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ABSTRACT The combination of model predictive control (MPC) and learning methods has been gaining
increasing attention as a tool to control systems that may be difficult to model. Using MPC as a function
approximator in reinforcement learning (RL) is one approach to reduce the reliance on accurate models.
RL is dependent on exploration to learn, and currently, simple heuristics based on random perturbations
are most common. This paper considers variance-based exploration in RL geared towards using MPC
as function approximator. We propose to use a non-probabilistic measure of uncertainty of the value
function approximator in value-based RL methods. Uncertainty is measured by a variance estimate based on
inverse distance weighting (IDW). The IDW framework is computationally cheap to evaluate and therefore
well-suited in an online setting, using already sampled state transitions and rewards. The gradient of the
variance estimate is then used to perturb the policy parameters in a direction where the variance of the value
function estimate is increasing. The proposed method is verified on two simulation examples, considering
both linear and nonlinear system dynamics, and compared to standard exploration methods using random
perturbations.

INDEX TERMS Inverse distance weighting, model predictive control, Q-learning, reinforcement learning.

I. INTRODUCTION
Reinforcement learning (RL) is a powerful tool for tackling
Markov decision processes (MDPs). Rather than relying on a
model of the state transition probabilities, samples of state
transitions and associated rewards can be used to improve
the performance of a control policy. RL has drawn increasing
attention due to its accomplishments in robotics and games,
see e.g. [1] and [2]. However, as neural networks (NNs) typi-
cally are used as function approximators, guarantees regard-
ing the closed-loop behavior of the policy are difficult to
provide.

Model predictive control (MPC) has established itself as
the primary control method for the systematic handling of
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system constraints. The MPC scheme relies on a sufficiently
accurate model of the system, to optimize the system per-
formance with respect to a given objective while respecting
constraints. Different combinations of MPC and learning
have been proposed to deal with systems that may be hard to
model that also inherit closed-loop behaviors that are easier
to analyze, see e.g. [3], [4], and [5]. In [6], the authors suggest
using parameterized MPC schemes as a function approxima-
tor of the policy and value function in RL. Parameterizing
the MPC problem allows RL to improve the policy as data is
acquired while maintaining an MPC structure, which offers
rich tools to analyze the resulting closed-loop behavior.

RL requires that the actions applied to the real system
undergo some exploration. If the same, deterministic pol-
icy is always applied to the system, it is not possible to
discover alternative actions that may improve closed-loop
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performance. One way to quantify an effective exploration
is in terms of regret. The notion of regret in RL is defined
as the loss in reward for choosing a suboptimal over an
optimal action. An effective exploration strategy can then
be defined as minimizing the cumulative sum of regrets.
However, we cannot directly obtain the regret as the optimal
action is not known. Hence, the concept of regret in itself
cannot be used to perform effective exploration.

Currently, the most commonly used methods to explore
are simple heuristics. For discrete action spaces, methods
such as ϵ-greedy [7] or Boltzmann exploration [8] are used.
For continuous action spaces, stochastic policies for explo-
ration are generated e.g. by adding Gaussian noise to a deter-
ministic policy [9]. In the case of using stochastic policy
gradient methods, the distribution of the stochastic policy
itself is parameterized and adjusted by RL. Exploration is
then ensured by sampling from the resulting distribution that
describes the stochastic policy [7].

A collective term for the aforementioned exploration
strategies is dithering strategies. Because the perturbation
from one time step to the next is not coordinated, the explo-
ration is not temporally extended or what we refer to as deep.
For problems that require consistent exploration over sev-
eral time steps to realize improved closed-loop performance,
dithering strategies may in fact prevent efficient exploration.
The most straightforward method for ensuring deep explo-
ration, is random perturbations in parameter space, as sug-
gested by the authors in [10]. A random perturbation in the
parameters is introduced at the beginning of an episode, and
fixed throughout that episode, such that a temporally coordi-
nated sequence of actions is generated. However, the potential
benefit of using random noise in parameter space rather than
in action space is generally not obvious and needs to be
evaluated on a case-by-case basis. Moreover, when using
random parameter noise for exploration in large parameter
spaces, we are at risk of adding a lot of disturbances that yield
little effect on the resulting policy.

Although the aforementioned heuristics perform well for
many tasks, they are all undirected and therefore may
take exponentially long to learn the optimal policy [11].
To learn efficiently, the exploration method should priori-
tize potentially informative states and actions. To do this,
exploration should be done with regard to a notion of
uncertainty.

Directed exploration is well understood for themulti-armed
bandit problem, which corresponds to a one-step stateless
MDP problem. One strategy is ‘‘optimism in the face of
uncertainty’’, which corresponds to preferring actions with
uncertain values. This strategy has led to e.g. the upper
confidence bound (UCB) algorithm. The UCB algorithm acts
greedily w.r.t. to the action-value function and an exploration
bonus based on a confidence interval of the reward, see
e.g. [12]. The UCB algorithm in [12] has been extended
to RL in different forms, but the resulting algorithms have
been considered mostly as theoretical results due to the
computational complexity.

Thompson sampling (TS) is a related strategy developed
for the bandit problem. TS sampling is based on a Bayesian
approach to maintaining a posterior distribution over models.
We sample from the posterior distribution and then select the
action that optimizes the sampled model [13]. Extending TS
to RL would involve maintaining a distribution of MDPs,
which in general is difficult. Even updating a Bayesian model
of the value function for an MDP will for most realistic
problem sizes be computationally intractable. For bandit
problems, both UCB and TS achieve a sublinear total regret.
In comparison, ϵ-greedy has a linear total regret, which is the
same as with no exploration at all.

