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Abstract— This paper proposes a method for learning optimal
state estimators from input/output data for linear discrete-time
stochastic systems. We show that this problem can be expressed
in the reinforcement learning framework, suitably adapted to
the peculiar problem structure. In particular, we introduce the
specific Bellman equation for the state estimation problem and
use temporal differences to solve it. We show in simulations that
the resulting data-driven method for state estimation converges
to the optimal observer.

I. INTRODUCTION

State estimation consists in the problem of estimating and
predicting the internal states of a dynamical system based on
measured, possibly noisy, output and input data.

From a probabilistic point of view, state estimation meth-
ods aim to determine the state estimates from their probabil-
ity distribution obtained by the Bayes filter [1] using different
criteria. For linear dynamical systems with additive Gaussian
noise signals, the Kalman Filter (KF) algorithm is the best
possible state estimator considering both the Minimum Mean
Squared Error (MMSE) [2] and Maximum A Posteriori
(MAP) [3] performance indices. For nonlinear dynamical
systems, the Particle Filter (PF) [4], which approximates the
Bayes filter by using Monte Carlo sampling methods, and
the KF-derived algorithms, like the Extended Kalman Filter
(EKF) [5] and the Unscented Kalman Filter (UKF) [6], are
popular state estimators in practical applications.

The state estimation problem can also be described as the
solution of an optimization problem [7], [8]. In this case, if
the cost function is defined to include all past information,
the algorithm is called a Full Information Estimator (FIE) [9].
The FIE algorithm represents a performance benchmark for
the optimization-based estimators, but it becomes computa-
tionally intractable as the past information increases. Hence,
the Moving Horizon Estimator (MHE) [10], [11], [12] was
introduced, which approximates the FIE on a finite-horizon
information. Moreover, it is worth noting that both KF and
EKF can be formulated as optimization-based estimators [3],
[13].

In this paper, our objective is to introduce a data-
driven method based on ideas from Reinforcement Learning
(RL) [14] to solve the optimal state estimation problem. RL
is a set of techniques belonging to the machine learning field
that are used to solve the optimal control problem by data
sampling [15]. By the duality between the optimal control
and optimal estimation problems, RL was proposed as a
solution for the optimal state estimation problem in [16],
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[17]. The first approach proposes a Temporal Difference
(TD) method with eligibility trace to compute the state
estimates. However, it does not clearly detail how the value
function approximation is defined and learned. In particular,
the peculiarities of the observer learning problem are not
investigated nor exploited. The second approach considers
an actor-critic method to introduce a stable state estimator,
but it assumes that the state of the system is known exactly
during the training phase. In this paper, we assume that the
actual state of the system is unknown and we use RL to learn
from data a value-function based optimal observer. To that
end, we first investigate how a value function can be defined
for the optimal estimation problem. We show that this entails
some important differences with respect to the control case
and we propose an algorithm that can learn the optimal value
function. While we focus on the linear case for simplicity,
our contribution can be extended to a general setting.

The paper is organized as follows. Section II introduces the
state estimation problem and its formulation as a Dynamic
Programming (DP) problem. Section III describes how the
proposed RL-based observer is built and implemented. Fi-
nally, Sections IV and V show, respectively, numerical results
and concluding remarks.

II. PROBLEM STATEMENT

Consider the linear time-invariant (LTI) system

xt+1 = Axt +But + wt, (1a)
yt = Cxt + vt, (1b)

where t ∈ N denotes the current time, xt ∈ Rnx , ut ∈ Rnu ,
yt ∈ Rny , wt ∈ Rnx , and vt ∈ Rny denote, respectively,
the state, input, measured output, process and measure-
ment noise vectors at time t. Our objective is to solve
the state estimation problem, i.e., we want to estimate the
state xt at every time t. To do so, we assume to know
(yt, ut) at every time t, as well as the model matrices
A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx . Note that we
assume no input/output feedthrough for simplicity, although
the approach can be straightforwardly extended to cover this
case. In the following, we will denote vector time-series as
xt0:t1 := (xt0 , . . . , xt1).

