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Learning equilibria with personalized incentives

in a class of nonmonotone games

Filippo Fabiani, Andrea Simonetto and Paul J. Goulart

Abstract— We consider quadratic, nonmonotone generalized
Nash equilibrium problems with symmetric interactions among
the agents. Albeit this class of games is known to admit a
potential function, its formal expression can be unavailable in
several real-world applications. For this reason, we propose a
two-layer Nash equilibrium seeking scheme in which a central
coordinator exploits noisy feedback from the agents to design
personalized incentives for them. By making use of those
incentives, the agents compute a solution to an extended game,
and then return feedback measures to the coordinator. We show
that our algorithm returns an equilibrium if the coordinator is
endowed with standard learning policies, and corroborate our
results on a numerical instance of a hypomonotone game.

I. INTRODUCTION

Several multi-agent applications are characterized by sym-

metric interactions, in terms of cost incurred by each entity

for a given service, across each pair of agents modelled

within a noncooperative game-theoretic framework. Under

some fairness condition of the electricity market in smart

grids and demand-side management [1], [2], for instance, the

cost per energy unit varies in the same way for all the assets,

according to the current demand of the market. Likewise,

in traffic or congestion games agents usually experience

costs that only depend on the number of users occupying

shared resources [3], [4]. Recently, symmetric barrier func-

tions are also used to enforce proximity-based constraints

among agents in several coordination and formation control

applications [5], [6].

In this paper, we consider generalized Nash equilibrium

problems (GNEPs), a multi-agent modelling paradigm in

which selfish decision-makers compete for shared resources,

characterized by symmetric interactions among the agents.

The numerous benefit brought by such a symmetric structure

to the GNEP are indeed well-known [7]. In particular, the

presence of symmetries implies the existence of a potential

function, which is key for two main reasons: i) it implicitly

guarantees the existence of a generalized Nash equilibrium

(GNE) for the GNEP at hand, which represents a desirable

outcome of the game [8], and ii) in some cases it can be

exploited directly in the design of Nash equilibrium seeking

algorithms with convergence guarantees. This is a crucial

feature in nonconvex/nonmonotone setting [2], [9], [10].
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A mathematical expression of the underlying potential

function is usually available only when the physics charac-

terizing the GNEP at hand is known, or the agents’ cost

functions are suitably designed to result in a potential game

[11]. In a general scenario, however, retrieving an expression

of the potential function is a hard task [7, Ch. 2], or in some

cases it may simply be unknown due to, e.g., privacy reasons.

Thus, in the simplified setting of a quadratic, nonmonotone

(specifically, hypomonotone [12]) GNEP enjoying the exis-

tence of a potential function (§II), which is however assumed

to be unavailable, we design a two-layer scheme that allows

the agents to compute a GNE. Specifically, in the outer

loop we endow a central coordinator with an online learning

procedure, e.g., least squares (LS) or Gaussian process (GP),

aiming at iteratively exploiting the noisy agents’ feedback to

learn some of their private characteristic, namely the (pseudo-

)gradient mappings obtained from the agents’ cost functions.

In the spirit of [13]–[15], such a reconstructed information is

hence exploited to iteratively design personalized incentives

for the agents, which on their hand make use of those

incentives to compute a GNE in the inner loop, and finally

return noisy feedback measures to the central coordinator.

In the proposed setting we leverage the symmetries charac-

terizing the interactions among agents to design parametric

personalized incentives (§III) that play a key role to prove the

convergence of the algorithm. In particular, i) they serve as

regularization terms for the cost functions of the agents, thus

enabling them for the practical computation of a variational

generalized Nash equilibrium (v-GNE) in the inner loop; and

ii) they allow to achieve faster convergence rates through

an appropriate tuning of few key parameters. As main

results, we prove that the proposed two-layer iterative scheme

converges to a GNE by exploiting the consistency bounds

typical of available learning procedures for the coordinator,

as for example LS or GP (§IV). We remark here that

GNE seeking in nonmonotone GNEP is, in general, a hard

task. Available solution algorithms are indeed either tailored

for Nash equilibrium problems (NEPs) with no coupling

constraints, or involve generic variational inequalities (VIs),

i.e., possibly not suitable for distributed computation [16]–

[19]. We conclude the paper by testing our findings on a

numerical instance of the considered hypomonotone GNEP

(§V).

Notation: S
n is the space of n × n symmetric matrices.

For vectors v1, . . . , vN ∈ Rn and I = {1, . . . , N}, we

denote v := (v⊤1 , . . . , v
⊤
N )

⊤ = col((vi)i∈I) and v−i :=
col((vj)j∈I\{i}). With a slight abuse of notation, we also

use v = (vi,v−i). The mapping F : Rn → Rn is monotone
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on X ⊆ Rn if (F (x)−F (y))⊤(x− y) ≥ 0 for all x, y ∈ X ;

strongly monotone if there exists a constant c > 0 such that

(F (x) − F (y))⊤(x − y) ≥ c‖x − y‖2 for all x, y ∈ X ;

hypomonotone if there exists a constant c ≥ 0 such that

(F (x) − F (y))⊤(x− y) ≥ −c‖x− y‖2 for all x, y ∈ X .

