 to say that ⟦E1⟧'
:

(1, X0) → ⟦E1⟧(1, X0).
For E2 and for any node E8 after that, we assume that, in the exact semantics, the node takes as

input a pair (?, �) such that ? ≠ 0, while in the Gaussian Semantics associated with ': , it takes as
input (?: , �:) such that ?: → ? in R and �: → � in the Levy-Prokhorov metric. Then, we need

to prove that we can choose ': (E8) so that ⟦E8⟧'
:

(?: , �:) → ⟦E8⟧(?, �).
We do this in three steps. First, we prove that the exact semantics preserves the convergence, i.e.

⟦E8⟧(?: , �:) = (?′
:
, � ′

:
) → (?′, � ′) = ⟦E8⟧(?, �) for each node type. Then, we use again Theorem

5.4 and H1 to say that)�"
A (� ′

:
) → � ′ as A → ∞. Finally, since ⟦E⟧'

:

(?: , �:) is obtained from

(?′
:
, � ′

:
) applying the operator (I,)�"

': (E8)
), we can use a diagonal argument to ensure that we can

fix ': (E8) for each : so that ⟦E8⟧'
:

= (?′
:
,)�"

': (E8)
(� ′

:
)) → (?′, � ′).

The most industrious step is the first one, i.e. proving that (?′
:
, � ′

:
) = ⟦E8⟧(?: , �:) → (?′, � ′) =

⟦E8⟧(?, �) for each type of node. To do this, we use the Mapping Theorem [Billingsley 2008].

Theorem 5.5 (Mapping Theorem). Suppose ℎ : R3 → R3 is measurable and that the set � of its

discontinuities is such that<� (�) = 0. If�= → � in the Levy-Prokhorov metric, then ℎ(�=) → ℎ(�).

In particular, when E8 : BC0C4 , an assignment is of the type G 9 = � (G) with � (G) in the form (1)
(here we do not consider read-only variables for simplicity, but they can easily taken into account).
Since � (G) is continuous, convergence follows from Theorem 5.5 by taking

[ℎ(G)]: =

{
G: if : ≠ 9

� (G) if : = 9 .

For E8 : C4BC and E8 : >1B4AE4 we use again the Mapping Theorem, in two different ways. First, we
use it with ℎ = I⟦� (G)⟧, where �(G) is the LBC labelling the node, to show that ?′

:
→ ?′. Then, we

fix a point G∗ such that<�:
(G∗) = 0 for all : and we choose ℎ to be:

[ℎ(G ′)]: =

{
G ′ if G ′ ∈ ⟦�(G)⟧

G∗ else

which proves that � ′
:
= �: | ⟦�(G)⟧ → � ′

= � | ⟦�(G)⟧. In both cases, H2 is fundamental in
guaranteeing that the Mapping Theorem still holds.

6 SECOND ORDER GAUSSIAN APPROXIMATION

As discussed in Examples 4.5 and 4.8, while implementing an arbitrary order Gaussian Semantics
may be difficult, it is straightforward to compute the Gaussian Semantics associated with ' = 2

(i.e., such that at each node of the control-flow graph matches the first two order moments (mean
and covariance matrix). We propose Second Order Gaussian Approximation (SOGA), an algorithm
that implements this particular case.
A prototype implementation can be found at https://zenodo.org/records/10026970.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

https://zenodo.org/records/10026970

63:18 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Algorithm 2 SOGA(node)

1: 8=?DC_;8BC = []
2: for ?0A in =>34.?0A4=CB do

3: 8=?DC_;8BC .0??4=3 ((?0A .?, ?0A .38BC))
4: end for

5: 8=?DC_?, 8=?DC_38BC = merge_dist(8=?DC_;8BC)
6: =>34.?, =>34.38BC = node_semantics(=>34, 8=?DC_?, 8=?DC_38BC)
7: for 2ℎ8;3 in =>34.2ℎ8;3A4= do

8: SOGA(2ℎ8;3)
9: end for

6.1 Overview

In our implementation, SOGA accepts programs in a Python-like syntax, then compiled into a
formal control-flow graph. SOGA recursively visits the nodes of the control-flow graph in a breadth-
first fashion to compute the semantics of all paths. Furthermore, each node has two attributes, ?
and 38BC : ? is a non-negative scalar proportional to the probability of reaching that node, while
38BC stores the output distribution (in the form of a GM) computed by the semantics of that node.

The procedure applied for each node is summarized in Algorithm 2, where we assume that
each node stores its parents and children in suitable attributes. When entering a new node, SOGA
retrieves the pairs (?,38BC) computed by the parents of the current node and merges them in a
single pair (8=?DC_?, 8=?DC_38BC) using the function merge_dist (line 1-5). Then, it computes how
the node semantics transforms the latter pair and stores the result in the attributes =>34.?, =>34.38BC
(line 6). Finally, it calls itself recursively on the children node (lines 7-9). When the 4G8C node is
reached the algorithm ends, leaving the posterior distribution stored in its attribute =>34.38BC .
The core of the algorithm is the function node_semantics, that, for each node type, transforms

the pair 8=?DC_?, 8=?DC_38BC into a new pair ?,38BC . When E : 4=CA~, 4G8C node_semantics leaves
the pair unaltered; when E : BC0C4 or E : C4BC, >1B4AE4 the functions apply_rule(8=?DC_38BC, 4G?A) and
approx_trunc(8=?DC_38BC, CAD=2) are invoked, respectively. We detail the functions below.

Function apply_rule. It implements the semantics of a state node. In particular, it takes as input
the current mixture 8=?DC_38BC and an expression 4G?A of type (1). It returns a new distribution 38BC
obtained applying 4G?A and)�"

2 to 8=?DC_38BC . To compute the moments of the transformed distri-
bution 38BC , and therefore its second-order approximation, it uses the results in Table 1: when 4G?A
is a linear transformation, it applies the formulas for the sum of multivariate Gaussians [Billingsley
2013]. When 4G?A involves products, it applies Isserlis’ theorem [Wick 1950].

Function approx_trunc. It implements the semantics of a test or an observe node. It takes as
input the current mixture 8=?DC_38BC and a set CAD=2 defined by an LBC of type (2). It returns the
probability mass ? , given by the probability that 8=?DC_38BC satisfies CAD=2 , and a new mixture
distribution 38BC , representing the GM approximating 8=?DC_38BC conditioned to CAD=2 . Again, it
applies the results in Table 1 to compute 38BC : in particular, when the LBC expresses inequality
constraints the formulas in Kan and Robotti [2017] are used; when instead the LBC has the form
xi == c it uses the formulas from Bishop and Nasrabadi [2006].

