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Abstract. Smart contracts, functioning autonomously within blockchain
ecosystems, obviate the necessity for central oversight. Typically pro-
grammed in Solidity, these contracts interact with others on Ethereum
via external calls that allow a contract to invoke a function of another
contract. However, external calls lack mechanisms to ensure that the
called code satisfies some predefined behavioral policies. In this paper,
we propose a formal framework to specify and enforce security policies to
address this issue. Specifically, we present a core calculus for smart con-
tracts equipped with constructs for specifying policies at the code level,
allowing for monitoring and enforcing desired behaviors. We provide the
formal semantics of this calculus and describe how our approach can be
used to detect and prevent flash loan-based arbitrage scenarios.
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1 Introduction

Smart contracts are computer programs deployed and executed within a block-
chain environment. On the Ethereum blockchain, they are commonly written in
the Solidity language and compiled into the EVM bytecode. The definition of a
smart contract in Solidity looks like a class in any OOP language: contracts have
an internal mutable state and a set of functions to manipulate it. These public
functions can be invoked by users directly through transactions or other contracts
through the external calls mechanism. Although this mechanism is powerful in
enabling interactions between smart contracts, it provides no means to ensure
that the invoked code satisfies some predefined behavioral policies. This is even
more critical when we pass the address of a smart contract as an argument
to a function that, in turn, invokes a function within the passed contract, so
letting the caller control the code that is actually executed. For example, a con-
tract Bank may implement a function calculateInterest(RateProvider
pro) by invoking the function getCurrentRate() on the parameter pro of
type RateProvider to obtain the current rate of a given crypto-asset in ex-
change for some fees. The trustworthiness of the computation depends on the
code of getCurrentRate(). Relying on external code could have severe secu-
rity consequences as many attacks on smart contracts exploit external calls to
run attacker-controlled code, e.g., reentrancy attacks [12,8].
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To address this issue, we propose a methodology to specify and enforce secu-
rity policies at contract code level, inspired by Schneider [14] and Kozen [10]. The
methodology involves (1) extending the programming language with constructs
for expressing security policies to guard pieces of code; and (2) introducing inside
the semantics of the language mechanisms to check that the code is compliant
with such policies at run-time.

More precisely, we start from TinySol [4], a core calculus for smart contracts,
and we extend it with a policy framing construct ϕ[S] for guarding the execution
of statements S with a developer-defined policy ϕ. Intuitively, a policy ϕ is
a predicate that specifies the set of program executions that are acceptable.
The predicate ϕ is a pair (re, E), where re is a regular expression and E is
an assertion (boolean expression). The regular expression re predicates on the
execution history, namely the sequence of function calls made by the contract.
While the expression E predicates on the state of the computation, i.e., the values
of contract and function variables. Since the values of these variables will be only
known at run-time, we allow them to occur also inside re. These variables will be
bound to concrete values while evaluating re against the execution history. We
define the semantics of TinySol as a transition system that describes the result
of a computation (the reaching state), and that keeps track of the sequence of
function calls performed at run-time together with their actual parameters (the
history). Moreover, we define a run-time procedure to check when the execution
satisfies the policies of a contract. This procedure works as follows: given a policy
ϕ = (re, E), we first obtain a symbolic automaton from re that accepts all the
histories that may be compliant for some assignment of variables occurring in
re; then, we evaluate the assertion E to check its validity. A history is compliant
if it passes both these checks, otherwise it is not, and the execution is reverted.

In the rest of the paper, we proceed as follows. We provide some background
information and motivations for our work in Section 2. Section 3 presents the
formalization of our methodology. Section 4 shows our use cases on DeFi pro-
tocols. Section 5 compares our work with the relevant literature, and Section 6
concludes and discusses future work.

2 Background and Motivation

Decentralized Finance (DeFi) is an innovative financial system built on blockchain
technology, utilizing smart contracts to enable decentralized trading, lending,
and investment. While Ethereum is a dominant platform, DeFi ecosystems have
also developed on other platforms like Solana. However, DeFi is characterized
by significant fragmentation and inefficiencies, with prices for identical finan-
cial instruments varying considerably across different venues and each venue
responding inconsistently to market movements. These discrepancies offer prof-
itable opportunities for speculative actions to manipulate the price of assets to
take some advantage or to cause damage to other users.

Flash loans are financial instruments that allow users to borrow crypto-assets
without needing up-front collateral, leveraging the atomicity of blockchain trans-
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actions. This atomicity ensures that the entire transaction either completes suc-
cessfully or is aborted. Intuitively, they work as follows. At the beginning of a
transaction, a user requests a loan of some crypto-assets to a DeFi service offer-
ing flash loans. The user performs various financial operations with the borrowed
crypto-assets, including arbitrage, collateral swaps, etc., that can be completed
within the scope of a single transaction. At the end of the transaction, the user
pays back the loan plus a small fee. If the user cannot repay the loan, the trans-
action fails and reverts: all actions taken during the transaction are undone as if
they never happened. This mechanism is risk-free for the lending contract and
it is possible due to the Ethereum Virtual Machine’s (EVM) ability to revert
state changes. Qin et al. [13] provide a detailed introduction to flash loans, their
common uses, and potential attacks facilitated by them.

