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a b s t r a c t

We consider the problem of designing a machine learning-based model of an unknown dynamical
system from a finite number of (state-input)-successor state data points, such that the model obtained
is also suitable for optimal control design. We adopt a neural network (NN) architecture that, once
suitably trained, yields a hybrid system with continuous piecewise-affine (PWA) dynamics that is
differentiable with respect to the network’s parameters, thereby enabling the use of derivative-based
training procedures. We show that a careful choice of our NN’s weights produces a hybrid system
model with structural properties that are highly favorable when used as part of a finite horizon optimal
control problem (OCP). Specifically, we rely on available results to establish that optimal solutions with
strong local optimality guarantees can be computed via nonlinear programming (NLP), in contrast
to classical OCPs for general hybrid systems which typically require mixed-integer optimization.
Besides being well-suited for optimal control design, numerical simulations illustrate that our NN-
based technique enjoys very similar performance to state-of-the-art system identification methods for
hybrid systems and it is competitive on nonlinear benchmarks.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Within the systems-and-control community, system identifica-
ion methods have greatly benefited from powerful tools originat-
ng in the machine learning literature (Bemporad, 2023; Breschi,
Piga and Bemporad, 2016; Pillonetto, Dinuzzo, Chen, De Nico-
ao, & Ljung, 2014). In particular, NNs (Goodfellow, Bengio, &
Courville, 2016) have been used since the 1980s (Werbos, 1989)
to produce data-driven system model surrogates. Their
flexibility — stemming from their universal approximation capa-
bility (Hornik, Stinchcombe, & White, 1989) and the wide range of
vailable architectures — has motivated research into NN-based

techniques for (non)linear system identification adopting various
structures (Andersson, Ribeiro, Tiels, Wahlström, & Schön, 2019;
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Forgione, Muni, Piga, & Gallieri, 2023; Forgione & Piga, 2021;
Masti & Bemporad, 2021; Mavkov, Forgione, & Piga, 2020).

Despite a few exceptions (Hoekstra et al., 2023; Liu & Kadirka-
manathan, 1998), available learning-based system identification
techniques do not consider whether the resulting models pos-
sess an internal structure favorable for use within an OCP. In
fact, unless one assumes a certain simplified structure, deep
NNs are generally hard to analyze due to their nonlinear and
large-scale structure (Goodfellow et al., 2016). As an undesirable
consequence, adopting the resulting system model surrogates
into OCPs may make the latter extremely hard to solve efficiently
(wherever a solution is guaranteed to exist). In this paper we
propose a NN-based technique to identify a hybrid system repre-
sentation, in the form of continuous PWA dynamics, with specific
structure suitable for optimal control design.

1.1. Related work

Although hybrid models represent a broad class of systems
(Garulli, Paoletti, & Vicino, 2012) whose identification is known
to be NP-hard in general (Lauer, 2015; Roll, Bemporad, & Ljung,
2004), to the best of our knowledge little attention has focused
n the derivation of such models through (deep) NN-based sur-
ogates.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Starting from the pioneering work in Batruni (1991), where
 continuous PWA representation was obtained through a NN
ith a specific two-layer structure by relying on Choi and Choi

(1994), Chua and Deng (1988) constructed a PWA local model
by introducing an input space tessellation via hyperpolyhedral
onvex cells, associating to them NN granules with a local in-
erpolation capability. In Hush and Horne (1998), instead, the
uthors introduced a constructive algorithm that builds a NN

with PWA sigmoidal nodes and one hidden layer. In particular,
ne node at a time was added by fitting the residual, a task
hat was accomplished by searching for the best fit through a
equence of quadratic programs (QPs). A single hidden layer net-
work was also proposed in Gad, Atiya, Shaheen, and El-Dessouki
(2000), which constructed a continuous PWA error function and
eveloped an efficient, two-step algorithm working in the weight
pace to minimize it. Recently, Fält and Giselsson (2019) proposed
a series of experiments in which novel libraries are employed
o identify dynamical models with NNs for complicated hybrid
ystems, while de Avila Belbute-Peres, Smith, Allen, Tenenbaum,
nd Kolter (2018) and Li, Wu, Tedrake, Tenenbaum, and Torralba

(2018) have analyzed the effects of exploiting structured knowl-
edge to NN surrogates in describing the system multi-modal
behavior.

Similar to our approach, Jin, Aydinoglu, Halm, and Posa (2022)
proposed to infer a control-oriented linear complementarity (LC)
dynamics (equivalent to a PWA one Heemels, De Schutter, &
Bemporad, 2001) directly from data. In particular, the approach
in Jin et al. (2022) built upon the minimization of a tailored
iolation-based loss function, which allowed one to learn LC

dynamics via standard gradient-based methods. In view of our
results, we also mention the approach in Yang, Balaprakash, and
eyffer (2022). There, a stationarity condition was identified as
ecessary and sufficient to characterize local optima of a program
ith a rectified linear unit (ReLU) NN entering both in the cost
nd constraints, and the corresponding LC-based reformulation
ielding an MPCC.