As a means to reduce the computational burden, yet
inspired by TS, the authors in [14] introduced the concept
of randomized value functions. The use of randomized value
functions aims to approximate samples from the posterior
distribution of the value function. However, the method is
developed only for linear parameterizations of the value func-
tion. An extension was made to nonlinear parameterizations,
more specifically to NNs, in [15], where bootstrapped deep
Q-function NNs (DQN) were used to approximate the poste-
rior distribution of the Q-function.

The concept of randomized value functions has also moti-
vated the NoisyNets as proposed in [16]. Rather than training
an NN with K outputs or heads to build an approximate
posterior distribution of Q as in [15], the authors in [16] inject
noise in the NN parameters and use RL to tune the intensity
i.e. the variance of the noise distributions. A new sample of
the Q-function is then obtained by sampling parameter noise
from the tuned noise distributions, and exploration is done by
acting greedily with respect to that Q-function.

Bootstrapped DQNs have also been used to develop a prac-
tical UCB approach that applies to MDPs. Namely, the boot-
strapped DQN was used to obtain an empirical estimate of
the mean and standard deviation of the Q-function posterior
distribution [17]. This was in turn used to formulate a UCB,
and the action was selected by maximizing the UCB. Along
the same lines, the DQN framework was used by the authors
in [18] in order to obtain confidence intervals to formulate
a surrogate of the regret, which in turn was used to guide
exploration. The use of randomized value functions consti-
tutes an important step towards more effective exploration
strategies in RL, although it for nonlinear value function
parameterizations only applies to discrete action spaces.

A. CONTRIBUTION
The goal of this work is to develop a directed and deep
exploration strategy for continuous action spaces, that is
suitable for problems where we wish to use MPC as a
function approximator in RL. For this purpose, we will
adopt the principle of ‘‘optimism in the face of uncertainty’’.
To the best of the authors’ knowledge, few studies exist on
directed exploration strategies in continuous action spaces.
One important exception is the work in [19], where K value
function approximators are trained independently, and the
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agent is encouraged to explore states where the value function
approximators show the largest disagreement. Although the
exploration strategy resembles ours, it is based on knowing
the true model of the MDP, which is not a requirement in our
case. We present an uncertainty-based exploration method
not limited to, but particularly suited for MPC, and make the
following contributions:
• we introduce the use of inverse distance weighting
(IDW) to estimate the variance of the MPC function
approximator at a low computational cost;

• we formulate a novel approach to uncertainty-based
exploration in parameter space via the IDW variance
estimate;

• we compare the proposed method with random
(Gaussian) perturbations in both action and parameter
space.

The proposed method is verified on two simulation examples,
considering both linear and nonlinear dynamics, for which
variance-based exploration performs better in terms of sig-
nificantly improving the cumulative rewards during learning.

The paper is structured as follows. Section II provides
background information on the problem statement. This is
followed by a short introduction to exploration in parame-
ter space and its application to MPC-based RL. Section IV
details the IDW framework and how this can be used to obtain
a variance estimate of the selected value function approxi-
mator. The use of the IDW variance in exploration is then
detailed in Section V, followed by two simulation examples
in Section VI. Finally, conclusions are given in Section VII.

II. BACKGROUND
The RL framework applies to problems that can be cast as an
MDP. MDPs are described by a state s ∈ S ⊆ Rn and the
input a ∈ A ⊆ Rm. We will consider a special case of MDPs,
described by the deterministic dynamics

sk+1 = f (sk , ak ), (1)

where sk+1 denotes the next state and k denotes the physical
time of the system. The function f : Rn+m

→ Rn denotes the
(possibly nonlinear) state transition. The system is subject to
the following constraints

h(sk , ak ) ≤ 0, (2)

where h : Rn+m
→ Rd describes a mixed input-state

constraint. We will assume in the following that a stage cost
L(sk , ak ), analogous to negative reward, is provided. Our goal
is to find a deterministic policy π that maps from state to
action i.e. π : S → A, that minimizes the sum of discounted
costs. The optimal policy, denoted π⋆, is the solution to the
following infinite-horizon problem

V ⋆(s) = min
π

∞∑
j=0

γjL(xj,π (xj)) (3a)

s.t ∀j ∈ I≥0 : x0 = s, (3b)

xj+1 = f (xj,π (xj)), (3c)

h(xj,π (xj)) ≤ 0, (3d)

π (xj) ∈ A, (3e)

where V ⋆(s) is the optimal value function, γ ∈ (0, 1] is a dis-
count factor and {xj}∞j=1 is the predicted state trajectory under
the policy π for an initial state s. The optimal action-value
function can then be defined as follows

Q⋆(s, a) = L(s, a)+ γV ⋆(f (s, a)), (4)

and is related to the value function through the Bellman
equality

V ⋆(s) = Q⋆(s,π⋆(s)) = min
a
Q⋆(s, a). (5)

We parameterize the value function using parameter vector θ
and adjust these using RL towards the optimal value function,
and thereby the optimal policy.

