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Dynamic metastability in the two-dimensional Potts ferromagnet
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We investigate the nonequilibrium dynamics of the two-dimensional (2D) Potts model on the square lattice
after a quench below the discontinuous transition point. By means of numerical simulations of systems with
q = 12, 24, and 48, we observe the onset of a stationary regime below the temperature-driven transition, in a
temperature interval decreasing with the system size and increasing with q. These results obtained dynamically
agree with those obtained from the analytical continuation of the free energy [J. L. Meunier and A. Morel, Eur.
Phys. J. B 13, 341 (2000)], from which metastability in the 2D Potts model results to be a finite-size effect.
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I. INTRODUCTION

When a liquid is cooled fast enough below its melting
temperature, crystallization can be avoided, and the liquid
enters a phase called supercooled [1–4]. The supercooled
phase is metastable, it has a finite lifetime, and it is unstable
with respect to large fluctuations, although those character-
istics may not represent a practical limitation: metastable
states are ubiquitous [1], and not distinct from stable states
in many practical respects. Metastability, as a general concept,
is present in many fields of physics, from superconductivity
to high-energy physics (see references in [5]). In particular,
the understanding of metastability is crucial in the context
of the glass transition [1,4,6]: the structural glass transition
occurs, during the cooling process, at a certain temperature
below which the liquid falls out of equilibrium and forms the
structural glass. However, and despite its ubiquity and intrinsic
theoretical interest, metastability is still not well understood,
and a lot of theoretical effort has been dedicated to the problem
in the past decades [5,7].

From a purely thermodynamic point of view, the metastable
phase is described by a free energy fm(T ,h) (where T is the
temperature and h is the pressure, in the case of a fluid, or
the magnetic field, in the case of a magnet), in a region
of (T ,h) in which it coexists with the stable solution of the
equation of state, f < fm. Metastable states satisfy the local
stability condition, (∂hhfm)T � 0, which is necessary, but not
sufficient for stable equilibrium: differently with respect to the
stable state free energy f , metastable states are not stable with
respect to a large enough fluctuation. Statistical mechanics
in the mean-field approximation, as the Landau theory of
magnetism or the van der Waals equation of state for the gas-
liquid condensation, accounts for metastable phases, which, in
this context, exhibit the thermodynamic properties described
above. In mean-field approximation, the only allowed form of
fluctuation is a spatially uniform change of the order parameter,
and the free-energy cost of such a change is extensive. For
this reason, the free-energy barriers separating the relative
minima of the free energy from the absolute minima, the stable
phase, are infinite in the thermodynamic limit, and, hence,
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the corresponding metastable state would have an infinite
lifetime.

When fluctuations are taken into account, however, sta-
tistical mechanics of short-range interaction systems cannot
account properly for metastability, since, when the thermo-
dynamic limit is taken, the partition function is dominated
by the global minimum of the free-energy functional in
phase space. Beyond mean field, there always exists a
finite probability of surmounting the free-energy barriers in
phase space by a local nucleation process and, hence, a
statistical description is only possible by the use of restricted
ensembles, from which nucleated configurations are excluded
[8–13].

An alternative is the dynamic description of metastability
[7,14], which is characterized by a two-step relaxation during
the dynamic evolution of the system in the coexistence region.
The two-step relaxation is associated with two times (τR � τ ),
such that the order parameter and other observables are
stationary in time in the interval τR < t < τ , the lifetime of
the metastable phase, τ , being related in some way to the
probability of nucleating the stable phase. For spin systems,
nucleation times can be computed by the numerical solution
of a master equation describing their temporal evolution, as
pioneered by Binder for the Ising model [5,14,15]. Although
this dynamic definition of metastability is different from
the reduced ensemble techniques mentioned before, there
exist connections between the ensemble and the dynamical
approaches [5,7,9,16,17]. Of particular relevance is the result
by Langer [13], who shows that, for a wide class of mod-
els, whose dynamics can be described by a Fokker-Planck
equation, the nucleation rate, �, the number of nucleation
events per unit time and volume, can be written under
certain conditions as � ∼ βκ|Im f̃ |, where β is the inverse
temperature, the prefactor κ containing all dependence on
the specific dynamics, and Im f̃ is the imaginary part of
the analytical continuation of the equilibrium free energy
f in the unstable region of (T ,h). Analytically continuing
the free energy beyond the transition point is equivalent to
restricting the ensemble to undercritical droplets, in terms of
Fisher’s theory [18]. Such an analytical continuation of the free
energy has been computed for the first-order transition of the
field-driven Ising model (or the equivalent lattice-gas model)
by Langer [12,19], based on Fisher’s droplet approximation,