Given the information (y0:t, u0:t) available at time t ≥ 0
and the initial state estimate x̄0 ∈ Rnx , we formulate the
problem of computing the optimal predicted x̂t+1|t ∈ Rnx

and corrected x̂t|t ∈ Rnx state estimates as the FIE problem

x̂0:t+1|t := arg min
χ0:t+1

Jt+1(y0:t, u0:t, x̄0, χ0:t+1), (2)

where x̂t+1|t and x̂t|t are the last two terms of the sequence
of optimal state estimates x̂0:t+1|t, while χ0:T+1 is the



sequence of decision variables with χt ∈ Rnx for every t.
The cost is

Jt+1(y0:t, u0:t, x̄0, χ0:t+1)

=

t∑
i=0

γt−iℓ(yi, ui, χi+1, χi) + γt+1ℓ0(χ0, x̄0),

with given forgetting factor 0 < γ ≤ 1. The stage and initial
costs, respectively, ℓ and ℓ0 are defined as

ℓ(yi, ui, χi+1, χi)=∥χi+1−Aχi−Bui∥2Q−1+∥yi−Cχi∥2R−1 ,

ℓ0(x̄0, χ0) = ∥χ0 − x̄0∥2P−1
0

,

with positive definite weighting matrices Q−1 ∈ Rnx×nx ,
R−1 ∈ Rny×ny and P−1

0 ∈ Rnx×nx .
Remark 1: In this paper we assume γ < 1 for simplic-

ity, although all our results can be extended to the case
γ = 1, with some slight adaptations that will be the sub-
ject of future publications. In particular, for γ = 1, prob-
lem (2) is equivalent to the MAP problem of choosing
x̂0:t+1 that maximizes the conditional probability distribution
p(χ0:t+1|y0:t, u0:t, x̄0) [1]. The solution of the MAP prob-
lem can be proved to yield the well-known KF [3] and the
matrices P0, Q, and R are the covariances of the Gaussian
initial state estimation error, the process noise and the output
noise, respectively.

A. Dynamic Programming

In order to introduce our RL-based state estimator, it
is necessary to formulate the state estimation problem (2)
within a DP framework. For this purpose, let the optimal
value function be

Vt+1(x̂t+1|t, χt+1) = ∥χt+1 − x̂t+1|t∥2P−1
t+1

+ ct+1, (4)

with

x̂t+1|t := Ax̂t|t−1 +But +AKt(yt − Cx̂t|t−1), (5a)

Pt+1 := Q+A(Inx
−KtC)

Pt

γ
A⊤, (5b)

St := R+ C
Pt

γ
C⊤, (5c)

Kt :=
Pt

γ
C⊤S−1

t , (5d)

ct+1 := ∥yt − Cx̂t|t−1∥2S−1
t

+ γct, (5e)

where Inx
is the identity matrix of dimension nx.

Lemma 1: Let x̂0|−1 = x̄0, c0 = 0, and

V0(x̂0|−1, χ0) = ℓ0(x̂0|−1, χ0) + c0.

For all t ≥ 0, the optimal value function (4) satisfies

Vt+1(x̂t+1|t, χt+1) = min
χ0:t

Jt+1(y0:t, u0:t, x̄0, χ0:t+1). (6)

Moreover, (5a) yields the last state estimate from the solution
of (2).

Proof: We prove that (4) implies (6) by induction.
Assuming that (6) holds at time t, we first prove that (6)
also holds at time t+ 1. By using

Jt+1(y0:t, u0:t, x̄0, χ0:t+1)

= γJt(y0:t−1, u0:t−1, x̄0, χ0:t) + ℓ(yt, ut, χt+1, χt),

and (6) at time t+ 1, we have

min
χ0:t

ℓ(yt, ut, χt+1, χt) + γJt(y0:t−1, u0:t−1, x̄0, χ0:t)

= min
χt

ℓ(yt, ut, χt+1, χt) + γVt(x̂t|t−1, χt), (7)

The minimization in the right hand side of (7) is solved
in [7] for the undiscounted case, i.e. for γ = 1. With the
minor change of including the forgetting factor 0 < γ < 1,
we find

min
χt

ℓ(yt, ut, χt+1, χt) + γVt(x̂t|t−1, χt)

= ∥χt+1 − x̂t+1|t∥2P−1
t+1

+ ct+1,

with x̂t+1|t, Pt+1, Kt+1, ct+1 given by (5). Together
with (7), this entails that

Vt+1(x̂t+1|t, χt+1) = min
χ0:t

Jt+1(y0:t, u0:t, x̄0, χ0:t+1). (8)

Note that x̂t+1|t minimizes Vt+1(x̂t+1|t, χt+1) and, conse-
quently, also (2).