A. MPC AS A FUNCTION APPROXIMATOR IN RL
As proposed by the authors in [6], we will use a parametric
MPC scheme as a function approximator in RL. A parame-
terized finite-horizon MPC scheme is formulated as

Vθ (s) = min
x,u,σ

γN (Tθ (xN )+ ψ⊤NσN )

+

N−1∑
j=0

γj(ℓθ (xj,uj)+ ψ⊤σ j) (6a)

s.t ∀j ∈ I0:N−1 : x0 = s, (6b)

xj+1 = f θ (xj,uj), , (6c)

hθ (xj,uj) ≤ σ j, hNθ (xN ) ≤ σN , (6d)

σ j ≥ 0, σN ≥ 0, (6e)

uj ∈ A, (6f)

where x = {x0, . . . , xN } and u = {u0, . . . ,uN−1}. In the
objective ℓθ (x,u) denotes the parameterized stage cost and
Tθ (x) the parameterized terminal cost. The parameterized
prediction model is denoted f θ (x,u), hθ (x,u) describes the
mixed input and state constraints, and hNθ (x) describes the
terminal constraint. Slack variables σ j and σN are used to
prevent the MPC scheme from becoming infeasible due to
the possible model mismatch between the true system (1)
and the prediction model f θ . The constant vectors ψ and
ψN should be selected sufficiently large, such that constraint
violations are accepted as seldom as possible while still ensur-
ing feasibility [20]. Stability and constraint satisfaction of the
parameterized MPC scheme in (6) is addressed in e.g. [21].

Using MPC as a function approximator, the policy is given
by the first element in the input sequencewhich is the solution
to (6), i.e.

πθ (s) = u⋆
0(s, θ ). (7)

Remark 1: It was shown in [6, Theorem 1], that given
a parameterization of the cost and constraints that is rich
enough, the MPC scheme can capture the optimal policy even
using an inaccurate prediction model.
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We note that rich function approximators, such as NNs,
can be used with the proposed framework to capture complex
functions in the MPC scheme. In [22], the authors suggest
using convex NNs to modify the stage cost in (6a). Next,
we will describe Q-learning which is one method that can be
used to update the parameters θ .

B. Q-LEARNING
Q-learning is an RL method based on learning the opti-
mal action-value function Q⋆(s, a), which describes the
joint desirability of a given state-action pair [7]. Q-learning
is a leading model-free RL alternative, which learns the
Q-function directly from experience, without requiring
access to a model.

Using MPC as a function approximator, we can estimate
the Q-function by constraining the first action in the input
sequence in (6), according to

Qθ (s, a) = min
x,u,σ

γN (Tθ (xN )+ ψ⊤NσN )

+

N−1∑
j=0

γj(ℓθ (xj,uj)+ ψ⊤σ j) (8a)

s.t (6b)− (6f ), u0 = a. (8b)

It can be shown that the Q-function estimate (8), the value
function estimate (6), and the policy (7) satisfy the Bellman
equality in (5) [6]. This implies that in a Q-learning setting,
the policy estimate is obtained as

πθ (s) = argmin
a
Qθ (s, a). (9)

Q-learning aims to update the parameters θ such as to min-
imize the estimation error of the Q-function, which in a
deterministic setting can be expressed as (see e.g. [7])

min
θ

Es0

[
1
K

K−1∑
k=0

(
Q⋆(sk , ak )− Qθ (sk , ak )

)2]
, (10)

where K is the episode length and the expectation Es0 is
taken over either randomly distributed initial conditions or
fixed initial conditions. However, as the true action-value
functionQ⋆(s, a) is generally not known, a classical approach
to Q-learning is parameter updates driven by the temporal
difference (TD) error [7] defined as

δk = L(sk , ak )+ γVθ (sk+1)− Qθ (sk , ak ). (11)

At each time step the parameters are updated according to

θ ← θ + αδk∇θQθ (sk , ak ), (12)

where α > 0 is a scalar denoting the step size. The gradient
∇θQθ (sk , ak ) can be obtained from sensitivity analysis of the
MPC scheme, as detailed in [6].

An alternative to the incremental update of parameters
in (12), is a batch approach to Q-learning. This method is
known to result in more stable learning [7]. A batch approach

entails introducing an additional set of parameters θ̃ that is
continuously being updated

θ̃ ← θ̃ + αδ̃k∇θ̃Qθ̃ (sk , ak ), (13)

where δ̃k = L(sk , ak )+γV
θ̃
(sk+1)−Qθ̃ (sk , ak ). The action ak

is selected according to the action-value function Qθ (sk , ak ),
defined by parameters θ that remain fixed for the duration
of one batch. As the updated parameters θ̃ converge, which
marks the end of a batch, we replace the fixed parameters θ
with the updated ones θ̃ and begin a new batch.
Q-learning techniques aim to fit Qθ (s, a) to Q⋆(s, a), with

the hope that Qθ ≈ Q⋆ will result in πθ ≈ π⋆. To make this
fitting possible, we have to deviate from the current policy
estimate, i.e. explore. A standard strategy for exploring in the
case of continuous actions is adding random perturbations to
the policy, e.g. in the form of Gaussian noise. This results in
a stochastic policy that induces undirected exploration, i.e.

µθ (a|s) = πθ (s)+ ζ a, (14)

where ζ a is normally distributed according to ζ a ∼

N (0, σ 2
aIa) where σ a is the standard deviation and Ia is the

identity matrix. Convergence properties for Q-learning are
established in e.g. [23] and elaborated further in Section V-B.
The stochastic policy in (14) will serve as a baseline for the
variance-based exploration method proposed in this paper.

III. PARAMETER SPACE EXPLORATION
Exploration in parameter space is closely related to the con-
cept of randomized value functions, which may be used as
an alternative to TS without the need for an intractable exact
posterior representation. Exploration in parameter space has
been studied in, e.g., [10] and [16]. The referenced works
are similar in the sense that NNs are used for approximating
the value function, and that a sample from an approximate
posterior distribution of the value function is used to explore.