1539-3755/2014/89(5)/052115(6) 052115-1 ©2014 American Physical Society

http://dx.doi.org/10.1007/s100510050040
http://dx.doi.org/10.1007/s100510050040
http://dx.doi.org/10.1007/s100510050040
http://dx.doi.org/10.1007/s100510050040
http://dx.doi.org/10.1103/PhysRevE.89.052115
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and on a field-theoretical description of the free energy. The
mentioned references provide an expression for � as a function
of (small) field and temperature in general dimensionality. This
result has been extensively checked against Monte Carlo local
dynamics [14,15,20–25]. From these works, a good agreement
between the theory and the numerics emerges in two, three,
and higher dimensions.

Things are much less clear in the case of the q-color
Potts model (PM) temperature-driven transition, which is
discontinuous for q > 4. Since Binder presented the problem
in 1981 [26], it has been faced several times. Numerical
results suggest the existence of a dynamic metastable phase for
q = 5, d = 2 and q = 3, d = 3 [27,28], even if the metastable
phase is not analyzed quantitatively (see also [29–31]). In two
dimensions, hysteresis cycles are studied numerically [32],
and it is concluded that relaxation towards the equilibrium
state occurs via nucleation. On the other hand, pseudocriti-
cal attempts, finding evidences of second-order divergences
at undertransition temperatures, suggest the existence of a
nonzero spinodal limit [33,34]. This picture is confirmed by
short-time approaches [35], and by a recent study on large
lattices [36], in which the authors report numerical evidence of
the finiteness of the (disordered) energy slope at the transition
temperature. The disappearance of the metastable interval for
large sizes emerges instead in a Langer-like approach: an
analytical continuation of the free energy within the droplet
theory was done in 2000 [37] for the two-dimensional (2D)
q-PM. For finite-size systems, there is an undertransition
temperature range where a convex energy probability density
(EPD) is found. Such a temperature interval, associated with
a metastable state, is shown, however, to shrink to zero in
the large system size limit [37]. This behavior is not present
in the Ising model–lattice gas case, in which the metastable
end point and the lifetime of the metastable phase become
size independent for sufficiently large sizes. In particular,
this happens when the linear size L is much larger than the
length scales involved in the nucleation processes: the critical
nucleating radius and the typical distance between critical
clusters [20]. Differently with respect to the Ising case, there
is no microscopic droplet theory for the Potts case (the droplet
expansion [37] is done in terms of macroscopic quantities), and
it is missing a microscopic explanation of the disappearance
of the metastable interval for large sizes. In any case, the
equivalent nucleation mechanism would be size influenced, or
nonlocal, and hence essentially different in the Potts case, this
difference possibly being present in other temperature-driven
transitions.

This anomalous size-dependent behavior of the metastable
states in the PM has been recently faced in [38]. In this paper,
the Monte Carlo (MC) dynamics of the 2D PM is studied by
means of the typical passage time of the order parameter below
a threshold, and it is signaled the existence of a finite-size
inverse temperature βs(N ) > βt (where βt is the transition
temperature), separating different dynamical regimes. This
anomalous behavior further motivates a dynamical study of
metastability in the PM, allowing for a dynamical comparison
with the droplet theory in [37]. The interest of such an approach
has been pointed out in Refs. [37,38], since it could help
clarifying to what extent the shrinking of the metastable
interval is also observed in the dynamical scheme.