1.2. Summary of contribution

Following our recent contributions (Fabiani & Goulart, 2023,
2024), in this paper we take a NN-based approach to the problem
f system identification for control. In particular, we wish to
nswer the following question : given N (state-input)-successor
tate samples {(x(i), u(i), x+,(i))}Ni=1, how can we obtain a descrip-
ive system model that is also suitable for optimal control design?
hile the meaning of ‘‘descriptive’’ and ‘‘suitable’’ will be clarified

ater in Section 2, we summarize the contribution as follows:

(1) We employ a NN-based method to obtain a hybrid sys-
tem with continuous PWA dynamics from available data.
The simple NN architecture we adopt combines an OptNet
layer (Amos, Jimenez, Sacks, Boots, & Kolter, 2018; Amos &
Kolter, 2017) and an affine one, and results in a differen-
tiable output with respect to (w.r.t.) the NN’s parameters
(Sections 3, 4);

(2) Given its end-to-end trainability, we show that a careful
choice of some weights of the NN allows us to produce a
hybrid dynamics model with a specific structure. By relying
on (Hempel, Goulart, & Lygeros, 2017), we then establish
that the latter can be controlled (locally) optimally by
solving the Karush–Kuhn–Tucker (KKT) conditions of the
underlying OCP (Section 5);

(3) Extensive numerical simulations show that, as a NN-based
identification procedure, our technique has competitive
performance compared to available hybrid system identi-
fication methods (Section 6).
2

Our method thus requires a simple identification step, rep-
resented by a careful training of a NN with specific structure
ia standard tools, which yields a hybrid system model that is
ell-suited to optimal control design. In particular, solving an
CP involving a hybrid system with PWA dynamics as an NLP
as been proven to require shorter computation times and fea-
ure better scaling in the problem dimensions than standard ap-
roaches based on mixed-integer optimization (Hall, Nurkanović,

Messerer, & Diehl, 2021; Hempel et al., 2017). In addition, we
recall that PWA regression is NP-hard in general (Lauer, 2015),
since it requires simultaneous classification of the N samples
{(x(i), u(i), x+,(i))}Ni=1 into modes, thereby calling for a regression
of a submodel for each mode. By taking a NN-based perspective,
we circumvent such a potentially challenging classification issue,
thereby reducing the identification step to the training of the
adopted NN architecture, a task that can be accomplished through
standard gradient-based methods in view of the network’s output
differentiability.

Remarkably, we obtain an LC model suitable for control as a
direct consequence of a careful choice of a NN with specific archi-
tecture, thereby circumventing the requirement of strict comple-
mentarity to recover differentiability w.r.t. the main parameters
s in de Avila Belbute-Peres et al. (2018) and Jin et al. (2022).

In contrast to Yang et al. (2022), we give an explicit structure of
a NN for which local stationarity conditions, coinciding with the
standard KKT system, are known to hold for the MPCC obtained
by embedding the NN as a hybrid model in an OCP.

2. Problem formulation

We will assume that we have available a finite collection of
(state-input)-successor state measured triplets, (x, u, x+), x, x+

∈

Rn, u ∈ Rm for an unknown but deterministic dynamic system.
Our aim is to produce a data-driven model of this unknown
system without running further experiments. Such a model shall
e ‘‘descriptive enough’’, i.e., it shall belong to a model class
apable of capturing a wide variety of system behaviors, while
t the same time being suited for optimal control.
To this end, we will consider throughout the paper the follow-

ng finite horizon optimal control problem (OCP):

min
u,x

ℓT (xT )+

∑
t∈T

ℓt (xt , ut)

s.t. xt+1 = Nθ (xt , ut ), for all t ∈ T ,
x0 = x(0),

(1)

where xt , t ∈ T := {0, . . . , T − 1}, denotes the predicted system
tate t timesteps into the future through the (possibly nonlinear)
ynamical model Nθ : Rp

×Rn
×Rm

→ Rn, which is to be inferred
rom data and is characterized by parameters θ ∈ Rp. We denote
by u := col((ut )t∈T ) ∈ RmT the collection of control inputs to
e chosen and by x := col((xt )t∈T ∪{T }) ∈ Rn(T+1) the resulting
tate trajectory starting from the measured initial state x0 = x(0).
n addition, let ℓt and ℓT denote the stage and terminal costs
espectively, which are assumed to meet the following standard
ondition:

Standing Assumption 1. The stage cost ℓt : Rn
× Rm

→ R and
the terminal cost ℓT : Rn

→ R are convex functions.

Thus, given N samples {(x(i), u(i), x+,(i))}Ni=1, we aim at devel-
oping a system model Nθ : Rp

× Rn
× Rm

→ Rn such that,
once Nθ is used within the OCP in (1), an optimal solution to
he latter can be characterized via standard optimality condi-
tions. To this end, we design Nθ as a neural network (NN)-
based representation of a hybrid system, ultimately leading to
an OCP equivalent to (1) in the form of a mathematical program
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with complementarity constraints (MPCC) (Luo, Pang, & Ralph,
1996), whose Karush–Kuhn–Tucker (KKT) conditions (Bertsekas,
edic, & Ozdaglar, 2003, §5.1) will be necessary and sufficient to
haracterize an optimal solution.
For technical reasons, we will further assume that the state-

input pair takes values in some bounded set:

Standing Assumption 2. (x, u) ∈ Ω , where Ω ⊂ Rn
× Rm is a

onvex polytope.

3. A neural network-based representation of hybrid systems

To address the problem introduced in Section 2, we will design
Nθ as a two-layer NN with a simplified architecture, and then
make use of available data {(x(i), u(i), x+,(i))}Ni=1 to train the asso-
ciated parameters, generically described by θ ∈ Rp. In particular,
the proposed NN consists of an OptNet layer (Amos et al., 2018;
Amos & Kolter, 2017), which takes the input pair col(x, u) =: y
s a parameter to solve the following generic quadratic program
QP):
min

z
1
2 z

⊤Q (y) z + q (y)⊤ z

s.t. A (y) z = b (y) ,
G (y) z ≤ h (y) ,

(2)

thus returning an optimal solution z⋆ : Rn
× Rm

→ Rs as output.
his output is then passed through a linear layer with tailored
atrix W ∈ Rn×s and affine term c ∈ Rn:

x+
= Wz⋆(x, u) + c =: Nθ (x, u). (3)

To ensure a unique optimizer for (2) so that there is no ambiguity
n the definition of the dynamics in (3), during the training phase
e will impose Q ∈ Ss

≻0. This will be made possible in view
f the main technical features possessed by the proposed NN,
stablished next:

Proposition 1. The NN Nθ : Rp
× Rn

× Rm
→ Rn in (3) enjoys

the following properties:

(i) In (2), assume that Q ∈ Ss
≻0 and that A has full row rank. Then

the output of Nθ in (3) is differentiable with respect to (w.r.t.)
the whole set of parameters θ ;

(ii) Nθ can represent any continuous piecewise-affine (PWA) map-
ping defined over Ω . Specifically, in case the mapping to be
modeled is defined over a regular partition of Ω with r pieces,
then the number of constraints that we require to reproduce it
is no more than 2nr, i.e., l ≤ 2nr, and s ≤ 2n.