To the best of the authors’ knowledge, only exploration
in action space has been tested for MPC as a function
approximator in RL. Comparing NNs and MPC schemes as
function approximators, we conjecture that exploration in
parameter space is particularly suited when usingMPC, as the
parametrization is smaller and less convoluted than for NNs
(due to the layers and consecutive nonlinear activations), and
also more easily interpreted.

We therefore propose to adopt exploration in the parameter
space for MPC, by adding uncorrelated Gaussian noise to the
parameters as follows

θ̂ = θ + ζ p, (15)

where ζ p ∼ N (0, σ 2
pIp). The exploration policy is then

obtained by acting greedily with respect to the Q-function
defined by the perturbed parameters, i.e.

π̂
θ̂
= argmin

a
Q
θ̂
(s, a). (16)

The exploration method is summarized in Algorithm 1, here
for a continuous task. We note that the method easily extends
to an episodic task.
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Algorithm 1 Exploration in Parameter Space
Input: Initial MPC parameters θ0, initial learning
parameters θ̃0, initial state s0, batch update frequency
b, learning step size α, parameter noise standard
deviation σ p, length of simulation kmax ;
Output: Policy πθ
while k ≤ kmax do

if mod(k, b) = 0 then
Update MPC parameters with learned
parameters θk = θ̃k
Perturb parameters to get θ̂k (15)

Act greedily w.r.t. current Q-estimate (16)
Update θ̃k (13)
k ← k + 1

Remark 2: We note that exploration in parameter space
in combination with Q-learning, generally calls for a batch
approach to Q-learning as given by (13). For an incremental
approach as in (12) where we only have one set of param-
eters θ , the resulting TD-error as we update the parame-
ters according to (15) would be L(sk , ak ) + γV

θ̂
(sk+1) −

Q
θ̂
(sk ,π θ̂ ) where Qθ̂ (sk ,π θ̂ ) = V

θ̂
(sk ), i.e. we are fitting the

V-function rather than the Q-function.
Depending on the selected parameterization and the result-

ing range of parameters, which in turn depends on the prob-
lem at hand, we may choose to perturb the normalized param-
eters in order to use the same scale for perturbing the entire
parameter vector. Alternatively, the states and actions in the
problem can also be scaled, which will result in a smaller
variation in parameter range, which is also known to speed
up learning.

In the next section, we will consider an alternative to
adding random perturbations to the parameters, namely
adding a perturbation based on the uncertainty of the value
function. We will use the exploration method in (15) as a
second baseline for our proposed method.

IV. VALUE FUNCTION IDW VARIANCE
To guide exploration using the uncertainty of our value func-
tion estimate, a method is needed for quantifying such uncer-
tainty. In Bayesian exploration, we use the covariance of the
resulting posterior distribution of a Gaussian process (GP),
to guide exploration. Alternatively, interpolation methods can
be used to define non-probabilistic uncertainty measures that
are computationally cheaper to evaluate. In [24], radial basis
functions (RBFs) were used to formulate a measure of uncer-
tainty based on sampled points. In [25], an uncertainty mea-
sure based on IDW was compared to a Bayesian exploration
for global optimization and showed competitive performance.
We propose to use IDWs for quantifying the uncertainty of the
value function.

The IDW framework can be used to estimate uncertainty
for both the value function and the action-value function.
Because we will use the IDW variance to measure parametric

uncertainty only, we do not need to consider the additional
input argument of the action-value function, and therefore
choose to apply IDW to the value function.

A. INVERSE DISTANCE WEIGHTING
Given a data set, IDW is an interpolation method that also
provides us with a variance estimate given a predictor of the
function that is sampled. We assume that we have a data set
consisting of M samples Vi = V (ηi) of V : Rq

→ R
at corresponding points η1, . . . , ηM . In the following, the
function V is the value function, that we for now assume that
we can sample, and η = [θ , s]⊤.
We may consider the following scaling function φ : Rq

→

Rq to be immune to the different scaling of individual param-
eters and states [25]

φ(η) = diag
(

2
ηmax − ηmin

)(
η −

ηmax + ηmin

2

)
, (17)

so that φ(η) ∈ [−1, 1] for all η ∈
[
ηmin, ηmax

]
, where

[ηmax, ηmin] ⊂ Rq. The min and max values of the states
and parameters can be based on constraints and reasonable
bounds on possible parameter values.

For a new instance of η, we consider the (scaled) squared
Euclidean distance function d2 : Rq

× Rq
→ R given as

d2(η, ηi) = (φ(ηi)− φ(η))
⊤(φ(ηi)− φ(η)), (18)

for i = 1, . . . ,M . The IDW function wi : Rq
→ R can then

be defined as in [26]

wi(η) =
1

d2(η, ηi)
, (19)

and assigns larger weights wi(η) to samples that are close
to η than to samples further away. In [27], the following
alternative weighting function was suggested

wi(η) =
e−d

2(η,ηi)

d2(η, ηi)
. (20)

The weighting function in (20) is similar to (19) for small
values of d2, but more quickly reduces the effect of points ηi
far away from η due to the exponential term. We then define
the following function vi : Rq

→ R as

vi(η) =
wi(η)∑M
j=1 wj(η)

(21)

which allows us to define

V̄ (η) =
M∑
i=1

vi(η)Vi, (22)

which is an IDW interpolation of {(ηi,Vi)}
M
i=1. For a new

instance of η, an estimate of V (η) is obtained by interpo-
lating on the M existing samples of V . In its original form,
the selection function in (21), will include the option that
in case we evaluate an already sampled instance of η, i.e.
η ∈ {ηi, . . . , ηM }, we use that vi(ηj) = 1 for i = j and
vi(ηi) = 0 otherwise. However, for our purpose we will not
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FIGURE 1. Example of IDW: Function V (green) and samples (ηi ,Vi ) (blue
dots). Error bands are given using the IDW variance estimate in (23) i.e.