II. MATHEMATICAL PROBLEM SETUP

We study a noncooperative game Γ :=
(I, (Xi)i∈I, (Ji)i∈I) with N agents, indexed by

I := {1, . . . , N}. Each agent i ∈ I controls variable

xi, constrained to a local set Xi ⊆ Rni , and aims at solving

the following optimization problem:

∀i ∈ I :











min
xi∈Xi

Ji(xi,x−i)

s.t. Aixi +
∑

j∈I\{i}

Ajxj ≤ b,
(1)

where, for computational purposes, each function Ji : R
n →

R, n :=
∑

i∈I
ni, has a quadratic (possibly aggregative) form

Ji(xi,x−i) :=
1

2
x⊤
i Qixi +





∑

j∈I\{i}

Ci,jxj + qi





⊤

xi,

for some Qi ∈ Sni , Ci,j ∈ Rni×nj , and qi ∈ Rni . Thus,

the collection of optimization problems in (1) amounts to

a (quadratic) GNEP, where Ai ∈ Rm×ni constraints each

agent to share common resources b ∈ Rm with the other

agents. Let us define the sets X :=
∏

i∈I
Xi, where each Xi

is assumed to be nonempty, compact and convex, Xi(x−i) :=
{xi ∈ Xi | Aixi ≤ b−∑

j∈I\{i}
Ajxj}, and the feasible set

of Γ, Ω := {x ∈ X | Ax ≤ b}, with A := [A1 · · · AN ] ∈
Rm×n. We are interested in the following popular solution

to a GNEP.

Definition 1: (Generalized Nash equilibrium [8]) A strat-

egy vector x⋆ ∈ Ω is a GNE of the game Γ if, for all i ∈ I,

Ji(x
⋆
i ,x

⋆
−i) ≤ inf

yi∈Xi(x
⋆
−i

)
Ji(yi,x

⋆
−i).

�

Thus, x⋆ ∈ Ω is an equilibrium if no agent can decrease

their cost by changing unilaterally x
⋆
−i to any other feasible

point. In the remainder, we make the following assumption.

Standing Assumption 1: For all (i, j) ∈ I2, Ci,j =
Cj,i. �

Under the condition of symmetric interactions among

agents, we know that the game mapping associated to Γ, G :
Rn → Rn, also known as the pseudo-gradient mapping since

it is formally defined as G(x) := col((∇xi
Ji(xi,x−i))i∈I),

admits a differentiable, yet possibly unknown, function θ :
Rn → R such that G(x) = ∇θ(x), for all x ∈ Ω [20,

Th. 1.3.1]. This latter coincides with a potential function for

the game Γ [21], for which we define the set of constrained

minimizers Θ := argmin
y∈Ω θ(y), assumed to be nonempty,

and set of constrained stationary points Θs. Clearly, Θ ⊆ Θs.

Note that, according to Definition 1, any x
⋆ ∈ Θ coincides

with a GNE for Γ, namely Θ 6= ∅ guarantees the existence

of at least a GNE of the underlying game. By considering

quadratic costs in (1), G(·) turns into an affine mapping:

G(x) =







Q1 · · · C1,N

...
. . .

...

CN,1 · · · QN






x+







q1
...

qN






=: Qx+ q.

We now introduce the function θ : Rn → R, which can

be characterized as stated immediately below:

θ(x) :=
∑

i∈I

(

1

2
x⊤
i Qixi + q⊤i xi +

∑

j∈I,j<i

(Ci,jxj)
⊤xi

)

.

(2)

Proposition 1: For the function θ(x) in (2) we have that:

i) It amounts to a potential function for the GNEP Γ;

ii) It is ℓ-weakly convex, with ℓ := |λmin(Q)|.
�

Proof: i) This part of the proof is akin to [22, Prop. 2]

and therefore, due to space limitations, it is here omitted.

ii) We start from the definition of hypomonotonicity for

the mapping ∇θ(·), which requires the existence of some

ρ > 0 such that (∇θ(x)−∇θ(y))⊤(x− y) ≥ −ρ‖x− y‖2,

for all x, y ∈ Ω. Since ∇θ(x) = G(x) = Qx+ q,

(∇θ(x)−∇θ(y))⊤(x− y) = (Q(x− y))⊤(x− y)

= ‖x− y‖2
Q ≥ λmin(Q)‖x− y‖2.

With λmin(Q) that, in principle, may be nonpositive

(since each Qi is only symmetric), we obtain (∇θ(x) −
∇θ(y))⊤(x − y) ≥ −|λmin(Q)|‖x − y‖2. In view of [23,

Lemma 2.1], the |λmin(Q)|-hypomonotonicity of the mapping

∇θ(·) is equivalent to the |λmin(Q)|-weak convexity of the

function θ(·), thus concluding the proof.

It follows from Proposition 1 that the quadratic GNEP

Γ in (1) turns into a hypomonotone GNEP [12] in which

the mapping Qx+ q may not be monotone, since Q +Q⊤

is not positive semi-definite in general. As a consequence,

the function θ(·) may not be convex, thus posing several

limitations in the design of an equilibrium seeking procedure

for Γ with most of the available techniques (monotonicity is,

indeed, one of the weakest requirements [20]).

