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Abstract: This paper is concerned with optimal feedback control synthesis for periodic
processes with economic control objectives. The focus is on tube-based methods which optimize
over robust forward invariant tubes (RFITs) in order to determine the nonlinear feedback law.
The main contribution is an approach to conservatively approximating this set-based periodic
feedback control optimization problem by a tractable optimal control problem, which can be
solved with existing optimal control solvers. The approach is applied to an uncertain periodic
biochemical production process, where the objective is to maximize the profit subject to robust
safety constraints.
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1. INTRODUCTION

It is well known that periodic operation of chemical and
biochemical processes can lead to improved performance
compared to steady-state operation (Bailey, 1974). This
has sparked a great interest in finding and analyzing
optimal periodic (open-loop) operating policies for such
processes (Parulekar, 1998). These systems and processes
are highly nonlinear, typically uncertain, and often subject
to operational and economic constraints. Furthermore,
optimal operating regimes are often determined by the
operational constraints (Telen et al., 2015). Thus, in the
presence of disturbances, an open-loop optimal policy
may lead to suboptimal or even worse, unsafe operation.
This has motivated the need for robust control strategies,
which provide a guarantee for constraint satisfaction.
Optimal robust open-loop control strategies, have become
widespread (see e.g. Houska et al. (2012); Telen et al.
(2015)). In a periodic setting, system stability is a natural
requirement. Hence a significant effort has been devoted
to devising methods to compute robust open-loop stable
orbits for periodic systems (Mombaur et al., 2004, 2005).

Robust optimal closed-loop control has been studied
extensively, typically from a receding-horizon—model
predictive control—perspective (see e.g. Bemporad and
Morari, 1999, for a survey). This problem is significantly
harder to solve than its open-loop counterpart, since the
optimization variables are now state-dependent feedback
functions. Tube-based approaches (Langson et al., 2004;
Raković et al., 2005) have emerged as state-of-the-art tools
to construct conservative but tractable approximations
of the general optimal feedback control problem. These
methods are set-theoretical in nature and find their roots
in viability theory (Aubin, 1991). Informally, tube-based

approaches optimize over robust forward invariant tubes
(RFITs), namely set-valued maps containing all uncertain
state trajectories under a given feedback law.

This paper presents a method for designing robust optimal
feedback controllers for periodic systems. The problem
is addressed using set-based computing techniques. This
method is based on recent results for constructing and
optimizing over RFITs with ellipsoidal cross-sections. This
formulation leads to an optimal control problem with
periodicity constraints for the center and shape matrix
of the tube cross-sections. As a byproduct we obtain a
nonlinear feedback control law which is not parameterized
a priori, and can be used to control the system inside
the RFIT. The paper is organized as follows: Section 2
presents the problem formulation. Section 3 introduces a
tractable reformulation, based on ellipsoidal RFITs, of the
robust optimal feedback control problem. In Section 4 the
ellipsoidal RFIT approach is used to synthesize a robust
feedback controller for a periodic bioreactor with economic
objective. Section 5 concludes the paper.

Notation: Ln
2 denotes the set of n-dimensional Lebesgue

integrable functions, and Wn
1,2 the Sobolev space of weakly

differentiable functions with square-integrable derivatives.
The set of compact and convex compact sets in Rn are
denoted respectively by Kn and Kn

C. The set of n × n
symmetric positive semidefinite and definite matrices are
denoted by Sn+ and Sn++ respectively. An ellipsoid with
center q ∈ Rn and shape matrix Q ∈ Sn+ is given by

E(q,Q) =
{
q +Q

1
2 v

∣∣∣ vᵀv ≤ 1
}

,

where Q
1
2 is the positive semidefinite square root ofQ. The

ith row of a matrix A is denoted by Ai. For matrices and
vectors, the symbols ≥,≤, are understood componentwise.
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Raković et al., 2005) have emerged as state-of-the-art tools
to construct conservative but tractable approximations
of the general optimal feedback control problem. These
methods are set-theoretical in nature and find their roots
in viability theory (Aubin, 1991). Informally, tube-based
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(RFITs), namely set-valued maps containing all uncertain
state trajectories under a given feedback law.

This paper presents a method for designing robust optimal
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is addressed using set-based computing techniques. This
method is based on recent results for constructing and
optimizing over RFITs with ellipsoidal cross-sections. This
formulation leads to an optimal control problem with
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of the tube cross-sections. As a byproduct we obtain a
nonlinear feedback control law which is not parameterized
a priori, and can be used to control the system inside
the RFIT. The paper is organized as follows: Section 2
presents the problem formulation. Section 3 introduces a
tractable reformulation, based on ellipsoidal RFITs, of the
robust optimal feedback control problem. In Section 4 the
ellipsoidal RFIT approach is used to synthesize a robust
feedback controller for a periodic bioreactor with economic
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methods are set-theoretical in nature and find their roots
in viability theory (Aubin, 1991). Informally, tube-based
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(RFITs), namely set-valued maps containing all uncertain
state trajectories under a given feedback law.

