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Large scale coherence of spatial network-like patterns identified using local geometry.
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We propose a new method for quantitative characterization of spatial network-like patterns with
loops, such as surface fracture patterns, leaf vein networks and patterns of urban streets. Such
patterns are not well characterized by purely topological estimators: also patterns that both look
different and result from different morphogenetic processes can have similar topology. A local
geometric cue -the angles formed by the different branches at junctions- can complement topological
information and allow to quantify the large scale spatial coherence of the pattern. For patterns that
grow over time, such as fracture lines on the surface of ceramics, the rank assigned by our method to
each individual segment of the pattern approximates the order of appearance of that segment. We
apply the method to various network-like patterns and we find a continuous but sharp transition
between two classes of spatial networks: hierarchical and homogeneous. The first results from a
sequential growth process and presents large scale organization, the latter presents local, but not
global scale organization.

PACS numbers: 89.75.Fb 89.75.Hc 47.54.-r

I. INTRODUCTION

A central issue in complex systems research is to un-
derstand the formation and the properties of spatio-
temporal patterns found in physics and biology. To
this end, an essential step involves obtaining appropri-
ate measures of their form: quantitative estimators that
allow to compare different patterns and to to validate
objectively models. This paper focuses on the family of
spatial patterns that are ”network-like”.

Network-like patterns are common in natural and ar-
tificial systems: they are found in leaf veins, fractures on
the surface of materials, patterns of urban streets and
animal trails, galleries, river networks, blood vessels and
circulatory systems. The factors underlying the forma-
tion of these patterns are different from system to sys-
tem: surface cracks result from the shrinkage and stress
of materials; urban streets are generated by human ac-
tivity and so on. In spite of intrinsic differences a few
simple morphogenetic events describe the formation of all
these patterns: nucleation of new network components,
elongation of existing segments, branching and intersec-
tion. The final topology of the pattern is completely
determined by the sequence of such growth events, plus
a pruning event: the cut or removal of already formed
segments.

Many studies have used topological estimators to de-
scribe the form of net-like patterns and better understand
their morphogenesis and functional properties. One of
the first progresses in this direction goes back to the
Horton-Strahler coefficients, introduced in the forties by
the hydrogeologist Robert E. Horton [1] as a method to
describe quantitatively the form of rivers and of their
hydrologic basins. Such coefficients became particularly
popular in the improved formulation by Strahler [2]. In

this formulation, the uppermost streams of a river are
given rank 1 and the rank of other branches is derived
by iterating a local rule: whenever two streams with the
same rank N merge together, they originate a stream
with rank N + 1; conversely when a stream with rank
N + 1 receives the input of a lower order stream (rank
≤ N) its rank is unchanged. Horton-Strahler’s method
is a simple but powerful tool to describe quantitatively
the form of hydrogeologic networks and allowed to study
the scaling relationships between different parts of the
river. The method was applied to the study of such dif-
ferent systems as river networks [3–5], leaf patterns [6],
and even ant trail patterns [7]. Unfortunately, Horton–
Strahler’s ranking method cannot be applied to networks
with cycles. This has a profound impact on the appli-
cability of the method, as many real-world network-like
patterns have cycles.

General graphs are characterized by a whole set of mea-
sures of the local and global organization: node degree,
assortativity between nodes, clustering coefficient, fre-
quency of specific subgraphs, presence and number of
cycles, diameter, path length etc. [8–10]. Several studies
have computed graph measures and used them to quan-
tify the local and large scale organization of real world
spatial patterns, such as urban street patterns [11–19],
systems of animal trails [20] and galleries [21–25], net-
works of channels in trabecular bones [26, 27], networks
of fungal ifae [28].

Unfortunately, purely topological estimators, however
useful, do not fully account for the organization of 2D
net-like patterns which present specific constraints. For
instance, in planar graphs, the average node degree can-
not be higher than six. In addition, for a number of net-
like patterns, the degree distribution is even more regular
than what is imposed by planarity: the great majority

http://arxiv.org/abs/1101.1133v1
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of nodes is found to have degree equal to three in such
different systems as two-dimensional foams [31], hon-
eycomb patterns and biological epithelia [32], leaf vein
networks [33], fracture patterns [34]. In self-organized,
“bottom-up” towns [11, 14] the majority of junctions be-
tween streets also have degree three (though the same
does not hold for planned towns, where the majority of
crossroads have degree four [14] or even higher [35]). The
homogeneity of degree is reflected (as a consequence of
Euler formula) into a homogeneity in the length of net-
work cycles that are composed by six edges on average in
all the aforementioned systems. Similarly, network dis-
tances are not much informative as they basically scale
with euclidian distances in all these systems.

Here we want to use the spatial information to provide
a deeper understanding of the pattern. We focus in par-
ticular on the information carried by the angles formed at
junctions. This choice is motivated by two complemen-
tary arguments, one about the physics of the growth of
the network-like pattern, which can influence directly the
branching angles, and the other about dynamic proper-
ties (e.g. navigation) that may take place on the resulting
network.

Throughout the text, we will make extensive use of the
words edge and segment with the following definitions:
an edge is the linear structure between two consecutive
junctions (classical network edge) and a segment is a con-
tiguous unbranched series of network edges grouped to-
gether as described later in section II, that reveals the
larger scale structure.

