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Abstract

We show that separation in signaling games can be obtained without the single crossing

condition, in a model where the receiver reasons analogically across a pair of states and

can acquire costly information on the sender’s type. Beyond ordinary separation (high

type sends high signal, low type sends low signal) we find that also reverse separation

is sustainable in equilibrium (high type sends low signal, low type sends high signal).

Further, reverse separation in one state is obtained only if ordinary separation occurs

in the other state. Pooling is possible and can go along with ordinary separation in

one state.

JEL classification code: D01, D82, D83.

Keywords: analogical reasoning, costly acquisition of information, signaling without single

crossing, reverse separation.

∗Dipartimento di Economia “Marco Biagi”, Università degli Studi di Modena e Reggio Emilia, Viale
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1 Introduction

Separating equilibria have a prominent role in signaling games, both in theory and in appli-

cations (Riley, 2001). Typically, the existence of a separating equilibrium crucially relies on

the single crossing condition: in a two-type two-signal setting, the condition means that the

additional cost of a high signal over a low signal is smaller for high types relatively to low

types.

In this paper we provide a novel set of assumptions under which separation is obtained in

the absence of the single crossing condition. In particular, we show that analogical reasoning

and costly acquisition of information by the receiver allows ordinary separation to arise in

equilibrium. Moreover, under the same assumptions we obtain that also reverse separation

can occur in equilibrium: the high type chooses the low signal, and the low type chooses the

high signal.

Analogical reasoning is a reasonable feature of belief revision whenever a decision-maker

is faced with a large variety of possible alternatives, each of which differs from the others

under many respects. In such cases it may be unfeasible to form specific beliefs conditional

on every informational detail of every possible alternative. Rather, the decision-maker can

feasibly focus on a few dimensions that are relevant for the decision to be made and then form

analogy classes on the basis of such dimensions. As an example, consider purchase decisions:

a consumer may well form a belief on the quality of a specific product by averaging over all

products with the same or similar packaging.

Also, individuals can often exert effort and acquire the information that is relevant for

the decision to be made. Consider again purchase decisions: a consumer can invest time

and cognitive resources to carefully read product information reported on packaging, in the

attempt to acquire a more precise knowledge of the product quality.

Our result that separation can be sustained by analogical reasoning and costly acquisition

of information is important, we think, because the single crossing condition is likely to fail in a
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non-negligible number of cases. Carrying on the example about purchase decisions, we see no

compelling reason why different packaging options should cost relatively more for low quality

sellers than for high quality sellers. Further, the possibility of reverse separation might help

to rationalize situations where low types engage more than high types in signaling activities,

as it may happen when low quality producers make use of fancy packaging to overcome a

careful scrutiny by consumers.

In our model, the receiver can face signals in two different states, and exhibits analogical

reasoning across them. This means that he is able to condition his action on the state he is

actually in, but at the same time he is unable to exploit this information when updating his

belief on the sender’s type; so, the receiver’s decisions are based on the average type that is

believed to send the observed signal. In addition, the receiver can acquire information at a

cost: after observing the signal and prior to taking an action, he can incur a cost to learn

the actual sender’s type.

The main intuition for our results is that separation becomes possible since the receiver’s

act of acquiring information has different consequences for the two types of sender: the

receiver does purchase the good if quality is high, and does not purchase the good if quality

is low. Also, analogical reasoning over distinct states helps prevent that all the information

is revealed in case of separation: acquiring information can be optimal for the receiver even

when separation occurs in one state, provided that a different outcome occurs in the other

state.

Importantly, both analogical reasoning and costly acquisition of information are crucial

for our results. If we remove either of the two assumptions, we lose the possibility of any

kind of separation (ordinary and reverse). To our knowledge, we are the first to explore the

relevance of jointly assuming analogical reasoning and costly acquisition of information.

The rest of the paper is organized as follows. In Section 2 we relate our contribution

to the relevant literature. In Section 3 we present the model and we provide a few prelim-
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inary definitions. In Section 4 we provide a motivating application. In Section 5 we define

separation outcomes and we state all our results. Finally, in Section 6 we briefly discuss

pooling outcomes, we summarize our findings and we comment on the crucial role of our

main assumptions.