This paper presents a method for designing robust optimal
feedback controllers for periodic systems. The problem
is addressed using set-based computing techniques. This
method is based on recent results for constructing and
optimizing over RFITs with ellipsoidal cross-sections. This
formulation leads to an optimal control problem with
periodicity constraints for the center and shape matrix
of the tube cross-sections. As a byproduct we obtain a
nonlinear feedback control law which is not parameterized
a priori, and can be used to control the system inside
the RFIT. The paper is organized as follows: Section 2
presents the problem formulation. Section 3 introduces a
tractable reformulation, based on ellipsoidal RFITs, of the
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2. ROBUST OPTIMAL FEEDBACK CONTROL FOR
PERIODIC SYSTEMS

2.1 Problem Setting and Inf-Sup Formulation

We consider uncertain control systems of the form

∀t ∈ R, ẋ(t) = f(x(t), w(t)) +Gu(t) . (1)

The state trajectory, x : R → Rnx , is required to satisfy
state constraints,

∀t ∈ R, x(t) ∈ X ⊆ Rnx . (2)

The control u : R → Rnu and disturbance w : R → Rnw

signals are assumed to be bounded, i.e.

∀t ∈ R, u(t) ∈ U ∈ Knu

C and w(t) ∈ W ∈ Knw

C .

The function f : Rnx × Rnw → Rnx is nonlinear, but
assumed to be integrable in all its arguments and Lipschitz
continuous in its first argument. Although the theory in
this paper allows for a nonlinear (Lipschitz continuous)
function G : Rnx → Rnx×nu , we will only consider a
constant matrix G ∈ Rnx×nu to simplify the presentation.

The framework of robust optimal feedback control, is
concerned with searching for a function µ : R × X → U,
such that the closed-loop system

∀t ∈ R : ẋ(t) = f(x(t), w(t)) +Gµ(t, x(t)) (3)

with x(0) = x0, satisfies (2) for every w ∈ Lnw valued in
W. Furthermore, we consider that the system operates in
a periodic mode, i.e. we search over the set of feedback
laws which satisfy

∃T ∈ R : µ(t+ T, x(t)) = µ(t, x(t)) , (4)

for all t ∈ R+ and all x(t) ∈ X. In particular this feedback
is chosen to minimize an economic criterion in Mayer form,
m(x(T )) with a given continuous function m : Rn → R.

Let ξ(t, x0, w, µ) = x(t) be the solution of (3), for a given
initial condition x0 ∈ X, disturbance w : R → W, and
feedback µ : R × X → U. The robust optimal feedback
control problem can be formulated as

inf
T∈R

φ0:X→R
µ:R×X→U

sup
w:[0,T ]→W

x0∈X, φ0(x0)≤0

m (ξ(T, x0, w, µ))

s.t.





sup
w:[0,T ]→W

x0∈X, φ0(x0)≤0

ξ(t, x0, w, µ) ∈ X, ∀t ∈ [0, T ]

sup
w:[0,T ]→W

x0∈X, φ0(x0)≤0

φ0(ξ(T, x0, w, µ)) ≤ 0 ,

(5)

A couple of remarks regarding (5) are in order. First,
it has a bilevel structure similar to that of finite-time
robust optimal feedback control problems with fixed initial
condition. The added complexity comes from enforcing
the periodicity requirement for the solution. Here, the
solutions of (3) at the final time T , must satisfy

ξ(T, x0, w, µ) ∈ X0 = {ξ0 ∈ X |φ0(ξ0) ≤ 0},
for all disturbance function w : [0, T ] → W and all x0 ∈ X0.
The set X0—or equivalently the function φ0 : X → R—is
an optimization variable. Also notice that condition (4) is
not directly enforced in (5), but is enforced a posteriori.
This can be done since modifying µ on a set of Lebesgue
measure zero does not alter the optimal value of (5).

Remark 1. Lagrange terms of the form∫ T

0

�(x(t))dt ,

with stage cost � : Rn
x → Rnx , can be eliminated by setting

m(x(T )) = xnx+1 and stacking the ODE

ẋnx+1(t) = �(x(t)) , with xnx+1(0) = 0

to (1). This formulation also allows to consider Lagrange
costs over an infinite horizon, by constraining the system
to be periodic and optimizing the cost at the end of cycle.

2.2 Robust Forward Invariant Tube Formulation

This section introduces a conservative reformulation of (5)
by means of robust forward invariant tubes. The reach set
of (3)—assumed to be compact— for a given initial value
x0 and feedback law µ is denoted by

Y (t, x0, µ) =


ξt

∣∣∣∣∣∣

∃x ∈ Wnx
1,2 , ∃w ∈ Lnw

2 : ∀τ ∈ [0, t]

ẋ(t) = f(x(τ), w(τ)) +Gµ(τ, x(τ))

x(0) = x0, x(t) = ξt, w(τ) ∈ W



 .

Although we could directly formulate (5) in terms of reach
sets, this would not help us devising a solution strategy.
Instead, we take a more indirect approach using RFITs. A
set-valued function X(t) : [0, T ] → Knx is an RFIT for (1)
on [0, T ] if there exists a function µ : R×X → U such that

X(t2) ⊇
⋃

x1∈X(t1)

Y (t2 − t1, x1, µ) ,

for all [t1, t2] ⊆ [0, T ].

and M : Kn → R being a Mayer objective. The following
lemma formalizes the relation between (5) and (6).