A. growth

FIG. 1: Drawing of the evolution of a fracture pattern in
a solution of latex particles [36]. In each image, the light
colour indicates the newly appeared fractures. When new
lines of fracture appear their growth is affected by the already
existing fractures (for instance, newer fractures do not cross
older ones). On the contrary, the position of older lines does
not change after the appearance of the new ones.

A number of network-like patterns form as the result
of a sequential process, where new segments appear at
different times [34] without undergoing further reorgani-
zation. One example of such patterns is provided by the
fracture lines on the glaze of ceramics illustrated in fig. 1.
Bohn et al. [34] suggested that urban streets patterns fall
into this same morphological class.
The appearance, elongation and termination of new

segments is affected by the older segments; the older
segments, however, do not undergo further reorganisa-
tion after the appearance of new ones. Under these con-
ditions (sequential process, growth with no deletion of
edges and absence of reorganization) the temporal hier-
archy in the appearance of segments is reflected into the
spatial hierarchy of lengths and arrangements of the fi-
nal pattern [36]. Across a junction, as a consequence of
this fact, the edges belonging to the older segment are
the straight continuation of one another; conversely, the
edge belonging to the newer segment form a large angle
with the others.

FIG. 2: A: Small graph, involving a single junction. B:
The weighted directed line graph built from the graph in
A. Weights are as follows: dark-red → weight=0; light-
green → weight=1

But the local angle information is not sufficient in it-
self. Considering the case of a junction like the one in
figure 2-A, the attribution of edges around the junction
to the same or a different segment would be simple in the
absence of any information: the most natural inference is
to group edges e1 and e2 into the same, older, segment.
The attribution is more problematic if one already knows
that e3 is older: than it would be more natural to group
e3 and e1 into the same old segment, and assume e2 ap-
peared later. In summary, the best inference about what
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network edges should be grouped into the same segment
depends on the continuity between adjacent edges, but
also on the information already available about the order
of appearance of other segments. It can then be con-
structed only sequentially.

B. navigation

When the network-like pattern is also the support for
a transportation function, as it is for instance the case
with patterns of urban streets, the angles of edges at
intersections and junctions will play a role for navigation
and orientation.
In architecture, this concept has been theorized in par-

ticular under the name of “space syntax” in the work of
Hillier and Hanson [37]. With the space syntax method,
urban street patterns are fragmented into a number of
straight segments (ideally the maximum number of seg-
ments in which the line of view is conserved) and one
analyses the network obtained representing straight seg-
ments as nodes, and where there is an edge if the cor-
responding straight segments intersect the one another.
Then selecting a line (a street) as a starting point, one
can number each line in the map according to how many
changes of direction separate it from the starting line.
This measure is generally referred to as depth and is a
kind of distance: it represents the minimum number of
changes of direction to go from the origin to any other
place in the street network. This kind of measure has
been correlated with different aspects of social life, and
in particular patterns of pedestrian movement in cities,
but also urban traffic, property value and so on [38]. Nev-
ertheless, the process of fragmenting street patterns into
segments with the same line of sight was not proven to
always have a simple solution and it might be too sensi-
ble to small differences of orientation of the urban grid
([39]).
In physics literature, analogous ideas are followed

through what is usually called a “dual network” approach
(though a more appropriate definition would be “line net-
work” approach), where named streets [17, 40, 41] or con-
tiguous segments [15] are mapped into network nodes and
there is an edge whenever two streets intersect or bifur-
cate. Dual networks also provide a convenient represen-
tation for measuring the amount of information neces-
sary to navigate inside the network [40], in particular for
navigation strategies relying more upon the continuity of
linear elements than on salient points.
In fact one can imagine to describe a path through the

network with instructions with the form: ”go straight for
N steps (N junctions or crossroads), or until you find a
salient point (a traffic light, a square...)”, followed by in-
formation on which new direction to take. In general a
”simple” path will be one that involves only few devia-
tions from the current direction, not necessarily a short
one. However, the result will not be the same depending
on the direction followed. Let’s illustrate this with ref-

erence to the junction of figure 2-A. Moving from edge
e1 to e2, or in the opposite direction from e2 to e1 does
not involve any change of direction. Going from e1 to
e3 requires one change of direction (i.e. to abandon the
straightest path and take an alternative one), but the op-
posite is not true since e1 is the more direct continuation
of movement when coming from e3.
Both the arguments, about growth and about naviga-

tion, illustrate the interest of a representation of network-
like patterns that classifies network edges using informa-
tion provided by angles at junctions. Our examples indi-
cate that the process is not symmetric with the starting
point used for classification.
In the following section we introduce a simple algo-

rithm that given a local rule (namely an evaluation of
the angles at each junction) and a set of arbitrarily cho-
sen root edges, assigns a rank (expressed by an integer
number) to each edge of the network-like pattern. Con-
tiguous edges with the same rank can then be grouped
together into segments. The numbers of segments for
each given rank and their average properties provide a
quantitative statistical characterization of the morphol-
ogy of the pattern.
The paper is organized as follows. The algorithm is

described in detail in section II. In section III we explore
the theoretical distribution of ranks and segment lengths
on simple lattice models. Possible applications to the un-
derstanding of real world spatial networks, as well as the
most important limitations are explored in the remaining
sections IV to VII.