Function merge_dist. Merging is performed whenever a node is accessed prior to applying its
semantics: merge_dist collects all the output pairs (?, �) computed at the parent nodes, and merges
them together in a single GM. Given the set of B parents’ pairs (?1, �1), . . . , (?B , �B), the function

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:19

returns probabilitymass 8=?DC_? = ?1+. . .+?B and a newGM 8=?DC_38BC = 1
8=?DC_? (?1�1+. . .+?B�B).

For an exit node, the output of this function is the output distribution of the program.

6.2 Distributivity of Transfer Functions

SOGA explores the control-flow graph in a breadth-first fashion, performing merges when required.
On the other end, the exact and the Gaussian semantics are defined as a sum over all execution
paths, leading to an apparent discrepancy. To ensure that SOGA indeed computes the Gaussian
Semantics associated with the map '(E) = 2 we show in Proposition 6.1 that the transfer function
of the exact semantics is distributive with respect to the merge operation.
To do this, for a set of pairs (?8 , �8) we define the merge operator

<4A64 ((?1, �1), . . . , (?B , �B)) =

(
B∑

8=1

?8 ,

B∑

8=1

?8∑B
9=1 ? 9

�8

)

= (%, �).

We show that computing the semantics of a node after performing a merge gives the same output
distribution as computing the semantics of each pair and thenmerging the results. This distributivity
transfers straightforwardly to Gaussian Semantics, since the latter is computed by composing the
exact semantics with the operator)�"

A , which is distributive with respect to merging by Definition 6.
This, in turn, justifies computing the semantics exploring the control-flow graph in a breadth-first
fashion as SOGA does.

Proposition 6.1. Let (?8 , �8) be pairs with ?8 ≥ 0 and �8 a distribution for 8 = 1, . . . , B . Let E be a

node of type state, test, observe or exit. Then

<4A64 (⟦E⟧(?1, �1), . . . , ⟦E⟧(?B , �B)) = ⟦E⟧(<4A64 ((?1, �1), . . . , (?B , �B))) (10)

Proof. Let (?̃8 , �̃8) = ⟦E⟧(?8 , �8) for 8 = 1, . . . , B . Then the L.H.S. of Equation 10 becomes

<4A64 (⟦E⟧(?1, �1), . . . , ⟦E⟧(?B , �B)) =

(
B∑

8=1

?̃8 ,

B∑

8=1

?̃8∑B
9=1 ?̃ 9

�̃8

)

= (%̃, �̃).

For the R.H.S. let:

⟦E⟧(<4A64 ((?1, �1), . . . , (?B , �B))) = ⟦E⟧(%, �) = (%̂, �̂).

Let us show for each type of node that %̃ = %̂ and �̃ = �̂ . We observe that for E : BC0C4 , with
E labeled by skip, and for E : 4G8C conclusion follows trivially. We examine the remaining cases
separately.

• Let E : BC0C4 and suppose E is labelled by xk := E(z) then ?̃8 = ?8 and �̃8 is the distribution of
G [G: = � (I)] where G ∼ �8 . Then %̃ = % and �̃ =

∑B
8=1

?8
%
�̃8 . On the other hand %̂ = % = %̃ and

�̃ is the distribution of~ [~: = � (I)] where~ ∼ � =
∑:

8=1
?8
%
�8 . Therefore �̂ =

∑:
8=1

?8
%
�̃8 = �̃ .

• Let E : C4BC . To ease the notation, let us assume 2>=3 (Bc (E)) = CAD4 and B(z) = B(x), but the
argument works analogously in the other cases. In this case ?̃8 = ?8 · %�8

(⟦B(x)⟧) and �̃8 =

�8 | ⟦B(x)⟧. Therefore %̃ =
∑B

8=1 ?8 · %�8
(⟦B(x)⟧) and �̃ =

∑B
8=1

?8 ·%�8
(⟦B(x)⟧)

%̃
(�8 | ⟦B(x)⟧).

On the other hand %̂ = % · %� (⟦B(x)⟧) = % ·
∑B

8=1
?8
%
%�8

(⟦B(x)⟧) =
∑B

8=1 ?8%�8
(⟦B(x)⟧) = %̃ .

Moreover, �̂ = � | ⟦B(x)⟧. Therefore, �̂ has density

5� (G)I⟦B(x)⟧

%� (⟦B(x)⟧)
=

B∑

8=1

?8%�8
(⟦B(x)⟧)

%� (⟦B(x)⟧)

5�8
(G)I⟦B(x)⟧

%�8
(⟦B(x)⟧)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:20 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Table 2. Function implementing node semantics in SOGA and SOGAprune. The input arguments
8=?DC_?, 8=?DC_38BC are retrieved by the parent nodes’ a�ributes ?, 38BC . The input arguments 4G?A , CAD=2 and
 are stored in node a�ributes when the cfg is compiled from the program script.

Type Function Input Computing

BC0C4 apply_rule
8=?DC_38BC ,
4G?A

First two order moments of the components of
the distribution obtained applying 4G?A to 8=?DC_38BC

C4GC ,
>1B4AE4

approx_trunc
8=?DC_38BC ,
CAD=2

Probability mass (or normalization constant) and
first two order moments of the components of the
distribution obtained truncating 8=?DC_38BC to CAD=2

?AD=4 prune_dist
8=?DC_38BC ,

Distribution 8=?DC_38BC iteratively pruned
until the number of components is ≤

which is the same density as the one of
∑B

8=1

?8%�8
(⟦B(x)⟧)

%̃
(�8 | ⟦B(x)⟧) = �̃ . Observe that we

have assumed that for at least one 8 ?̃8 ≠ 0. However, if that is not the case %� (⟦B(x)⟧) = 0

and the conclusion still holds.
• Let E : >1B4AE4 . If B(x) has a probability greater than zero conclusion follows as in the previous
case. If B(x) has the form xk == c we can use the same argument, but we need to replace
%�8

(⟦�(G)⟧) with the normalization constant �8 =
∫
R3−1

5�8
(G, G8 = 2)3 (G \ G8).

□

6.3 SOGAprune

To improve the scalability of SOGAwe propose a second version of the algorithm, called SOGAprune,
in which the user can introduce at script level the instruction prune(), being an integer number.
When the script is compiled in a cfg, the prune instruction is compiled in a new node of type ?AD=4 .
When accessed, the function node_semantics invokes the function prune_dist(8=?DC_38BC,).