We are left with proving that (6) holds at time t = 0. This
is directly obtained by observing that the right hand side of
Equation (7) at time t = 0 reads

J1(y0, u0, x̄0, χ0:1) = ℓ(y0, u0, χ1, χ0) + γV0(x̂0|−1, χ0)

by construction. Then, equation (8) in turn yields

V1(x̂1|0, χ1) = min
χ0

J1(y0, u0, x̄0, χ0:1),

which is (6) at time t = 0.
Equation (6) justifies the definition of V as an optimal

value function. Moreover, it can be used to show that the
optimal value function is recursive, as it satisfies

Vt+1(x̂t+1|t, χt+1)

= min
χt

ℓ(yt, ut, χt+1, χt) + γVt(x̂t|t−1, χt).

This recursion yields the optimal Bellman equation for state
estimation and it formulates the Bellman optimality principle
for estimation, i.e., function Vt summarizes all information
available up to time t, similarly to the cost-to-go in optimal
control, but in reverse time.

It is worth to notice that no expected value is involved in
equation (6), since we take a deterministic point of view, by
considering the actual realization of the stochastic variable y
at every time instant.

Remark 2: The optimal value function Vt, or a suitable
approximation, is commonly known in the literature as
the arrival cost [7]. It is a fundamental concept for the
optimization-based techniques for state estimation. In par-
ticular, MHE [10], [12] deeply relies on this concept.



While we proved that the optimal value function V is
time varying, we discuss next that, over an infinite horizon
and under additional assumptions, it becomes stationary in
expectation. In order to prove this fact, we introduce the
following common assumption.

Assumption 1: The variables wt, vt and x0 are mutually
independent and normally distributed, i.e,

wt ∼ N (0, Q), Q ≻ 0, Q = Q⊤,

vt ∼ N (0, R), R ≻ 0, R = R⊤,

x0 ∼ N (x̄0, P0), P0 ≻ 0, P0 = P⊤
0 .

Moreover, w and v are white noise signals. □
Lemma 2: Suppose that Assumption 1 holds, (A,C) is

observable and (A,G) is controllable, for some G such that
GG⊤ = Q. Then

lim
t→∞

Pt = P⋆, P⋆ ≻ 0, lim
t→∞

Eỹ0:t
[ ct ] = c⋆,

where ỹt is the measurement error and Eỹ0:t
[·] represents

the expected value with respect to the probability distribu-
tions of the measurement errors from 0 to t. Furthermore,
limt→∞ St = S⋆ and limt→∞ Kt = K⋆.

Proof: We observe from definition (5b) that the quan-
tity Pt is computed through the discrete algebraic Riccati
recursion

Pt+1 = Q+A
Pt

γ
A⊤−A

Pt

γ
C⊤

(
R+ C

Pt

γ
C⊤

)−1

C
Pt

γ
A⊤,

that converges to a stationary value P⋆ ≻ 0 as t → ∞,
under the previous assumptions made that (A,C), and hence
(A/

√
γ,C/

√
γ), is observable, (A,G) is controllable, and

Q,R, P0 ≻ 0 (see [18] for the complete proof). The conver-
gence to P⋆ implies from (5d) and (5c) that both Kt and St

converge to stationary values. Finally, for the sake of brevity,
the fact that the constant ct+1 converges to c⋆ in expectation,
is shown in Appendix I.