On the other hand, we note that Standing Assumption 1

is key to claim that the underlying quadratic GNEP admits

a potential function. This latter is key for two main reasons:

i) to claim that the game at hand possesses (at least) an

equilibrium (in our case, Θ 6= ∅), and ii) to design Nash

equilibrium seeking algorithms with convergence guarantees,

especially in nonconvex/nonmonotone setting, e.g., [2], [9],

[10]. In practical applications, however, may not be always

reasonable to rely on a formal expression of the potential

function [7, Ch. 2] due to privacy reasons for instance. In

our mathematical developments, we hence treat the GNEP in

(1) as if we were unaware of the fact that it is potential, and

therefore the expression for θ(·) in (2) can not be directly

exploited for algorithm design. By relying on standard learn-

ing paradigms, in the next section we design a two-layer

procedure to steer the agents on some point falling into the



Algorithm 1: Two-layer semi-decentralized method

Initialization: Set t = 0, x⋆
t ∈ Ω, set sequences

(ct)t∈N > 2ℓ (ξt)t∈N ∈ [0, 1/ct), choose some T ∈ N

Iteration (t ∈ N):

• Integrate recent measures to learn

(∇xi
Ĵi,t−1(x

⋆
t−1))i∈I

• Compute personalized incentives (ui,t(x))i∈I

◦ Compute a v-GNE of the extended game Γ, x⋆
t ∈ Ω

• Obtain noisy agents’ feedback {(x⋆
i,t, pi,t)}i∈I

set Θ, which in view of Definition 1 coincides with a GNE

of Γ.

III. THE TWO-LAYER LEARNING PROCEDURE

From the discussion in §II, we identify two critical chal-

lenges in designing a Nash equilibrium seeking method to

compute a GNE for Γ: 1) the non-monotonicity of Qx+ q,

and 2) the unknown expression of the potential function

θ in (2). We propose a way to circumvent both issues by

designing personalized feedback functionals ui : Rn → R

in the spirit of [13], which can used as “control actions” as

described next.

A. The algorithm

We summarize the key steps of the proposed, two-layer ap-

proach in Algorithm 1. In particular, black-filled bullets refer

to the tasks that have to be performed by a central coordina-

tor, while the empty bullet to the one performed by the agents

in I. After the initialization phase, the coordinator aims

at learning online (i.e., while the algorithm is running) the

gradient mapping of the unknown function θ by leveraging

possibly noisy agents’ feedback on the private functions Ji’s

in the outer loop. Then, on the basis of the estimated Ĵi,t, the

central entity designs personalized incentive functionals ui,t,

thus forcing the agents to face with an extended version of

the quadratic GNEP Γ in (1), i.e., Γ := (I, (Xi)i∈I , (J̄i,t)i∈I),
which stem from replacing each cost function Ji(xi,x−i) in

(1) with Ji(xi,x−i) + ui,t(xi,x−i) =: J̄i,t(xi,x−i).

By suitably choosing such incentives, we will show that

they serve as regularization terms for Ji(·,x−i), as well

as they trade-off convergence properties of Algorithm 1

and robustness to the imperfect knowledge of the potential

function θ and associated gradient. Specifically, personalized

incentives enable the agents for the practical computation

of an equilibrium of the extended game Γ via standard

solution procedures for GNEPs [12], [24], [25]. In the

cognate literature, however, algorithmic methods typically

return a v-GNE [8], which coincides to any solution to the

(extended) GNEP Γ that is also a solution to the associated

VI, i.e., any collective vector of strategies x
⋆
t ∈ Ω such that,

for all t ∈ N,

(y − x
⋆
t )

⊤Ḡt(x
⋆
t ) ≥ 0, for all y ∈ Ω, (3)

where the mapping Ḡt : Rn → Rn is formally obtained

as Ḡt(x) := col((∇xi
J̄i,t(xi,x−i))i∈I) = Qx+ q + Ut(x),

and Ut(x) := col((∇xi
ui,t(xi,x−i))i∈I). This is why the

computational step in Algorithm 1 involving the agents re-

quires them to implement an available procedure to compute

a v-GNE of the extended game Γ. As a last step, the

proposed method requires the coordinator to retrieve feed-

back measures and equilibrium strategies from the agents,

{(x⋆
i,t, pi,t)}i∈I , with pi,t := Ji(x

⋆
t ) + εi,t and random

variable εi.

B. Personalized incentives design

We follow the approach in [14, Alg. 1] by endowing the

central coordinator with a learning procedure L such that,

at every outer iteration t ∈ N of Algorithm 1, it integrates the

most recent noisy agents’ feedback {pi,t−1}i∈I to calculate

an estimate of the gradients (∇xi
Ĵi,t−1(x

⋆
t−1))i∈I (since

G(x) = ∇θ(x) [20, Th. 1.3.1]). Then, it exploits such

estimates to design personalized functionals as follows:

ui,t(x) =
1
2
ct‖xi − x+

i,t‖2, for all i ∈ I, (4)

where x+
i,t := x⋆

i,t−1+ξt∇xi
Ĵi,t−1(x

⋆
t−1), for some ct, ξt ≥ 0,

for all t ∈ N. Given the parametric form in (4), our goal

hence reduces to design suitable conditions for the gain

ct and step-size ξt in such a way that the sequence of v-

GNE, (x⋆
t )t∈N, monotonically decreases (or non-increases)

the unknown potential function θ(·), and asymptotically

converges to one of its constrained minimizers (either local

or global).