Lemma 2. Let the function M : Knx → R be given by
M : Y �→ supy∈Y m(y), for all Y ∈ Knx . Consider the
optimization problem

inf
X∈X , T∈R

M(X(T )) s.t.

{
X(t) ⊆ X, ∀t ∈ [0, T ]

X(T ) ⊆ X(0) ,
(6)

with X denoting the set of all RFITs of (1) on [0, T ]. Any
solution of Problem (6) is also a feasible solution of (5).

Proof. Let (X∗, T ∗) be a solution of (6). The existence
of a function ξ(t, x0, w, µ

∗) satisfying the state constraints
in (5), for all w ∈ W and all x0 ∈ X∗(0), follows by the
definition of an RFIT and the feasibility of X∗. By the
periodicity of X∗ and compactness of its image for every
t, and particularly at t = 0, we can construct a continuous
function φ0, such that the periodicity constraint in (5) is
also satisfied. The point (T ∗, φ0, µ

∗) is, by construction, a
feasible point of (5). �

Problem (6) is intractable, in all but the simplest of
cases. Fortunately, restricting the search of RFITs to those
with convex images, we can aim to construct conservative
but tractable reformulations to this problem. In fact,
Theorem 1 in Villanueva et al. (2017) presents sufficient
conditions for a convex set-valued function to be an
RFIT. Although checking these conditions involves solving
an optimal control problem with semi-infinite differential
inequality constraints, its discretization leads to a linear
growth of its complexity with respect to the length of
the time horizon. Furthermore, its proof is constructive,
thus providing an explicit expression for a feedback law
generating the tube.
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3. ROBUST OPTIMAL CONTROL SYNTHESIS FOR
PERIODIC SYSTEMS USING ELLIPSOIDAL RFITS

3.1 Ellipsoidal Robust Forward Invariant Tubes

We focus on the construction of RFITs with ellipsoidal
cross-sections, i.e. X : t �→ E(qx(t), Qx(t)). This tube
is parameterized by a central path qx : R → Rnx and
a time-varying shape matrix Qx : R → Snx

+ . Sufficient
conditions for choosing the functions qx and Qx are given
in Theorem 3.

In the following, we will use the shorthand notation

A(t) =
∂f

∂x
(qx(t), qw) , B(t) =

∂f

∂w
(qx(t), qw) , and

Φ(qx(t), Qx(t), λ(t), κ(t),K(t)) = (A(t)−GK(t))Qx(t)

+Qx(A(t)−GK(t))ᵀ +

(
1

λ(t)
+

1

κ(t)

)
Qx(t)

+ λ(t)B(t)QwB(t)ᵀ + κ(t)Ωn(qx(t), Qx(t)) .

The nonlinearity bounder Ωn : Rnx×Snx
+ → Snx

+ is required
to satisfy

f(ξ, ω)− f(qx(t), qw)−A(t)(ξ − qx)

−B(t)(ω − qw) ∈ E(0,Ωn(qx(t), Qx(t))) ,
(7)

for each (ξ, ω) ∈ E(qx(t), Qx(t))× E(qw, Qw).

Theorem 3. Consider (1) with control and uncertainty sets
U := {ν ∈ Rnu |u ≤ ν ≤ u} and W := E(qw, Qw), with
qw ∈ Rnw , Qw ∈ Snw

+ and u, u ∈ Rnu . If qx and Qx satisfy

q̇x(t) = f(qx(t), qw) +Gux(t)

Q̇x(t) = Φ(qx(t), Qx(τ), λ(t), κ(t),K(t))
(8)

on [0, T ], for some integrable functions λ, κ : R → R++,
ux : R → U and K : R → Rnu×nx satisfying

uxi
(t) +

√
Ki(t)Qx(t)Ki(t)ᵀ ≤ ui , i ∈ {1, . . . , nu}

uxi
(t)−

√
Ki(t)Qx(t)Ki(t)ᵀ ≥ ui , i ∈ {1, . . . , nu} ,

(9)

then X : t �→ E(qx(t), Qx(t)) is an RFIT for (1) on [0, T ].

Proof. See Villanueva et al. (2017, Thm. 5) for a proof.

3.2 Conservative Approximation of the Periodic ROFCP

A periodic RFIT can be constructed by checking the
conditions of Theorem 3 by solving a nonlinear OCP over
T , qx, Qx, ux, λ, κ, and K, with the periodicity constraint

qx(0) = qx(T ) and Qx(0) = Qx(T ) . (10)

For the state constraints, we consider a sublevel set

X = {ξ ∈ Rnx |φ(ξ) ≤ 0} ,

of a given function φ : Rnx → Rnc . The path constraint
E(qx(t), Qx(t)) ⊆ X is satisfied on [0, T ] if and only if,

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

sup
ξ∈E(qx(t),Qx(t))

φi(ξ) ≤ 0. (11)

In the polytopic setting, e.g. φ(ξ) = Cξ − c with c ∈ Rnc

and C ∈ Rnc×nx , (11) is satisfied if and only if,

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

Cᵀ
i qx(t) +

√
Cᵀ

i Qx(t)Ci ≤ ci.
(12)

In the case of nonlinear functions φi, it may not be possible
to solve the maximization in (11) exactly. Nevertheless, we
can replace (11) with the conservative condition

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

di(t) +
√

Di(t)Qx(t)Di(t)ᵀ +Ωφi
(qx(t), Qx(t)) ≤ 0 ,

(13)

Here, dφi
(t) = φi(qx(t)), Di(t) = ∂φi

∂x (qx(t)), and the
function Ωφi

: Rnx × Snx
+ → R must satisfy

|φi(ξ)− di(t)−Di(t)(ξ − qx(t))| ≤ Ωφi
(qx(t), Qx(t))

for all ξ ∈ E(qx(t), Qx(t)).