II. ALGORITHM DESCRIPTION

The computation of the segment numbering is in two
steps. First, given a root edge, or a set of root edges,
a rank is assigned to each edge. Then, the contiguous
edges with the same rank are grouped into segments.

A. computing edge ranks

Given a root edge er, the rank of an edge ei expresses
the minimum number of direction changes, meaning not
taking the straightest segment, needed to reach ei when
coming from er. We can also take into account a set Sr

of root edges; in this case, the rank of ei is the mini-
mum number of direction changes when coming from the
closest root edge of Sr.
Again, the propagation of ranks across a junction de-

pends on the direction in which the junction is traversed.
For instance, in the graph of figure 2-A if we set the rank
of edge e1 to zero (rank(e1) = 0 by convention), then
the rank of e3 is equal to 1 (rank(e3) = 1), but the same
relation does not hold in the opposite direction: if we
set the rank of e3 to zero (rank(e3) = 0 by convention),
then the rank of e1 is also equal to zero (rank(e1) = 0;
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no deviation from previous direction when going from e3
to e1).
Generally speaking, each edge ei can be crossed in two

directions; by convention, we denote eRi (resp. eLi ) the arc
associated to ei when it is crossed from the right (resp.
from the left). To make the computation of all the ranks
easier, we consider the dual directed graph GD (fig 2-B)
which models the connections between all the arcs. The
vertices of GD are the arcs

{

eRi , e
L
i

}

associated to any
edge of the initial graph, and two vertices e∗i and e∗j (the
star means either R or L) are linked together in GD if
the extremity of e∗i is equal to the origin of e∗j .
For instance, the crossing of the path e1 − e2 from the

left is modeled by eL1 → eL2 in GD, and the crossing in
the opposite direction by eR1 ← eR2 . There is no connec-

tion between eL1 and eR2 as the navigation
e1 e2
→ ← is not

directly possible.
Weights are assigned to the arcs of GD as follows. The

weight w
(

e∗i , e
∗
j

)

is equal to 0 when the path formed in
the initial graph by the edges ei and ej is the straightest
and 1 otherwise. We can also introduce a threshold on the
maximum angle, implying that if the change in direction
is too large, then the weight is 1 even if the angle is
the minimum one. Formally, w

(

e∗i , e
∗
j

)

= 0 when (1)
the angle formed in the initial graph by e∗i and e∗j is the
minimum angle formed by e∗i and its adjacent vertices,
and (2) this angle is smaller than a given threshold (in
our analysis chosen to be 45 degrees).
Once defined a root edge er in the initial graph whose

rank is equal to 0 by convention, the ranks of the other
edges can be easily obtained by a distance computation
in GD: the rank rank (ei) of any edge ei is defined by
rank (ei) =

Min
{

d
(

eLr , e
L
i

)

, d
(

eLr , e
R
i

)

, d
(

eRr , e
L
i

)

, d
(

eRr , e
R
i

)}

where d is the shortest path distance in the dual directed
graph GD weighted by w. When a set Sr of root
vertices is fixed, the rank of ei is the minimum of the
ranks computed from all the edges of Sr with the above
formula.

B. grouping edges into segments

Several adjacent edges with the same rank can be
grouped together into “segments”. A segment is a series
of edges all having the same rank and with exactly two
ends (not including junctions). The segment is initial-
ized with any edge of G. Its continuation is determined
by pairing together adjacent edges of the same rank until
one of the following conditions is encountered:

1. There are no more edges with the same rank at one
extremity.

2. The segment intersects an edge of lower rank.

In the special case when three or more edges with the
same rank are incident to the same junction, the contin-
uation of the segments is determined by pairing together

FIG. 3: Illustration of the procedure for grouping together
edges into segments. A1: the near-horizontal edges have
lower rank than the near-vertical edges. The edges are
grouped in A2 into three segments: a near-horizontal lower
rank segment and two segments with higher rank. B1: all
the edges have the same rank. In this case, two straight seg-
ments are identified in B2. If an odd number of segments
with the same rank meet at a junction (C1), the one that de-
viates more from the direction of the others forms a distinct
segment (C2)

the two edges that provide the straightest continuation
of one another, then we proceed pairing together all the
other edges incident to the node in a similar way. If
an odd number of edges with the same rank meet at a
junction, one edge remains excluded from all the pairings
and the segment comprising that edge is terminated at
the junction.

We can give an intuitive justification for the above
rules. Imagine the case of a network-like pattern re-
sulting from a sequential growth process, such as for in-
stance fracture lines on ceramics. Grouping edges into
segments is equivalent to identify those network edges
that belong to the same line of fracture. With condi-
tion 2 we impose that younger lines of fracture (higher
ranks) never cross already formed fracture lines. A paral-
lel can also be found with what happens for urban street
patterns, where small streets usually change their name
when crossing larger ones.

Figure 3 shows examples of how segments are grouped
together. In A1 the near-horizontal edges have lower
rank than the near-vertical edges. In this case, the near-
vertical edges form two distinct segments (A2), in spite
of being in direct continuity. B1 presents exactly the
same pattern, except that now all the edges have the
same rank. In this case, the edges are grouped together
in two intersecting segments, one near-horizontal and one
near-vertical (B2). When there is an odd number of edges
intervening at a junction, as in C1, the couple(s) of edges
that deviate less from each other direction are paired to-
gether in the same segment(s) and the remaining edge
form a segment by itself, that is ended at the junction
(C2).