The structure of the proposed personalized incentives

brings us to the following considerations: i) inspired by

recent algorithms based on the Heavy Anchor method, e.g.,

[12], we note that each term x+
i,t requires a positive sign

for the gradient step ξt∇xi
Ĵi,t−1(x

⋆
t−1). In the next sections

we will show that such a choice enables us to boost the

convergence of Algorithm 1, or to reduce the asymptotic

error by means of a suitable tuning of ξt. In addition, ii) we

note that ct is crucial to allow the agents for the practical

computation of a v-GNE through available iterative schemes,

as stated next:

Proposition 2: Let ct ≥ 2ℓ for all t ∈ N. Then, with

the personalized incentives in (4), the mapping Ḡt(·) is ℓ-
strongly monotone, for all t ∈ N. �

Proof: By using the definition of incentive function-

als in (4), we obtain Ḡt(x) = G(x) + ct(x − x
⋆
t−1 −

ξtĜt−1(x
⋆
t−1)). Thus, for any x, y ∈ Ω, and t ∈ N, we

have that:

(x− y)⊤(Ḡt(x)− Ḡt(y))

= (x−y)⊤(G(x)+ct(x−x
⋆
t−1−ξtĜt−1(x

⋆
t−1))

−G(y)−ct(y−x
⋆
t−1−ξtĜt−1(x

⋆
t−1)))

= (x−y)⊤(G(x)+ctx−G(y)−cty)
= (x−y)⊤(∇θ(x)+ctx−∇θ(y)−cty),

where the last equality follows from Standing Assumption 1

and [20, Th. 1.3.1]. Let us now consider the auxiliary

function ψt(x) := θ(x) + ct
2
‖x‖2. In case ct ≥ 2ℓ for all



t ∈ N, ψt(·) turns out to be ℓ-strongly convex in view of the

ℓ-weak convexity of θ (Proposition 1), which directly leads

to

(x− y)⊤(Ḡt(x)− Ḡt(y))

= (x− y)⊤(∇θ(x) + ctx−∇θ(y)− cty)

= (x− y)⊤(∇ψt(x)−∇ψt(y)) ≥ ℓ‖x− y‖2,

i.e., the definition of strongly monotone mapping for Ḡt.

It follows that, if ct is large enough for all t ∈ N, then

at every outer iteration the agents compute the unique [20,

Th. 2.3.3] v-GNE associated to the extended GNEP Γ.

IV. MAIN RESULTS

We now establish convergence results for Algorithm 1

by distinguishing between two cases: online perfect recon-

struction, if the learning procedure L allows the central

coordinator to leverage ∇xi
Ĵi,t−1(x

⋆
t−1) = ∇xi

Ji(x
⋆
t−1), for

all i ∈ I and t ∈ N, and imperfect reconstruction. To this

end, we introduce the fixed point residual ∆⋆
t
:= x

⋆
t−x

⋆
t−1 as

a key quantity to “measure” the distance between the strategy

profile at the current iteration and the points in Θs.

Lemma 1: Let (x⋆
t )t∈N be the sequence of v-GNE gener-

ated by Algorithm 1 with ctξt < 1. Moreover, assume perfect

reconstruction of the mapping Qx+ q, and that there exists

some x
⋆
t ∈ Ω such that ‖∆⋆

t‖ = 0. Then, some x
⋆
t ∈ Ω, i.e.,

x
⋆
t is a stationary point for the function θ(x). �

Proof: Any stationary point of the function θ(x)
satisfies the following first-order optimality condition:

w(Qx+ q) +NΩ(x) ∋ 0,

where w > 0 scales the cost associated to θ(·), while

NΩ denotes the normal cone operator of the feasible set

Ω. At every t ∈ N, the v-GNE x
⋆
t obtained with perfect

reconstruction satisfies (Qx
⋆
t+q)+ct(x

⋆
t−x

⋆
t−1−ξt(Qx

⋆
t−1+

q)) + NΩ(x
⋆
t ) ∋ 0. If ‖∆⋆

t‖ = 0 then we have x
⋆
t = x

⋆
t−1,

namely x
⋆
t is the solution to the inclusion

(1− ctξt)(Qx
⋆
t + q) +NΩ(x

⋆
t ) ∋ 0,

thus satisfying the first-order optimality conditions for θ(x),
and therefore it amounts to one of its stationary points.

In case of inexact reconstruction of the gradient mappings,

as a metric for the convergence of the sequence (x⋆
t )t∈N to

the stationary point set we also adopt the average value of

‖∆⋆
t‖ over a certain iterations horizon of length T ∈ N,

formally defined as 1
T

∑

t∈T
‖∆⋆

t‖, T := {1, . . . , T }. For

the imperfect reconstruction case, our result will hence be

of the form (1/T )
∑

t∈T
‖∆⋆

t‖ = O(1) if the reconstruction

error is persistent, while (1/T )
∑

t∈T
‖∆⋆

t‖ = 0 otherwise.