±3
√

r2(η) (shaded blue) evaluated for the predictor V̂ (η).

evaluate already sampled values of η, as we wish to explore
new values of the parameters. This is explained further in
Section V-A. It was shown in [25, Lemma 1], for both choices
of the weighting function, (19) and (20), that the interpolation
function V̄ (η) is differentiable everywhere on Rq.
Based on the IDW interpolation function, we define

the IDW variance function r2 : Rq
→ R as given by [25],

[27], [28]

r2(η) =
M∑
i=1

vi(η)
(
Vi − V̂ (η)

)2
, (23)

where Vθ (s) = V̂ (η), Vθ (s) being the parameterized value
function in (6) for which we want to estimate the variance.
Essentially, the IDW variance estimate is a weighted average
of the squared error between the sampled value functions Vi
and the predictor V̂ (η). As V̂ (η) is differentiable, it fol-
lows that the IDW variance estimate is also differentiable
everywhere on Rq. Figure 1 is one example of how the
IDW variance estimate can be used to define error bounds
for a predictor of a function V with, in this case, a scalar
argument η.

B. P-STEP TD PREDICTION OF V
Monte Carlo (MC) learning involves learning from experi-
ence, using sequences of states, actions, and costs. MC learn-
ing offers an alternative method to TD-learning (11) of
the action-value or value function. For a general MDP
with stochastic dynamics and possibly a stochastic policy,
MC learning uses the mean sum of discounted costs from
several episodes of experience as the value function estimate.
In the following, we propose to use MC learning of the value
function as a target in the IDW framework.

As we are considering deterministic policies for determin-
istic environments, one episode is sufficient to provide an
MC value function estimate. Because the true value function
is defined for an infinite horizon (3), we bootstrap on our

value function estimate to compensate for considering an
episode with finite length. We estimate the value function as
the sum of discounted costs, evaluated for p samples of the
state and p − 1 samples of the action, bootstrapping on the
value function approximator for the last state. This can be
described as a p-step prediction of V, based on a first-visit
approach to MC learning [7].

We now consider a policy π θ̄ , where θ̄ denotes the param-
eter vector. For notational convenience we let π θ̄ = π̄ . For
p ≥ 1 we consider sampled states and actions, i.e.

{sk−p, ak−p, sk−p+1, . . . , ak−1, sk}, (24)

obtained by acting according to policy π̄ . The data in (24) is
used to predict the value function by evaluating the sum of
discounted costs. The V estimate is given as

Vk (θ̄k , sk−p) = L(sk−p, ak−p)+ γL(sk−p+1, ak−p+1)

+ γ2L(sk−p+2, ak−p+2)+ . . .

+ γp−1L(sk−1, ak−1)+ γpVθ̄k (sk ), (25)

where we evaluate the value function estimate Vθ̄ for the
last sampled state, using the current parameter vector θ̄k .
The number of samples p thereby becomes a hyperparameter.
Because we bootstrap on our value function, both the targets
and the predictor in (23) are based on the function approxima-
tor in (6). It is therefore important that p is large enough, such
that the effect of bootstrapping is small. Moreover, the effect
of discountingwill reduce the bias of bootstrapping. Selecting
p large relative to the batch size, means that we obtain samples
of the value function for only a few instances of the state.
In an episodic setting where we initialize the system from
the same initial condition at the beginning of a new batch,
we will evaluate the value function variance for the same state
and therefore depend on fewer samples of the value function
target. In a continuing task on the other hand, the system can
be in different states at the beginning of each new batch, and
we need to provide samples of the value function targets for
more instances of the state. An alternative to the target we
proposed in (25), is an exponentially weighted estimate as
the authors propose for the advantage function in [29].
Remark 3: As the variance-based exploration method is

perturbing in parameter space, we should, as for the ran-
dom exploration in parameter space, use a batch manner
to Q-learning as given in (13). This entails having two sets
of parameters, where one set of parameters is continuously
updated θ̃ , whereas the other set of parameters θ = θ̄ are
fixed for one batch and is used to define a policy that visits
informative states.

Using the IDW variance function in (23), we obtain a vari-
ance estimate based on the weighted average of the squared
difference between the targets in (25) and the MPC-based
value function approximator in (6). The V-function estimate
in (25) is particular for the current policy estimate π̄ , i.e.
we are estimating V π̄ . As the parameters are updated from
θ̄ to θ̄

′
at the beginning of a new batch, data is collected
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with an updated policy π̄ ′, and we are making p-step predic-
tions of V π̄

′

. Although the previously sampled V targets are
estimated for increasingly more outdated policies, they can
be useful for estimating the uncertainty w.r.t the parameters.
The weights in (23) are assigned using inverse distances
according to either (19) or (20), i.e. we influence the impact of
previously sampled targets on our variance estimate through
the choice of IDW function.