Now, a periodic RFIT can be constructed by solving

inf
T, qx, Qx,
ux, λ, κ,K

M (E(qx(T ), Qx(T ))

s.t.





ODEs (8) with periodic conditions (10)

State constraints (11) (via (12) or (13))

λ(t), κ(t) > 0, Qx(t) ∈ Snx
+ ∀t ∈ [0, T ]

u ≤ ux(t) ≤ u, ∀t ∈ [0, T ] .

(14)

The Mayer objective function

M (E(qx(T ), Qx(T ))) = max
ξT∈E(qx(T ),Qx(T ))

m(ξT ) , (15)

can then be constructed using the approaches discussed
previously in the context of robustifying the function φi.

3.3 Robust Feedback Control using Ellipsoidal RFITs

Once an RFIT has been constructed, the next task is to
find a valid feedback function associated to it. Corollary 4
provides a feedback law inducing an ellipsoidal RFIT.

Corollary 4. Let X : t �→ E(qx(t), Qx(t)) satisfy the
conditions of Theorem 3. Then, a feedback law inducing
this RFIT is given by

µ∗(t, x(t)) =



ux(t), if x(t) = qx(t)

ux(t)−
ν(t, x(t))

‖ν(t, x(t))‖2
, otherwise

with ν(t, x(t)) = (K(τ)Qx(τ)K(τ)ᵀ)Gᵀγ(x(τ)), and

γ(x(τ)) =
Qx(τ)

†(x(τ)− qx(τ))

‖Qx(τ)†(x(τ)− qx(τ))‖2
,

where (·)† denotes the Moore-Penrose pseudoinverse.

Proof. The construction is a byproduct of the proof of
Thm. 3. It can be found in Villanueva et al. (2017, Cor. 6).

Since the tube is periodic by construction, the control
feedback law is periodic. Furthermore, the control signal
u(t) = µ∗(t, x(t)) can be sent to the system to keep it
inside the tube, whenever x(t) is in the tube.

4. CASE STUDY: A PERIODIC BIOREACTOR

In this section we consider the problem of finding a robust
optimal feedback law for a biochemical process. More
precisely, we consider a continuous stirred tank bioreactor
(see, e.g. (Parulekar, 1998)), with uncertain dynamics

Ż(t) = −DZ(t) + r(S(t), P (t))Z(t) + w1(t)

Ṡ(t) = −DS(t)− r(S(t), P (t))Z(t)

YZ/S(t)
+DSF(t)

Ṗ (t) = −DP (t)− (αr(S(t), P (t)) + β)Z(t) + w3(t) .

(16)

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

752



	 Mario Eduardo Villanueva  et al. / IFAC PapersOnLine 51-18 (2018) 756–761	 759

3. ROBUST OPTIMAL CONTROL SYNTHESIS FOR
PERIODIC SYSTEMS USING ELLIPSOIDAL RFITS

3.1 Ellipsoidal Robust Forward Invariant Tubes

We focus on the construction of RFITs with ellipsoidal
cross-sections, i.e. X : t �→ E(qx(t), Qx(t)). This tube
is parameterized by a central path qx : R → Rnx and
a time-varying shape matrix Qx : R → Snx

+ . Sufficient
conditions for choosing the functions qx and Qx are given
in Theorem 3.

In the following, we will use the shorthand notation

A(t) =
∂f

∂x
(qx(t), qw) , B(t) =

∂f

∂w
(qx(t), qw) , and

Φ(qx(t), Qx(t), λ(t), κ(t),K(t)) = (A(t)−GK(t))Qx(t)

+Qx(A(t)−GK(t))ᵀ +

(
1

λ(t)
+

1

κ(t)

)
Qx(t)

+ λ(t)B(t)QwB(t)ᵀ + κ(t)Ωn(qx(t), Qx(t)) .

The nonlinearity bounder Ωn : Rnx×Snx
+ → Snx

+ is required
to satisfy

f(ξ, ω)− f(qx(t), qw)−A(t)(ξ − qx)

−B(t)(ω − qw) ∈ E(0,Ωn(qx(t), Qx(t))) ,
(7)

for each (ξ, ω) ∈ E(qx(t), Qx(t))× E(qw, Qw).

Theorem 3. Consider (1) with control and uncertainty sets
U := {ν ∈ Rnu |u ≤ ν ≤ u} and W := E(qw, Qw), with
qw ∈ Rnw , Qw ∈ Snw

+ and u, u ∈ Rnu . If qx and Qx satisfy

q̇x(t) = f(qx(t), qw) +Gux(t)

Q̇x(t) = Φ(qx(t), Qx(τ), λ(t), κ(t),K(t))
(8)

on [0, T ], for some integrable functions λ, κ : R → R++,
ux : R → U and K : R → Rnu×nx satisfying

uxi
(t) +

√
Ki(t)Qx(t)Ki(t)ᵀ ≤ ui , i ∈ {1, . . . , nu}

uxi
(t)−

√
Ki(t)Qx(t)Ki(t)ᵀ ≥ ui , i ∈ {1, . . . , nu} ,

(9)

then X : t �→ E(qx(t), Qx(t)) is an RFIT for (1) on [0, T ].