In the present work we show that the finite-size effects
described in [37] are indeed observable during the MC local
dynamics. To this aim, we have developed a method to estimate
the metastable end point, based on first-passage energy times.
The so-obtained stationary temperature end point is shown to
behave qualitatively as the pseudospinodal point of [37], as a
function of q and N .

In the next section we review the main results of the droplet
approach. Section III is to present our method and results. We
conclude in Sec. IV.

II. MODEL AND REVIEW OF THE DROPLET THEORY

The Potts model is one of the better known models in
statistical physics [39]. It is defined on a lattice given by the
adjacency matrixA in which every site, i = 1, . . . ,N , can take
q equivalent values, σi = 1, . . . ,q, usually called colors. The
Hamiltonian is

H = 1

2

∑

i,j

(1 − δσi ,σj
)Ai,j . (1)

When A corresponds to an infinite square lattice with nearest-
neighbor interactions, the model is known to present a
first-order phase transition for q > 4, and a continuous
phase transition for q � 4, separating a paramagnetic high-
temperature phase, in which all colors coexist in equal pro-
portion, from a ferromagnetic q-degenerated low-temperature
phase. On the square lattice both transitions occur at a critical
inverse temperature βt(q) = ln(1 + q1/2). Due to the presence
of many competing ground states, the Potts model can exhibit
nonequilibrium features well different from the Ising model
[30,40–42].

Requiring agreement with exact results on the first-order
transition in two dimensions, the authors of [37] postulate the
form of the free energy of the disordered phase, expressed as
a Fisher sum (	 = β − βt < 0) [37]:

F (	) ∝
∞∑

a=1

a−τ e	a−ωaσ

, (2)

where ω is a surface energy per unit of effective perimeter,
and the exponents are fixed to τ = 7/3, σ = 2/3, by matching
previous results for the correlation length at the transition,
and the known value of the α, ν critical exponents for
q = 4. Each term in Eq. (2) is proportional to the partition
function of the ensemble of clusters of area a. The continuum
limit to Eq. (2) is a function, φ, analytic for 	 < 0, i.e., in
the disordered phase region. For 	 > 0, φ diverges, but its
analytic continuation to complex inverse temperatures can be
evaluated for positive 	. The successive step is to obtain
the finite-size EPD at the transition point, PN,0(ε) (ε being
the energy per site) by a Laplace transform of φ (which
requires integrating φ on a complex contour). Finally, the
EPD in the metastable interval PN,	(ε), with 	 > 0 is further
obtained by reweighting: PN,	(ε) = PN,0(ε) e−	Nε [37]. The
EPD PN,	 is such that, for N and 	 > 0 fixed, there exist
a local minimum εm(	,N ) < ε(d), such that P	,N represent
stable states for ε > εm. The bound εm implies a finiteness of
the associated metastable state lifetime. The position of the
minimum increases with 	, in such a way that there is an
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FIG. 1. (Color online) Average energy per site 〈ε〉 (over different
dynamical sequences) versus time of the q = 24 PM after a quench to
different quench depths 	 (in color bar). The error bars indicate the
standard deviation over different realizations of the dynamics. The
horizontal segments indicate the exact equilibrium energies of both
phases at βt, ε(d), and ε(o).

inverse temperature βt + 	∗(N ) above which the EPD is no
longer convex. Due to an anomalous size dependence of P for
energies lower than the equilibrium disordered energy, ε(d), the
value 	∗(N ) shrinks to zero for large N , with the law ∼N−1/3,
as can be calculated approximately [43]. The theory predicts,
in this way, that the convex EPD describing metastable states
for 	 > 0 is nothing but a finite-size effect.