Proof. (i) Since the composition of differentiable mappings re-
ains differentiable, the proof follows by combining (Amos &
olter, 2017, Th. 1), which proves differentiability of z⋆(x, u)

w.r.t. the OptNet parameters under the postulated conditions on
matrices Q and A, and the fact that any successor state x+ is
defined by an affine combination of z⋆(x, u) for any state-input
pair (x, u), which is hence differentiable w.r.t. both W and c.
(ii) This part follows from Assumption 2 and Hempel, Goulart, and
ygeros (2014, Th. 2) directly. In fact, if one chooses c = 0, and
arameters Q , q, A, b,G, h so that (2) becomes:
min

z
1
2 z

⊤Qz + (p + Ry)⊤z

s.t. Fz + Gy ≤ h,
(4)

with Q ∈ Ss
≻0, then the structure in Hempel et al. (2014, Eq. 4) is

immediately recovered. Specifically, the inequality constraints in
(4) are obtained from those in (2) by simply imposing G(y) = F
nd h(y) = h − Gy, for appropriate matrices F , G and vector h
3

with row dimension l ≤ 2nr and s ≤ 2n columns (notice the
slight abuse of notation). Remarkably, these choices are always
possible since differentiability of the NN output w.r.t. θ , which
follows from the first property shown in this statement, implies
that Nθ is an end-to-end trainable NN. □

In the rest of the paper, when we will refer to the OptNet layer
e will tacitly consider the structure in (4). The set of parameters

characterizing Nθ is then θ := {(Q , R, p, F ,G, h),W , c} ∈ Rp,
hich shall be determined during an offline training procedure
sing the available dataset {(x(i), u(i), x+,(i))}Ni=1. With this regard,

Proposition 1.(i) makes Nθ in (3) an end-to-end trainable NN,
meaning that one is actually able to set values for the parameters
θ exploiting available samples, as commonly happens with any
other NN. A differentiable output enables the use of a typical
backpropagation strategy to find the gradient of the training loss
function. Thus, one can train Nθ with standard gradient descent
methods for finding a minimum of that function.

As a main consequence of the second property in Proposition 1,
instead, we note that (1) turns out to coincide with an OCP
involving a continuous PWA dynamics. The latter is known to be
equivalent to a number of hybrid system model classes (Heemels
et al., 2001), such as linear complementarity (LC) (Jin et al., 2022)
or mixed-logical dynamical (MLD) models (Bemporad & Morari,
1999). For this reason, the family of continuous PWA dynamics
xcels in capturing a wide variety of real-world system behaviors.
n particular, since Nθ will be trained on the basis of available
ata {(x(i), u(i), x+,(i))}Ni=1, (1) actually amounts to an OCP involving

a data-based hybrid system representation.
Finally, note that the architecture expressed in (3)–(4) rep-

resents a totally valid NN in the machine learning realm, fea-
turing attractive computational properties (Blondel et al., 2022).
In particular, it incorporates an implicit layer (Amos & Kolter,
2017; Blondel et al., 2022), which requires an iterative process
to compute its output, unlike traditional explicit layers. Since the
proposed method involves not only solving the QP in (4) but also
learning its parameters, referring to it as a NN is consistent with
the terminology used in the literature.

4. The OCP in (1) is a data-based MPCC

We derive next an equivalent formulation for the OCP in
1). Successively, we will then present in Section 4.2 available
results that are applicable to MPCCs models with the particular
structure we obtain, before applying those results to our problem
in Section 5.

4.1. Mathematical derivation

Suppose that we have trained Nθ in (3) to obtain the structure
f the OptNet layer as in (4) with Q ∈ Ss

≻0, and with c = 0.
The following KKT system is then necessary and sufficient to
haracterize the optimal solution z⋆:{
Qz⋆ + Ry + p + F⊤λ = 0,
0 ≤ (h − Fz⋆ − Gy) ⊥ λ ≥ 0,

(5)

where λ ∈ Rl
≥0 represents the vector of Lagrange multipliers

associated to the linear constraints. By recalling that y = col(x, u),
from the KKT system above we obtain a so-called LC model of the
system dynamics (Heemels & Brogliato, 2003) associated with the
NN Nθ , with architecture as in (3):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x+
= −WQ−1R

[
x
u

]
− WQ−1F⊤λ− WQ−1p,

0 ≤
(
FQ−1R − G

) [
x
u

]
+ FQ−1F⊤λ

−1

(6)
+ FQ p + h ⊥ λ ≥ 0.
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Note that all of the terms in (6) except (x, u) and λ are
etermined through a training procedure for Nθ in (3). Hence the
erminology ‘‘data-based representation’’.