Remark 1: Since our algorithm produces monononically

non-increasing values for θ through the iterations, it is worth

mentioning that the application of traditional perturbation

techniques, such as in [26], can ensure that the stationary

points to which we converge are, in practice, local minima

in Θs, and hence GNE of the original game Γ. �

A. Perfect reconstruction of the pseudo-gradients

In the desirable, yet unrealistic, case in which the

procedure L enables for the perfect reconstruction, i.e.,

∇xi
Ĵi,t−1(x

⋆
t−1) = ∇xi

Ji(x
⋆
t−1), for all i ∈ I and t ∈ N, we

show that a careful choice of the gain ct and the step-size

ξt characterizing the personalized incentives in (4) allows

Algorithm 1 to produce a convergent sequence of v-GNE:

Proposition 3: For all t ∈ N, let ct ≥ 2ℓ and ξt ∈
[0, 1/ct). Then, with the incentives in (4) the sequence of

v-GNE (x⋆
t )t∈N generated by Algorithm 1 has limit point in

Θs. �

Proof: We first show that, if ct (resp., ξt) is large (small)

enough, the personalized functionals in (4) allow to point a

descent direction for the unknown potential function θ, i.e.,

∆⋆⊤

t ∇θ(x⋆
t−1) < 0. Since x

⋆
t amounts to a v-GNE at every

outer iteration t ∈ N, we have by (3) that (y−x
⋆
t )

⊤Ḡt(x
⋆
t ) ≥

0 for all y ∈ Ω. Then, since x
⋆
t−1 ∈ Ω as it is a v-GNE

at t − 1, we also have ∆⋆⊤

t Ḡt(x
⋆
t ) ≤ 0. By adding and

subtracting the term ∆⋆⊤

t G(x⋆
t−1), we hence obtain

∆⋆⊤

t G(x⋆
t−1) ≤ ∆⋆⊤

t (G(x⋆
t−1)− (G(x⋆

t ) + Ut(x
⋆
t ))).

In addition, by combining the definition of the incentives in

(4) with the perfect reconstruction of the pseudo-gradients,

we also have that Ut(x
⋆
t ) = ct(∆

⋆
t − ξtG(x

⋆
t−1)). Then, in

view of the symmetry postulated in Standing Assumption 1,

it follows that

(1− ctξt)∆
⋆⊤

t ∇θ(x⋆
t−1)

≤ ∆⋆⊤

t (∇θ(x⋆
t−1) + ctx

⋆
t−1 −∇θ(x⋆

t )− ctx
⋆
t ).

We now define αt := 1−ctξt for all t ∈ N, and introduce the

auxiliary function ψt(x) := θ(x) + ct
2
‖x‖2, which is known

to be ℓ-strongly convex in case ct ≥ 2ℓ (Proposition 1).

For this reason, we have ∆⋆⊤

t (−∇ψt(x
⋆
t−1) +∇ψt(x

⋆
t )) ≥

ℓ‖∆⋆
t‖2, and hence

αt∆
⋆⊤

t ∇θ(x⋆
t−1)≤∆⋆⊤

t (∇ψt(x
⋆
t−1)−∇ψt(x

⋆
t ))≤−ℓ‖∆⋆

t‖2.

By imposing αt > 0, yielding to ξt < 1/ct ≤ 1/2ℓ, for all

t ∈ N, we finally obtain ∆⋆⊤

t ∇θ(x⋆
t−1) ≤ −(ℓ/αt)‖∆⋆

t‖2 <
0. This result can be then combined with the descent lemma

[27, Prop. A.24] to claim that the sequence (x⋆
t )t∈N satisfies

θ(x⋆
t ) ≤ θ(x⋆

t−1) + (∆⋆
t )

⊤∇θ(x⋆
t−1) +

ℓ

2
‖∆⋆

t‖2

≤ θ(x⋆
t−1)− ℓ 2−αt

2αt
‖∆⋆

t‖2.
(5)

Thus, by imposing (2 − αt)/2αt > 0, which implies that

0 ≤ ξt < 1/ct ≤ 1/2ℓ, it must happen that the sequence

(θ(x⋆
t ))t∈N tends to a finite value, as θ(x⋆

t ) → −∞ can

not happen in view of the boundedness of Ω. Since θ
is continuous, the convergence of (θ(x⋆

t ))t∈N implies that

limt→∞ ‖∆⋆
t‖ = 0, and hence the bounded sequence of

feasible points (x⋆
t )t∈N ∈ Ω (since any x

⋆
t is a v-GNE of

Γ) has a limit point in Θs in view of of Lemma 1.

From (5) it is clear that making the product ctξt close

to one allows us to actually boost the convergence of

Algorithm 1 to some point in Θs. This indeed supports the

choice for a positive sign in the gradient step of (4). In view

of the presence of noise in the agents’ feedback {pi,t−1}i∈I ,



however, at least at the beginning of the iterative scheme in

Algorithm 1 it seems unlikely that the learning procedure L

guarantees a perfect reconstruction of (∇xi
Ĵi,t−1(x

⋆
t−1))i∈I .