Proof. See Villanueva et al. (2017, Thm. 5) for a proof.

3.2 Conservative Approximation of the Periodic ROFCP

A periodic RFIT can be constructed by checking the
conditions of Theorem 3 by solving a nonlinear OCP over
T , qx, Qx, ux, λ, κ, and K, with the periodicity constraint

qx(0) = qx(T ) and Qx(0) = Qx(T ) . (10)

For the state constraints, we consider a sublevel set

X = {ξ ∈ Rnx |φ(ξ) ≤ 0} ,

of a given function φ : Rnx → Rnc . The path constraint
E(qx(t), Qx(t)) ⊆ X is satisfied on [0, T ] if and only if,

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

sup
ξ∈E(qx(t),Qx(t))

φi(ξ) ≤ 0. (11)

In the polytopic setting, e.g. φ(ξ) = Cξ − c with c ∈ Rnc

and C ∈ Rnc×nx , (11) is satisfied if and only if,

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

Cᵀ
i qx(t) +

√
Cᵀ

i Qx(t)Ci ≤ ci.
(12)

In the case of nonlinear functions φi, it may not be possible
to solve the maximization in (11) exactly. Nevertheless, we
can replace (11) with the conservative condition

∀i ∈ {1, . . . , nc}, ∀t ∈ [0, T ],

di(t) +
√
Di(t)Qx(t)Di(t)ᵀ +Ωφi

(qx(t), Qx(t)) ≤ 0 ,
(13)

Here, dφi
(t) = φi(qx(t)), Di(t) = ∂φi

∂x (qx(t)), and the
function Ωφi

: Rnx × Snx
+ → R must satisfy

|φi(ξ)− di(t)−Di(t)(ξ − qx(t))| ≤ Ωφi
(qx(t), Qx(t))

for all ξ ∈ E(qx(t), Qx(t)).

Now, a periodic RFIT can be constructed by solving

inf
T, qx, Qx,
ux, λ, κ,K

M (E(qx(T ), Qx(T ))

s.t.





ODEs (8) with periodic conditions (10)

State constraints (11) (via (12) or (13))

λ(t), κ(t) > 0, Qx(t) ∈ Snx
+ ∀t ∈ [0, T ]

u ≤ ux(t) ≤ u, ∀t ∈ [0, T ] .

(14)

The Mayer objective function

M (E(qx(T ), Qx(T ))) = max
ξT∈E(qx(T ),Qx(T ))

m(ξT ) , (15)

can then be constructed using the approaches discussed
previously in the context of robustifying the function φi.

3.3 Robust Feedback Control using Ellipsoidal RFITs

Once an RFIT has been constructed, the next task is to
find a valid feedback function associated to it. Corollary 4
provides a feedback law inducing an ellipsoidal RFIT.

Corollary 4. Let X : t �→ E(qx(t), Qx(t)) satisfy the
conditions of Theorem 3. Then, a feedback law inducing
this RFIT is given by

µ∗(t, x(t)) =



ux(t), if x(t) = qx(t)

ux(t)−
ν(t, x(t))

‖ν(t, x(t))‖2
, otherwise

with ν(t, x(t)) = (K(τ)Qx(τ)K(τ)ᵀ)Gᵀγ(x(τ)), and

γ(x(τ)) =
Qx(τ)

†(x(τ)− qx(τ))

‖Qx(τ)†(x(τ)− qx(τ))‖2
,

where (·)† denotes the Moore-Penrose pseudoinverse.

Proof. The construction is a byproduct of the proof of
Thm. 3. It can be found in Villanueva et al. (2017, Cor. 6).

Since the tube is periodic by construction, the control
feedback law is periodic. Furthermore, the control signal
u(t) = µ∗(t, x(t)) can be sent to the system to keep it
inside the tube, whenever x(t) is in the tube.

4. CASE STUDY: A PERIODIC BIOREACTOR

In this section we consider the problem of finding a robust
optimal feedback law for a biochemical process. More
precisely, we consider a continuous stirred tank bioreactor
(see, e.g. (Parulekar, 1998)), with uncertain dynamics

Ż(t) = −DZ(t) + r(S(t), P (t))Z(t) + w1(t)

Ṡ(t) = −DS(t)− r(S(t), P (t))Z(t)

YZ/S(t)
+DSF(t)

Ṗ (t) = −DP (t)− (αr(S(t), P (t)) + β)Z(t) + w3(t) .