To summarize, the straight contiguity of edges is well
represented by a directed line graph LGd whose arcs are
weighted with appropriately chosen weights. The arbi-
trary selection of a set of root edges in G allows to express
changements of direction in terms of a distance mea-
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sure, allowing to assign each edge of G a rank number.
Edges that are more likely to belong to the same spatio-
temporal event of network formation can be grouped to-
gether into segments.

III. LATTICE MODELS

FIG. 4: Mondrian pattern generated by iterated domain di-
visions. Here, divisions are alterned: all the cuts operated at
division t+1 are hortogonal to the cuts at t. In all figures, the
color of the edges reflects their rank; a periodic rainbow col-
ormap is used. For this example, all the edges in the bottom
of the figure are selected as roots.

In this section we explore the distribution of segment
ranks and edge ranks in a simple lattice model. In par-
ticular, we introduce a class of lattice models that we call
“Mondrian” lattices, intended to mimic the growth pro-
cess and the characteristics of hierarchical network-like
patterns. In order to build the lattice, we start with a
single rectangular domain and we iterate the following
operation: each rectangular cell of the lattice is divided
in two smaller rectangles by introducing a new cut par-
allel to one of its sides (let’s say horizontal or vertical)
at a random position chosen from a normal distribution
around its centre. The cuts can either be “alterned”,
where horizontal cuts at time t are followed by vertical
cuts at time t+1, and vice-versa, or “random”, where the
horizontal or vertical direction of cut is chosen randomly
for each cell and each division.
Here, and in the rest of the paper, we will focus mainly

on two kinds of statistics. The first is the histogram of
the numbers (or percentages) of segments with any given
rank. This gives an information on the structuration of
the pattern between segments of various orders. The

FIG. 5: Top row: histogram of number of segments for Mon-
drian lattices of different size from left to right 26, 212, and
218 cells (C). Orange histogram: alterned divisions. Cyan his-
togram: random divisions. Bottom row: distribution of the
ranks of lattice edges vs. the topological distance of the same
edges for the same alterned Mondrian lattices. Red continu-
ous line: linear fit to the data. The slope is 0.148 for C = 26,
0.018 for C = 212 and 0.002 for C = 218. Blue dotted line:
function reported in equation 2

second measure relies on edges, not segments, and looks
at how the ranks of individual edges increase with their
topological distance from the sources. Intuitively, the
rank measures the number of direction change needed to
reach a particular edge and the topological distance mea-
sures the number of vertices crossed. Hence, 1

slope
of this

curve gives the average length of the straight segments.
This can also be seen as the largest scale at which spatial
organization is observed.
Figure 5, top row, gives the histogram of the numbers

of segments with any given rank for Mondrian lattices
after 6, 12 and 18 iterations of divisions. The orange
and cyan histograms are for alterned and random divi-
sions, respectively. For random divisions the asymptotic
distribution is a Normal distribution N(x) of the form

N(x) = A · e−
(x−x)2)

2·σ2 (1)

where x = 2+ ⌊ (t−2)
6 ⌋ (with t the number of iterations

of divisions), A = 2t+1
√
t+1
· 1.04328 and sigma

√
t+ 1 · 0.25.

In practice, for a pattern observed at a single time, t
is usually unknown, and it is easier to approximate t in
term of the number of cells C, assuming that it holds the
relation C = 2t. The number of cells for planar graphs
in turn is easily obtained from the number of edges and
vertices in the network through the Euler’s formula for
planar graphs, stating that V − E + C = 1.
When looking at the ranks of edges (instead of seg-

ments), one can plot the rank vs. the topological dis-
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FIG. 6: The same lattice as in figure 4. The positions of
each node but those on the perimeter of the lattice is shifted
by associating to all its adjacent edges a vector of unitary
length and centrifugal direction and computing the vectorial
sum over all the adjacent edges. This progressively destroys
the large scale organization of the pattern.

tance for each network edge. Figure 5, bottom row, re-
ports this distribution for alterned Mondrian lattices of
different sizes (6, 12 and 18 iterations of division), to-
gether with a linear fit of the distribution (continuous
red line). We can see that when the number of iteration
increases the overall slope decreases, revealing in fact a
curved relation. More precisely, the dependency of rank
vs. physical distance could be fitted by the following

FIG. 7: From left to right: same plots as in the previous
figures for three lattices with 212 cells each. The slope of the
fit for the bottom figure is 0.014 for A 0.355 for B and 0.707 for
C (the slight differences from the lattice with no degradation
here and the lattice with 212 cells of figure 5 middle row are
due to the additional edges introduced by imposing periodic
boundary conditions).