Function prune_dist. It prunes the current distribution 8=?DC_38BC to keep the number of its
components below a user-specified bound . The pruning is performed similarly to Chaudhuri
and Solar-Lezama [2010]. In particular, for each pair of components 8, 9 in the input distribution
input_dist, havingmixing coefficients c8 , c 9 , means `8 , ` 9 and covariancematrices Σ8 , Σ 9 , we compute

the mean `′ =
c8`8+c 9 ` 9
c8+c 9

and the cost 2>BC (8, 9) = c8 ∥`′ − `8 ∥ + c 9 ∥`′ − ` 9 ∥.

After computing the cost for all pairs (8, 9) such that 8 ≠ 9 and 8, 9 < , the pair (8, 9) with
minimal cost is substituted with a single component having mean `′ and covariance matrix Σ′ with

Σ
′
=

c8

c8 + c 9

(
Σ8 + `

)
8 `8

)
+

c 9

c8 + c 9

(
Σ 9 + `

)
9 ` 9

)
− `′) `′ .

Observe that `′ and Σ′ are exactly the mean ad the covariance matrix of the mixture c8
c8+c 9

N(`8 , Σ8)+
c 9

c8+c 9
N(` 9 , Σ 9). This produces the best possible approximation of the two components [Chaudhuri

and Solar-Lezama 2010]. The procedure is iterated until the number of components is less than
 (observe that after the first two components have been merged into a new one, we need to
recompute the cost only for the pairs in which the new component appears).
A summary of how the semantics of each node is implemented is reported in Table 2, while

detailed algorithms for SOGA implementation can be found in the Supplementary Material.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:21

6.4 Computational Cost

We first compute the computational cost without pruning, then we discuss how pruning affects it.

Cost without pruning. Let |+ | denote the total number of nodes, |) | the number of test nodes,
|)$ | the number of test and observe nodes and |(| the number of state nodes. W.l.o.g. we assume
for simplicity that all read-only variables are pushed to an initial distribution �0 over R= ; thus the
output of the entry node is (1, �0) and all assignments only use output variables. By doing this we
compute an upper bound on the true computational cost since the dimensions corresponding to
read-only variables are dropped after marginalization. Letting�0 denote the number of components
of �0, the output distribution will have at most � ≤ �<0G = 2 |) |�0 components.

We consider the cost to access a node and perform elementary operations, such as assignments
and products, constant. Expressions 4G?A and CAD=2 are assumed to be stored in suitable data
structures accessible in constant time, so storage and reading of them are also considered elementary
operations. Overall, elementary operations contribute to the total computational cost with a
term $ (|+ |), which is however dominated by the computational cost of executing approx_trunc,
apply_rule and merge_dist. We examine their cost separately.
The function approx_trunc is invoked once when an observe node is accessed and twice when

a test node is accessed, for the true and the false branch respectively. When B(z) is in the form
c1 · z1 + . . . + cn · zn ⊲⊳ c a singular value decomposition is performed to change coordinates, so
that in the new set of coordinates the truncation set is a hyper-rectangle (cost $ (=3), [Gu and
Eisenstat 1995]). Then, a new mixing coefficient has to be computed for each component to convert
the truncated GM into a mixture of truncated Gaussians (cost $ (=)). Finally, for each truncated
Gaussian, the first two order moments are computed using the formulas in Kan and Robotti [2017]
(cost $ (=4), for a detailed account see Supplementary Material). When B(z) is in the form xi == c,
to apply the formulas in Bishop and Nasrabadi [2006], matrix multiplication must be performed,
amounting to cost $ (=3) [Skiena 2008]. Overall, we have a cost of $

(
|)$ |�<0G=

4
)
.

The function apply_rule is invoked every time a state node is accessed. Since affine transforma-
tions require matrix multiplication (cost $ (=3)), the total cost is $

(
|(|�<0G=

3
)
.

Finally, the function merge_dist is invoked whenever a node is accessed and performs a scalar
product. It contributes for a cost $ (|+ |�<0G) .
The total cost of SOGA is therefore

$
(
|)$ |�<0G=

4
)
+$

(
|(|�<0G=

3
)
+$ (|+ |�<0G) ≤ $ (|+ |2 |) |�0=

4), (11)

that is, linear in the number of nodes |+ | and in the initial number of components �0, polynomial
in the dimensionality of the augmented input space = and exponential in the number of test nodes
|) |, i.e., linear in the number of paths.

Effect of pruning. Let us now consider the effect of introducing prune() instructions. Let |% | be
the number of pruning nodes and |) |14C be the maximum number of subsequent test nodes without
pruning instructions between them. Then |) |14C ≤ |) | and |) |14C = |) | if no pruning instructions
have been introduced in the program. Then, the maximum number of components a mixture can
have before pruning occurs is �<0G = 2 |) |14C (assuming w.l.o.g. |�0 | <).
The function prune_dist is invoked at most |% | times. When invoked, it first computes the cost

for all possible pairs of components, which is at most �<0G (�<0G − 1). The computation of the
cost function for each pair has cost $ (=), while the computation of the covariance matrix (cost
$ (=2)) is performed for a single pair. At its first iteration, the computational cost of prune_dist is,
therefore, $ (�2

<0G=). After this, new costs are computed for at most �<0G − times, but each time
only for � < �<0G pairs of components. The whole cost of the function is therefore $ (�2

<0G=).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:22 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Substituting in (11) one gets that the computational cost with pruning is bounded by:

$ (|+ | 2 |) |14C=4) +$ (222 |) |14C=) ≤ $ (|+ | 222 |) |14C=4) . (12)

Comparing (11) with (12) one can conclude that pruning is only effective in reducing the compu-
tational cost when the overhead introduced by pruning (222 |) |14C) is less demanding than dealing
with the full space of paths (�02

|) |). To keep the overhead contained one could use small values of
 while keeping also |) |14C small (e.g. by introducing many pruning instructions). However, this
introduces an additional level of approximation which can hinder the accuracy of SOGA.

7 NUMERICAL EVALUATION

We split the numerical evaluation into four parts. In Section 7.1 we compare SOGA with four
baseline tools representative of different inference methods for estimating the posterior mean:
STAN forMCMC [Carpenter et al. 2017], PSI for exact symbolic analysis [Gehr et al. 2016], AQUA for
quantization of posterior distributions [Huang et al. 2021] and Pyro for VI [Bingham et al. 2019]. In
Section 7.2 we compare SOGA against Pyro in performing Maximum A Posteriori (MAP) estimation
[Gelman et al. 2013], to test how well our method is able to capture the posterior distribution, in
addition to its moments. Finally, in Sections 7.3 and 7.4, we evaluate SOGA’s performance on two
applications that have been extensively studied in the literature, owing to their significant practical
impact. The first application is inference on models involving mixtures of continuous and discrete
distributions, as in Gao et al. [2017]; Kharchenko et al. [2014]; Pierson and Yau [2015]; the second
application is Bayesian inference on collaborative filtering. [Zhao et al. 2013].