Substituting our LC model from (6) into (1) yields:
min
u,x,w

ℓT (xT )+

∑
t∈T

ℓt (xt , ut)

s.t. xt+1 = Axt + Buut + Bwwt + d, ∀t ∈ T ,
0≤Ewwt + Exxt + Euut + e ⊥ wt ≥0, ∀t ∈ T ,
x0 = x(0),

(7)

where the matrices A, Bu, Bw , Ew , Ex, Eu, and vectors d and e
an be obtained by rearranging the terms and definition of the
omplementarity variable w := λ. Specifically, Bw := −WQ−1F⊤,
:= −WQ−1p, Ew := FQ−1F⊤, e := FQ−1p+h. The matrices A and

Bu (respectively, Ex and Eu) follow by partitioning −WQ−1R (resp.,
FQ−1R − G) with n + m columns into two matrices with n and
m columns, respectively. The notation is then analogous to (1),
nd w := col((wk)t∈T ) denotes the trajectory of complementarity

variables corresponding to u and x. A distinct feature of the LC
dynamics are the complementarity constraints inherited from (6),
hich hence turns the OCP (7), equivalent to (1) under our choice

of Nθ in (3), into a data-based MPCC.

Remark 1. Unlike Jin et al. (2022), where an LC model shall
be inferred from data directly, we obtain it as a consequence of
choosing to train a NN Nθ with architecture as in (3). For this
reason, we do not require strict complementarity of the resulting
C model to recover differentiability w.r.t. the main parameters,
s postulated instead in de Avila Belbute-Peres et al. (2018) and

Jin et al. (2022).

4.2. Prior results on a class of MPCCs

In general, MPCCs amount to nonlinear, nonconvex optimiza-
tion problems that can be very challenging to solve (Ralph, 2008).
Indeed, for such problems the standard constraint qualifications
or nonlinear programming (NLP) (e.g., the classical Mangasarian-
romovitz one (Bertsekas et al., 2003, §5.5.4)) typically fail to hold
t any feasible point (Chen & Florian, 1995).
On the other hand, it has been recently proven in Hempel

t al. (2017) that if the MPCC has a specific structure then one
s able to establish strong stationarity conditions characterizing
 (local) optimal solution. In particular, by referring to the data-
ased MPCC in (7) the following three requirements on the LC

model are sufficient to recover the strong stationarity conditions
erived in Hempel et al. (2017, Th. 1):

Condition 1. Given any state-input pair (x, u), every complemen-
tarity variable w that solves 0 ≤ Eww + Exx + Euu + e ⊥ w ≥ 0
results in the same successor state x+.

Condition 2. The complementarity problem 0 ≤ Eww + Exx +

uu + e ⊥ w ≥ 0 can be decomposed elementwise w.r.t. the
omplementarity variable w, i.e.,

∀i ∈ {1, . . . , l} : 0 ≤ miwi + Dix + Giu + ei ⊥ wi ≥ 0, (8)

for mi > 0 so that Ew = diag((mi)li=1), Ex = col((Di)li=1), Eu =

col((Gi)li=1) and e = col((ei)li=1).

Condition 3. Given any state-input pair (x, u), there exists some
∈ {1, . . . , l} such that Dix + Giu + ei < 0.
 &

4

While Condition 1 guarantees the well-posedness of the LC
model we consider, entailing a deterministic behavior for the re-
sulting dynamics, Conditions 2 and 3 are rather technical and par-
tially limit the LC models we are allowed to consider. Specifically,
Condition 2 means that the solution set of the complementarity
problem 0 ≤ Eww+Exx+Euu+e ⊥ w ≥ 0 is given by the cartesian
roduct of the solution sets of (8), while Condition 3 requires the

existence of a solution wi ̸ = 0 to (8), for any fixed pair (x, u).

Remark 2. We consider an elementwise decomposition of the
complementarity problem 0 ≤ Eww + Exx + Euu + e ⊥ w ≥ 0
or simplicity, although a generalization of Condition 2 allowing
or a block-diagonal decomposition is also possible — see Hempel
et al. (2017, Ass. 2).

Armed with these requirements, our next result provides nec-
ssary and sufficient conditions to characterize a local solution to
he optimal control MPCC in (7):

Lemma 1 (Hempel et al., 2017, Th. 1). Let (x⋆, u⋆,w⋆) be feasible
for the MPCC in (7) with an LC model satisfying Conditions 1–3.
Then, (x⋆, u⋆,w⋆) is locally optimal if and only if the standard KKT
conditions for (7) admit a primal–dual solution pair.

The statement in Lemma 1 enables one to seek a local solution
to the optimal control MPCC (7) through the solution of a classical
KKT system, i.e., as an NLP. This is typically computationally ad-
vantageous with significantly better scaling features compared to
ore traditional mixed-integer approaches to solving OCPs based

on generic PWA or hybrid models1 (Hall et al., 2021; Hempel
et al., 2017).

Then, if we manage to train our NN Nθ in (3) so that
Conditions 1–3 are satisfied, Nθ would also bring major compu-
tational advantages when used as part of an OCP.

5. Main results

We now show how the NN Nθ in (3), where z⋆(x, u) minimizes
2) (or (4)) for a given pair (x, u) ∈ Ω , can be trained so
that Conditions 1–3 are met, thereby enabling us to solve the
data-based OCP (7) as an NLP.