FIG. 8: When the angles at junctions are altered by applying
forces to the edges (as shown in figure 6), the global organiza-
tion of the pattern is rapidly lost. The plots report N(r) for
the segments and tg(α) for the edges of a Mondrian lattice
obtained with 12 alterned divisions when the angles formed
at junctions are progressively altered (see the main text).

equation for large lattices:

rank =

√

3

8
· log2(distance) + log2(

√

3

8
) (2)

This logarithmic relation is not surprising as distances
scale with the logarithm of the number of nodes both in
random graphs [29] and small world networks [30].
We assessed the stability of the measured ranks to the

local and large scale organization of the lattice by pro-
gressively destroying the edge orientations. This should
give us a better intuition of the kind of results that we
might expect for real world network-like patterns with
irregular and noisy organization.
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In principle, several strategies for destroying edge con-
tiguity can be imagined. However, if we take inspiration
from real patterns we notice that for a number of phys-
ical and biological systems network like patterns evolve
toward a configuration that achieves a local minimization
of the length of the linear structure. Two-dimensional
foams [31], honeycombs, biological epithelia, dragonfly
wing patterns [32], but also some geological formations
such as columnar joints found in basaltic lava rocks [42]
all involve roughly hexagonal tessellations of the plane,
and symmetric, tripartite junctions. The formation of
symmetric tripartite junctions is usually understood as
the result of forces directed to minimize the local length
of network segments. In fact, the hexagonal pattern is
the tessellation that fills the space using the minimum to-
tal length of linear segments [43]. The formation of such
symmetric configurations can be explained in terms of
minimization of forces. The most well-known example of
such force models is Lami’s theorem (cited e.g. in [32]),
which states that if three coplanar forces are acting on
a same point and keep it stationary, then it obeys the
relation A

sin(γ) =
B

sin(β) =
C

sin(α) where A, B and C are the

magnitude of forces acting at the point, and the values of
α, β and γ are the angles directly opposite to the forces
C, B and A respectively.

Such an evolution from hortogonal, Mondrian like, con-
figurations towards more symmetric, foam-like junctions
is documented for some real world patterns. For instance,
in the case of basaltic lava rocks, the hexagonal pattern
was shown do derive directly from tetragonal networks.
This process involves the gradual change of orthogonal in-
tersections toward nonorthogonal intersections of about
120 degrees as the joints grow inward during solidification
of lava [44, 45]. This is also the case for leaf vein pat-
terns, which first would form as fractures at right angles,
but then would evolve continuously with aging towards
more symmetric foam-like tripartite junctions [33].

It thus appears a natural choice to use similar rules to
progressively destroy the edge contiguity of Mondrian lat-
tice models: Starting from a lattice of 212 cells, obtained
through alterned divisions, we iterated the following op-
eration: at each time step the node positions are shifted
by computing the resultant of vectors directed along the
incident edges and oriented centrifugally. Each vector
has magnitude (sideofthegrid) · 1

30000 . The interest is
to explore the continuity between the two extremes of a
Mondrian pattern and a two dimensional foam.

Figure 6 shows two snapshots of a portion of the lattice
at different steps of degradation. Figure 7 presents the
statistics of segment histograms (top) and edge rank vs.
edge distance (bottom) for the three levels of degradation
corresponding to the figures 4-A and 7-B and C. When
the lattice is progressively degraded, the histogram of
segment ranks becomes flat and its center shifts far to the
right of the theoretical peak. The slope of edge rank vs.
edge distance, that is nearly zero for the original lattice
A, increases progressively for the degraded lattices B and
C.

We propose two measures for quantifying the distance
of a given distribution from the theoretical distributions
found with Mondrian lattice (or the level of degradation
of edge contiguity). The first quantity is N(r), where r
is the mean rank over all the segments of a pattern and
N(r) is the value of the theoretical distribution N(x)
normalized to have peak value equal to 1 (A = 1 in eq.
1) for a Mondrian lattice with the same number of cells
when x = r. This quantity will be 1 if the mean of the
real distribution is equal to the theoretical mean and will
fall to zero when the real distribution is far from that of
a theoretical Mondrian lattice. The second quantity is
the slope tg(α) of the linear least squares fit to the dis-
tribution of rank (distance from the root edges measured
in number of changes of direction) vs. network distance
(distance from the root edges measured in number of in-
terposed edges) rank = tg(α) · (distance)+ r0. For large
Mondrian lattices tg(α) ≃ 0. In fact, while ranks increase
with the logarithm of network size, topological distances
increase with the square root of network size. When the
continuity of straight lines is lost tg(α) will progressively
increase, with an upper boundary at 1, when each junc-
tion determines the increase of ranks, as e.g. would be
the case in hexagonal lattices.
Figure 8 (left) reveals that N(r) decrease very

abruptly, becoming negligible except near the perfect
Mondrian Pattern. This show that this measure is very
sensitive to the global large scale coherence, that is lost
very quickly. The slope (8, right) shows also a contin-
uous transition, but on a larger interval. This means
that once the large scale coherence is lost, the coherent
length (inverse of the slope), decreases continuously. In
other words the first measurement seems like a qualita-
tive measurement of the large scale hierarchical structure,
while the second measure is a quantitative measure of the
distance to a foam.
In general, real patterns will deviate in various ways

from these simple lattice models. In the following of
the paper we explore the distribution of ranks and seg-
ment statistics in three different examples of real world
network-like patterns: the pattern of fracture on the sur-
face of materials, patterns of leaf veins in dicotyledon
plants, and the pattern of urban streets in (unplanned)
towns.