Listing 1.1 shows a prototypical implementation of a flashLoan function,
similar to the one of Aave protocol [1].

function flashLoan(receiverAddress, asset, amount, params):
// Calculate fees for the asset
// Check if there is enough liquidity
if liquidity[asset] < amount:

raise error "Insufficient liquidity"

// Update the liquidity to reflect the loan
liquidity[asset] -= amount

// Transfer the assets to the receiver
transfer(asset, receiverAddress, amount)

// Execute the operation in the receiver contract
if not receiverAddress.executeOperation(asset, amount, fee, msg.sender,

params):
raise error "FlashLoan execution failed"

// Collect the borrowed amount plus fee
totalDebt = amount + fee

// Check if receiver has enough tokens to repay the loan
receiverBalance = getBalance(receiverAddress, asset)
if receiverBalance < totalDebt:

raise error "Insufficient token balance to repay the loan"

transferFrom(receiverAddress, self, totalDebt, asset)
liquidity[asset] += totalDebt

// Emit the flash loan event
emit FlashLoan(receiverAddress, asset, amount, fee)

Listing 1.1: Code of a flashloan function.

The function above allows a calling smart contract to borrow an asset, execute ar-
bitrary code using that asset via the external call mechanism, and then return the
borrowed amount with a small fee. The parameter receiverAddress specifies
the contract that receives the borrowed assets and executes a custom code via the
function executeOperation called within the flashLoan function. The pa-
rameter asset contains the address of the asset to be borrowed, while amount
specifies its quantity. The parameter params provides additional data required
by the receiver contract for its operations. Once the fees for the borrowed asset
are calculated and some sanity checks verify that the pool has enough liquidity,
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Fig. 1: High-level execution of a flash loan-based arbitrage transaction: (1) flash
loan requested to the dYdX liquidity pool; (2) swap exchange from USDC to
DAI in the AMM Curve Y; (3) swap exchange from DAI to USDC in the AMM
Curve sUSD;(4) repay the flash loan.

the requested assets are transferred to the receiver contract. Then, the function
flashLoan invokes the external function executeOperation, passing as pa-
rameters the borrowed asset, the amount, the requested fees, the caller’s address
(msg.sender), and additional parameters. The receiver contract returns true
to signal successful execution; otherwise, the transaction raises an error. After
the receiver contract executes its code, it must repay the borrowed amount plus
the fees. When the debt is paid back to the lending contract, the liquidity pool is
updated to reflect the repayment, restoring the previous amount of crypto-assets.

Flash loans offer several financial opportunities for price attacks and specu-
lative actions, including arbitrage. Milionis et al. [11] provide an in-depth anal-
ysis of arbitrage focusing on the differences between Automated Market Maker1

(AMM) and market prices. Based on their strategies, arbitrageurs can be classi-
fied into opportunistic and myopic. The first category waits for larger mispric-
ings, hoping for greater future gains rather than immediate profits, and prefers
missing opportunities for faster, more short-term focused arbitrageurs. The sec-
ond one, on the other hand, aims to maximize immediate profit: users execute
trades that make a profit by buying (or selling) crypto-assets from an AMM if
their price, adjusted for fees, is below (or above) the market one, and then selling
(or buying) them to another AMM at the market price. The generic flow of flash
loan-based arbitrage transactions of a myopic arbitrageur is the following: the
user borrows some crypto-assets through a flash loan on a AMM and uses the
loaned amount to execute a series of exchanges with other AMMs. She generates
profits from the price discrepancies between the assets.

Figure 1 illustrates the steps of a flash loan-based arbitrage involving the liq-
uidity pool dYdX and the two AMMs, CurveY and Curve sUSD. The transaction
dated back to July 31, 2020,2 the arbitrageur borrowed 2.048 million USDC,3

1 A financial instruments that allow users to exchange crypto-assets (tokens).
2 Its address is 0xf7498a2546c3d70f49d83a2a5476fd9dcb6518100b2a731294d0d7b9f79f754a.
3 USD Coin is a digital currency entirely backed by U.S. dollar assets: each USDC
token represents a tokenized U.S. dollar, with a value closely mirroring that of one
U.S. dollar.
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executed two exchanges, one from USDC to DAI4 from Curve Y, and the other
one in the opposite directions from Curve sUSD. At the end of them, she paid
its debt with dYdX but realized a profit of 16.182 thousand USDC.

Arbitrage, while beneficial for synchronizing asset prices across different DeFi
markets, can be exploited to perform attacks on the market as described above.
The capability of composing DeFi protocols through external calls is essential due
to the interconnected nature of DeFi platforms. However, this composability not
only facilitates chained trading and arbitrage opportunities but also introduces
opportunities for malicious actors. Therefore, regulating external calls through
robust policies is imperative to mitigate potential attacks and maintain market
integrity. Here, we propose history-based policies as a means to regulate how the
various protocols are composed, enforcing good behavior among the involved
parties. More precisely, our policy framework addresses security concerns by
analyzing transaction patterns and protocol interactions to identify potential
vulnerabilities and proactively strengthen defenses against malicious activities.
Protecting the invocation of the function executeOperation with a policy
ϕ in the function flashLoan enables us to identify and potentially mitigate
profitable unwanted scenarios like the one described above (see Section 4).