For this reason, we investigate next the effect of the inexact

reconstruction on the convergence properties of Algorithm 1.

B. Inexact estimate of the pseudo-gradients

In this section we leverage a further assumption charac-

terizing the reconstruction of the pseudo-gradient mappings.

Inspired by [14], [28], however, we make the following

assumption on Ĝt(·) directly, rather than on each gradient.

Assumption 1: For all t ∈ N and x ∈ X , Ĝt(x) := Qx+
q + ǫt, and, for any δ ∈ (0, 1], there exists t̄ <∞ such that

P{‖ǫt‖ ≤ e(t̄) | ∀t ≥ t̄} ≥ 1 − δ, for some nonincreasing

function e : N → R≥0 such that e(t) <∞, for all t ∈ N. �

With Assumption 1 we essentially require that, for all x ∈
X , the reconstruction error on Qx+ q made by the learning

procedure L is bounded with (possibly high) probability

1 − δ by some function of the available agents’ feedback.

Then, by introducing quantities κt := (1−αt)/2αt and βt :=
ℓ(2− αt)/2αt, we can prove the following result.

Lemma 2: Let ct ≥ 2ℓ and ξt ∈ [0, 1/ct) for all t ∈ N,

and let Assumption 1 be valid for some δ ∈ (0, 1]. Then,

the sequence of v-GNE (x⋆
t )t∈N generated by Algorithm 1

with personalized incentives in (4) satisfies, with probability

1− δ,

∆⋆⊤

t ∇θ(x⋆
t−1) ≤αtκ

2

t

ℓ
e2(t− 1)

−
(√

ℓ

αt
‖∆⋆

t‖ − κt

√

αt

ℓ
e(t− 1)

)2

.
(6)

�

Proof: We start by making use of the same steps

performed at the beginning of the proof of Proposition 3,

which in view of Assumption 1 leads to αt∆
⋆⊤

t ∇θ(x⋆
t−1) ≤

∆⋆⊤

t (∇θ(x⋆
t−1) + ctx

⋆
t−1 −∇θ(x⋆

t )− ctx
⋆
t ) + ctξt∆

⋆⊤

t ǫt−1,
for all t ≥ t̄. Therefore, if ct ≥ 2ℓ > 0 for all t ∈ N, we

can upper bound ∆⋆⊤

t (∇θ(x⋆
t−1)+ ctx

⋆
t−1−∇θ(x⋆

t )− ctx⋆
t )

with −ℓ‖∆⋆
t‖2 due to the ℓ-strong convexity of the auxiliary

function ψt(·). Since ξt ≥ 0, ∆⋆⊤

t ǫt−1 attains its maximum

positive module when ∆⋆
t and ǫt−1 are aligned, and hence

we obtain the following chain of inequalities

αt∆
⋆⊤

t ∇θ(x⋆
t−1) ≤ −ℓ‖∆⋆

t‖2 + ctξt‖∆⋆
t‖‖ǫt−1‖

≤ −ℓ‖∆⋆
t‖2 + ctξt‖∆⋆

t‖e(t− 1).

Note that the last inequality holds with probability 1− δ, as

it follows directly from Assumption 1, for any t ≥ t̄. Thus,

for αt > 0, i.e., ξt < 1/ct, and ctξt = 1− αt, we obtain

∆⋆⊤

t ∇θ(x⋆
t−1)≤− ℓ

αt
‖∆⋆

t‖2 + 1−αt

αt
‖∆⋆

t‖e(t− 1). (7)

Finally, completing the square in the RHS of (7) by adding

and subtracting ((1− αt)
2/4αtℓ)e

2(t− 1) leads to

∆⋆⊤

t ∇θ(x⋆
t−1) ≤−

(√

ℓ

αt
‖∆⋆

t‖−(1− αt

2αt
)
√

αt

ℓ
e(t− 1)

)2

+ (1−αt)
2

4αtℓ
e2(t− 1).

The proof ends by substituting κt in the inequality above.

From the relation in (6), we note that the vector ∆⋆
t does

not necessarily point a descent direction for the function θ.

The term e2(t−1), in fact, prevents the LHS in (6) from being

strictly negative, though it can be made small through κt by

means of a suitable choice of the step-size ξt. By introducing

the quantities β̄ :=
∑

t∈T
βt and β := mint∈T βt over some

horizon T of length T ≥ 0, the following result characterizes

the sequence of v-GNE generated by Algorithm 1.

Theorem 1: Let ct ≥ 2ℓ and ξt ∈ [0, 1/ct), for all t ∈ N,

and let Assumption 1 be valid for some δ ∈ (0, 1]. Let some

T ∈ N be fixed, T := {t̄+1, . . . , T + t̄} and, for any global

minimizer x
⋆ ∈ Θ, ∆t̄ := θ(x⋆

t̄ ) − θ(x⋆). The sequence

of v-GNE (x⋆
t )t∈T generated by Algorithm 1 with the

personalized incentives in (4) satisfies, with probability 1−δ,

1
T

∑

t∈T

‖∆⋆
t‖ ≤ 1

Tβ

√

∑

t∈T

(

βt∆t̄ +
β̄κ2

t

βt
e2(t)

)

+ 1
Tβ

∑

t∈T

κte(t).