IV. FRACTURE PATTERNS

Crack patterns often form on the surface of materi-
als as the result of the shrinking of one material layer
frustrated by its deposition on a non-shrinking substrate.
This kind of pattern formation has been extensively ob-
served and reproduced in controlled settings on a variety
of materials, including mud, ceramics, coffee grounds.
The final patterns result from the combination of two
distinct processes: the nucleation of new fractures on the
surface of the material and the propagation of existing
fractures [46–48]. Nucleation of new fractures usually
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FIG. 9: Edge ranks computed for the fracture pattern of figure
1. The color coding is the same as for other figures. The �

and © symbols are referred to in the main text.

involves the formation of tripartite junctions with equal
angles of about 120 degrees [48]. Conversely, junctions
formed by propagating fractures form as the result of ei-
ther two fractures meeting at a point (which usually do so
with orthogonal angles), or of the branching of one grow-
ing fracture (and in this latter case the angles formed at
junction are less predictable). If the crack pattern is pro-
duced in a non-elastic material, there is no reorganization
after its formation and the final form of the pattern re-
flects the mechanisms of formation. Depending on the
characteristics of material, either nucleation of new frac-
tures will be the most frequent process or propagation
of already formed fractures over long distances. Nucle-
ation is more frequent in the case of very thin layers or
inhomogeneous materials; propagation is predominant in
brittle, homogeneous materials such as ceramics.
Fractures patterns resulting mostly from propagation

of already formed fracture lines present a well defined
hierarchy due to the sequential formation process. One
such fracture pattern is the one shown in figure 1. Figure
9 shows the recovered ranks obtained with our algorithm
for all the lines when the two oldest are selected. There
is a partial mismatch between real and inferred hierar-
chy. This is in part due to the fact that when a cell is
cut in two halves by a fracture, then the two halves be-
come independent from one another and it is no longer
possible to establish a temporal relation between the new
fracture events within a cell and those in the neighboring
one. In the case of perfect hierarchical organization (as
is the case with figure 9) one could also gain information
by considering the organization of angles at both extrem-
ities of a segment: the fracture line marked with © ter-
minates the fracture marked with �, indicating that this
latter is actually more recent. Unfortunately, a method
that considers both extremities would lose generality and
could not resolve a configuration where a segment “A”
is terminated by another segment “B”, the segment “B”
is terminated by “C” and segment “C” is terminated by

“A”.

Once acknowledged that, depending on the character-
istics of the material, some fracture patterns are mostly
dominated by the nucleation of new fractures, and oth-
ers by the elongation of existing ones, we want to test if
our algorithm gives different classification results in one
case and in the other. To this end, let us consider the
crack patterns formed in three different materials: paint,
desiccating clay and ceramics (figure 10 from top to bot-
tom). The patterns were photographed with a digital
camera, converted to grayscale images, high-pass filtered
to remove inhomogeneities in the illumination, banalized
by simple thresholding and cleaned applying a binary
morphological majority filter (see [49, 50] for a review
of common image processing techniques). The images
of the fracture patterns were then skeletonized with a
topology preserving algorithm based on distance trans-
formation [51] to obtain a 8-connected skeleton (a skele-
ton where two pixels are considered to be connected if
they share either a face or a corner, opposed to a 4-
connected skeleton where only pixels that share a face
are considered to be connected). For each skeleton pixel,
we counted the number of pixels in their 8-neighborhood
that also belonged to the skeleton, and all the pixels hav-
ing a number of neighbors not equal to 2 were marked.
All the connected sets of marked skeleton pixels were
mapped into a network node. Whenever there was in
the image an unmarked 8-connected path between two
clusters of pixels identified as nodes we introduced an
edge between the corresponding nodes. The orientation
of each edge was estimated from the coordinates of the
two endpoints. In a subsequent step, edges shorter than
a threshold length ( 3 pixels) were removed and the nodes
at the two endpoints merged together.

A rectangular section of the pattern is studied and all
the edges crossing one side of the rectangle are selected as
roots for the assignment of ranks. Figure 10 reports the
statistics obtained on the three patterns, together with
a snapshot of a small region of the original patterns (on
the right), where the structure is colored according to the
rank of the corresponding network edge.

Very different distributions are observed for the cracks
formed in paint and clay, versus cracks formed in ceram-
ics: in the former two, the lack of large scale organi-
zation is reflected into the linear increase of ranks with
the topological distance from the root and the flat rank
probability distribution. In fact, the junctions originat-
ing from nucleation of new fractures, whose angles are
∼ 120 degrees always determine the increase of the rank
of edges across the junction. The inverse of the slope of
the curve fitting the data gives an indication of the length
over which crack elongation proceeds: about three junc-
tions. Conversely, for cracks formed in ceramics, the edge
ranks are almost completely independent of the topolog-
ical distance of edges from the roots, because of the large
scale organization present in these patterns. The slope is
thus close to null, but we can still see a deviation of the
rank histogram toward the left of the theoretical normal
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FIG. 10: Crack patterns formed in a layer of paint (top), in thin desiccating clay (middle), in the glaze of ceramics (bottom).
The graphs on the left plot the rank of each network edge vs. the topological distance of the same edge from the selected roots.
The images on the right are particulars of the original patterns, where the fractures have been colored according to the rank
of the corresponding network edge. The same periodic rainbow colormap as in figure 4 is used. The slope of the red line fit is
0.246 for paint, 0.356 for clay and 0.022 for ceramics; N(r) is 0.000 for clay and paint and 0.472 for ceramics

distribution (Fig. 10, left column, bottom). Such small
deviation is probably due to the fact that analyzed region
is a portion of a larger pattern and the cuts introduced
by the arbitrary frame disconnected some edges from the
network path that corresponds to their real rank. This
also shows that rank distribution is a very sensitive mea-
surement.