3 TinySol with Policies

In this section, we introduce the core calculus for smart contracts, building upon
the work of Bartoletti et al. [4]. First, we present the syntax and semantics of the
enriched language, with a particular focus on the introduced policy component
(Sections 3.1 and 3.2). Following this, we formalize the execution of transactions
using a labeled transition system (LTS). Finally, we review symbolic automata
and show how we use them to define our policy checking mechanism (Section 3.3).

3.1 Syntax

We assume a set Val of values ranged by v, k, . . ., a set Const of constant names
x, y, . . ., a set of procedure names f, g, . . .. and a set Addr of addresses X,Y, . . .,
partitioned into account addresses A,B, . . . and contract addresses C,D, . . .. As
a notation, we write sequences in bold, e.g. v is a sequence of values, while ϵ
denotes the empty sequence. We use n, n′, . . . to range over N, and b, b′, . . . to
range over boolean values.

In TinySol, a contract is a finite set of terms of the form f(x){S }, where S
is a statement. Each term f(x){S } is a contract function, where f is its name,
x are its formal parameters (omitted when empty), and S is the function body.
Moreover, we represent the internal state of a contract as a key-value store,
formally, a partial function from keys k ∈ Val to values v ∈ Val.

The syntax of TinySol is in Figure 2. Many statements (Figure 2, left) are
standard in common imperative languages, so we only comment on the most

4 DAI is an Ethereum stablecoin that maintains a value close to USD using supply-
controlling smart contracts, regulated by MakerDAO’s MKR token holders.
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relevant: throw raises an uncatchable exception, rolling-back the state; X.f(v)$n
implements the external call mechanism calling the function f of the contract at
address X, passing the arguments v, and transferring n units of currency to X;
ϕ[S] executes the statements S guarded by the policy ϕ, aborting the execution
if the history generated by S is not compliant with ϕ.

Also, the expressions (Figure 2, right) are quite standard. We assume all
the usual constants, arithmetic, logic, and cryptographic operators. Peculiar of
TinySol is the expression !k that evaluates to true if the key k is bound in the
contract store, false otherwise. Then, the expression ?k looks up the value of
the key k in the contract store. Finally, the expression E 1.E 2 evaluates E 1 to
produce the address of a contract X and then evalutes E 2 in that address.

A policy ϕ (Figure 2, left) is a pair (re, E) where re is a regular expression that
represents the sequence of function invocations, and E is a boolean expression.
The regular expression syntax is standard: · denotes concatenation, + choices,
and ⋆ zero or more repetitions. The alphabet is represented by patterns patt
capturing function invocation and may contain variables. More precisely, C.f(v)
denotes an invocation to the function f of the contract with address C with
argument v; whereas x.f(v) is a call to function f with argument v where x
is a placeholder for the address of the contract the function belongs to; C.f(x)
denotes a call where the arguments are variables; finally, x.f(x′) is a call where
the address and the arguments are denoted by variables. The variables occurring
in a pattern can be used by the expression E to express some conditions. These
variables will be bound to concrete values while checking the policy compliance.

Finally, we assume a mapping Γ from addresses to contracts that we use to
retrieve the definition of a contract. In order to allow for a uniform treatment of
account and contract addresses, we require that Γ (A) = {fskip(){skip}} for all
account addresses A. Also, we use the following syntactic sugar: we write X.f(v)
to denote a call X.f(v)$n, when there is no money transfer (i.e., n = 0). We
write ifE thenS for ifE thenS else skip.

3.2 Semantics

We formalize the execution of TinySol contracts by providing operational seman-
tics for both transactions and function contracts. In our semantics, the execution
of a transaction is not deterministically started by a user account, and it triggers
the execution of a contract function. A successful transaction results in a change
of the blockchain state. We first present the semantics of TinySol statements
and then the semantics of transactions. Note that our policy mechanism is ac-
tivated during statement execution but affects transaction semantics since the
corresponding transaction is reverted when a policy is violated.

Statements The semantics of a contract is given in terms of a transition system
where configurations have the form:

⟨S , σ, ρ, η⟩
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S ::= statement

skip skip

| throw exception

| E :=E ′ store update

| S ;S ′ sequence

| ifE thenS elseS ′ conditional

| whileE doS loop

| ϕ[S ] security policy

| E0.f(E1)$E2 call

ϕ ::= (re, E) policy

re ::= regular expression

patt basic event

| ϵ empty string

| re · re sequential composition

| re+ re choice

| re⋆ iteration

E ::= expression

v value

| x const name

| X address

| op E operator

| ?E key lookup

| !E key bound?

| E 1.E 2 context

patt ::= function calls

C.f(v) ground

| x.f(v) addr. variable

| C.f(x) arg. variables

| x.f(x′) addr. and arg. variables

Fig. 2: Syntax of the language.

where S is the sequence of statements to be executed; σ is the starting state; ρ
is the variable environment; η is the history recording the sequence of function
calls, made during the execution.