7.1 Posterior Mean Estimation

We start by comparing SOGA with STAN for MCMC [Carpenter et al. 2017], PSI for exact symbolic
analysis [Gehr et al. 2016], and AQUA for quantization of posterior distributions [Huang et al. 2021]
and Pyro for VI [Bingham et al. 2019]. We consider the case studies from these tool’s reference
papers [Carpenter et al. 2017; Gehr et al. 2016; Huang et al. 2021], excluding those which could
not be encoded in our syntax. This choice is intended to stress SOGA in the analysis of programs
that were not designed to enhance its properties. Overall out of 31 total models, 13 were left out:
9 because of non-parametrizable distributions depending on variable parameters, and 4 because
of the presence of non-polynomial functions (taken from: STAN - 1, PSI - 3, AQUA - 8, Pyro
- 1). The remaining 18 models can be found in Carpenter et al. [2017] (Bernoulli), Gehr et al.
[2016] (BayesPointMachine, Burglar, ClickGraph, ClinicalTrial, CoinBias, DigitRecognition, Grass,
MurderMistery, NoisyOr, SurveyUnbias, TrueSkills, TwoCoins) and Huang et al. [2021] (Altermu,
Altermu2, NormalMixtures, RadarQuery, TimeSeries).

The considered programs are listed in Table 3. Pruning was applied after every test and observe
nodes (repeating it only once if they occur subsequently) for programs whose computation time was
greater than 1 s and at least ten times larger than the worst performing tool. We set = 0.015�<0G

except for NormalMixtures; there, since �<0G exceeded the tens of thousands, we set = 30. With
this strategy, the pruning algorithm was invoked only in 4 out of the 18 considered programs.

The experiments were performed on a laptop equippedwith a 2.8 GHz Intel i7 quad-core processor
and 16GB RAM, CmdStan v2.30.1 and Wolfram Mathematica 13.1 (Wolfram Research, Inc.), setting
a time-out threshold at 600 s.

7.1.1 Results. Table 3 collects the results where time refers to the average runtimes (in seconds)
out of 10 executions and value refers to the computed expected value of a target variable in
the model. For each model we specify the kind of distributions involved: B=Bernoulli, Be=Beta,
D=Discrete, G(∗) =Gaussian (with non-constant mean), U=Uniform. For STAN, we indicate the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:23

Ta
b
le
3.

R
es
u
lt
s
u
si
n
g
S
TA

N
,P

S
I,
A
Q
U
A
an

d
S
O
G
A
.‘
—
’:
d
is
cr
et
e
p
os
te
ri
or

n
ot

su
p
p
or
te
d
;‘
m
em

’:
ou

t
of

m
em

or
y
er
ro
r;
‘e
rr
’:
to
ol
re
tu
rn
s
er
ro
r
st
at
e.
F
or

S
O
G
A
,

�
:f
in
al
n
u
m
b
er

o
f
co
m
p
o
n
en
ts
;3
:d

im
en
si
o
n
al
it
y
o
f
th
e
o
u
tp
u
t
ve
ct
o
r.

M
od
el

D
is
t.

ST
A
N

A
Q
U
A

P
y
ro

(V
I)

P
SI

SO
G
A

ti
m
e

va
lu
e

ti
m
e

va
lu
e

ti
m
e

va
lu
e

ti
m
e

va
lu
e

ti
m
e

va
lu
e

�
3

B
er
n
ou
ll
i

B
,U

0.
17

0.
25
0

0.
84

0.
24
7

4.
51

0.
25
0

0.
38

0.
25
0

1.
28

∗
0.
25
2

27
2

B
a
y
es
P
oi
n
tM

a
ch
in
e

G
∗

51
.0

0.
05
6

m
em

60
.4
9

0.
04
6

er
r

2.
20

0.
01
1

1
9

B
u
rg
la
r

B
—

—
—

0.
12

0.
00
3

0.
06

0.
00
3

4
6

C
li
ck
G
ra
p
h

B
,U

10
2

0.
54
0

m
em

3.
13

0.
56
6

1.
10

0.
61
4

20
8∗

0.
63
0

35
6

C
li
n
ic
a
lT
ri
a
l

B
,U

—
—

—
0.
97

0.
75
5

92
.2
∗

0.
75
3

23
5

C
oi
n
B
ia
s

B
,B
e

0.
07

0.
42
0

0.
91

0.
38
3

0.
91

0.
41
9

0.
34

0.
41
7

0.
61

0.
41
5

64
2

D
ig
it
R
ec
og
n
it
io
n

D
—

—
—

er
r

4.
46

4.
45
3

10
2

G
ra
ss

B
—

—
—

0.
08

0.
70
8

0.
09

0.
70
8

28
10

M
u
rd
er
M
is
te
ry

B
—

—
—

0.
12

0.
01
6

0.
01

0.
01
6

2
2

N
oi
sy
O
r

B
—

—
—

0.
16

0.
81
4

0.
16

0.
81
4

25
6

10
Su
rv
ey
U
n
b
ia
s

B
,G
,U

0.
10

0.
80
0

1.
08

0.
56
7

2.
89

0.
77
0

18
.5

0.
80
0

1.
56

0.
79
9

12
8

4
T
ru
eS
k
il
ls

G
∗

0.
04

10
4.
0

m
em

1.
30

10
1.
4

to
0.
05

10
4.
7

1
6

T
w
oC

oi
n
s

B
—

—
—

0.
10

0.
33
3

0.
01

0.
33
3

3
3

A
lt
er
m
u

G
∗

19
.0

0.
00
9

1.
32

0.
00
0

33
.1

0.
03
0

to
0.
16

0.
00
0

1
5

A
lt
er
m
u
2

G
∗
,U

15
.0

0.
17
0

0.
79

0.
15
5

5.
50

0.
09
8

28
4

0.
15
5

0.
36

0.
15
6

4
3

N
or
m
a
lM

ix
tu
re
s

G
∗
,U

0.
38

0.
28
6

1.
27

0.
28
6

10
4.
89

0.
29
5

to
50
.4
∗

0.
29
8

30
4

R
a
d
a
rQ

u
er
y

B
,G

∗
,U

14
4

5.
00
0

0.
90

6.
33
3

er
r

7.
75

6.
33
3

6.
34

5.
94
0

20
16

8
T
im

eS
er
ie
s

G
∗
,U

0.
37

-1
.6
00

1.
67

-1
.5
75

26
.1
5

-1
.7
01

to
3.
79

-1
.5
90

19
4

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:24 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

