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Past years have seen the development of a few proposals for quantum extensions of process calculi. The

rationale is clear: with the development of quantum communication protocols, there is a need to abstract and

focus on the basic features of quantum concurrent systems, like CCS and CSP have done for their classical

counterparts. So far, though, no accepted standard has emerged, neither for the syntax nor for the behavioural

semantics. Indeed, the various proposals do not agree on what should be the observational properties of

quantum values, and as a matter of fact, the soundness of such properties has never been validated against the

prescriptions of quantum theory.

To this aim, we introduce a new calculus, Linear Quantum CCS (lqCCS), and investigate the features of

behavioural equivalences based on barbs and contexts. Our calculus can be thought of as an asynchronous,

linear version of qCCS, which is in turn based on value-passing CCS. The combination of linearity and

asynchronous communication �ts well with the properties of quantum systems (e.g. the no-cloning theorem),

since it ensures that each qubit is sent exactly once, precisely specifying which qubits of a process interact

with the context.

We exploit contexts to examine how bisimilarities relate to quantum theory. We show that the observational

power of general contexts is incompatible with quantum theory: roughly, they can perform non-deterministic

moves depending on quantum values without measuring (hence perturbing) them.

Therefore, we re�ne the operational semantics in order to prevent contexts from performing unfeasible

non-deterministic choices. This induces a coarser bisimilarity that better �ts the quantum setting: (8) it lifts the

indistinguishability of quantum states to the distributions of processes and, despite the additional constraints,

(88) it preserves the expressiveness of non-deterministic choices based on classical information. To the best of

our knowledge, our semantics is the �rst one that satis�es the two properties above.

CCS Concepts: • Theory of computation→ Process calculi;Quantum computation theory; Probabilistic

computation; • Software and its engineering→ Formal software veri�cation; • Networks→ Protocol

correctness.
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1 INTRODUCTION

Quantum computing is a promising emerging technology that exploits non-classical phenomena
described by quantum mechanics, such as entanglement and superposition. The basic component
of quantum algorithms and protocols is the qubit, a system that can be in one of two basis states |0⟩
and |1⟩, as well as in any linear combination of them, called a superposition. The state of a quantum
system is modelled as a set of qubits on which the programmer applies various transformations.
Di�erently from classical systems, the state of a composite quantum system can be entangled, i.e.
the subsystems cannot be described separately. Moreover, reading the state of a qubit (“measuring”
it, in quantum jargon), causes its state to probabilistically change to one of the basis states. Finally,
the no-cloning theorem forbids copying qubits and thus poses serious constraints to programmers.

Both theory and implementations of quantum computing attracted considerable research e�orts
in the last decades, leading to quantum algorithmswithmore than polynomial speedup over classical
counterparts [Harrow et al. 2009; Shor 1994] and quantum protocols, e.g. for key distribution [Bennet
and Brassard 2014; Poppe et al. 2004] and leader election [Tani et al. 2012]. Practical applications,
though, require quantum computers with large enough memories. This is a challenging task, as it
is di�cult to maintain quantum properties among a big number of qubits. A solution seems to lie
on distributed computing, by suitably linking multiple quantum computers [Kimble 2008].

With the recent advances, the need has emerged for veri�cation techniques applicable to quantum
distributed algorithms and protocols. Concerning purely probabilistic systems, several models have
been proposed so far: some only target the probabilistic behaviour, like Markov Chains [Sokolova
2011], while others also take into account pure non-determinism, like Segala Automata [Segala
1995] and Probabilistic Transition Systems [Hennessy 2012]. This second approach appears to be
more adequate to model protocols where actors can perform their choices freely, and not only
according to some prede�ned probability distribution. Process calculi and bisimilarity have been
successful in modelling and verifying classical concurrent systems characterized by probabilistic and
non-deterministic behaviours. We expect the same will hold in the quantum case, where di�erent
process calculi and behavioural equivalences have been proposed that display both quantum and
non-deterministic features. While the features of these calculi are mostly comparable, the proposed
bisimilarities greatly vary from one work to the other, and are seldom compared with each other
and with quantum theory. Indeed, they turn out to disagree on several simple cases which naturally
occur when modelling real-world protocols. Moreover, such discrepancies are partially due to
the fact that some proposed bisimilarities do not �t what is prescribed by quantum theory. In
fact, Davidson [2012] and Kubota et al. [2012] prove that processes sending indistinguishable
quantum values are spuriously discriminated. This discrepancy is yet to be investigated in depth,
and there are no correctness results relating bisimilarity to indistinguishability in quantum theory.
We exemplify in Table 1 some cases on which the current proposals diverge, and investigate the
underlying causes. The works we compare are QPAlg by Lalire [2006], CQP by Davidson [2012]
and qCCS, which comes with two di�erent bisimilarities: ∼? proposed by Deng and Feng [2012],
and ∼3 by Feng and Ying [2015]. For each row of the table, we discuss the prescriptions of quantum
theory, reporting violations and proposing a possible solution.
In fact, to tackle these foundational issues, we introduce a new process calculus, namely linear