C. PRACTICAL IMPLEMENTATION
As the number of samples M increases, the IDW vari-
ance function becomes increasingly computationally heavy
to evaluate. For a practical implementation, that can run fast in
real-time, we set a limit for the maximum number of samples
Mmax used to evaluate (23). If our data set already contains
Mmax samples, we evaluate the following criterion for a new
instance of η,

Mmax∑
i=1

d2(η, ηi) > min
{Mmax∑

i=1

d2(ηi, η1), . . . ,

Mmax∑
i=1

d2(ηi, ηMmax
)
}
. (26)

If the summed distance from a new sample η in (26) to our
current samples η1, . . . , ηMmax

is larger than the least different
sample in our dataset, we will replace the old sample with the
new. In the opposite case, we will not update our data set.
The maximum number of samples Mmax thereby becomes a
hyperparameter.
Remark 4: Although the size of the data set in this frame-

work can be controlled by limiting the number of samples to
include, the parameter and state dimension will also affect
the size. The IDW variance (23) is only evaluated at the
beginning of each batch, so the computation time of the
variance itself may therefore not necessarily be a problem.
Nonetheless, a small parameter space will ease the work
related to handling the sampled data needed to evaluate the
IDWvariance. This framework is therefore particularly suited
for using MPC as a function approximator, which typically
uses much fewer parameters than the standard choice of NNs.

V. VARIANCE-BASED EXPLORATION
In this section, we will outline how we can leverage an
IDW framework as detailed in the previous section, to direct
exploration to where we have uncertainty in our value func-
tion estimate. We are then acting according to the strategy
of ‘‘optimism in the face of uncertainty’’, and hoping that
by exploring areas of high uncertainty our policy will visit
more informative states and actions, and hence explore more
efficiently.

Combining a variance-based exploration in the parameter
space with a batch approach to Q-learning, allows us to
consider a perturbation to the parameters at the beginning of
each batch, and keep these parameter values for the duration
of one batch. The advantage of this approach is that we induce

a state-dependent change in the policy over multiple time
steps, what is often referred to as deep exploration.

A. VARIANCE-BASED PERTURBATIONS IN PARAMETER
SPACE
We first define the gradient of the IDW variance function
w.r.t. the parameters:

∇θ r2(η) =
M∑
i=1

∇θvi(η)(Vi − V̂ (η))2

− 2 vi(η)(Vi − V̂ (η))∇θ V̂ (η), (27)

to highlight the fact that the sensitivity of the MPC scheme,
in terms of ∇θ V̂ (η), is used in evaluating the gradient of
the variance. We propose to restrict the variance gradient by
using the standard deviation used for Gaussian exploration
in parameter space. This will, first of all, make the two
methods highly comparable, in terms of how large the applied
perturbation in the parameters can be, and also prevents the
addition of yet another hyperparameter, i.e.

∇θ r̂2(θ , s) = sat(∇θ r2(θ , s),−2σp, 2σp). (28)

We propose the following update of the parameters

θ̄ = θ +
1
2
∇θ r̂2(θ , s)+

1
2
ζ p, (29)

where ζ p is a noise term as defined for (15). The gradient
of the IDW function is added to the parameters, in the hope
that exploring parameter values in a direction where our value
function is uncertain, may improve our estimate. The noise
term is added to ensure some random exploration in parame-
ter space, to collect data such that the variance estimate of our
function approximator is meaningful. A policy estimate based
on the perturbed parameters in (29), is obtained according to

π θ̄ (sk ) = argmin
a
Qθ̄ (sk , ak ). (30)

The formulation in (29) and (30) resembles the exploration
method of randomized value functions, where a value func-
tion is sampled from an approximate posterior distributed and
then used for greedy action selection. However, our approach
is not completely random in sampling the value function
but uses the gradient of the variance estimate to guide the
sampling. We predict Vi for each realization of θ̄ as well as
different states, using p samples of states and actions during
a batch, and store it in the data set D. The data set is used to
re-evaluate the variance gradient at the beginning of the next
batch, to generate a new (perturbed) parameter vector to be
used. This is summarized in Algorithm 2.

B. CONVERGENCE PROPERTIES
Without considering that we are using function approxima-
tors, Q-learning will converge under the following assump-
tions: (1) Greedy in the limit with infinite exploration (GLIE),
(2) the step sizes αk satisfy the Robbins-Munro sequence.
As we do not make any changes to the proof of convergence
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Algorithm 2 Variance-Based Exploration
Input: Initial MPC parameters θ0, initial learning
parameters θ̃0, initial state s0, data set D, batch update
frequency b, learning step size α, number of samples
used to generate V targets p, maximum number of
samples in data setMmax, parameter noise standard
deviation σ p, length of simulation kmax ;
Output: Policy πθ
while k ≤ kmax do

if mod(k, b) = 0 then
Update MPC parameters with learned
parameters θk = θ̃k
Evaluate gradient of IDW variance (27)
Ensure that the IDW variance gradient
respects bound (28)
Perturb parameters to get θ̄k (29)

Act greedily w.r.t. current Q-estimate (30)
if mod(k, b) ≥ p then

if |D| ≤ Mmax or (|D| ≥ Mmax and (26)) then
Calculate p-step prediction of Vk (25)
Add {Vk , sk−p, θ̄k} to D

Update θ̃k (13)
k ← k + 1

for Q-learning, we do not include it here but refer the inter-
ested readers to [23]. The GLIE assumption entails that (i) all
state-action pairs are explored infinitely many times, and that,
(ii) as time goes to infinity, the policy converges to a greedy
policy. The second assumption (2) is not directly related to
the exploration method and is most commonly satisfied in
practice by selecting a small constant step size. Formally,
we can ensure GLIE for the proposed exploration method
in Section (V-A). The first part of GLIE (i) is ensured by
keeping a random term in (29) so that we ensure sufficient
exploration even though the gradient of the variance even-
tually may converge to a small number. The second part of
GLIE (ii) can be ensured by using a decaying scalar i.e.
β( 12∇θk r̂

2(θk , sk ) + 1
2ζ p) where β = βa exp(−ωk) and ω is

a hyperparameter.