Specifically, in Hempel et al. (2017) it was shown that the
following inverse optimization model of PWA dynamics leads to
an LC model so that, once it is embedded into an OCP as in (1),
we can satisfy all three conditions collectively:

x+
= α⋆(x, u) − β⋆(x, u) = α⋆ − β⋆, with (9a)

α⋆ =

⎧⎪⎨⎪⎩
argmin
α∈Rn

1
2∥α − Aψx − Bψu − cψ∥

2
Qα

s.t. α ≥ Aα ,ix + Bα ,iu + cα ,i,
for all i ∈ {1, . . . , nαr }

(9b)

β⋆ =

⎧⎪⎪⎨⎪⎪⎩
argmin
β∈Rn

1
2∥β − Aφx − Bφu − cφ∥2

Qβ

s.t. β ≥ Aβ ,jx + Bβ ,ju + cβ ,j,

for all j ∈ {1, . . . , nβr },

(9c)

where Qα , Qβ ∈ Sn
≻0 are diagonal, but otherwise arbitrary, ma-

trices. Moreover, the elements {(Aα ,i, Bα ,i, cα ,i)}
nαr
i=1 and {(Aβ ,j, Bβ ,j,

cβ ,j)}
nβr
j=1 were determined in Hempel et al. (2017) on the basis

of a PWA partitions, computed through available methods as,

1 For NP-hard problems as (7) one should not expect globally optimal
solutions to be efficiently computable in general (Daafouz, Di Benedetto, Blondel,
 Hetel, 2009), regardless of the method employed.
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e.g., Delaunay triangulations and Voronoi diagrams, of the state-
nput space Ω ⊂ Rn

× Rm introduced in Assumption 2 — see,
or instance, the discussion in Hempel et al. (2014) and Hempel,
oulart, and Lygeros (2013). In addition, the affine functions in

the costs originating from (Aψ , Bψ , cψ ) (respectively, (Aφ, Bφ, cφ)),
instead, were required to lower bound {(Aα ,i, Bα ,i, cα ,i)}

nαr
i=1 (resp.,

{(Aβ ,j, Bβ ,j, cβ ,j)}
nβr
j=1) in each region of the underlying partition.

Specifically, one has to satisfy the following:
Aψx + Bψu + cψ

< max
i∈{1,...,nαr }

{Aα ,ix + Bα ,iu + cα ,i}, ∀(x, u) ∈ Ω,

Aφx + Bφu + cφ
< max

j∈{1,...,nβr }

{Aβ ,jx + Bβ ,ju + cβ ,j}, ∀(x, u) ∈ Ω.

(10)

As suggested in Hempel et al. (2017), note that the above can
lways be satisfied for a given PWA system, e.g., by choosing any

index i ∈ {1, . . . , nαr } and j ∈ {1, . . . , nβr } and by setting
Aψx + Bψu + cψ = Aα ,ix + Bα ,iu + cα ,i − η ,

Aφx + Bφu + cφ = Aβ ,jx + Bβ ,ju + cβ ,j − ζ ,
(11)

with arbitrary terms η, ζ > 0.
By taking the NN-based perspective of in this work, however,

ne does not need to compute all of the aforementioned elements
explicitly. As will be made clear in our main result, once the num-
ber of regions determining each partition is fixed, i.e., nαr , n

β
r ≥ 1

(which will hence coincide with the hyperparameters of our data-
riven approach, along with Qα , Qβ ), we will obtain matrices and

ectors {(Aα ,i, Bα ,i, cα ,i)}
nαr
i=1, {(Aβ ,j, Bβ ,j, cβ ,j)}

nβr
j=1, (Aψ , Bψ , cψ ) and

(Aφ, Bφ, cφ), as weights of Nθ in (3). Specifically, we can claim the
ollowing:

Theorem 1. Let nαr , n
β
r ≥ 1 be fixed. The NN Nθ : Rp

×Rn
×Rm

→

Rn in (3) can be trained to produce a hybrid system model satisfying
Conditions 1–3.

Proof. To start we note that, for given nαr , n
β
r ≥ 1 and any state-

nput pair (x, u) ∈ Ω , (9b) and (9c) can be lumped together to
btain the following separable QP:

min
(α ,β)∈R2n

1
2

[
α

β

]
−

[
Aψ
Aφ

]
x −

[
Bψ
Bφ

]
u −

[
cψ
cφ

]2

H

s.t.

[
In ⊗ 1nαr 0nnαr ×n

0nnβr ×n In ⊗ 1nβr

][
α

β

]

≥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aα ,1
...

Aα ,nαr
Aβ ,1
...

A
β ,nβr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bα ,1
...

Bα ,nαr
Bβ ,1
...

B
β ,nβr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cα ,1
...

cα ,nαr
cβ ,1
...

c
β ,nβr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where, for simplicity, we have imposed diag(Qα,Qβ ) = H ∈ S2n
≻0.

Then, by introducing the decision variable ξ := col(α , β) and after
suitably redefining all matrices/vectors, the QP above admits a
compact form as:
min
ξ∈R2n

1
2∥ξ − Aγ x − Bγ u − cγ ∥2

H

s.t. Sξ ξ ≥ Aξx + Bξu + cξ .

H⇒

min
ξ∈R2n

1
2ξ

⊤Hξ − (Aγ x + Bγ u + cγ )⊤Hξ
(12)
s.t. Sξ ξ ≥ Aξx + Bξu + cξ .
5

In particular, Aγ ∈ R2n×n, Bγ ∈ R2n×m, cγ ∈ R2n, while
Aξ ∈ Rn(nαr +nβr )×n, Bξ ∈ Rn(nαr +nβr )×m and cξ ∈ Rn(nαr +nβr ). Note that,
in addition, the matrix Sξ ∈ Rn(nαr +nβr )×2n is a full column rank
matrix for any nαr , n

β
r ≥ 1. The statement then follows by making

a one-to-one correspondence between the model in (3), where
z⋆(x, u) minimizes (4) for some pair (x, u) ∈ Ω with affine layer in
ascade, and (12). In particular, for given nαr , n