In detail, a blockchain state σ : Addr → (Val ⇀ Val) is a map from ad-
dresses to key-value stores. A key-value store is, in turn, a partial function from
keys to values and represents the internal state of a smart contract. We use brack-
ets to represent finite maps, e.g., {v1/x1, · · · , vn/xn} maps xi to vi, for i ∈ 1..n. As
usual, when a key k is not bound to any value in σ X, we write σ X k = ⊥. We
postulate that for each address, there exists the distinct key balance recording
the balance of that address. Moreover, when we refer to the key of an address
X, we use the notation X.k and call it a qualified key. Consequently, we write
σ(X.k) for σXk. Below, we use the auxiliary operators σ+X : n and σ−X : n on
states, to, respectively, increase/decrease the balance of X of n currency units:

σ ◦ X : n = σ{(σXbalance) ◦n/X.balance} (◦ ∈ {+,−})

A variable environment ρ : Const⇀ Val is a partial function from constant
name to values used to provide values to function parameters (that once assigned
cannot be changed) and to special names such as value and sender used inside
the body of functions.

A history η is a sequence of function calls given by the following grammar:

η ::= ϵ | X.f(v) | η · η
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JvKXσ,ρ = v JxKXσ,ρ = ρ x JYKXσ,ρ = Y JopE KXσ,ρ = op JE KXσ,ρ JE 1.E 2KXσ,ρ = JE 2K
JE 1KXσ,ρ
σ,ρ

J?E KXσ,ρ = σ X (JE KXσ,ρ) J!E KXσ,ρ =

{
true if JE KXσ,ρ ̸= ⊥ and σ X (JE KXσ,ρ) ̸= ⊥
false if JE KXσ,ρ ̸= ⊥ and σ X (JE KXσ,ρ) = ⊥

Fig. 3: Semantics of expressions.

where ϵ is the empty history, X.f(v) denotes the invocation of the function f of
the contract with address X passing the values v as arguments.

We give the operational semantics of statements in a big-step style, where
transitions have the form

⟨S , σ, ρ, η⟩ X−→ ⟨σ′, η′⟩

meaning that the statement S executed in the contract X, in the state σ, with
environment ρ, and history η terminates and produces the final state σ′ and
history η′. Note that our semantics is parameterized by the contract address in
which the evaluation is taking place.

Figure 3 shows the semantics of expressions where we use op to denote syntac-
tic operators and op for their semantic counterparts. The semantics of expression
results in a value and its definition is quite standard: the environment ρ is used
to evaluate constant names x, while the state σ is used to evaluate keys in !E
and ?E . The semantics of E 1.E 2 first evaluates E 1 within a contract with ad-
dress X producing an address Y, then evaluates E 2 within the contract Y. Note
that expressions have no side effects, and all the semantic operators are strict,
i.e. their result is ⊥ if some operand is ⊥.

The semantics of statements is in Figure 4, and it is mostly standard, except
for the last two rules. The rule [policy] evaluates the policy framing ϕ[S] construct:
it executes the statement S that (if it terminates) produces a state σ′ and a
history η′; then, it checks that η′ is compliant with the policy ϕ through the
predicate η′ ⊨σ′,ρ,X ϕ defined in Section 3.3. If the history meets the policy, the
computation results in the pair ⟨σ′, η′⟩, otherwise it is aborted.

The rule [procedure call] handles a procedure call E 0.f(E1)$E 2 within the
contract X. The premise of the rule requires that (i) E 0 evaluates to an address
Y; (ii) E 2 evaluates to a non-negative number n, not exceeding the balance of X;
(iii) the contract at Y has a procedure named f with formal parameters x1 · · ·xh;
(iv) E1 evaluates to a sequence of values of length h. If all these conditions hold,
then the procedure body S is executed in a state where X’s balance is decreased
by n, Y’s balance is increased by n, and in an environment where the formal
parameters are bound to the actual ones, and the special names sender and
value are bound, respectively, to X (the caller) and n (the value transferred to
Y). Executing S may affect both the store of X and, in case of procedure calls,
also the store of other contracts.
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⟨skip, σ, ρ, η⟩ X−→ ⟨σ, η⟩
[skip]

JE KXσ,ρ = k JE ′KXσ,ρ = v

⟨E :=E ′, σ, ρ, η⟩ X−→ ⟨σ{v/X.k}, η′⟩
[update]

JE KXσ,ρ = b b ∈ {true, false}

⟨ifE thenS true elseS false , σ, ρ, η⟩
X−→ ⟨S b, η′⟩

[condition]
⟨S0, σ, ρ, η⟩

X−→ ⟨σ′, η′⟩

⟨S0;S1, σ, ρ, η⟩
X−→ ⟨σ′, η′⟩

[sequence]

JE KXσ,ρ = false

⟨whileE doS , σ, ρ, η⟩ X−→ ⟨σ, η⟩
[while false]

JE KXσ,ρ = true ⟨S , σ, ρ, η⟩ X−→ ⟨σ′, η′⟩

⟨whileE doS , σ, ρ, η⟩ X−→ ⟨σ′, η′⟩
[while true]

⟨S , σ, ρ, η⟩ X−→ ⟨σ′, η′⟩ η′ ⊨σ′,ρ,X ϕ

⟨ϕ[S ], σ, ρ, η⟩ X−→ ⟨σ′, η′⟩
[policy]

JE0KXσ,ρ = Y

JE1KXσ,ρ = v

JE2KXσ,ρ = n

f(x){S } ∈ Γ (Y)
σ′ = σ − X : n + Y : n
ρ′ = {X/sender, n/value, v/x}

η′ = η :: Y : f(v)

⟨S , σ′, ρ′, η′⟩ X−→ ⟨σ′′, η′′⟩

⟨E0.f(E1)$E2, σ, ρ, η⟩
X−→ ⟨σ′′, η′′⟩

[procedure call]

Fig. 4: Semantics of statements.