time needed to obtain a 5% confidence interval whose amplitude is contained in 1% of the mean
(up to a maximum of 105 samples). For PSI we report the sum of the time needed to generate the
symbolic formula and that needed to integrate it when in the presence of non-simplified integrals
(observe that in the original paper, only the time for symbolic computation was considered). For
VI, due to high sensitivity with respect to the hyperparameters [Hoffman et al. 2013], we proceed
using three different learning rates (0.01, 0.005, 0.001), and we report the most accurate estimation
(detailed results can be found in the Supplementary Material). The number of iterations of the
stochastic gradient descent is increased from a minimum of 100 to a maximum of 10k, stopping
the optimization if the difference between the estimated mean posterior and the mean posterior
estimated 100 steps before is less than 1% of the current estimation. For SOGA, runtimes labeled
with ∗ indicate that the pruning algorithm was invoked. Finally, we highlight the fastest method
with a grey background. For accuracy evaluation, we consider PSI’s results as ground truth when
available (i.e., when PSI terminates and the integration is successfully computed within the timeout
threshold). We made this choice since PSI is an exact method and the only guaranteed to be exact
among the evaluated tools.

Only in one example, BayesPointMachine, SOGA performs poorly in terms of accuracy, estimating
a value of 0.011 for a parameter estimated by STAN as 0.054 ± 2e−4. We remark, however, that this
program turned out to be particularly difficult to solve for AQUA (which issued an out-of-memory
error) and PSI (which was not able to complete the symbolic computation of the posterior). On
the other examples, SOGA yields very good accuracy, with a relative error below 7% across all
comparable models. We now discuss a detailed comparison of runtimes against each tool method.

STAN. STAN does not support discrete posteriors; hence it could not analyze eight models. For
the models that can be analyzed by both, SOGA outperforms STAN in terms of runtimes on Altermu,
Altermu2, and RadarQuery. By contrast, STAN outperforms SOGA in Bernoulli and NormalMixtures.
We attribute this to the presence of non-Gaussian priors and a large number of observations,
resulting in a high number of components and truncations to be computed. Both have similar
performance on the remaining models.

AQUA. SOGA is more flexible than AQUA in that it supports discrete posteriors. On ClickGraph,
and TrueSkills AQUA issued an out-of-memory error while SOGA could approximate the posterior
mean. We ascribe this issue to the fact that AQUA uses tensors, whose dimension rapidly increases
with the number of distributions. In particular, in AQUA each distribution must be stored in the
tensor, while SOGA can use fresh read-only variables which are dropped once the marginal over the
output variables is evaluated. Notably, SOGA outperforms AQUA also on Altermu, Altermu2 and
TimeSeries proposed in the AQUA paper [Huang et al. 2021]. Instead, AQUA is more efficient than
SOGA in RadarQuery, Bernoulli and NormalMixtures, for the same reasons explained for STAN.

Pyro. Being a gradient-based method, Pyro’s VI offers limited support for discrete variables,1 so
that, similarly to STAN and AQUA, we were not able to encode models with discrete posterior. In
addition, we found that the encoding of RadarQuery incurred runtime errors. For the remaining
models, VI is comparable to SOGA, when not less accurate, and taking longer runtimes. Noticeable
exceptions are BayesPointMachine, where, as already noticed, SOGA is not able to achieve a good
accuracy and ClickGraph, where SOGA incurs long runtimes even with pruning. On the other hand,
VI exhibits a significant sensitivity with respect to the choice of the hyperparameters, which can
result in non-convergence and sloppy approximations for poor choices of the parameters (results
for all the tested learning rates can be found in the Supplementary Material).

1https://pyro.ai/examples/enumeration.html

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

https://pyro.ai/examples/enumeration.html

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:25

Table 4. Comparison between Pyro and SOGA for MAP estimation. Models with ‘(P)’ were pruned when
SOGA was applied. True values are derived optimizing the exact posterior, or from samples (denoted with ‘*’).

Pyro SOGA
True value

Model value time value time

Bernoulli 0.200 0.20 0.220 12.0 0.200
Bernoulli (P) 0.200 0.20 0.290 1.28 0.200

BayesPointMachine 0.000 7.83 0.011 2.20 0.032 ± 0.002*
ClickGraph 0.501 2.98 0.861 208 1.000
CoinBias 0.400 0.63 0.493 0.61 0.400

SurveyUnbias 0.964 3.46 0.755 1.56 1.000
TrueSkills 101.6 0.99 104.7 0.05 104.8 ± 0.681*
Altermu not converged 0.000 0.16 0.114 ± 0.092*

NormalMixtures (P) 0.236 49.5 0.276 50.4 0.275 ± 0.005*
TimeSeries -1.564 55.4 -1.494 3.69 -1.694 ± 0.021

PSI. PSI outperforms SOGA on Bernoulli, ClickGraph, and ClinicalTrial. However, on six models
(SurveyUnbias, TrueSkills, Altermu, Altermu2, RadarQuery, and TimeSeries) PSI timed out or resulted
in long runtimes. This behavior can be explained by the presence of distributions dependent
on variable parameters (SurveyUnbias, Trueskills, Radar) or by the high number of observations
(Altermu, Altermu2, TimeSeries). In Altermu, PSI could not compute a symbolic formula within the
time-out threshold, while in BayesPointMachine, TrueSkills, and TimeSeries the formula contained
non-simplified integrals, whose integration in Mathematica took longer than the time-out threshold.
Notably, for models involving only Bernoulli distributions (Burglar, Grass, MurderMistery, NoisyOr,
TwoCoins), for which both tools are exact, their performance is comparable.

7.1.2 Performance of Pruning.
In the right inset we report the runtimes, values, and
number of components� for SOGA without pruning
applied to the four models that required the applica-
tion of pruning (Bernoulli, ClickGraph, ClinicalTrial,
NormalMixtures). All models share the occurrence of
GM distributions with more than 1000 components.
For Bernoulli, pruning allowed comparable runtimes

Model Time Value �

Bernoulli 11.97 0.252 1774
ClickGraph to 2304
ClinicalTrial to 1508

NormalMixtures to 97714

with respect to the best-performing tool, while base SOGA was about 9 times slower (11.97 s). In
addition, base SOGA computed an output indistiguishable from the pruned version up to the third
decimal digit. For the other three cases, base SOGA was unable to compute a numerical result
within the time-out threshold. For these, the number of components � is the one reached before
timing out. Applying pruning allowed SOGA to complete the computation within the time-out
threshold while achieving excellent accuracy with respect to the ground truth.