2 Related Literature

Analogical reasoning has been formally introduced by Jehiel (2005) with the equilibrium

notion called analogy-based expectation equilibrium, and then extended by Jehiel and Koessler

(2008) to games of incomplete information. The analogy-based expectation equilibrium

captures a form of bounded rationality that concerns expectation formation by agents, rather

than best-response selection. This solution concept has been fruitfully applied to explain a

number of phenomena (Ettinger and Jehiel, 2010; Jehiel and Samuelson, 2012; Hagenbach

and Koessler, 2017). Analogical reasoning is related to, but different from, the so-called

coarse reasoning, where agents interpret messages by means of a limited number of categories,

and are unable to distinguish objects falling in the same category (Mullainathan, 2002;

Mullainathan et al., 2008).1

Among the many contributions that consider the acquisition of information as a costly

strategic choice, Dewatripont and Tirole (2005) is particularly relevant since they focus on

a sender-receiver setup, developing a theory of costly communication.2 The cost to acquire

information can be cognitive in nature, stemming from the limited amount of cognitive

resources (Simon, 1955),3 or it can measure the search effort to acquire information on

1A different bound to belief revision is implied by the notion of cursed equilibrium (Eyster and Rabin,

2005). Interestingly, Eyster and Rabin (2005) observe that in a classical signaling game a partially cursed

equilibrium might allow for separation when Nash equilibrium does not.
2Other recent contributions considering the costly acquisition of information are Dewatripont (2006),

Caillaud and Tirole (2007), Tirole (2009) and Butler et al. (2013).
3See also Bilancini and Boncinelli (2018) for a model of signaling where the costly processing of information
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products’ characteristics, as more typical in models of advertising (see, e.g., Gardete and

Guo, 2014).

The reverse separation that emerges in our model can be related to counter-signaling

(Feltovich et al., 2002): a situation where a sender has a quality that can be mistaken only

for close qualities, and this allows the emergence of a signaling outcome where medium-

quality senders choose high signals to separate from low-quality senders, while high-quality

senders choose low signals to separate from medium-quality senders, thus yielding an inverted

U-shaped relationship between types and signals.4 Reverse separation, instead, produces a

negative monotonic relationship between types and signals.

The only other paper, to our knowledge, where separation does not rely on the single

crossing condition is Daley and Green (2014). Even if they assume single crossing in their

model, their results hold also when the cost of signals is independent of the sender’s type,

as they note in Remark 3.5. Indeed, in their model, in addition to choosing a signal, senders

undergo a test that provides a noisy grade about their actual type. Such a grading mechanism

has different effects on low types and high types, indirectly making the benefits of signaling

type-dependent, and hence allowing separation outcomes.

Finally, while we just assume that the single crossing condition does not hold, we point

out to a recent stream of literature where violations of the single crossing condition are

derived from further sources of agents’ heterogeneity (see Boone and Schottmüller, 2017,

and references therein).

is related to dual process theories in psychology, and Bilancini and Boncinelli (2016) for an application to

persuasion games with labelling. We stress that agents in both these contributions are coarse reasoners, and

not analogical reasoners.
4Harbaugh et al. (2017) and Harbaugh and Rasmusen (2018) explore a similar idea in the setup of

certifiable quality disclosure. Mayzlin and Shin (2011) obtain a counter-signaling equilibrium where medium

quality firms choose to make informative advertising, while high and low quality firms opt for uninformative

advertising, which works as an invitation to search for consumers.
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3 The Model

Consider a Sender-Receiver game with two states, ω1 and ω2. We denote the generic state

with ω ∈ {ω1, ω2}. The common prior of being in ω1 is pω1 .

The Sender, denoted by S, has two types: a high type, denoted by H, and a low type,

denoted by L. We use t ∈ {H,L} to indicate the generic S’s type. The common prior of S

being of type H is potentially different in ω1 and ω2, and is denoted by pH|ω. In each ω, S

sends one of two different signals, denoted by x and y, with generic signal z ∈ {x, y}.

The Receiver, denoted by R, makes decisions after observing the signal sent by S. In

particular, R has to decide on two issues: whether to acquire S’s type t at cost c, and which

action to take. We denote the generic decision to acquire information with i ∈ I = {0, 1},

with 1 indicating acquisition. Also, R chooses between a high action a and a low action a,

where the generic action is denoted by a ∈ {a, a}.