β
r ≥ 1, and diagonal

∈ S2n
≻0, to fully recover (12) while training Nθ one can treat z

in (4) as a decision variable living in R2n, additionally imposing
= H ∈ S2n

≻0, F = −Sξ , W = [In − In], and c = 0. Thus, once
rained the NN Nθ , we obtain equivalences: −H−1R = [Aγ Bγ ],
H−1p = cγ , G = [Aξ Bξ ], and −h = cξ . To conclude, note that

he required conditions on parameters θ , specifically, on the fixed
atrices/vector Q , F , W , and c can be easily imposed during the

raining as a direct consequence of Proposition 1.(i). □

Our NN-based hybrid system identification approach for con-
trol can therefore be summarized as follows (where the symbol
‘→’’ denotes ‘‘obtain’’):

(1) Set nαr , n
β
r ≥ 1, diagonal H ∈ S2n

≻0 → {Q , F ,W , c}
(2) Train Nθ in (3) and (4) with {Q , F ,W , c} and available data

{(x(i), u(i), x+,(i))}Ni=1 → {R, p,G, h};
(3) Plug the elements in (7), solve the KKT system associated

→ (x⋆, u⋆,w⋆).

In item (2) above, one may also decide to train the structure
in (9) directly, and then successively recover the weights in (3)–
(4). Specifically, learning the model in (9) amounts to determine
he elements {(Aα ,i, Bα ,i, cα ,i)}

nαr
i=1, {(Aβ ,j, Bβ ,j, cβ ,j)}

nβr
j=1, (Aψ , Bψ , cψ ),

and (Aφ, Bφ, cφ), with hyperparameters nαr and nβr . To this end,
note that also the choice of the Hessian matrix in (9b) and (9c),
i.e., Qα and Qβ , is arbitrary.

To conclude, Corollary 1 essentially particularizes the result in
Lemma 1 to the optimal control of the data-based hybrid model
designed through the NN Nθ in (3):

Corollary 1. Let the NN Nθ : Rp
× Rn

× Rm
→ Rn in (3) be

trained to produce a hybrid system model satisfying Conditions 1–3,
along with the inequalities in (10). Let (x⋆, u⋆,w⋆) be feasible for the
resulting OCP in the form of (7). Then, (x⋆, u⋆,w⋆) is locally optimal
if and only if the standard KKT conditions for (7) admit a primal–dual
solution pair.

Corollary 1 requires that if our NN model Nθ is to be in-
luded in the OCP (7), its parameters must also satisfy the strict
inequalities in (10) in order for the local optimality results of
Lemma 1 to apply. However, as common to any type of NN, these
inequalities cannot be enforced uniformly over Ω during the
training phase, i.e., strict inequalities are guaranteed to hold true
for the considered (state-input)-successor state samples only,
{(x(i), u(i), x+,(i))}Ni=1, and not for all (x, u) ∈ Ω . Therefore, some
a-posteriori verification procedure shall be applied to make sure
they are satisfied for all (x, u) ∈ Ω . Conversely, the relations in
(11) provide us with a possible means of resolution by setting
(Aψ , Bψ , cψ ) and (Aφ, Bφ, cφ) to meet (10). In particular, imposing
qualities in (11) can be done either before or after the train-
ng process of Nθ . Also in this case, however, applying some
-posteriori verification procedure is inevitable.

Remark 3. In contrast to Yang et al. (2022), we give an explicit
expression of a NN Nθ for which local stationarity conditions,
oinciding with the standard KKT system, are known to hold true
or the MPCC obtained once employed the NN Nθ as a data-based
ybrid system model in the OCP (1).
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6. Numerical experiments

We now verify the performance of Nθ in (3)–(4) to learning
ontinuous PWA models from dataset produced by PWA and non-
linear dynamics.2 All simulations are run on a laptop equipped
with a AMD R7 8840U processor.

To this end, we focus on the structure reported in (9) di-
ectly, since Theorem 1 establishes that the two representa-
tions are equivalent, and we set Qα = Qβ = I , and nαr =
β
r = 7 unless otherwise stated. We implement our method
n Python, utilizing JAX (Bradbury et al., 2018), JaxOPT (Blondel
t al., 2022) and Scipy (Virtanen & Contributors, 2020). The mod-
ls have been trained to solve the following standard regularized
raining problem:

min
θ

1
N

N∑
i=1

∥x+,(i)
− x̂+,(i)

∥
2
2 + λ∥θ∥2

2

s.t. x̂+,(i)
=αθ (x(i), u(i))−βθ (x(i), u(i)), ∀i = 1, . . . ,N,

(13)

where αθ (x, u) and βθ (x, u) reminds the explicit dependence from
= {(Aα ,i, Bα ,i, cα ,i)}7i=1 ∪ {(Aβ ,j, Bβ ,j, cβ ,j)}7j=1 ∪ {(Aψ , Bψ , cψ ),

(Aφ, Bφ, cφ)} of (9b) and (9c), respectively. The training problem
as solved using the SLSQP algorithm (Kraft, 1988) with λ =

.01, and BoxCDQP from JaxOPT as internal QP solver.
We then evaluate the approximation quality of the models

btained on the basis of open-loop predictions, produced by
xciting the trained Nθ with an unseen input sequence for 1000
ime steps, and employing standard metrics (Breschi, Bemporad
nd Piga, 2016; Breschi, Piga et al., 2016; Masti & Bemporad,

2021; Mejari, 2018) such as best fit ratio (BFR), defined as BFR =

X̂+
−X+

∥F/∥X+
− X̄+

∥F , and the root mean square (RMS) error,

RMS =

√
1
N

∑N
i=1 ∥x+,(i) − x̂+,(i)∥2

2 . Referring to BFR, all matrices
ave dimension n × N , with X+ stacking the true data, X̄+ is the

componentwise average vector of x, while X̂+ is the predicted
value of X̂+ obtained in open-loop prediction. For system identi-
fication purposes, a high (respectively, low) value for BFR (RMS)
is desirable.