7.2 Maximum a Posteriori Estimation

Since SOGA approximates the posterior with a Gaussian mixture, it can also compute the Maximum
a Posteriori (MAP) estimate by simply returning the mean of the GM component with the largest
mixing coefficient. Here we compare its performance against Pyro, in which MAP estimation can
be performed using a different parametrizing distribution than the one used for the mean posterior

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:26 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

inference.2 To get a baseline for the MAP value, we first generate the symbolic posterior using
PSI and then optimize it numerically. For models in which PSI is not able to compute the exact
posterior, we estimate the ground truth by taking 10k samples from the posterior and binning
them into 50 intervals; then, MAP is the midpoint of the interval with the most samples. We tested
the same models with continuous posterior reported in Table 3, except Altermu2, since, by visual
inspection, we found that it has a flat posterior.
Results are reported in Table 4. Due to Pyro’s sensitivity to hyperparameters observed in the

previous section, we tested three different values of learning rate. Table 4 only reports the closest
estimation to the baseline; full results are available in the Supplementary Material, confirming
the sensitivity issues. These experiments show that SOGA performs relatively worse than in the
estimation of the posterior mean. This is expected because SOGA is designed to match means and
variances, but it does not necessarily approximate the whole distribution. However, compared to
Pyro, it is still able to obtain the closest estimation for BayesPointMachine, ClickGraph, TrueSkills,
Altermu and NormalMixtures, while it is outperformed by Pyro in Bernoulli, CoinBias, SurveyUnbias
and TimeSeries. Finally, we note that analyzing Bernoulli with SOGAprune degrades the MAP
estimation, unlike in the posterior mean.

7.3 Mixtures of Continuous and Discrete Distributions

Mixtures of continuous distributions and dis-
crete probability masses appear in different do-
mains such as in Gao et al. [2017]; Kharchenko
et al. [2014]; Pierson and Yau [2015]. Languages
such as STAN and AQUA do not support them.
Ad hoc methods have been proposed in Tolpin
et al. [2016] and Nitti et al. [2016]. More re-
cently Wu et al. [2018] extended the sampling
techniques used in BLOG for more accurate
inference. We test SOGA on the three bench-
marks proposed by Wu et al. [2018] and com-
pare its runtimes against PSI, BLOG, and vari-
able elimination (VE) as implemented in Pyro
[Obermeyer et al. 2019]. IndianGPA and Scale

Runtimes (s)

Model SOGA PSI BLOG VE

IndianGPA 0.099 0.180 0.516 0.192

Scale 0.013 0.120 0.810 0.150

Tracking_1 0.042 to 0.803 0.143

Tracking_5 0.046 to 1.044 0.394

Tracking_10 0.046 to 1.330 0.670

Tracking_50 0.110 to 2.886 4.095

Tracking_100 0.192 to 5.054 8.885

Tracking_150 0.271 to 6.602 13.723

are reported exactly as in the original paper, while the Tracking_= example from Section 1.1 is
adapted since it was originally cast as a control problem. All examples have a Dirac delta posterior,
which is computed exactly by all. However, SOGA is the fastest and the one which scales better as
the number of steps = increases.

7.4 Bayesian Inference for Collaborative Filtering

Collaborative filtering models are well-known in machine learning for applications to recommen-
dation systems [Koren et al. 2021]. We target the problem of Bayesian inference on the latent factor
model proposed in Hofmann and Puzicha [1999], which arises after a singular value decomposition
and serves as the basis for solving an optimization problem [Zhao et al. 2013]. The model assumes
noisy observations sampled from N(2 5: , 1) where 2 5: has the form 2 5: = 0111 + . . . + 0:1: + 2 ,
where 08 , 18 , and 2 are unknown latent variables. As noticed in Nishihara et al. [2013], performing
Bayesian inference on these models is particularly difficult due to non-identifiability [Tsiatis 1975]
and symmetry [Neal 1999] of the parameters. For example, switching the distributions of 08 and

2https://pyro.ai/examples/mle_map.html

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

https://pyro.ai/examples/mle_map.html

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:27

Table 5. Runtimes (in seconds) and computed values for the collaborative filtering model N(2 5: , 1).

SOGA STAN AQUA VI

: Ground truth time value time value time value time value

1 2 0.16 1.86 0.94 1.90 1.64 1.83 18.90 1.79
2 25 0.18 24.28 4.87 24.00 mem 25.10 23.93
3 -5 0.19 -5.79 7.63 -5.80 mem 26.40 -5.82
5 -30 0.22 -31.98 7.22 -32.00 mem 23.19 -31.47
10 151 0.30 149.75 5.42 150.00 mem 20.04 146.39
20 70 0.60 73.76 14.10 74.00 mem 23.18 69.92

18 will result in the same distribution for 2 5: , which is the only one observed. In some cases, one
may still want to model each parameter separately to allow for more flexibility. In this particular
case, though not solving the problem of symmetry and non-identifiability, SOGA can estimate the
distribution of 2 5: faster than its competitors. Results are shown in Table 5 for various values of : .
PSI results are not reported because the tool was able to produce a symbolic formula only up to
: = 3; however, even in these cases, numerical integration of the non-simplified integrals required
more than 600 s. Although STAN’s estimates are accurate and close to SOGA’s ones, its runtimes
are longer due to the increased cost of sampling, which is exponential in the number of variables.
As above, we attribute AQUA’s out-of-memory error to its tensor based representation. For VI,
we report results for the learning rate 0.005, which we found to be the one performing best in
average, among the tested ones. A full set of experiment results can be found in the Supplementary
Material. VI exhibits an accuracy comparable to SOGA’s, but significantly longer runtimes. We
observe, however, that thanks to vectorization, VI’s runtimes do not significantly increase with : .
Overall, the excellent runtime performance of SOGA is due the particular structure of the models,
which exhibit Gaussian posteriors on variables combined in a scalar product without introducing
truncations that could slow down the computations.

8 FURTHER RELATED WORK

Inference. In addition to the techniques discussed earlier in this paper, volume computation can
be quite efficient for discrete models [Filieri et al. 2013; Holtzen et al. 2020]; however, it cannot be
applied to continuous distributions. All the mentioned methods use a pdf representation of the
distributions. More recently, representations using generating functions have been investigated,
but only for discrete distributions [Chen et al. 2022]. Finally, some approaches use moment-based
invariants [Barthe et al. 2016; Bartocci et al. 2020; Chakarov and Sankaranarayanan 2014; Katoen
et al. 2010; Moosbrugger et al. 2022].While they share the idea of computingmoments up to a certain
order, they differ both with respect to the supported programs and the computed information,
making a direct comparison difficult.