Corollary 3: Suppose that Assumption 1 holds, (A,C) is
observable and (A,G) controllable. Assume moreover that
P0 = P⋆. Then the value function is stationary and satisfies
the Bellman equation

V⋆(x̂t+1|t, χt+1)

= min
χt

ℓ(yt, ut, χt+1, χt) + γV⋆(x̂t|t−1, χt)− c̃t, (9)

where

V⋆(x̂t|t−1, χt) = ∥x̂t|t−1 − χt∥2P−1
⋆

+ c⋆, (10)

c̃t = ∥yt − Cx̂t|t−1∥2(R+C P⋆
γ C⊤)

−1 + (γ − 1)c⋆,

such that Eỹt [ c̃t ] = 0.
Corollary 3 is of particular interest, since it enables the

construction of a stationary observer based on ideas from
RL. Furthermore, from the right hand side of equation (9)
the state estimates x̂t+1|t and x̂t|t can be computed as

(x̂t+1|t, x̂t|t)

= arg min
χt+1,χt

ℓ(yt, ut, χt+1, χt) + γV⋆(x̂t|t−1, χt),

without the need to solve problem (2). This implicitly defines
the stationary observer policy for the optimal predicted state
estimate

U⋆(yt, ut, x̂t|t−1) = x̂t+1|t. (11)

Consequently, in the next section we will exploit equation
(9) to learn policy U⋆ indirectly, i.e., by learning an approx-
imation V̂W of V⋆, where W is a vector of parameters to
determine.

III. OBSERVER LEARNING

Corollary 3 proves that the stationary observer has a
corresponding value function that satisfies the Bellman equa-
tion (9). This makes it possible to use RL methods to directly
learn from data both the value function and the stationary
observer itself. However, as we will discuss later in this
section, RL algorithms cannot be directly applied to this
problem and some modifications are required.

In order to compute the optimal state estimates without
prior knowledge of the optimal value function, we intro-
duce a new algorithm that is inspired by the least-squares
temporal-difference (LSTD) algorithm [19] for solving the
optimal control problem. For this reason, we will denote our
method as Least-Squares Temporal-Difference Observer or
LSTDO.

A. LSTDO Learning Problem Formulation

LSTDO aims at learning the optimal value function V⋆,
which is equivalent to learning the optimal parameters
P−1
⋆ , c⋆ that we lump in a parameter vector W⋆. Similarly

to least-squares methods in RL, by introducing the vector
of parameters W and the corresponding approximate value
function V̂W , the LSTDO solves for a given batch of data
of length N the least-squares problem

min
W

N∑
i=0

(
V⋆(x̂

(i)
+ , χ

(i)
+ )− V̂W (x̂

(i)
+ , χ

(i)
+ )

)2

, (12)

which yields the optimality conditions

N∑
i=0

∇WV̂W(x̂
(i)
+ , χ

(i)
+ )

(
V⋆(x̂

(i)
+ , χ

(i)
+ )− V̂W(x̂

(i)
+ , χ

(i)
+ )

)
=0,

(13)
where ∇W V̂W denotes the gradient vector of V̂W with
respect to the vector of parameters W . Note that the least-
squares residuals in (12) correspond to the errors between
the (unknown) optimal value function and the approximate
one. Focusing on the optimality conditions (13), we observe
that, since the optimal value function V⋆ is not available, it
must be replaced by an estimate. Typical choices in RL are
given by Monte-Carlo (MC) or Temporal-Difference (TD)
methods [14], but any technique can in principle be applied to
solve the observer-learning problem. In this paper, we choose
to focus on the simplest TD(0) method [20], where the TD(0)
approximation of V⋆ is given by

ℓ(y(i), u(i), χ
(i)
+ , χ(i)) + γV̂W (x̂(i), χ(i)). (14)



Consequently, the single element z(i) of the batch has to be
such that

z(i) = (y(i), u(i), x̂
(i)
+ , x̂(i), χ

(i)
+ , χ(i))

:= (yt(i) , ut(i) , x̂t(i)+1|t(i) , x̂t(i)|t(i)−1, χt(i)+1, χt(i)).
(15)

where the superscript (i) denotes sample i, collected at time
t(i). Note that this notation allows us to use batches of
data which are not necessarily obtained from the sequence
t(i+1) = t(i) + 1.