(8)

�

Proof: From Assumption 1, by combining the descent

lemma [27, Prop. A.24] and the relation in (7) we obtain

θ(x⋆
t ) ≤ θ(x⋆

t−1)− ℓ 2−αt

2αt
‖∆⋆

t‖2 + 1−αt

αt
‖∆⋆

t‖e(t− 1)

with probability 1 − δ, for all t ≥ t̄. Then, by exploiting

the definition of βt, which is strictly greater than zero if

ξt ∈ [0, 1/ct), and by focusing on ℓ(2− αt)/2αt‖∆⋆
t‖2 and

(1 − αt)/αt‖∆⋆
t‖e(t − 1), we can complete the square by

adding and subtracting ((1 − αt)
2/4α2

tβt)e
2(t − 1). With

standard manipulations one obtains the following expression

θ(x⋆
t ) ≤ θ(x⋆

t−1)− βt

(

‖∆⋆
t‖ − 1−αt

2αtβt
e(t− 1)

)2

+ (1−αt)
2

4α2

tβt
e2(t− 1).

(9)

We now fix T ∈ N and κt = (1 − αt)/2αt, and for any

x
⋆ ∈ Θ, by summing up the inequality above over t ∈ T :=

{t̄+1, . . . , T + t̄}, with probability 1− δ we obtain θ(x⋆) ≤
θ(x⋆

T ) ≤ θ(x⋆
t̄ )−

∑

t∈T
βt(‖∆⋆

t‖− κt

βt
e(t))2+

∑

t∈T

κ2

t

βt
e2(t).

Then, by moving θ(x⋆) to the RHS, the term with βt to the

LHS, and by introducing ∆t̄ := θ(x⋆
t̄ ) − θ(x⋆), a quantity

that is always nonnegative, we obtain:

∑

t∈T

βt

(

‖∆⋆
t‖ − κt

βt
e(t)

)2

≤ ∆t̄ +
∑

t∈T

κ2

t

βt
e2(t). (10)

Since βt > 0 for all t ∈ T , the expression in (10) is

amenable to apply the Jensen’s inequality [29, Th. 3.4] on

the convex function (·)2 to lower bound the summation in

the LHS. Before doing that, we normalize both sides by

multiplying and dividing by β̄ :=
∑

t∈T
βt, and we define

β̂t := βt/β̄, thus obtaining β̄(
∑

t∈T
β̂t(‖∆⋆

t‖ − κt

βt
e(t))2) ≥

β̄(
∑

t∈T β̂t(‖∆⋆
t‖−κt

βt
e(t)))2. Then, after replacing this latter

inequality into (10), with few algebraic manipulations we

obtain

∑

t∈T

βt

(

‖∆⋆
t‖ − κt

βt
e(t)

)

≤
√

∑

t∈T

(

βt∆t̄ +
β̄κ2

t

βt
e2(t)

)

.



We now bring the term
∑

t∈T
κte(t) in the RHS, and we note

that the obtained inequality is still valid by premultiplying

both sides by 1/T , hence getting the average over the horizon

of length T . Finally, we have that (1/T )
∑

t∈T
βt‖∆⋆

t‖ ≥
(1/T )β

∑

t∈T
‖∆⋆

t‖, with β := mint∈T βt, which directly

yields to the relation in (8) with probability 1− δ.

We can hence upper bound the average value of the

residual ‖∆⋆
t‖ over a certain horizon T with the sum of

two terms: the first one depends on the initial distance from

a global minimum for the unknown potential function θ,

while the second one is mainly affected by the reconstruction

error e.

Remarkably, the terms in the RHS of (8) can be made

small in two ways: i) by choosing a small step-size ξt to

make κt close to zero, or ii) by tuning the product ctξt close

to one, thus producing a large value of β. This latter choice,

however, requires an accurate trade-off in tuning the gain ct
and the step-size ξt, as larger values of β lead to larger values

of the sub-optimal constant ∆t̄. A possible choice to do not

promote aggressive personalized actions establishes that the

central coordinator may want to match the lower bound for ct,
while striving to counterbalance the choice for ξt to possibly

obtain a faster convergence rate for Algorithm 1.

We now discuss the impact on the bound in (8) of the

learning strategy L endowing the central coordinator. By

assuming that βt is fixed over the outer iterations, i.e., βt =
β, we then know from Assumption 1 that there exists some

t̄ such that e(t) ≤ e(t̄) for all t ≥ t̄. Therefore, it follows

that the bound in (8) satisfies

1
T

∑

t∈T

‖∆⋆
t‖ ≤ O(1/

√
T ) +O(1).