The utility of S is given by V : {H,L} × {ω1, ω2} × {x, y} × {a, a} → R. We assume

that signal x always costs more than signal y, i.e., V (t, ω, x, a) < V (t, ω, y, a), for all t,

ω, and a. Also, we assume that x is always worth to send if it gets a reply of a instead

of a, i.e., V (t, ω, x, a) − V (t, ω, y, a) > 0, for all t and ω. Finally, we assume that no single

crossing condition holds in both ω1 and ω2, i.e., V (H,ω, y, a)−V (H,ω, x, a) = V (L, ω, y, a)−

V (L, ω, x, a), for all ω and a.

The utility of R, gross of acquisition costs, is given by U : {H,L} × {ω1, ω2} × {x, y} ×

{a, a} → R. The cost of acquiring t is denoted by c and is the same in ω1 and ω2. We assume

that, other things being equal, a is the optimal choice when t = H while a is the optimal

choice when t = L. Formally, U(H,ω, z, a) > U(H,ω, z, a) and U(L, ω, z, a) < U(L, ω, z, a)

for all ω and z.

Further, we crucially assume increasing differences in actions and states: U(t, ω2, z, a)−

U(t, ω2, z, a) > U(t, ω1, z, a)−U(t, ω1, z, a) for all t and z. This property amounts to impose

that choosing a over a pays more in ω2 than in ω1.

6



A strategy for S is described by a function σ : {H,L} × {ω1, ω2} → {x, y}. To simplify

the exposition, we exploit the fact that, whenever R chooses i = 1, he will then optimally

take a = a if S’s type is L, and a = a if S’s type is H. Hence, we can describe a strategy for

R as a function ρ : {x, y} × {ω1, ω2} → {(0, a), 1, (0, a)}, where (0, a) and (0, a) mean that

information is not acquired (i.e., i = 0) and either action a or action a is taken, respectively,

while 1 means that information is acquired (i.e., i = 1) and then the optimal action is taken

(i.e., a = a if S’s type is L, and a = a if S’s type is H). We restrict attention to pure

strategies, as this turns out to be sufficient for our primary goal of showing what separation

patterns can arise.5

As equilibrium concept, we rely on Jehiel and Koessler (2008), where we find a defini-

tion of analogy-based expectation equilibrium for games of incomplete information. The

distinguishing feature of such equilibrium concept is that players have analogy classes (i.e.,

collections of states of the world possibly different from information sets)6 and they consider

the average behavior of the opponent, and the average prior as well, over states belonging

to the same class.

In our setting, the analogy classes for S are {(H,ω1)}, {(L, ω1)}, {(H,ω2)}, {(L, ω2)},

while for R the only analogy class is {(H,ω1), (L, ω1), (H,ω2), (L, ω2)}. We stress that the

receiver maintains the possibility to condition his action on ω. Here, the states of the world

correspond to the four pairs (H,ω1), (L, ω1), (H,ω2), (L, ω2), but for the ease of exposition

we keep on referring to ω1 and ω2 simply as states.

To simplify the analysis, we define β : {ω1, ω2}×{x, y} → [0, 1] as the function describing

the posterior beliefs held by R after observing a signal and prior to deciding whether to

acquire t. Given the analogy classes of R, we note that β(ω1, z) = β(ω2, z) for all z.

5Considering the mixed extension of the game would add neither to the quality of our findings nor to the

intuition behind them, while it would make proofs and statements substantially longer and less intuitive.
6Information sets for S are {(H,ω1)}, {(L, ω1)}, {(H,ω2)}, {(L, ω2)}, while for R are

{(H,ω1), (L, ω1)}, {(H,ω2), (L, ω2)}.
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4 An Application

Let the sender be a firm, which is interested to sell a product to a consumer. The quality

of the good can be either high (H) or low (L). This is initially known by the firm, not by

the consumer. The firm can operate in one of two different markets (ω1 and ω2), which the

consumer fails to distinguish properly when he has to take into account firms’ behavior and

priors beliefs (i.e., the consumer puts them in the same analogy class). Prices are exogenously

given in the two markets (qω1 and qω2 , respectively), because of competition, technology, or

regulation. The firm has to choose the packaging of the product, or some other conspicuous

characteristic, between a more costly option (x, with cost cx) and a less costly one (y, with

cost cy). The consumer, after observing the packaging, and updating his belief on quality

based on the observed packaging but not on the market under consideration, has to choose

whether to exert effort (which has a cost of c) and acquire the knowledge of the actual quality

of the product (e.g., by carefully reading the product label and processing the information

in it) or abstain from it, relying on believed quality for his following decision.7 Indeed,

the consumer has then to choose whether to buy or not one unit of the product (a and a,

respectively).