B. Value Function Approximation

Since V⋆ is given by (10), it is a natural choice to select
the approximation V̂W as

V̂W (x̂, χ) = ∥x̂− χ∥2H + h (16)

where the symmetric matrix H ∈ Rnx×nx and the scalar
h ∈ R are the parameters which, upon successful learning,
should yield H = P−1

⋆ and h = c⋆, and which we lump in
vector

W =
[
W⊤

H h
]⊤

,

where WH ∈ Rnx(nx+1)/2 is the vectorization of the sym-
metric matrix H . The approximation (16) is quadratic with
respect to the estimation error x̂− x and linear with respect
to the parameter vector W . In the following, we will write
V̂W in the equivalent form

V̂W (x̂, χ) = W⊤ϕ(x̂, χ),

with ϕ : Rnx × Rnx → Rnx(nx+1)/2+1 a suitably defined
quadratic function, which we split for convenience of no-
tation as follows:

ϕ(x̂, x) =
[
ϕ⊤
H(x̂, χ) 1

]⊤
,

such that

W⊤
HϕH(x̂, χ) = ∥x̂− χ∥2H .

Note that, by defining V̂W as linear with respect to the
parameters, the TD(0) approximation in (14), yields the
optimality condition (13) to compute the optimal vector of
parameters W in a single iterate for a given batch.

C. Data Generation: Introducing Exploration

To discuss the algorithm for observer learning, we stress
that the observer-learning problem has one particular speci-
ficity that distinguishes it from the standard RL problem, i.e.,
learning a control policy. While in the control problem the
value function depends only on the state given by the system
dynamics, for the observer problem the optimal value func-
tion depends not only on the optimal predicted state estimate
x̂+ given by U⋆(y, u, x̂), but also on the decision variable χ+

that is in principle not determined. The specificity outlined
above is particularly relevant during the learning phase. As a
matter of fact, unlike standard RL, in which it is sufficient to
explore by applying off-policy actions, in observer learning
one has not only to apply exploration to χ+, by selecting
it off-policy, i.e., as χ+ ̸= U⋆(y, u, x̂), but also to define

a coherent value of χ, such that the Bellman equation (9)
holds. This can be understood by observing the TD-error

δ(y, u, x̂+, x̂, χ+, χ)

= ℓ(y, u, χ, χ+) + γV̂W (x̂, χ)− V̂W (x̂+, χ+),
(17)

where the definition of δ entails that, whenever we explore, it
is not sufficient to select the future decision variable χ+, but
we also need to select the current one χ. In particular, since
our observer is based on optimizing the value function, χ
needs to be consistent with χ+, i.e., χ must also be optimal
in the sense that it should minimize the cost, given χ+. We
formalize this concept in the optimization problem

LW (y, u, x̂, χ+) = argmin
χ

ℓ(y, u, χ+, χ) + γV̂W (x̂, χ),

(18)
where LW (y, u, x̂, x+) is a smoothing policy which we will
use to define our algorithm. Note that LW is also used to
introduce the observer policy UW obtained as

UW (y, u, x̂) = argmin
χ+

ℓ(y, u, χ+, χ) + γV̂W (x̂, χ) (19a)

s.t. χ = LW (y, u, x̂, χ+). (19b)

It is worth noticing that, upon successful learning, UW and
LW converge to the optimal policies U⋆ and L⋆, where U⋆

is the optimal stationary observer policy in (11) and L⋆ is
such that

x̂t|t = L⋆(yt, ut, x̂t|t−1, x̂t+1|t),

i.e., it is the smoothing policy that allows one to compute
the corrected state estimate x̂t|t, if the optimal stationary
observer policy in (11) is applied.