quantum CCS (lqCCS), which o�ers the main features common to the previous proposals, and use
it as a framework for exploring behavioural equivalence for quantum systems. Our calculus builds
up on qCCS (in turn inspired by value-passing CCS [Hennessy 1991]), yet o�ers asynchronous
communication and a linear type system. Quantum systems are modelled as con�gurations in a
stateful manner, with the state of the qubits alongside the processes. Furthermore, the no-cloning
theorem prescribes that once a qubit has been sent, the sender cannot use it any more. To comply
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Table 1. Recap of the main di�erences between the proposed bisimilarities.

PAIR OF PROCESSES (in lqCCS syntax) QPAlg CQP qCCS lqCCS

2?G .H (G).0 and 2?G .X (G) .0 ∼ ∼ ≁? , ≁3 illegal

2?G .H (G).0G and 2?G .X (G).0G ∼ ∼ ∼? , ∼3 ∼B , ∼2B
2?G .H (G).3!G and 2?G .X (G).3!G ≁ ≁ ≁? , ≁3 ≁B , ≁2B

Set 1
4
� (@1, @2) .(2!@1 ∥ 2!@2) and Set |Φ+ ⟩⟨Φ+ | (@1, @2) .(2!@1 ∥ 2!@2) ∼ ≁ ≁? , ≁3 ≁B , ≁2B

Set|+⟩⟨+| (@)."01 (@ ▷ G).2!@ and Set|0⟩⟨0| (@)."± (@ ▷ G).2!@ ≁ ∼ ≁? , ∼3 ≁B , ∼2B
Set|+⟩⟨+| (@)."01 (@ ▷ G).(2!@ + 3!@) and Set|0⟩⟨0| (@)."± (@ ▷ G).(2!@ + 3!@) ≁ ∼ ≁? , ∼3 ≁B , ≁2B

with this requirement, quantum process calculi usually enforce a�nity, guaranteeing that each
qubit is sent at most once. We go one step further by requiring each qubit to be sent or discarded
(i.e. sent on a restricted channel) exactly once, thus forcing the observability of each qubit to be
clearly de�ned. This allows us to resolve a super�cial discrepancy of the proposed behavioural
equivalences, focusing on unambiguous cases only. Take as example the pair of processes of the
�rst row of Table 1. Both receive a qubit on channel 2 (with 2?G), modify it (with either � (G) or
- (G)), and then terminate (0). The two processes apply di�erent transformations, resulting in
di�erent quantum states. Both CQP and QPAlg assume unsent qubits are not visible and deem
% and & bisimilar, while the bisimilarities for qCCS do the opposite. The linear typing of lqCCS
forces to specify visibility, and allows matching these di�erent results employing an appropriate
discarding discipline (i.e. the processes are equivalent if the qubit is discarded using 0G as in the
second row of Table 1, they are distinguishable if it is sent on a visible channel as in the third row).

We de�ne a saturated probabilistic bisimilarity for lqCCS, denoted as ∼B , which relies on contexts
for distinguishing quantum processes [Bonchi et al. 2014]. This seems a fruitful choice, because the
notion of observable property of a visible quantum value is not straightforward, as witnessed by
the variety of labelled bisimulations proposed so far. On the contrary, available operations over
quantum values are well known (unitaries and measurements), and thus contexts are easily de�ned
and uniquely determined (at least as far as quantum properties are concerned). Take the fourth
row of Table 1 as an example, where both processes prepare and send a pair of qubits, but only the
latter is entangled. Remarkably, in both cases, the sent qubits are in the same state when taken
separately. QPAlg uses the value of each sent qubit as labels, thus incorrectly equating the two
processes. Indeed, detecting the entanglement requires considering the pair of qubits as a whole.
We also su�er from the problem highlighted by Davidson and Kubota et al., as our saturated

bisimilarity spuriously discriminates between equivalent quantum values. More in detail, quantum
theory prescribes that certain probability distributions of quantum states should be indistinguishable
(namely if they are represented by the same density operator). Consider the processes of the �fth
row of Table 1. After setting and measuring the qubits, the state of the sent qubit of both processes is
in a fair distribution, respectively of |0⟩ and |1⟩, and of |+⟩ and |−⟩. Such distributions are prescribed
to be indistinguishable. Nonetheless, the two processes are not bisimilar according to QPAlg and
∼? of qCCS. Also ∼B su�ers from the same issue, but the use of contexts allow us to precisely
pinpoint the cause of the problem in the interaction between non-determinism and quantum
features. Indeed, unconstrained non-determinism allows contexts to choose a move based on the (in
principle unknown) current quantum state, without performing a measurement (and thus, without
perturbing the state, violating a de�ning feature of quantum objects). Non-determinism must be
constrained for contexts to �t the limitations of quantum theory.
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We give a new enhanced semantics and proper contexts, forbidding ill-formed moves where
the non-deterministic choices depend on unknown quantum values. Moreover, we de�ne con-