The free energy φ and the EPD P	,A in [37] are formulated
in terms of scaling energy, temperature, and area variables,
independent of q, which are related to physical variables by
products of powers of the correlation length at the transition
point ξq , in which the whole q dependence is enclosed. The
result is such that the metastable interval increases with q. In
particular, for fixed N and sufficiently low 	, the metastable
energy interval end point behaves as εm ∼ −(3	ξq/2)−3, as
can be derived from [37] in saddle-point approximation, valid
for 	 ↘ 0. Since ξq is a decreasing function, the interval
increases with q, and the inverse temperature end point [let us
call its explicit q dependence 	∗

q(N )] consequently increases
with q. In conclusion, according to the theory, 	∗

q (N ) increases
with q and decreases with N .

III. DYNAMICAL METHOD AND RESULTS

In Fig. 1 we show the behavior of the energy per site ε

versus time t [the number of MCSS with a local (Metropolis)
algorithm], for several values of the quench depth 	 > 0,
in a system with q = 24, L = 128. We have computed the
first two moments, 〈ε〉 and 〈ε2〉 − 〈ε〉2, of the nonequilibrium
EPD for 	 > 0, where the average is over different instances
of the MC dynamics, characterized by different, completely
uncorrelated realizations as initial condition and different
random number sequences in the Metropolis algorithm. For
small values of 	 we see that 〈ε〉 stays about constant and
close to the high-energy disordered phase, ε(d), up to t > 105

Monte Carlo steps per spin (MCSS), indicating a long average

ε

t

ε

t

FIG. 2. (Color online) (a) Four random realizations of the dy-
namics for q = 12, 	 = 0.008, L = 64 (green empty circles), and
L = 256 (black triangles). The horizontal lines mark the thresholds
εth

q (N ) (lower for lower N ) and the vertical line indicates t th (see text).
(b) Idem with q = 48 and 	 = 0.063.

lifetime of the metastable state. For larger 	, the two-step
relaxation characterizing dynamic metastability is observed.
The metastable lifetime decreases for increasing 	, up to
becoming smaller that the simulation time, and 〈ε〉 is seen to
relax towards a value close to the low-energy ordered phase,
ε(o). At the same time, the second moment appears to be small
when 〈ε〉 is close to ε(d) or ε(o), and large during the relaxation.
This is an indication of the fact that different realizations with
the same 	 can follow very different energy trajectories while
relaxing towards the ordered state, and therefore display a
different lifetime. An example of this fact is shown in Fig. 2(b),
where three different realizations of a system with L = 256
and q = 48 are quenched at 	 = 0.0063, and are seen to decay
at different times. In systems with short-range interactions, the
lifetime of the metastable phase is a stochastic quantity and, as
a consequence, the averages shown in Fig. 1 could not be the
more suitable quantity for determining a possible size scaling
of the metastable phase.

A strong finite-size effect, as the one described in the
preceding section, is indeed immediately observed also in
single realizations of the dynamical evolution, as illustrated
in Fig. 2, where we show the energy per site of single
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instances of the MC dynamics. Sufficiently small systems
present an energy plateau, while larger systems do not: for
them the shown 	 is presumably larger than the metastable
end point 	∗(N ). A possible way to estimate numerically the
length of the metastable interval is to compute the fraction of
realizations presenting an energy plateau, among a set of many
MC sequences of configurations, generated from different
initial conditions and sequences of random numbers. The
metastable interval can be arbitrarily defined in this way as the
[βt : βt + 	f ] interval in which the fraction stays above a given
threshold. We note that such an arbitrariness is unavoidable in
finite-dimensional systems where, at variance with respect to
mean-field systems, the dynamical end point of metastability
is a stochastic and time-dependent concept, and can be defined
only in average even for a fixed lifetime.