Transactions A transaction T is a term of the form A
n−→ C : f(v), where

A is the address of the caller, C is the address of the called contract, f is the
called procedure, n is the value transferred from A to C, and v is the sequence
of actual parameters. We formalize the execution of a transaction T through
a transition system where configurations have the form ⟨σ, η⟩ describing the
blockchain state where T takes place producing a new configuration ⟨σ′, η′⟩.
Executing the transaction causes the execution of the contract function f. The
call of f is defined by the following rules:

f(x){S } ∈ Γ (C) σA balance ≥ n

⟨S , σ −A : n + C : n, {A/sender, n/value, v/x}, η⟩ C−→ ⟨σ′, η′⟩

⟨σ, η⟩ A
n−→C:f(v)−−−−−−−→ ⟨σ′, η′⟩

[Tx1]

f(x){S } ∈ Γ (C)(
σA balance < n or ⟨S , σ −A : n + C : n, {A/sender, n/value, v/x}, η⟩ ̸→

)
⟨σ, η⟩ A

n−→C:f(v)−−−−−−−→ ⟨σ, η⟩
[Tx2]

Rule [Tx1] handles the case where the transaction is successful: this happens when
A’s balance is at least n, and the procedure call terminates in a non-error state,
meaning that all policies defined in f are satisfied. Note that n units of currency
are transferred to C before starting to execute f, and that the names sender

and value are set, respectively, to A and n. Instead, [Tx2] applies either when
A’s balance is not enough, or the execution of f fails (this also covers the case
when f does not terminate or during the execution of the function body is not
compliant with all the policies of function f). In these cases, T does not alter

the state ⟨σ, η⟩ T−→ ⟨σ, η⟩.
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We naturally extend the semantics above when we have a sequence of trans-
actions [T1,T2, · · · ,Tn], formally:

⟨σ0, η0⟩
T1−−→ ⟨σ1, η1⟩

T2−−→ ⟨σ2, η2⟩ · · ·
Tn−−→ ⟨σn, ηn⟩

Note that erroneous transactions occur in the execution of the sequence
[T1,T2, · · · ,Tn] does not effect the semantics, since rule [Tx2] leaves the state
and the history unchanged.

3.3 Checking policies

In this section, we describe how we ensure that a history η complies with a policy
ϕ = (re, E). Intuitively, our verification procedure consists of two steps: (i) we
check that η belongs to the language of re, by transforming re into a symbolic
automaton; (ii) we evaluate the assertion E in the current state and check that
it evaluates to true. If both steps succeed, η complies with ϕ, otherwise, it does
not. Below, we first review the basic notions of symbolic regular expressions and
automata [16], and then we detail the two steps above.

Symbolic automata are generalizations of finite automata where the alphabet
is a Boolean algebra, and transitions are labeled by predicates over such alge-
bra. This allows symbolic automata to operate over infinite alphabets, such as
the set of rational numbers, while retaining the decidability properties of their
finite counterparts. Similarly, symbolic regular expressions are a generalization
of regular expressions operating over a Boolean algebra.

An effective Boolean algebra A is a tuple

(D, Ψ, J K,⊤,⊥,∨,∧,¬) (1)

where D is a (possibly infinite) set of domain elements; Ψ is a set of predicates
over D closed under the logical connectives ∨,∧,¬; the component J K : Ψ → 2D

is a denotation function such that J⊤K = D, J⊥K = ∅, and ∀ψ1, ψ2 ∈ Ψ, Jψ1 ∨
ψ2K = Jψ1K ∪ Jψ2K, and J¬ψ1K = D \ Jψ1K. Moreover, when Jψ1K ̸= ∅, then the
predicate ψ1 is satisfiable. We require that checking satisfiability is decidable.

Example 1 (Linear Integer Arithmetic). As an example of effective Boolean
algebra, consider (Z, Ψ, J·K,⊥,⊤,∨,∧,¬), where Z is the set of integer num-
bers. The set Ψ contains all quantifier-free formulas on integer linear arithmetic,
namely, formulas such as ψ>0(x) ≜ x > 0 and ψodd(x) ≜ x%2 = 1. Given a
formula ψ, JψK denotes the set of integer satisfying it; ⊥,⊤,∨,∧,¬ represent the
always false, true predicates and the standard logical connectives. It is notewor-
thy that satisfiability is decidable for such a Boolean algebra. Indeed, given a
formula ψ, the interpretation function JψK can use an SMT solver for checking
the satisfiability and model generation. For example, Jψ>0(x)K is true if there
exists an integer x such that x > 0, and Jψodd(x)K is true if there exists an
integer x such that x%2 = 1. Boolean operations allow for the combination and
manipulation of these predicates within algebra.
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Given an effective Boolean algebra (D, Ψ, J K,⊤,⊥,∨,∧,¬), a symbolic regular
expression is defined as follows:

– The constants ε and ∅ are symbolic regular expressions denoting the lan-
guages {ε} and ∅, respectively.

– Any predicate ψ ∈ Ψ is a symbolic regular expression that accepts the lan-
guage defined as L(ψ) = JψK.