Unless otherwise stated, all tests have been conducted by
sing 5000 normalized samples, adding white noise N(0, 0.01) to
he sequence of state measurements.

6.1. Comparison with PARC

We first contrast the performance achieved by our method
ith that obtained by piecewise-affine regression and classifi-
ation (PARC), a state-of-the-art PWA regression method that
as been configured to perform up to 25 iterations and consider
0 clusters. To take into account the nonconvex nature of both
earning problems, each test has been repeated for 10 different
nitial conditions of the optimizer.

6.1.1. Piecewise system benchmarks
To compare the two approaches on learning hybrid systems,

e consider the following benchmarks:

• A system described by the following equation:

ΣPWA : x+
= Ax + Bu + WA clip

[0,2](WBx),

where A, WA, WB ∈ R4×4, B ∈ R4×2, and clip(·) is a mapping
that rounds the value of its argument in the range defined
by the subscript. The entries of A, B have been drawn from
uniform distributions U(0, 1) and U(0, 1/3), respectively,
while the entries of WA, WB follow a normal distribution
N(0, 1/2);

2 Python code is available upon request (email at
aniele.masti@gssi.it).
 p

6

• The problem adopted in Breschi, Bemporad et al. (2016,
§IV.A), which we simulate from a random initial condi-
tion using an excitation signal with the features described
in Breschi, Bemporad et al. (2016). We will refer to this
system, which has also been used as benchmark in Breschi,
Piga et al. (2016) and Mejari (2018), as ΣB−PWA;

• The queuing network described in Garbi, Incerto, and Trib-
astone (2020, Ex. 5), in which we assume the second and
third components of the vector µ are each restricted to the
interval [10, 100], while its first component remains set to
30 and the vector s set to [1000, 11, 11]. The system is ex-
cited using a random white sequence drawn from a uniform
distribution defined on the range above. The resulting ODEs
are integrated using the LSODA suite (Hindmarsh, 1983) via
Scipy. The sampling time is set to 5 s. We will refer to this
system as ΣQN.

The numerical results for the examples above are reported in
Table 1, which clearly show how our methodology works well,
achieving performance comparable with PARC and, in turn, with
the current state-of-the-art. From our numerical experience we
note that solving the training problem in (13) on, e.g., the Σ2
enchmark, required around 15 [s], while PARC approximately 30
s].

6.1.2. Linear parameter-varying and nonlinear benchmarks
We now compare the performance of our NN-based approach

and PARC on the following nonlinear or parameter-varying sys-
tem models:

• The two-tank system available with the MATLAB system
identification toolbox (MathWorks Inc, 0000). As the dataset
contains input–output data only, we define the state as xt =

[yt−2 yt−1 yt ]⊤. For this example, we use 2000 samples for
training and 1000 for validation without adding any white
noise to the measurements. We will refer to this system as
ΣTank;

• The linear parameter-varying dynamics in Breschi, Bempo-
rad et al. (2016, §IV.B), excited according to the related
discussion in that paper. We will refer to this system, which
has also been used as benchmark in Breschi, Piga et al.
(2016) and Mejari (2018), as ΣB−LPV;

• The tank system ‘‘Σ2’’ described in Masti and Bemporad
(2021), which exhibits a strong nonlinear input–output be-
havior. For this example, the noise treatment and system
excitation have been performed as in Masti and Bemporad
(2021).

Table 2 reports the numerical values obtained for these ex-
amples, where we can see that, on the ΣB−LPV benchmark, our
method greatly outperforms PARC. On the reference hardware,
for Σtank PARC takes 25 [s], while our training procedure around
40 [s]. On this benchmark, while the identification performance
of our approach is comparable to that of Masti and Bemporad
(2021), our training time is significantly lower than that re-
ported in Masti and Bemporad (2021) (around 20 minutes). This
is mostly related to the fact that our method needs to learn a
ew hundreds of coefficients only. Finally, the results on Σ2 are
lso very competitive w.r.t. those in Masti and Bemporad (2021),

especially in view of the larger dataset employed in the latter
paper (i.e., 20 000 against 5000 samples).

6.2. Sensitivity analysis — parameters nαr , n
β
r

We now investigate the sensitivity of our NN-based approach
w.r.t. the main parameters characterizing our technique, i.e., nαr
nd nβr . Note that also Qα , Qβ represent further possible hyper-
arameters to tune, however, we note that according to both the
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Table 1
FR and RMS obtained by our method and PARC (within parentheses) on PWA benchmarks.

Median BFR Best BFR Variance BFR Median RMS Best RMS Variance RMS

ΣPWA 0.952 (0.937) 0.959 (0.944) 2.88 · 10−4 (2.66 · 10−5) 0.048 (0.064) 0.042 (0.057) 2.95 · 10−4 (3.12 · 10−5)
ΣB−PWA 0.883 (0.855) 0.932 (0.891) 7.28 · 10−3 (7.48 · 10−4) 0.084 (0.109) 0.050 (0.082) 4.20 · 10−3 (4.58 · 10−4)
ΣQN 0.838 (0.81) 0.851 (0.829) 2.20 · 10−4 (4.41 · 10−4) 0.193 (0.224) 0.175 (0.205) 3.40 · 10−4 (5.90 · 10−4)
Table 2
FR and RMS obtained by our method and PARC (within parentheses) on the nonlinear and LPV benchmarks.