The profit of the firm V (t, ω, z, a) is equal to qω−cz if a = a, and equal to 0 otherwise. We

note that the single crossing condition is violated. The utility of the consumer U(t, ω, z, a) is

equal to u(t, z)− qω if a = a, and equal to 0 otherwise. It is easy to check that the property

of increasing differences in actions and states is always satisfied in this example if qω1 6= qω2 .

In particular, it holds as stated in Section 3 for qω1 > qω2 , and with the reverse ordering, if

qω1 < qω2 .

7The interpretation provided here suggests that the cost to acquire information might differ depending

on ω, e.g., because mandatory labeling leads to more transparent information in one market than in the

other. This does not change the quality of our results, provided that the difference in the acquisition costs

is not too large.
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5 Results

We say that ordinary separation (reverse separation) occurs in ω ∈ {ω1, ω2} when the H-

type and the L-type of S, conditional on ω, choose signals x and y (y and x), respectively.

Similarly, we say that pooling on x (on y) occurs in ω ∈ {ω1, ω2} when both the H-type

and the L-type of S, conditional on ω, choose signal x (or y). When we say that separation

occurs, we mean that either ordinary or reverse separation occurs in at least one between ω1

and ω2.

state
ω1

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1

β

state
ω2

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1

β

β(ω, z)

Figure 1: Receiver’s optimal behavior as a function of beliefs β. We note that for certain beliefs,

e.g., β(ω, z) in the picture, the receiver’s optimal action changes between ω1 and ω2.

The graphical illustration in Figure 1 helps follow the proofs of all propositions. If the

cost c to acquire information about the sender’s type is positive but sufficiently low,8 then

the segment [0, 1] representing R’s belief can be divided into three intervals. When the belief

β is either close enough to 0, or close enough to 1, the expected benefit to acquire information

on t is not worth its (positive) cost, which means that R optimally chooses i = 0, and a = a

8More precisely, c must be lower than min
z

[U(L, ω, z, a)−U(L, ω, z, a)][U(H,ω, z, a)−U(H,ω, z, a)]

[U(L, ω, z, a)−U(L, ω, z, a)] + [U(H,ω, z, a)−U(H,ω, z, a)]
.
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if β is low, or a = a if β is high. When instead β is in a mid-range, the expected benefit to

acquire information on t is worth its cost, so that R’s optimal choice is i = 1 (for this it is

necessary that c is not too large). For a given ω ∈ {ω1, ω2}, the threshold between the left

region and the central region in figure is denoted by βω,z
01 , while the threshold between the

central region and the right region is denoted by βω,z
10 , and their values can be computed as

follows:
βω,z
01 =

c

U(H,ω, z, a)−U(H,ω, z, a)
;

βω,z
10 = 1− c

U(L, ω, z, a)−U(L, ω, z, a)
.

Importantly, since R exhibits analogical reasoning, he forms the same belief in ω1 and ω2

when observing a signal, as indicated by the vertical dashed line which gives β(ω, z) for the

given the signal z ∈ {x, y}. At the same time, R can make different decisions in the two

states, which for the case of signal z are (0, a) in ω1 and 1 in ω2. This, together with the

assumption of increasing differences in actions and states, implies that the left and right

extrema of the interval where i = 1 is optimal are larger in ω1 than they are in ω2.
9 This

feature turns out to be pivotal for several of the following findings.

We are ready to state and prove all our results. Proposition 1 gives a necessary condition

for having reverse separation in ω2 in an equilibrium profile.

Proposition 1. When R exhibits analogical reasoning, if in equilibrium reverse separation

occurs in ω2, then ordinary separation must occur in ω1.

Proof. Consider a profile where reverse separation occurs in ω2. This means that, in ω2, the

L-type of S chooses x and the H-type of S chooses y. If both types find their choice optimal,

9If R cannot distinguish in which state he finds himself, then the extrema must necessarily coincide, since

R must take the same actions in ω1 and ω2. Also, if R can distinguish in which state he finds himself and

can exploit this information in updating beliefs, then the extrema can be different in ω1 and ω2 (as in the

case of analogical reasoning), but in addition R can form different beliefs in ω1 and ω2 when observing a

signal z.
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then R’s choice in ω2 must be: i = 0 and a = a when x is observed and i = 1 when y is

observed. Indeed, if the L-type of S finds optimal to choose x, which is more costly than

y, then R must respond in such a way that x pays more than y to the L-type. This only

happens when R chooses i = 0 and a = a when x is observed, and not when y is observed.