– Given symbolic regular expressions sre1 and sre2, the expressions sre1+sre2,
sre1 · sre2, and sre∗1 are symbolic regular expressions.

Elements of D are characters. A word over D is a sequence a1 . . . am, where
ai ∈ D, i = 1, . . . ,m. If m = 0, then we have the empty word, denoted by ε. The
set of all words over D is denoted by D⋆. Any language defined by a symbolic
regular expression is a symbolic regular language.

A symbolic nondeterministic finite automaton with epsilon transitions, s-ϵNFA
is a quintuple

N = (A, Q,∆, I, F )

where the alphabet A is an effective Boolean algebra; Q is a finite set of states;
∆ ⊆ Q × (Ψ ∪ {ϵ}) × Q is a finite set of transitions; I ⊆ Q is the set of initial
states; and F ⊆ Q is the set of final states. The language of N, denoted by L(N)
is the set of words w ∈ D⋆ such that either w = ε or w = a0 . . . ak and there
exist a sequence of transitions (qi, ψi, qi+1) ∈ ∆ and ai ∈ JψiK for i ∈ [0, k], with
q0 ∈ I and qk ∈ F .

q0

ψ>0

(a) Automaton Mpos.

q0 q1

ψodd

ψodd

(b) Automaton Mev/odd.

q0 q1

ψodd ∧ ψ>0

ψodd ∧ ψ>0

(c) Automaton Mev/odd ×Mpos.

Fig. 5: Symbolic automata built on the Boolean algebra of Example 1.

Example 2. Consider again the Boolean algebra of Example 1. Figure 5 illus-
trates three examples of s-ϵNFAs, Mpos, Mev/odd, and Mev/odd ×Mpos, built on
this algebra and where ψ>0(x) ∧ ψodd(x) denote the formula from Example 1.
The automaton Mpos accepts all strings consisting only of positive numbers,
while Mev/odd accepts all strings of even length consisting only of odd numbers.
For example, Mev/odd accepts the string 2, 4, 6, 2 (we separate characters with a
comma for clarity, but the comma is not in the language) and rejects the strings
2, 4, 6 and 51, 26. The automaton Mev/odd ×Mpos is obtained by the product of
Mpos and Mev/odd, and accepts the language L(Mpos) ∩ L(Mev/odd).
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q0 q1

ψ1
ψ2

Fig. 6: Automaton N for the symbolic regular expression sre of Example 3.

Tamm and Veanes [16] proved that we can apply the counterpart of Thomp-
son’s construction [17,20] to a symbolic regular expression to derive an s-ϵNFA.
For further details on symbolic regular expressions and automata, we refer the
interested reader to [16].

Now we define P = (D, Ψ, J K,⊤,⊥,∨,∧,¬) the Boolean algebra for our poli-
cies, as follows:

– D is the set of ground patterns generated by the first production patt of
Figure 2, namely, D = {p ∈ patt | p = C.f(v)}.

– Ψ is the set of pattern predicates defined as follows. For each pattern p ∈ patt
we introduce a predicate ψp(x) ≜ x = p that holds when the argument x (a
ground pattern from D) matches p for some substitution θ of variables in p.
Therefore, we define the set of predicates Ψ = {ψp | ψp for p ∈ patt} and we
close it under logical connectives ∨,∧,¬.

– for each pattern predicate ψp, JψpK = {q | ψp(q) holds for some θ}.

We note that the Boolean algebra P is effective because JψpK ̸= ∅ is decidable.
Indeed, at least two approaches exist to check the satisfiability of a pattern
predicate ψp. The first approach involves a straightforward matching between the
argument x (a ground pattern) and the pattern p, finding a possible assignment
to the variables of p that makes them syntactically equal. The second approach
instead involves encoding our Boolean algebra in the theory of the uninterpreted
function with equality and using a standard SMT solver to check satisfiability.

To ensure that a history η complies with a policy ϕ = (re, E) within the
contract X and in the state σ′, in symbols η′ ⊨σ′,ρ,X ϕ, we proceed as follows.
First, we transform re into a symbolic regular expression predicating on the
pattern of the policy and build the corresponding s-ϵNFA N. Proposition 1
of [16] ensures that the s-ϵNFA accepts the same language of the symbolic regular
expression. Then we check if the history η′ belongs to the language L(N): this

means that if there exists a sequence of transitions q0
p1−→ . . .

pn−→ qf for η′ =
p1 . . . pn where each transition is possible for some substitution θi. Therefore, η

′

belongs to the language L(N) holds for some θ′ = θ1 . . . θn. Then, we evaluate
the assertion JEKσ′,ρ·θ′ in the state σ′ and in the environment ρ extended with
the substitution θ′ and check that it evaluates to true. If all the steps above
succeed, η′ complies with ϕ, otherwise, it does not: when the history η′ does not
belong to the language of N (η′ /∈ L(N)) or E evaluates to false, the execution
is aborted because of a policy violation.
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Example 3. Consider a policy ϕ = (re, E) where re = x.f1(y)·z.f2(w)
⋆ and E =

(y > 0∧w = 13). We first transform re into a symbolic regular expression sre as
follows: take the predicates ψ1 = x.f1(y) and ψ2 = z.f2(w), then sre = ψ1 · ψ⋆

2

by simply lifting the patterns of re in the corresponding predicates. From this
symbolic regular expression, we build the corresponding automaton N shown in
Figure 6. Given a history η = c.f1(18) · d.f2(13) · d.f2(13), it is easy to check
that η ∈ L(N) with variables assignment θ = {y 7→ 18, x 7→ c, z 7→ d,w 7→ 13},
so η satisfies re. Then, we evaluate E in a state σ and environment ρ extended
with θ, namely JEKσ,ρ·θ = (y > 0 ∧ w = 13) that evaluates to true. Therefore,
history η is compliant with the policy ϕ.