Of course the largest arbitrariness is in the definition of
plateau. Here we choose a criterion for stationarity, based on
two arbitrary quantities: we target a realization as stationary
whenever its energy per site remains larger than a threshold
εth
q (N ), for a time longer than a time threshold t th. A more

sophisticated criterion, which allows for a more accurate
comparison with the theory, will be presented elsewhere [43].

Let us describe the details of our method. We have studied
the q-PM with q = 12,24,84, on square lattices of length L =
64,128,256,384, N = L2, with periodic boundary conditions.
For each q and L, we perform series of Metropolis MC
sequences of configurations, starting from different random
configurations and differing also in the random number
sequence. We have performed a minimum of 200 realizations
and a maximum of 800, depending on q and L, up to
1.024 × 105 MCSS. The energy per site is computed each
128 MCSS. This is done for ten values of 	n = βt + nδβ,
where n = 1, . . . ,10 and δβ = 0.001, 0.004, and 0.007 for
q = 12,24,48, respectively. Afterwards, we count how many
realizations stay above εth

q (N ) for at least t th MCSS. In this
way, for example, none of the L = 256 realizations of Fig. 2(a)
are considered as stationary, while 3/4 of the L = 64 do. In
this way we estimate the fraction of realizations presenting
a plateau, ρq(	,N ). A key point in our approach is that the
threshold εth

q (N ) differs from the stationary (time-averaged)
energy by a quantity which decreases with N , so that we take
into account fluctuations (decreasing with size) around the
stationary value. Fixing the threshold energy independently
of N would lead instead to take as stationary realizations
whose time-averaged energy is actually decreasing for large
systems or, on the other hand, to target as nonstationary small
size realizations that are indeed stationary but present large
fluctuations. We therefore set εth

q (N ) = ε(d)
q − c/N1/2, with

c being a constant: the threshold energy differs from the
equilibrium energy at βt by a quantity proportional to the
fluctuations of the energy [〈ε2〉 − 〈ε〉2]1/2 ∼ N−1/2. Fixing the
reference disordered energy as ε(d)

q we are implicitly assuming
that the energy averaged over stationary realizations at 	 > 0
(expected to coincide with the average of the EPD P	,N ,
performed for ε > εm) does not differ too much with respect to
the average transition energy at 	 = 0, ε(d)

q . We have verified
that our results are essentially independent with respect to
such small variations on the value of the reference energy, and
hence the only arbitrary constant is t th. Moreover, choosing a
sufficiently small t th, the resulting ρq functions are quite robust

ρ48

Δ

σρ

Δ

FIG. 3. (Color online) Fraction of realizations presenting a
plateau, ρ(	,N ), after a quench at inverse temperature βt + 	, for
q = 48 and N = 642, 1282, 2562, and 3842 (from right to left). The
inset shows the standard deviation σρ of the distribution of fractions.

against t th. The discriminated plateaus in our scheme, whose
lifetime is lower than t th, are essentially not influential.

Our results for ρ(	,N ) are illustrated in Fig. 3 for q = 24;
the other cases are qualitatively identical. The behavior is as
follows: for low values of 	, immediately above the inverse
transition temperature, all realizations present a metastable
energy plateau. For large values of 	, well above the
metastable end point βt + 	∗, no realization presents a plateau,
and the crossover occurs at smaller 	’s for larger system sizes.
Fixing ρ at an arbitrary value, one gets an estimate of the
temperature end point of the metastable phase: 	f

q(N ). In
Fig. 4 we present the obtained values, for a fixed value of
ρ = 0.5. Although, due to the arbitrariness described above,
	f

q(N ) is not an accurate estimate of 	∗
q(N ) of the Meunier

and Morel theory [37], its qualitative behavior turns out to
be the same, thus providing a dynamical confirmation of the
theory: 	f

q(N ) increases with q and monotonically decreases
with N . Moreover, a detailed in progress analysis [43] both

Δ

L L

FIG. 4. (Color online) (a) Estimated values of 	f
q for q = 12.