If this is the case, then the H-type of S prefers y over x only if R chooses i = 1 when y is

observed, otherwise the H-type would prefer x in order to induce R to switch to a = a.

If R finds optimal to choose i = 0 and a = a when x is observed in ω2, then the H-type

must be choosing x in ω1. Otherwise, signal x would fully reveal the L-type, and hence R’s

optimal choice would become i = 0 and a = a when x is observed. By the some token, if R

finds optimal to choose i = 1 when y is observed in ω2, then the L-type must be choosing y

in ω1. Therefore, ordinary separation must occur in ω1.

Proposition 2 provides a necessary condition for having ordinary separation in ω1 in an

equilibrium profile.

Proposition 2. When R exhibits analogical reasoning, if in equilibrium ordinary separation

occurs in ω1, then either reverse separation or pooling on x must occur in ω2.

Proof. Consider a profile where ordinary separation occurs in ω1. This means that the L-

type of S chooses y in ω1, and the H-type of S chooses x in ω1. If both types find their choice

optimal, then R’s choice in ω1 must be: i = 1 when x is observed, and i = 0 with a = a

when y is observed. Indeed, if the H-type of S finds optimal to choose x, which is more

costly than y, then R must respond in such a way that x pays more than y to the H-type.

This only happens when R chooses i = 0 and a = a when y is observed, and not when x is

observed. If this is the case, then the L-type of S prefers y over x only if R chooses i = 1

when x is observed, otherwise the L-type would prefer x in order to induce R to switch to

a = a.

If R finds optimal to choose i = 1 when x is observed in ω1, then the L-type must be

choosing x in ω2. Otherwise, signal x would fully reveal the H-type, and hence R’s optimal
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choice would become i = 0 and a = a when x is observed. If the L-type finds x optimal in

ω2, then R’s choice in ω2 must be: i = 0 and a = a when x is observed, and either (i) i = 0

and a = a or (ii) i = 1 when y is observed. Otherwise, the L-type of S would prefer y over

x because y is less costly and he would get a = a anyway. In case (i), the H-type and the

L-type both find optimal to choose x in ω2, so that pooling on x occurs. In case (ii), the

H-type finds optimal to choose y, while the L-type finds optimal to choose x, so that reverse

separation occurs in ω2.

Proposition 3 clarifies in which states ordinary and reverse separation can occur.

Proposition 3. When R exhibits analogical reasoning and c > 0, ordinary separation can

never occur in ω2, and reverse separation can never occur in ω1.

Proof. Consider first a profile where ordinary signaling occurs in ω2, i.e., the H-type of S

chooses x in ω2 and the L-type of S chooses y in ω2. If both types find their choice optimal,

then R’s choice in ω2 must be: i = 0 with a = a when y is observed, and i = 1 when x is

observed. Indeed, if the H-type of S finds optimal to choose x, which is more costly than

y, then R must respond in such a way that x pays more than y to the H-type. This only

happens when R chooses i = 0 and a = a when y is observed, and not when x is observed.

If this is the case, then the L-type of S prefers y over x only if R chooses i = 1 when x is

observed, otherwise the L-type would prefer x in order to induce R to switch to a = a.

If R finds optimal to choose i = 1 when x is observed in ω2, then the L-type must be

choosing x in ω1. Otherwise, signal x would fully reveal the H-type, and hence R’s optimal

choice would become i = 0 and a = a when x is observed. If the L-type finds optimal

to choose x in ω1, then R must be choosing i = 0 with a = a when x is observed in ω1,

otherwise the L-type would prefer the less costly signal y. However this is not possible, since

the assumption U(t, ω2, z, a) − U(t, ω2, z, a) > U(t, ω1, z, a) − U(t, ω1, z, a), for all t and z,

implies that if i = 1 is optimal for R when x is observed in ω2, then i = 1 is a fortiori optimal

for R when x is observed in ω1.
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Consider now a profile where reverse separation occurs in ω1, i.e., the H-type chooses y

in ω1 and the L-type chooses x in ω1. If both types find their choice optimal, then R’s choice

in ω1 must be: i = 1 when y is observed, and i = 0 with a = a when x is observed. Indeed, if

the L-type of S finds optimal to choose x, which is more costly than y, then R must respond

in such a way that x pays more than y to the L-type. This only happens when R chooses

i = 0 and a = a when x is observed, and not when y is observed. If this is the case, then

the H-type of S prefers y over x only if R chooses i = 1 when y is observed, otherwise the

H-type would prefer x in order to induce R to switch to a = a.