(16)
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Here, Z(t), S(t), and P (t) denote the biomass, substrate,
and product concentrations respectively. The process is
controlled by the input SF(t) representing the substrate
feed concentration, with bounds [SF, SF]. The process is
affected by three uncertain inputs w1, w2, and w3. While
w1 and w3 enter the system affinely, w2 perturbs the
system nonlinearly through the biomass yield YZ/S(t) =
Y0 + w2(t). The product yield parameters α, β and the
dilution rate D are assumed to be constant. The biomass
growth rate is given by a generalized Monod kinetic model

r(S(t), P (t)) = rm

(
1− P (t)

KP

)
S(t)

Km + S(t) +

(
S(t)2

KS

) ,

which accounts for both substrate and product inhibitions.
The parameters KS and KP are substrate and product
inhibition constants, while Km is the substrate saturation
constant. The maximum growth rate is denoted by rm.

The problem is to maximize the profit of the process. For
this, we assume that we can sell our product for a price pP ,
while the only cost of the process is that of the substrate,
which is bought at a price pSF

. We assume the process is
continuous and operated periodically, i.e.

(Z(0), S(0), P (0))ᵀ = (Z(T ), S(T ), P (T ))ᵀ , (17)

for some T > 0. The control objective is to maximize

pP

∫ ∞

0

DP (t)dt− pSF

∫ ∞

0

DSF(t)dt .

In view of (17), this is equivalent to maximizing the profit
at the end of a period [0, T ], i.e.,

m(I(T )) = I(T ) . (18)

where I is an auxiliary states satisfying

İ(t) = pPDP (t)− pSF
DSF(t) (19)

Lastly, the maximum average of the biomass concentration
over one period is assumed to be constrained by ZM, i.e.

ZM(T ) ≤ TZM . (20)

Here, ZM(t) is another auxiliary state satisfying

ŻM(t) = Z(t) . (21)

Notice that the extra integrating states satisfy

(I(0), ZM(0))ᵀ = (0, 0)ᵀ . (22)

4.1 Nominal Open-Loop Optimization

First, we consider finding an open-loop control for the
periodic operation of the bioreactor by solving

inf
Z, S, P, I, ZM

SF:[0,T ]→[SF,SF]

m(I(T ))

s.t.




ODEs (16), (19), and (21)

Periodicity conditions (17)

Initial conditions (22)

State constraint (20) ,

(23)

with disturbances at their nominal value qw = (0, 0, 0)ᵀ.

Problem (23) is solved using ACADO Toolkit. The problem
is discretized using multiple shooting (default option),
with a piecewise constant discretization (30 pieces) and
a Runge-Kutta integrator of order 4 with discretization

Table 1. Biochemical Process Parameters.

Parameter Symbol Value

Dilution rate D 0.15 h−1

Substrate inhibition constant KS 22 g
L

Substrate saturation constant Km 1.2 g
L

Product inhibition constant KP 50 g
L

Nominal biomass yield Y0 0.4
Product to substrate yield (slope) α 2.2
Product yield (constant) β 0.2 h−1

Minimum feed substrate SF 26 g
L

Maximum feed substrate SF 42 g
L

Maximum average biomass concentration ZM 5.9 g
L

Product price (per gram) pP $ 250
Feed price (per gram) pSF

$ 100
Period time T 48 h

error control of order 5. The discretized problem is solved
using a sequential quadratic programming algorithm, with
qpOASES as the QP solver. The problem is solved to a
KKT tolerance of 1 × 10−7 with integrator and absolute
tolerances of 1× 10−7 and 1× 10−8 respectively.

As expected, the state trajectories depicted as blue solid
lines in Figs. 1-(a), (b), and (c), are indeed periodic. The
optimal profit (per reactor volume [L]) is

m (I∗(T )) ≈ $215 .

At the optimal solution of the discretized problem, the
state constraint is not active,

1

T

∫ T

0

Z∗(t)dt ≈ 5.6
g

L
≤ 5.9

g

L
.

The optimal input S∗
F, depicted as a blue solid line in

Fig. 1-(d), touches both the upper and lower bounds
in a partial bang-bang structure. In the first phase the
substrate concentration decreases, since the feed is at
its lowest and the existing substrate is being used for
biomass growth. In a second phase, the substrate begins
to accumulate, as the feed increases and the biomass and
product reach their peak and start decreasing. The final
two phases repeat with a lower peak amplitude.

4.2 Ellipsoidal Robust Optimal Feedback Control

Next, we are interested in synthesizing a robust feedback
controller, using ellipsoidal robust forward invariant tubes.
We assume that the uncertainty belongs to the ellipsoid
E(qw, Qw) with Qw = diag(1 × 10−4, 4 × 10−4, 1 × 10−4).
Notice that the biomass yield is being perturbed by 5%
from its nominal value Y0.

We distinguish between the true state trajectories Z, S,
and P , which are stacked into x(t) = (Z(t), S(t), P (t))ᵀ

and the auxiliary states. The states x(t) will be enclosed by
an ellipsoidal tube parameterized by qx : [0, T ] → R3 and
Qx : [0, T ] → S3+, while the auxiliary states will be treated
separately. A conservative approximate of the worst case
profit, is given by

M(E(qx, Qx)) = I(T ). (24)

The auxiliary variable I(t) satisfies

İ(t) = pPD
(
qx3

(t)−
√

Qx(3,3)(t)

)

− pSFD
(
SF(t) +

√
K(t)Qx(t)K(t)

)
.