4 Detecting Arbitrage

This section shows how our policy framework can prevent the arbitrage shown
in Figure 1 and illustrates how our policy checking mechanism works. We in-
troduce a policy to protect the call to executeOperation() in Listing 1.1
for detecting sequences of function calls that may indicate the attempt of an
arbitrage. The idea is that our policy detects sequences of invocations to the
swap method to transfers of tokens in opposing directions involving the same
token types and different AMMs. The policy will be parametric on the contracts
performing the transfers and on the types of tokens. Below, we denote with
User, dYdX, CurveY, and CurvesUSD the addresses of the contracts involved in
Figure 1 and with Flash the address of the contract created by the user im-
plementing the executeOperation function. Moreover, we use τa and τb to
indicate the token types USDC and DAI, respectively. Also, we assume that the
market price for token types τa and τb is provided by an Oracle contract with
address O. Assume User requests a loan of 2048 million tokens of type τa and
invokes the flashLoan function of Listing 1.2 passing the address of Flash as
first parameter:

function executeOperation(
asset, amount, fee, address, memory

) {
// First Swap on CurveY
CurveY.swap(User, USDC, DAI, 2048M);

// Get New Token Balance after the first swap
uint256 toBalance = IERC20(DAI).balanceOf(address(this));
require(toBalance > 0, "Swap on CurveY failed to return any tokens");

// Second Swap on CurvesUSD
CurvesUSD.swap(User, DAI, USDC, 2028M);

// Get New Token Balance after the second swap
uint256 finalBalance = IERC20(USDC).balanceOf(address(this));
require(finalBalance > 0, "Swap on CurvesUSD failed to return any tokens");

// Ensure that final balance is enough to repay the loan with fee
require(finalBalance >= amount.add(fee), "Arbitrage trade did not return

enough tokens to repay the loan");

Listing 1.2: Function implementing an arbitrage to be used with flashLoan.
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The execution of flashLoan() results in the following sequence of calls:

1. dYdX.balance()
2. dYdX.transfer(τa, Flash, loan)
3. Flash.executeOperation()
4. CurveY.swap(User, τa, τb, amount1)
5. CurvesUSD.swap(User, τb, τa, amount2)
6. Flash.payback(dYdX)

First, the dYdX contract performs some sanity checks, during these checks, it in-
vokes the dYdX.balance() function. Then, the requested amounts of tokens are
transferred to the contract Flash via a call to dYdX.transfer(τa, Flash, loan).
This transfer of tokens is followed by the invocation of executeOperation()
of the Flash contract that executes the two swaps: the first swap concerns
amount1 (2048 million) of tokens of type τa to acquire amount2 (2028 million) to-
kens of type τb on CurveY (CurveY.swap(User, τa, τb, amount1)). Then, the func-
tion performs the reverse swap on CurvesUSD (CurvesUSD.swap(User, τb, τa, amount2)).
After these swaps, the Flash contract repays its debt to the dYdX, including ad-
ditional fees, via the call to the function Flash.payback(dYdX).

// Execute the operation in the receiver contract
ϕ { if not receiverAddress.executeOperation(asset, amount, fee, msg.sender,

params):
raise error "FlashLoan execution failed" }

Listing 1.3: Policy introduction in the flashloan.

We prevent the execution of the arbitrage by enclosing the call to the func-
tion executeOperation inside a policy framing construct. The amended line
of code of the flashLoan function is shown in Listing 1.3. The policy ϕ blocks
the execution when it detects a sequence of swaps of opposing directions involving
the same token types across different AMMs (steps 4 and 5 of the flow described
above), that AMMs have a different token ratio, and that the token price signif-
icantly differs from their market price provided by the oracle O. Formally, the
policy ϕ = (re, E) is defined as follows:

re =a.swap(x, y, z) · b.swap(x′, z′, y′)

E =(a ̸= b ∧ x = x′ ∧ a.y

a.z
=
b.z′

b.y′
∧
∣∣∣∣a.y − O.y

a.z − O.z

∣∣∣∣ ≤ ϵ ∧
∣∣∣∣ b.z′ − O.z′

b.y′ − O.y′

∣∣∣∣ ≤ ϵ)

where the regular expression re detects the sequence of the two consecutive
swaps, while the assertion E holds when the involved AMMs are different (a ̸= b),
the calling contract is the same (x = x′), the ratio between the exchanged

token is the same (a.ya.z = b.z′

b.y′ ), and the ratio of the difference between the
exchanged tokens of the AMMs and the market price of each asset as given
by contract Oracle O to is below a small threshold ϵ. Note that in the asser-
tion E we assume that the amount of the token type y exchanged through a
swap on the AMM a is accessed using the syntax a.y. We use the same syn-
tax for the other token types and AMMs, and for accessing the market price of
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q0 q1 q2