Finally, we can turn to the definition of a proce-
dure to generate the batch of data. Observing that at
time t(i) the quantities (y(i), u(i), x̂(i)) are known, we
need to generate the remaining elements of z(i) defined
in (15), i.e., (x̂

(i)
+ , χ

(i)
+ , χ(i)). Using the current observer

policy UW , we can immediately compute the state esti-
mate x̂

(i)
+ = UW (y(i), u(i), x̂(i)). Afterwards, the predicted

decision variable χ
(i)
+ is chosen in a neighbourhood of

x̂
(i)
+ : though alternatives are possible, we adopt the ϵ-greedy

strategy for the sake of simplicity, which yields

χ
(i)
+ = x̂

(i)
+ + ξ(i), (20)

where ξ ∼ N (0,Ξ) is a given random vector, with zero mean
and Ξ ≻ 0 ∈ Rnx×nx . Finally, a consistent current decision
variable χ(i) is obtained as χ(i) = LW (y(i), u(i), x̂(i), χ

(i)
+ ).

D. LSTDO Algorithm

Denoting as Nb the number of batches, Algorithm 1
provides the pseudocode for LSTDO.

IV. NUMERICAL RESULTS

We consider the linear discrete-time dynamical system
associated with the three-dimensional Euclidean space de-
scribed by the axes (µ, η, ζ), with state

xt =
[
µt vµt ηt vηt ζt

]⊤
,



Algorithm 1: LSTDO Method
Given γ, N , Nb, u0:N , Ξ;
Initialize W , x̂0|−1 = x̄0;
for j = 1, 2, . . . , Nb do

Simulate the real system to have y0:N ;
Generate x̂(0:N+1) using UW ;
Explore as in (20) to define χ

(0:N+1)
+ ;

for ti ∈ {0, 1, 2, . . . , N} do
Define χ(i) = LW (y(i), u(i), x̂(i), χ

(i)
+ );

Compute δ(i) as in (17);
Compute ∇W V̂W (x̂

(i)
+ , χ

(i)
+ ) = ϕ(x̂

(i)
+ , χ

(i)
+ );

Store δ(i), ∇W V̂W (x̂
(i)
+ , χ

(i)
+ )

end
Solve (13) to update W ;
Compute LW ,UW as in (18) and (19)

end

batch 0 batch 15 batch 30 batch 49

nc(ε = 103) 0 90 93 100
nc(ε = 104) 0 93 97 100

TABLE I: Number of simulations at convergence

where vµt and vηt are the velocities with respect to the axes
µ and η. The state-space representation of the dynamical
system as in (1) is given by

A =


1 ts 0 0 0
0 1 0 0 0
0 0 1 ts 0
0 0 0 1 0
0 0 0 0 1

 , C =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 ,

where ts = 0.1 is the sampling time. We consider an au-
tonomous system, since the presence of a known input does
not affect the learning algorithm, hence we assume B = 0.
This dynamical system describes the discretization of the
motion of an aircraft with constant velocity coordinates on
a plane described by the coordinates (µ, η) at a constant
altitude ζ. The measured output are given by the exact
position of the aircraft. The process and the measurement
noises are Gaussian white signals with covariance matrices
Q and R such that

K =

[
t3s
3

t2s
2

t2s
2 ts

]
, Q =

σ2
µK 0 0
0 σ2

ηK 0
0 0 σ2

ζ ts

 , R = 10 Iny

where σµ = ση = σζ = 5. To apply the LSTDO method
we assume N = 100, Nb = 50, γ = 0.9. We initialize
100 different simulations with initial H and h such that
H ∼ N (0, 100Inx) and h ∼ N (0, 100). The tuning of
LSTDO is done by choosing the amount of exploration, i.e.,
the parameter ε such that ξ(i) in (20) is sampled accord-
ing to N (0, ε Inx

). In our simulation, we use the values
ε = 103 and ε = 104 to tune the LSTDO. In Figure 1 we
display for every batch the average value over the different

(a) Frobenius norm of the error between H and P−1
⋆

(b) Absolute error between h and c⋆

(c) Absolute value of δ

Fig. 1: Linear case: blue line for ε = 103 and green line for
ε = 104

simulations of the Frobenius norm of error H − P−1
⋆ , the

absolute value of the error h− c⋆ and the absolute value
of δ on a logarithmic scale. Table I shows, instead, the
number of converged simulations nc at specific batches. Both
Figure 1 and Table I suggest that our method can be used
successfully to learn the parameters of the stationary optimal
value function V⋆. Moreover, the LSTDO method shows fast
convergence, since most of the simulations converge in few
iterations. Finally, we observe that the amount of exploration
affects considerably the performance of the LSTDO and, in
particular, that the choice of a larger value for ε is related
to quicker convergence and smaller errors on the estimated
parameters.