If R finds optimal to choose i = 0 with a = a when x is observed in ω1, then the H-type

must be choosing x in ω2. Otherwise, signal x would fully reveal the L-type, and hence

R’s optimal choice would become i = 0 and a = a when x is observed. If the H-type finds

optimal to choose x in ω2, then R must be choosing i = 0 with a = a when y is observed in

ω2, otherwise the H-type would prefer the less costly signal y. However this is not possible,

since the assumption U(t, ω2, z, a)−U(t, ω2, z, a) > U(t, ω1, z, a)−U(t, ω1, z, a), for all t and

z, implies that if i = 1 is optimal for R when y is observed in ω1, then either i = 1 or i = 0

with a = a is optimal for R when y is observed in ω2.

The next two propositions state that the only cases that have not been ruled out by Propo-

sitions 1-3 can actually occur in equilibrium.

Proposition 4. When R exhibits analogical reasoning, if c is positive but sufficiently low,

then there exist priors such that a profile where ordinary separation occurs in ω1 and reverse

separation occurs in ω2 is an equilibrium.

Proof. It is a matter of computation to verify that when

0<c<min
ω,z

[U(L, ω, z, a)−U(L, ω, z, a)][U(H,ω, z, a)−U(H,ω, z, a)]

[U(L, ω, z, a)−U(L, ω, z, a)] + [U(H,ω, z, a)−U(H,ω, z, a)]
,

there exist, for ω ∈ {ω1, ω2} and z ∈ {x, y}, threshold numbers βω,z
01 , βω,z

10 ≥ 0, with βω,z
01 <

βω,z
10 , such that R’s optimal behavior is partitioned on the belief space as follows: i = 0 with
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a = a when his belief belongs to (0, βω,z
01 ), i = 1 when his beliefs belongs to (βω,z

01 , β
ω,z
10 ), and

i = 0 with a = a when his belief belongs to (βω,z
10 , 1). Moreover, note that βω1,z

01 > βω2,z
01

and βω1,z
10 > βω2,z

10 for z ∈ {x, y}, due to the assumption that U(t, ω2, z, a) − U(t, ω2, z, a) >

U(t, ω1, z, a)− U(t, ω1, z, a) for all t and z.

Therefore, if βω2,y
01 < β(ω1, y) = β(ω2, y) < min{βω1,y

01 , βω2,y
01 } and max{βω2,x

10 , βω1,x
10 } <

β(ω1, x) = β(ω2, x) < βω1,x
10 , then R optimally chooses as follows: in ω1, i = 0 with a = a

when y is observed and i = 1 when x is observed; in ω2, i = 1 when y is observed and i = 0

with a = a when x is observed. Given this behavior by R, it is optimal for the L-type of S

to choose y in ω1 and x in ω2, while for the H-type of S it is optimal to choose x in ω1 and

y in ω2. Finally, note that, when S behaves in such a way, the Bayes’ rule for R, taken into

account that R is an analogical reasoner, implies that:

β(ω1, x) = β(ω2, x) =
pω1p(H|ω1)

pω1p(H|ω1) + (1− pω1)(1− p(H|ω2)

; (1)

β(ω1, y) = β(ω2, y) =
(1− pω1)p(H|ω2)

pω1(1− p(H|ω1)) + (1− pω1)p(H|ω2)

. (2)

To complete the proof, it is enough to note that priors pω1 , p(H|ω1) and p(H|ω2) can be chosen

to have indeed βω2,y
01 < β(ω1, y) = β(ω2, y) < min{βω1,y

01 , βω2,y
01 } and max{βω2,x

10 , βω1,x
10 } <

β(ω1, x) = β(ω2, x) < βω1,x
10 .