ψ1 ψ2

Fig. 7: Automaton A for the policy preventing flash-loan-based arbitrages.

each token type via the oracle O. We first transform re into the symbolic reg-
ular expression ψ1 · ψ2 where ψ1 = a.swap(x, y, z) and ψ2 = b.swap(x′, z′, y′),
and then build the corresponding automaton A shown in Figure 7. Given η =
CurveY.swap(User, τa, τb, amount1) · CurvesUSD.swap(User, τb, τa, amount2), it is
easy to check that η ∈ L(A) with variables assignment θ = {a 7→ CurveY, b 7→
CurvesUSD, x 7→ User, x′ 7→ User, y 7→ τa, z 7→ τb, y

′ 7→ τb, z
′ 7→ τa}. Then, we

evaluate E in a state σ and environment ρ extended with θ, namely JEKσ,ρ·θ, that
evaluates to false because the ratio of between the exchanged tokens ( CurveY.τa

CurveY.τb
̸=

CurvesUSD.τa
CurvesUSD.τb

) differs. Indeed, as shown in Figure 1, the price ratio for CurveY is
1.010 USDC/DAI, while for CurvesUSD is 1.918 USDC/DAI. This discrepancy
confirms the attempt of an arbitrage, so the history η is not compliant with the
policy ϕ, and the execution of flashLoan is reverted.

5 Related Work

We compare our work with the relevant literature. Over the past few decades,
the formalism of symbolic automata has been extensively studied [16,6,7], and
applied to solve different verification tasks. Here, we rely on the results of Tamm
and Veanes in [16] concerning the theory of symbolic regular languages and on
the relation between symbolic automata and symbolic regular expression. To
the best of our knowledge, this is the first paper that uses symbolic automata
to express and enforce security policy following Schneider [14].

To formally present our policy mechanism, we extend TinySol, the minimal
calculus for the Solidity contract introduced by Bartoletti et al. [4]. We enhanced
the language by introducing a way to express policy over the execution history
and the construct of policy framing to enforce them. Moreover, we extended the
semantics accordingly and defined a procedure for checking policies at run-time.

The concept of history-based policies has been explored in previous works,
notably by Skalka and Smith [15] and Bartoletti et al. [2,3]. Skalka and Smith [15]
combine type and effect systems with model-checking to extract a history ex-
pression from the code automatically and to verify that a higher-order program
satisfies a policy ϕ. Their approach allows the static enforcement of history- and
stack-based security mechanisms. Bartoletti et al. [2] uses a similar mechanism
to express access control policies over resources and to verify that objects and
resources are created and manipulated according to such policies. The main dif-
ference between these papers and ours is that their verification procedure occurs
statically and on the code of programs, whereas our verification occurs at run-
time. In particular, their verification procedures require the code of the whole
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program or at least an abstract description of the behavior of all called functions,
given in terms of types and effects. Here, we do not have this assumption, so
we can easily deal with open-world scenarios like DeFi, where a contract can be
called by other unknown contracts.

Several papers address price manipulation vulnerabilities in DeFi and pro-
pose detection tools for smart contracts, such as DeFiRanger [21], DeFiScan-
ner [19], DeFiTainter [9], BLOCKEYE [21], and FlashSyn [5]. DeFiRanger [21]
builds a cash flow tree (CFT) from Ethereum transaction data to reflect token
transfers and accounts, giving a DeFi meaning to blockchain transactions. Wang
et al. [19] uses taint analysis to uncover price manipulation vulnerabilities in
DeFi protocols. BLOCKEYE [18] performs automated and accurate real-time
attack detection of Ethereum-based DeFi protocols by symbolic reasoning tech-
niques. FlashSyn [5] automatically synthesizes adversarial transactions exploit-
ing DeFi protocols via flash loans, overcoming complex DeFi logic and search
space challenges with a synthesis-via-approximation technique. Unlike the above
papers, our work focuses on formal verification, ensuring run-time security by
validating histories produced by smart contract execution. This methodology
guarantees the absence of security violations during execution, setting it apart
from existing solutions. Finally, Zhou et al. in [22] introduced a method based
on analyzing internal transactions to detect and prevent attacks within DeFi
platforms. They emphasize policy enforcement and vulnerability management
amidst DeFi’s composability, especially concerning arbitrage scenarios utilizing
external calls. Although the goal of this paper is similar to ours, their focus is pri-
marily on automated revenue extraction through trading strategies. In contrast,
our smart contract calculus emphasizes formal methods and run-time verification
for robust policy enforcement and vulnerability management.

6 Conclusion

In this paper, we introduced a formal framework for specifying and enforcing se-
curity policies to regulate external calls in smart contracts. We enhanced TinySol,
a core calculus for smart contracts, by incorporating constructs that allow de-
velopers to specify their policies at the code level, and a run-time verification
mechanism to check that the called code is compliant with the policy.

In future work, we plan to study how our mechanism can be implemented. We
envisage two possible directions: implementing the policy checking mechanism
inside the EVM or encoding it directly within Solidity. Moreover, we want to
explore other profitable scenarios within the DeFi ecosystem that could leverage
our policy framework to prevent speculative actions. Finally, we will study if
we can verify that an external call satisfies the policies up-front the transaction
without actually running it.
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