V. LEAF VENATION NETWORKS

Leaf veins in the leaves of flowering plants form char-
acteristic patterns that can be used by botanists as keys
for taxonomic identification. However this identification
is done by eye and does not rely on quantitative measure-
ments. The pattern is hierarchical, and the diameter of
a vein roughly reflects its order of appearance during leaf
morphogenesis, with larger veins being older than smaller
ones [52]. Botanists define discrete vein orders looking at
vein width at the point of branching from its parent vein:
the large primary vein or midvein is continuous with the

stem vascular bundles; secondary veins branch from the
primary vein; tertiary veins are defined by their narrower
width where they branch from the secondary veins and
so on.

We tested our ranking algorithm on the vein patterns
of angiosperm leaves. The leaves were skeletonized or
cleared with 10% sodium hydroxide solution and the pat-
tern was scanned with a commercial scanner in transmis-
sion mode with a resolution superior to 2000 pixels/inch
and 256 gray levels. A network representation was ex-
tracted from the images in a similar way to what de-
scribed in the previous section. In the ranking procedure,
the leaf stem is selected as root edge. This in agreement
with its special role for both transportation and leaf mor-
phogenesis: the leaf stem is both the source (through
xylem) and the sink (through phloem) of all transporta-
tion taking place in the leaf vein network, as well as the
first vein to form during leaf morphogenesis [53].

Figure 11 shows a portion of leaf of Hymenanthera

chathamica highlighting vein ranks: veins with rank
equal to 1 or 2 are shown in color in A, veins with rank
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FIG. 11: A Vein pattern of a dicotyledon: Hymenanthera chathamica. A: only the veins with rank 0 and 1 are shown in colour.
B: only veins of rank 0,1 and 2 are colored. C: only veins of rank 0 to 3 are colored. (The whole leaf was analyzed, but for
clarity only a small portion of the vein network is shown here).

1 to 3 are highlighted in B and veins with rank 1 to 4 in
C. The classification does not take into account diame-
ters of the veins, but only their direction. Nevertheless,
the results of classification match well the diameter of the
veins: from the figure, we can see that veins marked with
higher ranks have in general smaller size (which roughly
corresponds to say that they have appeared later). In
this sense, we also recover the vein patterns as derived
from the botanical classification. This is coherent with
the hypothesis that the older veins are not only larger
but also straighter, as can be derived from relation ex-
isting between vein sizes and junction angles [33]. Some
small veins attached to the main vein are given a small
rank, while one would intuitively ascribe them to a higher
rank. This illustrates well the non complete reversibility
of the fragmentation process: for each vein we can infer
the order of appearance with respect to the parent vein,
but not the exact age. Technically, also the botanical
classification presents the same problem as these veins
have smaller diameters than the parent vein.

Going to the statistics of segment percentages and edge
rank vs. distance, we plot them in figure 12 for both the
Hymenanthera chatamica (Hc) leaf and for a leaf of Fi-
cus religiosa (Fr). The Hc network is about one magni-
tude order smaller than the Fr. However, both networks
are hierarchical: the distribution of segment histogram
is peaked close to the theoretical value and the slope of
rank vs. distance is close to zero (please note the x- and
y- axes scales).

The larger Fr pattern is very close to the perfect hi-
erarchical pattern, while there is a slight deviation for
Hc rank distribution: it is still a Gaussian but shifted to
higher values. Contrary to the previous case, it cannot
be ascribed to boundary effects as the whole leaf with the
boundary veins is treated, nor to a simple small number
of veins, as the distribution is already very well defined.
This shift might be ascribed to the different plasticity
of the veins during their maturation, and that the con-
nection angle evolves a little, but not enough to disrupt
the hierarchy. More measurements should be made to
check if this shift is due to the difference in species or to

FIG. 12: Top: Segement and edge statistics for Hymenanthera

chatamica ( Hc, top) and Ficus religiosa (Fr, bottom). Net-
work size is ∼ 12000 nodes for Hymenanthera and ∼ 130000
for Ficus. The slope of the red line fit is 0.019 for Hc and
0.000 For Fr. N(r) is 0.456 for Hc and 0.999 for Fr

the different maturation of the leaves depending on their
sizes.

VI. URBAN STREET PATTERNS

The growth of urban street networks is a complex pro-
cess determined by a series of historical events and in-
volving feed-back and regulation from global network
processes, such as traffic and transportation. How-
ever, in a first approximation, the general form of these
patterns can be described in terms of simple models
where new streets appear over time with no reorganisa-
tion [16, 54, 55]. Within such models, the first streets will
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connect the first houses to the country. As the urban pat-
tern grows, new streets will bifurcate from existing ones
in the direction of not yet urbanized areas, or to join al-
ready existing streets. Hence, the process of growth of
urban streets would share similarities with the growth of
fracture patterns [34], which justifies to assign ranks to
streets in a similar way.