(b) Idem, for q = 24 and 48 (from bottom to top).
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of the 	∗(N ) obtained from the theoretical EPD, and of
its corresponding numerical dynamical estimation (averaging
over properly stationary sequences only) is yielding values of
	∗

12(N ) rather similar to the 	f
12(N ) that we have obtained

here. However, due to the existence of realizations that are
stationary despite being beyond the validity limit of the theory
	∗, of which we have provisional numerical evidence [43],
	f could be an overestimation of 	∗ for large sizes, although
both quantities present the same qualitative behavior.

IV. CONCLUSIONS AND DISCUSSION

The existence of metastable states in the Potts model has
been an openly debated problem in statistical physics for
the past three decades. In this article we have shown how in
a dynamical MC scheme the interval in which stationarity
is present shrinks with the system size L, in qualitative
agreement with the theoretical work [37]. The method we
have used is general and may serve for the study of other
models. Despite its simplicity, it reproduces reasonably well
the end point 	∗

q predicted by the theory.
The fast vanishing of the metastable regime presented here

can be understood as a call for caution when interpreting
hysteresis cycles performed for the q-PM: if the step, δβ, of
the cooling at a rate δβ/	t is larger than the corresponding
size-dependent metastable interval, the points of the hysteresis
diagram would not correspond to metastable states, but rather
to heterogeneous, nonequilibrium configurations, which have
already nucleated.

The droplet theory describes metastability in this model
as a finite-size effect, and this picture seems to be confirmed
by the dynamical simulations presented in this manuscript.
As explained in the Introduction, the picture is different in
the Ising model field-driven transition, for which metastability
becomes size independent when the linear system size L is
much larger than the critical droplet radius, Rc, and the average
distance between critical droplets, R0 [20]. Finite-size effects
in the Ising case are present in the so-called stochastic regime,
when Rc � L � R0, and absent for Rc � R0 � L, known
as the deterministic regime. Unfortunately, a theory describing
the finite-size decreasing of the metastable interval in the Potts
model in terms of microscopic quantities is missing, and at
present it is not clear whether one can identify finite-size
regimes analog to that of the Ising model. The concepts

of deterministic and stochastic microscopic regimes of the
Ising model seem not to be applicable in a straightforward
way to the context at hand. First of all, the concept of
critical droplet radius might be not well defined in the
metastability dynamics of the PM, as can be seen from the
time evolution of the configurations in single realizations of
the dynamics (see Supplemental Material [44]): clusters are not
fully characterized by their length or area but exhibit highly
irregular shapes changing over time scales smaller than the
lifetime of the metastable phase. On the other hand, we point
out a further difficulty of the classical droplet picture in this
case: since we are not dealing with low temperatures, the very
concept of geometrical cluster may not be the relevant one for
the problem. A recent interesting discussion on this topic in
the context of the Ising model can be found in Ref. [22].

The finite-size effect illustrated in this article challenges
for the search of a kind of microscopic, but size-dependent
nucleationlike mechanism that would be essentially different
with respect to the well understood lattice gas case, and that
may constitute a different paradigm, perhaps also present
in other first-order transitions. The theory [37] is based on
the behavior of the finite-size EPD, which is obtained by
an inverse Laplace transform of the infinite-volume free
energy φ, so that it does not provide an evident microscopic
interpretation in terms of droplets. In the nucleation of the
Ising model, the bulk term in the free energy of the ensemble
of clusters of fixed area is given by the external field, a size-
independent quantity, while in the PM it might come from an
entropy-maximizing constraint which keeps the permutation
symmetry of colors unbroken. In systems with increasing size,
a single cluster would be less confined by such an effective
field since it contributes less to the global magnetization of
its corresponding color. We propose to perform a droplet
calculation, starting from a size-dependent expression for the
free energy, Eq. (2), in terms of size-dependent quantities,
possibly confirming the microscopic mechanism proposed
above, and reproducing the phenomenology predicted by [37].
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