VI. SIMULATION EXAMPLES
We apply the proposed exploration method to two simula-
tion examples, namely on a linear quadratic regulator (LQR)
problem and an inverted pendulum on a cart system. The
latter is a popular example in the control systems literature,
as it is open-loop unstable and nonlinear. For each simulation
example, we will benchmark our method with respect to both
(i) Gaussian action noise and (ii) Gaussian parameter noise.

A. LQR
The following example is adapted from [21]. We consider a
discrete linear system of the form

sk+1 = Ask + Bak , (31)

FIGURE 2. The mean and two standard deviations of the IDW variance
estimate (23) over learning batches.

with system matrices

A = κ

[
cosβ sinβ
sinβ cosβ

]
, B =

[
1.1 0
0 0.9

]
, (32)

where we use κ = 0.95, and β = 22◦ [deg]. The baseline
stage cost is selected as

L(s, a) =
1
2
∥s− sref ∥2 +

1
2
∥a− aref ∥2, (33)

where sref = [0.1, 0.1]⊤, and the reference input is found
accordingly. The (inaccurate) prediction model is defined as

A0 = κ

[
cosβ̂ sinβ̂
sinβ̂ cosβ̂

]
, B0 =

[
1 0
0 1

]
, (34)

where β̂ = 20◦. The parameterized MPC scheme reads as

min
x,u

V0 + γN∥xN − xref∥2P +
N−1∑
j=0

γj
∥∥∥∥ [

xj − xref
uj − uref

] ∥∥∥∥2
(35a)

s.t ∀j ∈ I0:N−1 : x0 = s, (35b)

xk+1 = A0xj + B0uj, (35c)

using a prediction horizon of N = 10, γ = 0.99 and P is the
solution to the discrete Riccati equation obtained using the
inaccurate system dynamics in (34). The parameter vector is
θ = {xref,1, xref,2, uref,1, uref,2,V0}. We consider a continuing
task and simulate the system for a total of 5000 time steps.
The parameters are updated in a batch manner, using a batch
length of 200, i.e., we update the parameters in the MPC
scheme every 200 time steps. A learning rate of α = 0.1 was
used. For each exploration method, we consider a range of
noise distributions, defined by different standard deviations.
For brevity, only the best-performing ones are reported.

For the variance-based explorationmethod, we use p = 10,
do not pose any restrictions on the data sampled, i.e.,Mmax =

5000 and use the weighting function in (20). The resulting
IDW variance estimate (23) is plotted over learning batches
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TABLE 1. Cost statistics for LQR simulations. The mean and standard deviation (in parentheses) are found for a total of 5 simulations for each exploration
method.

FIGURE 3. LQR simulation results. Upper plots: the mean and two standard deviations of states and actions during exploration,
with Gaussian action noise (left) and variance-based exploration (right). Middle plots: the mean and two standard deviations of
states and actions during exploitation, using parameters learned with Gaussian action exploration (left) and variance-based
exploration (right). Bottom plots: the mean of parameter updates using Gaussian action noise (left) and variance-based
exploration (right).

60732 VOLUME 11, 2023



K. Seel et al.: Variance-Based Exploration for Learning Model Predictive Control

in Figure 2. The system states and actions are plotted both
during exploration and exploitation, i.e. we use MPC with
the learned parameters, resulting from Gaussian action noise
and variance-based exploration, to control the system, see
Figure 3. We also plot the norm of the parameter updates
resulting from the different exploration methods, to indicate
when the algorithm converges. Additionally, we state the
cost of exploration, i.e. the sum of cost over all time steps
needed to see a convergence of the parameters, as well as
the sum of cost over simulations in exploitation, see Table 1.
The numbers reported in Table 1 are found for a total of
5 simulations run for each exploration method.

We see that the mean of the variance in Figure 2 is initially
small but eventually grows. The peak around 5 batches, seems
to result in a larger parameter update which can be spotted
in the lower-right plot in Figure 3. As increasingly more
parameter values are tried out in the simulation, and data is
gathered, the variance estimate starts decreasing. From the
resulting statistics in Table 1, we see that Gaussian action
noise for this particular problem obtains the best perfor-
mance, in terms of minimizing the cost during exploitation,
but at a much higher cost during exploration than both ran-
dom perturbations as well as variance-based perturbations
in parameter space. Variance-based exploration in this case
obtains a slightly higher cost in exploitation compared to
Gaussian action noise, although the same as with Gaussian
parameter noise, while being the cheapest alternative during
exploration. In Figure 3, we see that the empirical standard
deviation of the simulated states and actions are visibly larger
for variance-based exploration than for Gaussian action noise
in exploitation, however, we note that the resulting standard
deviation in the accumulated cost is small in exploitation,
see Table 1.