We here test our ranking method on two towns Cor-
doba (Spain) and Venice (Italy) to look at the distribu-
tion of statistics for the two towns. In both cases we
choose the perimeter of the town as root for the rank
computation. (The shores of Venice and the highway
ring around Cordoba).

FIG. 13: Cordoba map, edges are colored according to their
rank.

Figure 13 displays a map of the town of Cordoba,
where each edge is colored according to its rank. The
brighter region in the figure corresponds to the histori-
cal city centre. Almost all the edges with highest rank
appear to fall inside this region. Higher ranks often are
the mark of lack of global organization. It would be in-
teresting to explore further if higher ranks correspond to
parts of town that developed in a period of more self-
organized, organic growth (e.g. periods when the central
power was weaker). Overall, the histogram of segments
of different ranks (reported in fig. 14 top, left) is still
compatible with that of a hierarchical network, as those
found in the previous example. The distribution of edge
ranks vs. edge distance from the root edges is nearly flat,
with a slight slope that can likely be ascribed to the small
size of the network.

When the same analysis is carried on the street pattern
of Venice, a quite different behavior is found: segments
rank up to much higher values, suggesting an absence
of large scale organization in this street pattern (fig. 14,
middle column). This does not seem to be a pure artifact
of our method, but agrees with other elements of the or-
ganization of Venice, where streets are not the principal

FIG. 14: Top: Histogram of the number of segments in Cor-
doba street pattern, Venice street pattern and Venice street
and channel pattern. Bottom: rank of network edges vs. their
topological distance from the root edges. The slope of the
red curve is 0.094 for Cordoba, 0.239 for Venice, and 0.146
when also the channels are considered in the network. N(r)
is 0.991 for Cordoba, 0.985 for Venice with channels and 0.259
for Venice without channels.

FIG. 15: Direct access to the channel network from a house
in Venice

element of organization of the town. This is reflected, for
instance, in the fact that still today houses and build-
ings are not numbered according to their position along
a street, but numbering follows a subdivision by districts
(“sestieri”).

Interestingly, when for Venice one considers the trans-
portation system including both streets and channels, the
rank distribution gets closer to one of a hierarchical net-
work, with histogram of segment numbers limited to ∼ 5
ranks and less steep distribution of edge ranks vs. dis-
tances (fig. 14, right). This reveals that the channels are
the original part of the transportation system, and the
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origin of the town organization. The houses were first
built along the channels with direct access to them (fig.
15), and the streets appeared in the channel delimited
islands, as secondary divisions for inland house access.
Thus removing the channels for the analysis is removing
the large coherent structure, having a direct visible im-
pact on the rank distribution shape. On the contrary,
with the channels included, the hierarchical structure of
successive divisions is recovered. So, the rank analysis
has the potential to show some peculiarities of specific
towns at the same time pointing to the possible reasons
for these peculiarities.

VII. CONCLUSIONS

In this article we defined a new method to analyze
spatial networks with loops and define quantitative mea-
surements. The need to characterize quantitatively the
form (and likely morphogenesis) of net-like patterns mo-
tivated us to introduce a procedure for assigning ranks
to all the edges of the pattern and group several edges
into segments. Using a local spatial characteristics, the
branching angles, we are able to quantify the large scale
coherence of the pattern. In the examples of the present
paper, the root of the analysis is decided arbitrarily (from
intuitive clues). However, for many purposes one does
not need to define a root for computation and can com-
pute more classical network parameters directly on the
weighted line graph GD.
The first measurement we propose, the rank distri-

bution, is a very sensitive indicator of the existence of
a large scale spatial coherence and hierarchical subdivi-
sions. When this large scale coherence is lost, the second
measurement quantifies the size over which organization
persists, up to the point of purely local organization.
When tested on lattice models, these measurements show
a continuous but sharp transition between two types of
network, one with large scale coherence and one with
purely a local organization.
The method is efficient on different real patterns taken

from various origins, from fractures to leaf venation and
urban streets. The obtained measures show the poten-

tiality to discriminate between patterns with hierarchical
history of growth and patterns grown out of more local
rules. It is perfectly clear for fracture patterns, where
the two cases of many locally generated fractures that re-
connect and few fractures propagating on large distance
can be clearly distinguished. For leaf venation pattern,
the method clearly reveals a hierarchical growth mech-
anism. In addition, the rank assigned to network seg-
ments correlates to some extent with the temporal order
of appearance of the same segments, and hence the mea-
sure is informative on the process of growth itself. The
matching between ranks and order of appearance how-
ever is not perfect, and the information provided by the
ranks should be complemented from other sources for in-
dividual systems. For instance, with leaf veins one could
consider both ranks and vein diameter to obtain a better
classification of veins into discrete orders.
This analysis is also sensitive on town streets, and is

able to reveal the particular organization of streets in
Venice, whose structure can be explained as a secondary
construction from the channels. The town structures is
otherwise coherent with that of a sequential sub-division
pattern, indicating some underlying logic in its develop-
ment.
We think the method can be generally applied to differ-

ent types of patterns, revealing not only their structure
but also in part their history of growth. In the present
paper, we build the classification from local angle infor-
mation. More generally, however, any other local infor-
mation can be used, for instance the size of the connect-
ing element, to construct a similar hierarchy. It is thus a
new, general and efficient way to analyze networks with
loops and group patterns of very diverse origins into the
same structure and development classes.
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