(25)
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The first term in brackets integrates the minimum possible
product concentration in the bioreactor over the cycle.
The second term in brackets integrates the maximum
control input exerted on the system over the cycle. The
last additional state is Z(t), with

Ż(t) = qx1
(t) +

√
Qx(1,1)(t) , (26)

and integrates the maximum biomass concentration over
the cycle. Thus the robustified state constraint is given by

Z(T ) ≤ TZM . (27)

Remark 1. A simpler approach would be to stack both the
original and auxiliary states and construct an ellipsoidal
enclosure in the extended state-space. Our experience
is that this approach often leads to unnecessary over
conservatism, at least in our implementation. In this case
it may be caused by the fact that the auxiliary integrating
states I, and Z are always increasing and cause a growth
in the dynamics of the ellipsoidal states in all directions.

The last ingredient needed to formulate Problem (14)
is the nonlinearity estimate Ωn. This can be computed
numerically as in Villanueva et al. (2017) or an explicit
expression can be constructed analytically (see Houska
et al. (2012)). Lemma 5 in Appendix A provides an explicit
nonlinearity bounder for the bioreactor model (16).

A solution of the optimal control problem

inf
qx, Qx, λ, κ,K,

ux:[0,T ]→[SF,SF],

I, ZM

M(E(qx(T ), Qx(T )))

s.t.




ODEs (8), (25) and (26)

Periodicity conditions (10)

Initial conditions (22)

State constraint (20) ,

(28)

parameterizes a periodic ellipsoidal RFIT (16).

Problem (28) is solved using the same settings as the
nominal OCP (23). The tube—whose projections onto the
state-time dimensions are depicted as shaded red areas in
Figs. 1-(a), (b), and (c)—are also periodic. The worst-case
profit (per reactor volume [L]) is

M(E(qx(T ), Qx(T ))) ≈ $103 .

The conservatism of the optimal solution can be analyzed
based on the profit obtained from the central path, with
nominal control ux. In this case, the profit is around $130,
which represents a loss of nearly 40%.

Here, the robustified constraint is active. Applying the
control ux to a system with nominal uncertainty gives a
constraint value of 5.8 g

L . The state profiles show a similar
trend as the nominal open-loop solution, but with a lower
peak amplitude. Figure 1-(d) shows the nominal input ux

(dashed red line) as well as the evolution of the control

set ux(t)+[−
√
K(t)Qx(t)K(t)ᵀ,

√
K(t)Qx(t)K(t)ᵀ] for all

t ∈ [0, T ] (shaded red area). We can see that in the worst
case, the solution is also partially bang bang.

5. CONCLUSION

This paper has presented an off-line design method for
robust closed-loop feedback control laws systems with
periodicity constraints. We have reviewed methods for
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Fig. 1. Nominal (blue) and robust state and control profiles
(red). Projections of the RFIT into the: (a) (Z, t), (b)
(P, t), and (c) (S, t) planes are shown as a red area
with the qx as a dashed red line. The control set (d)
is shown as a red area, with ux as a dashed red line

constructing ellipsoidal robust forward invariant tubes and
we have extended the corresponding framework to periodic
systems. Moreover, we have discussed how to recover a
nonlinear feedback control law, which keeps the system
in the optimized set-valued tube. This approach has been
applied to the design of a robust closed-loop control law
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The first term in brackets integrates the minimum possible
product concentration in the bioreactor over the cycle.
The second term in brackets integrates the maximum
control input exerted on the system over the cycle. The
last additional state is Z(t), with

Ż(t) = qx1
(t) +

√
Qx(1,1)(t) , (26)

and integrates the maximum biomass concentration over
the cycle. Thus the robustified state constraint is given by

Z(T ) ≤ TZM . (27)

Remark 1. A simpler approach would be to stack both the
original and auxiliary states and construct an ellipsoidal
enclosure in the extended state-space. Our experience
is that this approach often leads to unnecessary over
conservatism, at least in our implementation. In this case
it may be caused by the fact that the auxiliary integrating
states I, and Z are always increasing and cause a growth
in the dynamics of the ellipsoidal states in all directions.

The last ingredient needed to formulate Problem (14)
is the nonlinearity estimate Ωn. This can be computed
numerically as in Villanueva et al. (2017) or an explicit
expression can be constructed analytically (see Houska
et al. (2012)). Lemma 5 in Appendix A provides an explicit
nonlinearity bounder for the bioreactor model (16).

A solution of the optimal control problem

inf
qx, Qx, λ, κ,K,

ux:[0,T ]→[SF,SF],

I, ZM

M(E(qx(T ), Qx(T )))

s.t.




ODEs (8), (25) and (26)

Periodicity conditions (10)

Initial conditions (22)

State constraint (20) ,

(28)

parameterizes a periodic ellipsoidal RFIT (16).

Problem (28) is solved using the same settings as the
nominal OCP (23). The tube—whose projections onto the
state-time dimensions are depicted as shaded red areas in
Figs. 1-(a), (b), and (c)—are also periodic. The worst-case
profit (per reactor volume [L]) is

M(E(qx(T ), Qx(T ))) ≈ $103 .

The conservatism of the optimal solution can be analyzed
based on the profit obtained from the central path, with
nominal control ux. In this case, the profit is around $130,
which represents a loss of nearly 40%.

