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Abstract. When the two dimensional g-color Potts model in the square lattice is quenched at zero tem-
perature with Glauber dynamics, the energy decreases in time following an Allen-Cahn power law, and
the system converges to a phase with energy higher than the ground state energy after an arbitrary large
time when g > 4. At low but finite temperature, it cesses to obey the power-law regime and orders after a
very long time, which increases with ¢, and before which it performs a domain growth process which tends
to be slower as q increases. We briefly present and comment numerical results on the ordering at nonzero

temperature.
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The theory of ordering dynamics [1L2LBLE] concerns the
dynamic evolution of a system which coarsens from one
disordered equilibrium phase to an ordered state, when
it is quenched at a temperature well deep inside the or-
dered phase. Systems with scalar order parameter, as the
Ising model, can be studied with the Allen-Cahn theory
B], which consists in an analysis of a Time-Dependent
Ginzburg Landau equation of motion for the order param-
eter. The theory postulates the validity of the so called
scaling hypothesis, which states that the system is sta-
tistically invariant in time when space is rescaled by a
time-dependent characteristic lenght, ¢, proportional to
the mean size of the growing domains. Through the scal-
ing hypothesis, and for Ising-like systems, the Allen-Cahn
theory predicts a power-law growth in time, the Allen-
Cahn law, for the characteristic domain length, ¢ ~ ¢,
being aw = 1/2 for non-conserved order parameter systems
[B], law which has been verified numerically for both con-
tinuous and lattice Ising models [5].

For systems with a g > 2-times degenerated ground state,
as the g¢-state Potts model, the situation is less under-
stood [ILB]: the Allen-Cahn theory predicts also in this
case an Allen-Cahn power law, provided that the scaling
hypothesis is satisfied. After some initial controversy, the
Allen-Cahn law with exponent o = 1/2 was finally found
solving numerically the dynamics of the Potts model in
the lattice [BLGLIT], and the scaling hypothesis has also
been verified in a given temporal range [[29[10], when
domains are still not comparable with the system size.

On the other hand, recent studies has shown an interesting
behavior when the g > 4 Potts model in the square lattice

is quenched at zero temperature ! [A[I3LT4]: in this case,
the system converges after an infinite time to a disordered,
stationary phase with nonzero energy density, e*(¢) > 0
for ¢ > 4, different from the equilibrium state at zero tem-
perature, which was called “glassy phase” in [I3]. More-
over, in these works it is shown how the ordering of the
system can be described, after a short initial period, by a
power-law for the energy, e(t, ) = e*(q)+a(q) t /2. Being
the exess energy at low temperature equal to the perimeter
of the interface, it is e ~ ¢~1 and, hence, the above result
implies that the domains do not grow indefinitely, but the
characteristic scale ¢ converges to a limit value, £*(q). The
Allen-Cahn law is, in this way, not strictly respected, even
if, during the coarsening, it is e(t,q) ~ t=1/2,

For what concerns the ordering in the presence of thermal
fluctuations, it has been recently found for ¢ = 7 [7] that
at low but positive temperature, 7' = 0.1, the model or-
ders in such a way that the non-homogeneous Allen-Cahn
law, e(t,q) = e*(q) + a(q) t~'/2, valid at zero tempera-
ture, is respected with same functions e*(¢) and a(q), but
only up to a time, 7(T,¢), in which the system ceases to
obey the power law, and after which the mean domain
size converges very fast to the size of the system, and the
energy to zero (see details in [7]). Figure 1 shows this
phenomenology: we report the energy per site versus time
of the kinetic 2d-Potts model in the square lattice with
periodic bonduary conditions, when the system evolves
with single-spin flip Glauber dynamics after a quench to

! See [O[I5] for a detailed review on these findings, in which
the relation of the problem with the order of the thermody-
namic and infinite-time limits is dicussed and explained.
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T = 0.1, being T.(¢q) = In"*(1 + ¢'/?) the critical temper-
ature of the model [T6,[T7], which takes the values 0.482...
for ¢ = 48 and 0.994... for ¢ = 3. These critical tempera-
tures correspond to a continous phase transition for ¢ < 4,
and to a first-order transition for ¢ > 4, and this g-range
coincides with the one in which e*(¢) > 0 . We show in
the figure the ¢ = 3,9, 20,48 cases, for a system of lin-
ear size L = 200 (see [7] for a finite-size effect analysis).
We see that the ¢ = 3 case exhibits a power law, and
e*(q =3)=0.For g > 4, it is e* > 0, and the transient
time after which the system exhibits the power-law relax-
ation, say 7;(q), increases with ¢. It was shown to be [7] of
the order of 10 Monte-Carlo steps (MCS) for ¢ = 7, but
it is roughly 103 MCS for ¢ = 48.

We now breafly point out some other characteristics of
the data in Figure 1, characteristics which are extensively
exposed and interpreted in terms of the Allen-Cahn the-
ory and the scaling hypothesis in [I5], where we will also
discuss the influence of pinned local structures in the prob-
lem. Supposing the non-homogeneous Allen-Cahn law above
defined to be satisfied in the interval 7;,(q) < t < 7(q)
(and we arbitrarely define the interval as the one in which
a power-law can be identified), we have four parameters
characterizing the ordering of the energy: 7(¢,T), 7:(q),
a(q) and e*(q). From the analisys of Figure 1 we can no-
tice some aspects of these parameters: 1) first of all, the
fact that e*(q) increases with ¢, as was already exposed
in [I4], where it was also found numerically the behaviour
e*(q) = b (g — 4)'/2 for ¢ from 2 to 20 (see also [7] for
a discussion on this point). We find indeed the same pre-
factor b = 0.06 found for the zero-temperature dynamics
in [I4]. 2) 7(T,q) increases with g; the larger the number
of colours, the less probable to find the fluctuations that
will lead to the formation of domains of the size of the
system [7]. 3) 7;(q), the limit for the transient regime, in-
creases with g, as already mentioned above.

To summarize, we have described some of the recent re-
sults on the ordering of the 2d-Potts model in the square
lattice, and presented new results on the ordering at pos-
itive temperature. At zero temperature the system con-
verges to a phase with nonzero energy density for ¢ > 4,
while at low temperature it escapes from this phase in a
time, 7, which increases with ¢. The ordering before 7 is
such that the energy decreases with the Allen-Cahn power
law with exponent 1/2, but the pre-factor is very low for
large q. A detailed analysis of these data together with an
interpretation of them in terms of the Allen-Cahn theory
and the scaling hypothesis is being performed [I5]. Study
of the temperature dependence of the problem and of the
influence of pinned local structures [I8[T920] is also in
progress.
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Fig. 1. Energy per site (e) vs. time (¢) for ¢ = 3,9, 20,48
(in increasing energy order). On upper inset, e vs. t~1/2 and
the fit with the non-homogeneous Allen-Cahn law e(t,q) =
e*(q) + alq) t™/? (see text). On lower inset, the fitted e*(q)
(circles), and the function b(q — 4)~/2, b = 0.06 found in [I3]
for zero-temperature data (line).
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