B. INVERTED PENDULUM ON A CART
We consider the inverted pendulum on a cart as depicted in
Figure 4. A classic control problem is to stabilize the inverted
pendulum mounted on a cart, where the cart can only move
back and forth in one dimension. In order to stabilize the
pendulum in an upright position, we can change the control
force acting on the cart. The dynamics, neglecting friction,
are given by

(M + m)z̈+
1
2
mlφ̈cosφ =

1
2
mlφ̇2sinφ + u, (36a)

1
3
ml2φ̈ +

1
2
mlz̈cosφ = −

1
2
mglsinφ, (36b)

with model parameters as specified in Table 3 and where u
is the control input. The state vector is s = [z, ż, φ, φ̇]⊤,
consisting of the cart displacement and velocity along the
horizontal axis, the angle between the pendulum and the
vertical axis and angular velocity, respectively. The action
is a = u. The dynamics in (36) are converted to a state
space representation, discretized, and used to simulate the
system. A linearized version of the state space representation
is used as the prediction model in the MPC scheme. The

FIGURE 4. Cart-pendulum system.

state space representation and the linearized dynamics are
found in e.g. [30]. A 4th-order Runge Kutta scheme is used to
discretize the dynamics in (36), using the step size dt = 0.1 s.
We consider the following constraint, in newtons, on the force
acting on the cart

−7 ≤ u ≤ 7. (37)

The RL cost is given as

L(s, a) =
[
s− sref

a

]⊤ [
I4 0
0 0.01

] [
s− sref

a

]
, (38)

where sref = [0.5, 0, 0, 0]⊤. The linearized prediction model
in the MPC scheme, defined by Ā and B̄, is obtained from lin-
earizing the system dynamics (36) at φ = 0, corresponding to
the pendulum being in an upright position. The parameterized
MPC scheme reads as

min
x,u

V0 + γNTθ (xN )+
N−1∑
j=0

γjℓθ (xj, uj) (39a)

s.t ∀j ∈ I0:N−1 : x0 = s, (39b)

xj+1 = Āxj + B̄uj, (39c)

− 7 ≤ uj ≤ 7, (39d)

where N = 30 and γ = 0.99. Moreover, we parameterize the
stage cost using a quadratic function according to

ℓθ (x, u) =
[
x− xref

u

]⊤
M (θ )

[
x− xref

u

]
, (40)

where M (θ ) is a positive definite matrix, with parameterized
diagonal elements. We assume that we know all state refer-
ences, except the cart position, i.e. xref = [θc, 0, 0, 0]. A sim-
ilar parameterization is also used for the terminal cost Tθ .
The resulting parameter vector consists of the elements in
ℓθ and Tθ , as well as V0 and θc. We learn in an episodic
manner, considering episodes of length 300, and let one
episode correspond to one batch in terms of when we update
the parameters. We learn for a total of 1000 batches and use
a learning rate of α = 0.5. We test all three exploration
methods, for an interval of Gaussian distributions, defined by
different standard deviations, and report the best-performing
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TABLE 2. Cost statistics for inverted pendulum simulations. The mean and standard deviation (in parentheses) are found for a total of 3 simulations for
each exploration method.

FIGURE 5. Inverted pendulum simulation results. Upper plots: the mean and two standard deviations of states and actions during
exploration, with Gaussian action noise (left) and variance-based exploration (right). Middle plots: the mean of states and actions
during exploitation, using parameters learned with Gaussian action exploration (left) and variance-based exploration (right).
Bottom plots: the mean of parameter updates using Gaussian action noise (left) and variance-based exploration (right).
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distribution in each category. For the variance-based explo-
ration method, we use p = 110, Mmax = 5000, and the
weighting function in (20).

As for the previous example, we have plotted the simulated
states and actions during both exploration and exploitation,
for Gaussian action noise and variance-based exploration,
as well as the normed parameter updates, see Figure 5. Table 2
lists the sum of the cost for exploration and exploitation.
The main goal of learning, in this case, is to obtain the true
desired cart position, as well as tune the stage and terminal
cost. We see from the plotted cart position during exploration,
that variance-based exploration causes the system to visit
positions closer to the true reference, than using Gaussian
action noise. Here, this results in a small, but still visible
improvement in both the plotted cart position in exploitation
as well as the calculated cost in Table 2.
The statistics in Table 2 are found for a total of 3 simu-

lations in each category. We see that Gaussian action noise
in this case has very little effect, as the best performance
in exploitation was obtained with σa = 0.0001. By using
a Gaussian perturbation in parameter space we improve the
performance in exploitation, while also reducing the cost of
learning. Using variance-based exploration, we make explo-
ration even cheaper while achieving a similar improvement
in performance.

VII. CONCLUSION
We have presented a novel approach for variance-based
exploration particularly suited for using a model predictive
control (MPC) scheme as a function approximator in rein-
forcement learning (RL). The method is based on inverse
distance weighting (IDW) to build a variance estimate of
the value function approximator, which is computationally
cheap compared to probabilistic methods such as Gaus-
sian processes (GPs) and well-suited in an online setting.
The proposed exploration method is tested in simulation
and benchmarked against Gaussian perturbations in both
action and parameter space. The results show that exploration
in parameter space generally is cheaper than exploration in
action space while achieving at least a similar performance in
exploitation using the learned parameter values. This suggests
that Gaussian exploration in parameter space, as already sug-
gested for neural networks (NNs) as function approximators
in RL, successfully can be used also with MPC. The simu-
lation results also revealed that variance-based exploration
in parameter space further reduces the cost of exploration,
compared to Gaussian perturbations, with the same perfor-
mance in exploitation. This means that exploration can be
made even cheaper, with only a small increase in compu-
tational cost and with minor overall changes to the exist-
ing implementation. An interesting direction for future work
includes verification of the proposed method for stochastic
systems.

VIII. APPENDIX
See Table 3.

TABLE 3. Inverted pendulum model parameters.
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