Here, the robustified constraint is active. Applying the
control ux to a system with nominal uncertainty gives a
constraint value of 5.8 g

L . The state profiles show a similar
trend as the nominal open-loop solution, but with a lower
peak amplitude. Figure 1-(d) shows the nominal input ux

(dashed red line) as well as the evolution of the control

set ux(t)+[−
√
K(t)Qx(t)K(t)ᵀ,

√
K(t)Qx(t)K(t)ᵀ] for all

t ∈ [0, T ] (shaded red area). We can see that in the worst
case, the solution is also partially bang bang.

5. CONCLUSION

This paper has presented an off-line design method for
robust closed-loop feedback control laws systems with
periodicity constraints. We have reviewed methods for
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Fig. 1. Nominal (blue) and robust state and control profiles
(red). Projections of the RFIT into the: (a) (Z, t), (b)
(P, t), and (c) (S, t) planes are shown as a red area
with the qx as a dashed red line. The control set (d)
is shown as a red area, with ux as a dashed red line

constructing ellipsoidal robust forward invariant tubes and
we have extended the corresponding framework to periodic
systems. Moreover, we have discussed how to recover a
nonlinear feedback control law, which keeps the system
in the optimized set-valued tube. This approach has been
applied to the design of a robust closed-loop control law
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maximizing the economic profit of a periodically operated
biochemical reactor.
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Appendix A. NONLINEARITY BOUNDER FOR (16)

Lemma 5. Consider the functions ωi : Rnx × Rnx → R,
with i ∈ {1, . . . , 3}, given by

ω1(q,∆) =
a1(q,∆)

b1(q,∆)
, ω3(q,∆) = αω1(q,∆) ,

and ω2(q,∆) =
a2(q,∆) + (qw2

+ Y0)
3a1(q,∆)

b2(q,∆) + (qw2
+ Y0)2b1(q,∆)

,

with ai, bi : Rnx × Rnx → R defined in (A.1). Then, the
function Ωn : R3 × S3+ → S3+ given by

Ωn(qx(t), Qx(t)) = diag
(
(ωi(qx(t),∆x(t)))

2
)
1≤i≤3

with ∆x(t) =
(√

Qx(1,1)
(t), . . . ,

√
Qx(nx,nx)

(t)
)ᵀ

is a

nonlinearity bounder in the sense of (7) for system (16).

Proof. We only provide a sketch of the proof, as the
computations are straightforward. First, we decompose the
state and disturbance into a nominal and perturbed part,
e.g. y = qy + δy. Here, we introduced y = (x,w)ᵀ and
dropped the time dependency. Then, we evaluate

ηi(qy, δy) = fi(qy + δy)− fi(qy)−
∂fi
∂x i

(qy)δy

We want to construct a bounder ωi(qy,∆y), such that

∀δy ∈ [−∆y,∆y], |ηi(qy, δy)| ≤ ωi(qy,∆y) .

One strategy is to employ addition theorems—globally
valid formulas expressing a function g(ξ+δξ) as a rational
function of g(ξ) and g(δξ). In our case, the appropriate
addition theorem is just the binomial theorem (y+ δy)

2 =
y2+2yδy+δ2y. After expanding the terms in ηi, we identify
a rational expression in terms of dy with the coefficients
given with respect to qy. Now, it is straightforward to
construct ωi, since all coefficients are nonnegative, except
those including qp−KP . Taking absolute values proves the
formula

c0 = (qw2
+ Y0)

c1(q) = q22 +KS(Km + q2)

c2(q) = KS + 2q2
c3(q) = (KSrm)|(−KP + q3)|
c4(q) = KS(KS −Km) + 3(KS + q2)

b1(q,∆) = ∆2
2KP c1(q)

2 +∆2KP c2(q)c1(q)
2 +KP c1(q)

3

a1(q,∆) = ∆2
2∆1c3(q)c1(q) + ∆2∆1c3(q)c2(q)c1(q)

+ ∆3∆1(KSrm)c1(q)
2 +∆3

2c3(q)c2(q)q1

+∆3∆
2
2(KSrm)c1(q)q1 +∆2

2c3(q)c4(q)q1
+∆3∆2(KSrm)c2(q)c1(q)q1

b2(q,∆) = ∆2
2∆wKP c1(q)

2c20 +∆wKP c1(q)
3c20

+∆2∆wKP c2(q)c1(q)
2c20 +∆2

wc3(q)c1(q)
2q1

a2(q,∆) = ∆2
2∆

2
wc3(q)c1(q)q1

+∆2∆
2
wc3(q)c2(q)c1(q)q1

+∆w2∆1c3(q)c1(q)
2c0

+∆2
2∆w∆1c3(q)c1(q)c0

+∆3
2∆wc3(q)c2(q)q1c0

+∆2
2∆wc3(q)c2(q)

2q1c0

+∆3∆
2
2∆w2(KSrm)c1(q)q1c0

+∆3∆2∆w2(KSrm)c2(q)c1(q)q1c0
+∆2∆wc3(q)c2(q)c1(q)q1c0

+∆3∆w(KSrm)c1(q)
2q1c0

+∆2∆w∆1c3(q)c2(q)c1(q)c0 .
(A.1)

Notice that ∆w is the only disturbance bound in (A.1).
Since w2 is the only disturbance entering the nonlinearly
in (16), we have ∆w =

√
Qw(2,2)
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