As T grows, it is evident that the term O(1/
√
T ) vanishes,

and 1
T

∑

t∈T
‖∆⋆

t‖ is confined in a ball whose radius de-

pends on the quantity of agents’ feedback made available to

perform the reconstruction in the first step of Algorithm 1

(specifically, on the learning strategy L ). In addition, we

further stress that Assumption 1 is quite general and it holds

true under mild conditions for LS and GP approaches to

learning Qx+ q:

• Note that Qx+ q can be always modelled as an affine

function of the learning parameters η. Thus, setting

up a LS approach to minimize the loss between the

model parameters η and the agents’ feedback turns

out to be a quadratic program. Due to the large-scale

properties of LS, the error term e(t) behaves as a normal

distribution, for which Assumption 1 holds true (see,

e.g., [15, Lemma A.4]), and hence limt→∞ e(t) = 0.

• In a kernel-based methods, suppose Qx+ q is a sample

path of a GP with zero mean and a certain kernel. Due to

the large-scale property of such a regressor and under

standard assumptions, also in this case Assumption 1

holds true (see [13]) and limt→∞ e(t) = 0.

We finally remark that, since
∑

t∈T
e(t) = o(T ),

for the parametric/non-parametric procedures above

limT→∞
1
T

∑

t∈T
‖∆⋆

t‖ = 0, which allows us to recover the

result in the perfect reconstruction case described in §IV-A.

Fig. 1: Convergence behaviour of Algorithm 1 for different

values of the step-size ξ, with perfect reconstruction of G(·).

Fig. 2: Average value of the residual ‖∆⋆
t‖ over the time

horizon T , for different learning strategies of the coordinator.

V. NUMERICAL SIMULATIONS

We verify our findings through numerical instances of the

hypomonotone GNEP in (1) with parameters summarized in

Tab. I–II. Both examples involves N = 20 agents controlling

a scalar variable ni = 1 constrained to the local set Xi =
[0, 1]. Each matrix Ai is constructed so that every pair of

consecutive agents are coupled, i.e., xi+xi+1 ≤ bi, for all i ∈
I, while the shared resource term, bi is randomly sampled

following a uniform distribution on (0, 1). In addition, every

Qi and Ci,j is randomly generated from a normal distribution,

while every qi follows a uniform distribution on the interval

(−1, 1).
Once given the personalized feedback functional at every

outer iteration t ∈ N, the v-GNE is computed by means of

the projection-type method described in [20, Ch. 12], thus

partially neglecting the multi-agent nature of the problem

addressed. Since the algorithm in [20, Ch. 12] is tailored

for monotone VIs, we stress that its convergence is enabled



TABLE I: Simulation parameters – Figure 1

Parameter Description Value

ℓ Constant of weak convexity 10.09
ct Personalized functional gain 20.18
P Weight for the extragradient algorithm I
lF Horizontal scale – GP method 50

σF Vertical scale – GP method 100

Fig. 3: Sub-optimality (left y-axis) and tracking error (right

y-axis) of the sequence of v-GNE generated by Algorithm 1

w.r.t. x
⋆ ∈ Θ, for different learning strategies for the

coordinator.

by the incentives in (4), as Q + Q⊤ is not positive semi-

definite (i.e., G(·) is not monotone), while (Q+ ctI)+ (Q+
ctI)

⊤ is (i.e., Ḡt(·) is strongly monotone, for ct ≥ 2ℓ – see

Proposition 2).

In Fig. 1 is illustrated the convergence boost effect, or error

reduction, of the step-size ξ in case of perfect and inexact

reconstruction, while in Fig. 2 we compare the behaviour

of the metric (1/T )
∑

t∈T
‖∆⋆

t‖ when the coordinator is

endowed with an LS-based learning strategy, and a GP-based

one (covariance matrices computed by using a radial basis

function kernel). Since the problem in (1) makes available the

explicit expression of θ(·) in (2), we can show the evolution

of the potential function evaluated in the sequence of v-GNE

generated by Algorithm 1 compared to a global minimum

(Fig. 3 – left y-axis), as well as the distance between any

computed point w.r.t. some point in Θ (Fig. 3 – right y-axis).

TABLE II: Simulation parameters – Figure 2 and 3

Parameter Description Value

ℓ Constant of weak convexity 1.22
µ Mean of the agents’ feedback noise εi,t 0

σ2 Variance of the agents’ feedback noise εi,t 25

ct Personalized functional gain 2.44
ξt Personalized functional step-size 0.41
P Weight for the extragradient algorithm I
lF Horizontal scale – GP method 50

σF Vertical scale – GP method 100

VI. CONCLUSION

The design of suitable personalized incentives is key to

compute GNE in quadratic, nonmonotone GNEP character-

ized by bilateral symmetric interactions among agents. The

benefit of adopting such functionals are twofold: i) they serve

as regularization terms of the agents’ cost functions, thus

enabling for the practical computation of a v-GNE at each

outer iteration of the proposed, two-layer procedure, and ii)

they provide a mean to achieve faster convergence rate. The

proposed algorithm converges to a GNE by exploiting the

consistency bounds characterizing standard learning proce-

dures for the coordinator, such as LS or GP.

Future research directions may include extending the pro-

posed approach to time-varying GNEPs, also exploring how

to avoid to know the constant of weak convexity ℓ of the

potential function, which represents a fundamental, albeit

possibly unknown, parameter to establish convergence.
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