Universal Approximators. Our approach can be ascribed to the practice, common inmany branches
of mathematics, of studying universal approximators, whereby one shows that a given function
belonging to a certain class is shown to be approximated, arbitrarily closely, by another family
of (parameterized) functions. Notable examples are polynomials [Pérez and Quintana 2006], and
neural networks [Hornik et al. 1989; Zhou 2020].

Gaussian Approximators. The approximation-by-Gaussian approach is also common to Laplace
approximation [Tierney and Kadane 1986]. Laplace approximation is a mode matching strategy

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:28 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

and is more expensive computationally than VI, as it is based on an optimization process to find the
mode. Generally, however, it is inferior to VI [Bishop and Nasrabadi 2006]. Another kind of Gaussian
approximation is Gaussian Smoothing [Chaudhuri and Solar-Lezama 2010, 2011], although it does
target neither probabilistic programs nor the inference problem.

9 CONCLUSIONS

Gaussian Semantics is a family of approximations parameterized by the moment order to match
against a Gaussian mixture at each location of a probabilistic program. The universal approximation
theorem states that such a family converges to the true semantics. Although, in principle, any
program location could be treated with different moment-order matching, in practice this is a
difficult problem that requires the solution of a system of nonlinear equations. While the system is
guaranteed to have a solution, finding it using SMT solvers over reals or numerical methods yields
poor results, due to long computational times and numerical instability. Therefore we leave open
the general problem of implementing Gaussian Semantics for any order of moments. However,
we provide an analytical method that matches second-order moments of the exact probabilistic
semantics (SOGA). The numerical results for the case studies demonstrate high quality of the
approximation and that SOGA complements state-of-the-art methods for probabilistic inference
and in particular for inference on models with mixtures of discrete and continuous distributions
and for Bayesian inference on collaborative filtering models. Due to the efficiency shown by SOGA,
we believe that in these cases our method can effectively be used as an alternative to sampling.

As regards future work, while SOGA performed satisfactorily on all tested benchmarks, it could
not be applied to some of the models from the same repositories, due to the limitations of our
syntax. Extending the latter to include general distributions depending on non-constant parameters,
unbounded loops and non-polynomial functions would widen its scope of applicability. A possible
way to overcome the former restriction could be learning offline the approximating distributions
as a function of the variable parameters, but how to do this efficiently is currently not clear, even
though of great interest. For what concerns unbounded loops, we observed that for almost surely
terminating programs, the loops can be unrolled for a finite number of iterations so that the error
committed in the approximation is arbitrarily small. This suggests that increasing the number of
unrolled iterations together with the number of moments matched should preserve our convergence
theorem, even in the case of almost surely terminating unbounded programs. Similarly, one could
exploit convergence results for polynomial approximations to extend the convergence result to
sequences of polynomial programs that approximate programs featuring non-polynomial functions.
We leave the possibility to explore these extensions of our convergence result in future work.

Finally, one might devise algorithms for higher-order moments. While an extension to exact

higher-order moment matching seems hard, a relaxed moment problem could be defined as an
optimization problem [Hansen 2010].

DATA AVAILABILITY STATEMENT

A replication package is openly available at https://zenodo.org/records/10026970.

ACKNOWLEDGMENT

This work was partially supported by the projects SERICS (PE00000014) and by Investment 1.5
Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE, B83C22003920001) and In-
terconnected North-East Innovation Ecosystem (iNEST, ECS_00000043) under the MUR National
Recovery and Resilience Plan funded by the European Union - NextGenerationEU. We would
like to thank Joost-Pieter Katoen for his feedback on a preliminary version of this paper and the
anonymous reviewers for their valuable comments.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

https://zenodo.org/records/10026970

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:29

REFERENCES

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017. Fairsquare: probabilistic verification of program
fairness. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–30.

Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016. Synthesizing probabilistic invariants via
Doob’s decomposition. In International Conference on Computer Aided Verification. Springer, 43–61.

Ezio Bartocci, Laura Kovács, and Miroslav Stankovič. 2020. Mora-automatic generation of moment-based invariants. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 492–498.

Patrick Billingsley. 2008. Probability and measure. John Wiley & Sons.
Patrick Billingsley. 2013. Convergence of probability measures. John Wiley & Sons.
Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research 20, 1 (2019), 973–978.

Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern Recognition and Machine Learning. Vol. 4. Springer.
Xavier Boyen and Daphne Koller. 1998. Tractable inference for complex stochastic processes. In Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence. 33–42.
Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical Software
76, 1 (2017).

Arun Chaganty, Aditya Nori, and Sriram Rajamani. 2013. Efficiently sampling probabilistic programs via program analysis.
In Artificial Intelligence and Statistics. PMLR, 153–160.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation invariants for probabilistic program loops as fixed
points. In International Static Analysis Symposium. Springer, 85–100.

Swarat Chaudhuri and Armando Solar-Lezama. 2010. Smooth interpretation. ACM Sigplan Notices 45, 6 (2010), 279–291.
Swarat Chaudhuri and Armando Solar-Lezama. 2011. Smoothing a program soundly and robustly. In International Conference

on Computer Aided Verification. Springer, 277–292.
Mingshuai Chen, Joost-Pieter Katoen, Lutz Klinkenberg, and Tobias Winkler. 2022. Does a program yield the right

distribution? Verifying probabilistic programs via generating functions. In International Conference on Computer Aided

Verification. Springer, 79–101.
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages. 238–252.
Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.
Stewart N Ethier and Thomas G Kurtz. 2009. Markov processes: characterization and convergence. John Wiley & Sons.
Antonio Filieri, Corina S Păsăreanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In 2013 35th

International Conference on Software Engineering (ICSE). IEEE, 622–631.
Weihao Gao, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. 2017. Estimating mutual information for discrete-

continuous mixtures. Advances in Neural Information Processing Systems 30 (2017).
Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In

International Conference on Computer Aided Verification. Springer, 62–83.
Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian data analysis.

CRC press.
Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B Tenenbaum. 2008. Church: a language

for generative models. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. 220–229.
Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In

Future of Software Engineering Proceedings. 167–181.
Ming Gu and Stanley C Eisenstat. 1995. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM

J. Matrix Anal. Appl. 16, 1 (1995), 172–191.
Lars Peter Hansen. 2010. Generalized method of moments estimation. In Macroeconometrics and Time series Analysis.