Median BFR Best BFR Variance BFR Median RMS Best RMS Variance RMS

ΣTank 0.901 (0.900) 0.932 (0.909) 4 · 10−4 (1.64 · 10−3) 0.108 (0.109) 0.075 (0.09) 4.76 · 10−4 (1.95 · 10−3)
ΣB−PLV 0.696 (0.511) 0.731 (0.528) 4.47 · 10−4 (1.62 · 10−4) 0.287 (0.46) 0.255 (0.44) 3.96 · 10−4 (1.30 · 10−4)
Σ2 0.924 (0.921) 0.947 (0.931) 1.69 · 10−4 (3.47 · 10−5) 0.061 (0.063) 0.042 (0.056) 1.09 · 10−4 (1.96 · 10−5)
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Table 3
FR obtained by our method in learning the behavior of Σ2 and ΣB−PWA for

different values of nαr .
ΣB−PWA Σ2

Median Best Variance Median Best Variance

nαr = 2 0.915 0.943 1.06 · 10−3 0.863 0.863 1.21 · 10−3

nαr = 3 0.897 0.925 3.51 · 10−4 0.889 0.913 8.92 · 10−5

nαr = 5 0.904 0.932 3.23 · 10−3 0.915 0.924 7.05 · 10−5

nαr = 7 0.883 0.932 7.28 · 10−3 0.924 0.947 1.69 · 10−4

nαr = 11 0.845 0.936 5.99 · 10−3 0.939 0.956 2.85 · 10−4

nαr = 17 0.875 0.910 5.87 · 10−3 0.946 0.952 2.49 · 10−4

Fig. 1. Comparison between an optimal controller based on SQP solver and one
ased on the DIRECT global optimization solver when tracking the reference
ine-sweep rk . The y-axis represents the (normalized) magnitude of the quan-
tities involved, while the x-axis denotes the time steps. Both controllers have
been parametrized to solve the same optimization problem based on a learnt
odel of Σ2 .

discussion in Hempel et al. (2014, 2017) and our own observation,
the performance of our method is not particularly affected by
their values. We therefore omit the related sensitivity analysis for
these terms.

We report in Table 3 the median, worst and best BFR achieved
on the Σ2 and ΣB−PWA for different values of nαr = nβr . In general
we can observe that, while a higher nαr is beneficial to improve
the best-case scenario performance, it also makes the training
problem more difficult. This is clearly shown by the obtained me-
dian BFR, especially when dealing with Σ2. From our numerical
experience, the difficulties of training models featuring higher
values of nαr (and therefore the capability of representing richer
continuous PWA mappings) can be often overcome by making use
of larger dataset. These results also stress that, in case the date
are fixed in advance, choosing appropriate values for nαr and nβr
is key.

6.3. Performance for predictive control

The computational advantages of employing a model as in
9) for optimal control purposes have been already analyzed
7

in Hempel et al. (2017). Here, we have shown that the strong
stationarity conditions offered by Lemma 1 can be solved through
standard NLP solvers such as, e.g., IPOPT (Wächter & Biegler,
2006), outperforming classical mixed-integer programming ap-
proaches to hybrid system optimal control.

Nevertheless, one may wonder how the adopted NN model
can be used within an OCP in conjunction with a sensitivity-
ased NLP solver. This is relevant for systems as those introduced
n Section 6.1.2, which do not exhibit behaviors involving logic
and dynamic at the same time. We then design a simple OCP for
Σ2, mimicking the setup of Masti and Bemporad (2021), with
prediction horizon equal T = 7. We solve, at each step, the
following optimization problem:

min
u1,...,u7

7∑
i=1

(x+

i,2 − ri+1)2 + 0.01 u2
i + 0.001 δ2i

s.t. x̂+

i = αθ (xi, ui) − βθ (xi, ui), i = 1, . . . , 7,
δi = ui − ui−1, i = 1, . . . , 7,
0.95 ≤ ui ≤ 1.2, i = 1, . . . , 7,

where with xi,2 we mean the second component of xi.
We then compare the behavior of a closed-loop trajectory

chieved when using SLSQP solver with the one obtained with
the global optimization solver DIRECT_L (Gablonsky & Kelley,
2001). The results are shown in Fig. 1 where, although the
selected input sequence is slightly different, the closed-loop tra-
jectories achieved by the two controllers are almost indistin-
uishable, thereby showing that derivative-based solver may
xploit the adopted NN-based models.
We note that on our reference hardware, the whole closed-

oop simulation with the SLSQP-based controller required
approximately one millisecond per time-step. Overall, the SLSQP-
based approach requires around 4 [s], in contrast to the 25
[s] needed by that based on DIRECT_L. While we opted for
‘‘off-the-shelf’’ solvers, adopting dedicated methodologies such
as, e.g., Fletcher and Leyffer (2004) and Nurkanović, Pozharskiy,
and Diehl (2024), would yield even better computational perfor-
ance.

7. Conclusion and outlook

We have proposed a NN-based methodology to system iden-
ification for control that only requires the training of a NN via
tandard tools as simple identification step, and yields a hybrid
ystem model suited for optimal control design. Specifically, we
ave employed a NN with specific, yet simple, architecture, which

turns out to be end-to-end trainable and produces a hybrid sys-
em with PWA dynamics from available data. Extensive numerical
imulations have illustrated that, as a NN-based identification
procedure, our technique has very similar performance compared
to the state-of-the-art of hybrid system identification methods.
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By relying on available results (Hempel et al., 2017), we have also
shown that, under a careful choice of some weights of the NN, the
resulting hybrid dynamics can be controlled locally optimally by
just solving the KKT system associated to the underlying finite
horizon OCP. This is computationally advantageous compared
to traditional approaches to optimal control of hybrid systems,
usually requiring mixed-integer optimization.

Future work will concentrate on the integration of OptNet lay-
ers together with standard explicit layers characterized by differ-
ent activation functions. In view of the requirement in Corollary 1,
t is also key to investigate the practical impact the various
strategies to impose the conditions in (10) have on the resulting
N model.
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