Proposition 5. When R exhibits analogical reasoning, if c is positive but sufficiently low,

then there exist priors such that a profile where ordinary separation occurs in ω1 and pooling

on x occurs in ω2 is an equilibrium.

Proof. The statement can be proven by adjusting the proof of Proposition 4. In particular,

consider the case where β(ω1, x) = β(ω2, x) < βω2,x
01 and max{βω2,x

10 , βω1,x
10 } < β(ω1, x) =

β(ω2, x) < βω1,x
10 , so that R’s choice is: in ω1, i = 0 with a = a when y is observed and

i = 1 when x is observed; in ω2, i = 0 with a = a when y is observed and i = 0 with

a = a when x is observed. Given this behavior by R, the L-type of S finds optimal to
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state
ω1 0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

β(ω, y)

state
ω2 0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

signal y

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

β(ω, x)

signal x

Figure 2: Receiver’s behavior that is optimal and sustains a profile where ordinary separation takes

place in ω1 and reverse separation takes place in ω2.

choose y in ω1 and x in ω2, while the H-type of S finds optimal to choose x in ω1 and x

in ω2. As in the proof of Proposition 4, to complete the proof it is enough to note that

priors pω1 , p(H|ω1) and p(H|ω2) can be chosen to have indeed β(ω1, x) = β(ω2, x) < βω2,x
01 and

max{βω2,x
10 , βω1,x

10 } < β(ω1, x) = β(ω2, x) < βω1,x
10 .

Considered together, Propositions 1-5 imply that only two patterns of separation are possible

in equilibrium: either ordinary separation in ω1 and reverse separation in ω2, or ordinary

separation in ω1 and pooling on x in ω2. Figure 2 and Figure 3 provide examples where

acquisition costs and priors are such that the separation patterns considered in, respectively,

Proposition 4 and Proposition 5 can actually be sustained in equilibrium.

6 Discussion

The possible outcomes of signaling to a receiver who reasons analogically over two states

and who can acquire information at a cost can be, as in the standard model, separation or

pooling.10 Separation can take place even if the single crossing condition does not hold and

10This paper focuses on separation, but is straightforward to see that pooling in both states can occur in

equilibrium.
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state
ω1 0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

β(ω, y)

state
ω2 0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

signal y

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

0

0, a︷ ︸︸ ︷ 1︷ ︸︸ ︷ 0, a︷ ︸︸ ︷
1
β

β(ω, x)

signal x

Figure 3: Receiver’s behavior that is optimal and sustains a profile where ordinary separation takes

place in ω1 and pooling on x takes place in ω2.

can be ordinary or reverse. Some combinations of separation and pooling are possible, but

not all of them. Table 1 summarizes the feasible equilibrium outcomes.

Are analogical reasoning and costly acquisition of information necessary for these re-

sults?11 It turns out that abandoning either of the two assumptions leads to the impossibility

of a separation outcome.

No kind of separation is possible if we assume that the receiver is not an analogical

reasoner but either cannot distinguish at all state 1 from state 2, or is perfectly aware of the

state and updates beliefs according to Bayes’ rule. In any state where separation occurs,

R learns all relevant information if he is perfectly aware of the state, so he never acquires

information, making a deviation by L profitable. If, instead, R cannot distinguish at all

between states, separation requires that R does not choose a upon seeing y while acquiring

information upon seeing x; but if R acquires information upon seeing x, L never sends x, so

x separates perfectly H from L, making information acquisition worthless.

No kind of separation is possible even if we maintain analogical reasoning, but we make

11 If the sender is forced to hold the same beliefs in the two states, and sends the same signals, separation

is impossible: signals would be fully revealing, hence the receiver would acquire no information, making a

deviation by L profitable.
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state 2

ordinary
separation

reverse
separation pooling

state 1

ordinary
separation

reverse
separation

pooling

Table 1: Check marks denote combinations of outcomes that are feasibile in equilibrium.

costly acquisition ineffective, by either assuming that R always acquires information, or R

never acquires information. In both cases all sender’s types want to send the same signal

(the least costly that grants a, or if it does not exist just the least costly).

Lastly, even if we did not compare welfare across equilibria, it may be worth remarking

that beyond the standard trade-off (between the cost of the signal and the value of the

information transmitted) in our setting there is the additional cost of acquiring informa-

tion (which is necessary to sustain separation). This diminishes the relative desirability of

separation whenever pooling is attained without costly acquisition.
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