V. CONCLUSIONS

In this paper, we discussed how learning techniques can
be also applied to learn optimal observers for linear systems
from data. We have highlighted an important difference with
learning applied to control, such that we had to introduce
some modifications to common RL algorithms. We have
demonstrated in simulations that the optimal observer is
correctly learned by our algorithm.

Future work will consider extending our framework to
cover nonlinear systems and to adapt a wider class of RL
algorithms to observer learning.
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APPENDIX I
CONVERGENCE OF ct+1

In order to prove that ct+1 converges to c⋆ in expectation,
we initially define the estimation error x̃t := xt − x̂t|t−1 and
the measurement error ỹt := yt − Cx̂t|t−1 at time t. Exploit-
ing the dynamical system (1) and the evolution in time of
the optimal predicted state estimates (5a), we compute their
dynamics

x̃t+1 = A(Inx −KtC)x̃t + ωt −AKtvt, (21a)
ỹt = Cx̃t + vt. (21b)

We observe that from Assumption 1 defining x̂0|−1 = x̄0 the
estimation error x̃0 is distributed according to N (0, P̃0), with
P̃0 = P0. Consequently, it is possible to recursively prove
that at every time instant t both x̃t and ỹt are normally
distributed, i.e.,

x̃t+1 ∼ N (mx̃,t+1, P̃t+1), ỹt ∼ N (mỹ,t, S̃t),

since both of them can be described as the sum of nor-
mally distributed independent random variables exploiting
equations (21a) and (21b) and Assumption 1. Moreover, we
compute

mx̃,t+1 = Ex̃t+1 [x̃t+1]

= A(Inx −KtC)Ex̃t [x̃t] + Eωt [ωt]−AKtEvt [vt]

= 0

P̃t+1 = Varx̃t+1
[x̃t+1]

= Q+AKtRK⊤
t A⊤

+A(Inx
−KtC)P̃t(Inx

−KtC)⊤A⊤,

and

mỹ,t = Eỹt
[ỹt] = CEx̃t

[x̃t] + Evt [vt] = 0,

S̃t = Varỹt
[ỹt] = R+ CP̃tC

⊤.

Knowing from the first part of Lemma 2 that as t → ∞ we
have Pt+1 = P⋆, Kt = K⋆, St = S⋆, the discrete Lyapunov
equation

A(Inx −K⋆C)P̃ (Inx −K⋆C)⊤A⊤ − P̃

+
(
Q+AK⋆RK⊤

⋆ A⊤) = 0

admits a unique positive definite solution P̃⋆ ≻ 0, such
that limt→∞ P̃t = P̃⋆, since Q+AK⋆RK⊤

⋆ A⊤ ≻ 0 and
A(Inx

− K⋆C) is asymptotically stable (see [18]). In turn,
this implies that S̃⋆ = R+ CP̃⋆C

⊤ ≻ 0.
Finally, we initialize c0 = 0 and exploit (5e) and the

definition of ỹ to compute ct+1 as

ct+1 =

t∑
i=0

γt−i∥ỹi∥2S−1
i

.

The following relations

lim
t→∞

t∑
i=0

γt−i =
1

1− γ

and, for x ∼ N (m,Σ),

Ex[x
⊤Ax] = tr(AΣ) +m⊤Am,

hold and we use them to prove that ct+1 converge to a costant
value in expectation, since at stationarity we observe that

lim
t→∞

Eỹ0:t [ ct+1 ] = lim
t→∞

t∑
i=0

γt−iEỹi

[
∥ỹi∥2S−1

i

]
= lim

t→∞

t∑
i=0

γt−i tr
(
S−1
i S̃i

)
=

1

1− γ
tr
(
S−1
⋆ S̃⋆

)
where tr is the trace operator. We conclude our proof by
defining

c⋆ =
1

1− γ
tr
(
S−1
⋆ S̃⋆

)
.