Springer, 105–118.
W Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. (1970).
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. Journal of

Machine Learning Research (2013).
Thomas Hofmann and Jan Puzicha. 1999. Latent class models for collaborative filtering. In IJCAI, Vol. 99.
Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic programs.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–31.
Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators.

Neural Networks 2, 5 (1989), 359–366.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

63:30 Francesca Randone, Luca Bortolussi, Emilio Incerto, and Mirco Tribastone

Zixin Huang, Saikat Dutta, and Sasa Misailovic. 2021. Aqua: Automated quantized inference for probabilistic programs. In
International Symposium on Automated Technology for Verification and Analysis. Springer, 229–246.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. 1999. An introduction to variational
methods for graphical models. Machine Learning 37, 2 (1999), 183–233.

Raymond Kan and Cesare Robotti. 2017. On moments of folded and truncated multivariate normal distributions. Journal of
Computational and Graphical Statistics 26, 4 (2017), 930–934.

Joost-Pieter Katoen, Annabelle K McIver, Larissa A Meinicke, and Carroll C Morgan. 2010. Linear-invariant generation for
probabilistic programs. In International Static Analysis Symposium. Springer, 390–406.

Peter V Kharchenko, Lev Silberstein, and David T Scadden. 2014. Bayesian approach to single-cell differential expression
analysis. Nature Methods 11, 7 (2014), 740–742.

Yehuda Koren, Steffen Rendle, and Robert Bell. 2021. Advances in collaborative filtering. Recommender systems handbook

(2021), 91–142.
Dexter Kozen. 1979. Semantics of probabilistic programs. In 20th Annual Symposium on Foundations of Computer Science

(FOCS 1979). IEEE, 101–114.
Dexter Kozen. 1983. A probabilistic PDL. In Proceedings of the fifteenth annual ACM Symposium on Theory of computing.

291–297.
Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. 2015. Automatic variational inference in Stan. Advances

in Neural Information Processing Systems 28 (2015).
Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The Annals of Mathematical Statistics 22, 1

(1951), 79–86.
Jean Bernard Lasserre. 2009. Moments, positive polynomials and their applications. Vol. 1. World Scientific.
Jacob Laurel and Sasa Misailovic. 2020. Continualization of probabilistic programs with correction. In European Symposium

on Programming. Springer, Cham, 366–393.
J Lo. 1972. Finite-dimensional sensor orbits and optimal nonlinear filtering. IEEE Transactions on information theory 18, 5

(1972), 583–588.
Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform with

programmable inference. arXiv preprint arXiv:1404.0099 (2014).
Brian Milch, Bhaskara Marthi, and Stuart Russell. 2004. BLOG: Relational modeling with unknown objects. In ICML 2004

workshop on statistical relational learning and its connections to other fields. 67–73.
Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. 2022. This is the moment for probabilistic loops.

Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1497–1525.
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by

program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming.
Springer, 62–79.

Radford M Neal. 1999. Erroneous results in “Marginal likelihood from the Gibbs output”. minmeo, University of Toronto

(1999).
Robert Nishihara, Thomas Minka, and Daniel Tarlow. 2013. Detecting parameter symmetries in probabilistic models. arXiv

preprint arXiv:1312.5386 (2013).
Davide Nitti, Tinne De Laet, and Luc De Raedt. 2016. Probabilistic logic programming for hybrid relational domains. Machine

Learning 103, 3 (2016), 407–449.
Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. 2014. R2: An efficient MCMC sampler for probabilistic

programs. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 28.
Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman. 2019.

Tensor variable elimination for plated factor graphs. In International Conference on Machine Learning. PMLR, 4871–4880.
Dilcia Pérez and Yamilet Quintana. 2006. A survey on the Weierstrass approximation theorem. arXiv preprint math/0611038

(2006).
Avi Pfeffer. 2001. IBAL: A probabilistic rational programming language. In IJCAI. Citeseer, 733–740.
Emma Pierson and Christopher Yau. 2015. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression

analysis. Genome Biology 16, 1 (2015), 1–10.
Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. 2021. SPPL: probabilistic programming with fast exact symbolic

inference. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. 804–819.
Konrad Schmüdgen. 2017. The moment problem. Vol. 9. Springer.
SS Skiena. 2008. The Algorithm Design Manual. Springer Publishing Company.
Luke Tierney and Joseph B Kadane. 1986. Accurate approximations for posterior moments and marginal densities. J. Amer.

Statist. Assoc. 81, 393 (1986), 82–86.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures 63:31

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and implementation of probabilistic
programming language anglican. In Proceedings of the 28th Symposium on the Implementation and Application of Functional

programming Languages. 1–12.
Anastasios Tsiatis. 1975. A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy

of Sciences 72, 1 (1975), 20–22.
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

Gian-Carlo Wick. 1950. The evaluation of the collision matrix. Physical Review 80, 2 (1950), 268.
Wolfram Research, Inc. [n. d.]. Mathematica. https://www.wolfram.com/mathematica
Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell. 2018. Discrete-continuous mixtures in probabilistic

programming: Generalized semantics and inference algorithms. In International Conference on Machine Learning. PMLR,
5343–5352.

Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative filtering. In Proceedings of the 22nd ACM

International Conference on Information & Knowledge Management. 1411–1420.
Ding-Xuan Zhou. 2020. Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis

48, 2 (2020), 787–794.
Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. 2020. Divide, conquer, and combine: a new inference

strategy for probabilistic programs with stochastic support. In International Conference on Machine Learning. PMLR,
11534–11545.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 63. Publication date: January 2024.

https://doi.org/10.1038/s41592-019-0686-2
https://www.wolfram.com/mathematica

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Proposed Approach

	2 Background
	3 Syntax and Exact Probabilistic Semantics
	3.1 Syntax
	3.2 Supported Programs
	3.3 Exact Probabilistic Semantics

	4 Gaussian Semantics
	5 Universal Approximation Theorem
	5.1 Satisfaction of the Hypotheses
	5.2 Outline of the Proof

	6 Second Order Gaussian Approximation
	6.1 Overview
	6.2 Distributivity of Transfer Functions
	6.3 SOGAprune
	6.4 Computational Cost

	7 Numerical Evaluation
	7.1 Posterior Mean Estimation
	7.2 Maximum a Posteriori Estimation
	7.3 Mixtures of Continuous and Discrete Distributions
	7.4 Bayesian Inference for Collaborative Filtering

	8 Further Related Work
	9 Conclusions
	References