strained saturated bisimilarity, denoted as ∼2B , which is strictly coarser than ∼B . We prove two main
properties: ∼2B recovers the indistinguishability of quantum values prescribed by quantum theory,
and, even if constrained, non-deterministic sum can still simulate boolean conditional statements.
Theorem 4.8 shows that our constraints su�ce to equate lqCCS con�gurations with indistinguish-
able quantum states. Notice indeed that the processes of the �fth row of Table 1 are correctly
deemed bisimilar by ∼2B . We argue that our constraints are not overly restrictive. To con�rm this,
Theorem 4.12 shows that non-deterministic choices can always perform di�erent moves according
to known classical values, thus replicating the behaviour of boolean guards. This is an expected
property that was missing in previous bisimilarities like the one of CQP and ∼3 of qCCS, which also
indirectly constrain non-determinism. Consider the last row of Table 1 where both processes send
a qubit, choosing non-deterministically over two possible channels. Remarkably, for each channel,
the state of the sent qubits is represented by the same density operator, but the two processes could
be distinguished if they had chosen the channel according to the outcome of the measurement (e.g.
by using a boolean guard). Since non-deterministic sum simulates such behaviour in our enhanced
semantics, the two processes are correctly distinguished. On the contrary, all the previous works
that correctly equates the processes of the �fth row of the table fails in distinguishing the ones in
the last row: indeed, they overly constrain non-determinism.
As a �nal contribution, we provide a few proof techniques and employ them to analyse three

real-world protocols: quantum teleportation, super-dense coding and quantum coin-�ipping.

Synopsis. In section 2 we give some background about probability distributions and quantum
theory. In section 3 we present lqCCS, we discuss probabilistic bisimilarity and its interaction
with non-determinism. In section 4 we propose our novel semantics and bisimilarity equivalence.
In section 5 we describe the capabilities of the novel bisimilarity through the lenses of well-known
quantum protocols. Finally, we compare with relatedworks in section 6, andwe conclude in section 7.
For the full proofs we refer to the extended version [Ceragioli et al. 2023].

2 BACKGROUND

We recall some background on probability distributions and introduce quantum computing. Finally,
we present density operators that model probability distributions of quantum systems and their
evolution. We refer to Nielsen and Chuang [2010] for further reading on quantum computing.

2.1 Probability Distributions

A probability distribution over a set ( is a function Δ : ( → [0, 1] such that
∑

B∈( Δ(B) = 1. We call
the support of a distribution Δ, written ⌈Δ⌉, the set {B ∈ ( | Δ(B) > 0}. We write D(() for the set
of distributions over ( , and restrict ourselves to distributions with �nite support.
For each B ∈ ( , we let B be the point distribution that assigns 1 to B . Given a �nite set of non-

negatives reals {?8 }8∈� such that
∑

8∈� ?8 = 1, we write
∑

8∈� ?8 •Δ8 for the distribution determined by
(∑8∈� ?8•Δ8 ) (B) =

∑
8∈� ?8Δ8 (B). Sometimes, wewill use the notation above to write the distributions

“explicitly” by listing the elements of the support with their probability as in Δ =
∑

B∈⌈( ⌉ ?B • B .
Finally, the notation Δ1 ⊕? Δ2 is a shorthand for ? • Δ1 + (1 − ?) • Δ2.

A relation R ⊆ D(() × D(() is said to be linear if (Δ1 ⊕? Δ2) R (Θ1 ⊕? Θ2) for any ? ∈ [0, 1]
whenever Δ8 R Θ8 for 8 = 1, 2. R is said to be left-decomposable if (Δ1 ⊕? Δ2) R Θ implies Θ =

(Θ1 ⊕? Θ2) for someΘ1,Θ2 with Δ8 R Θ8 for 8 = 1, 2 and for any ? ∈ [0, 1]. Right-decomposability is
de�ned symmetrically, and a relation is decomposable when it is both left- and right-decomposable.
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Given R ⊆ ( × D((), its lifting lift(R) ⊆ D(() × D(() is the smallest linear relation such that
B lift(R) Θ when B R Θ.

2.2 State Space

A (�nite-dimensional) Hilbert space, denoted as H , is a complex vector space equipped with a
binary operator ⟨ · | · ⟩ : H × H → C called inner product, de�ned as ⟨k |q⟩ =

∑
8 U

∗
8 V8 , where

|k ⟩ = (U1, . . . , U8 )) and |q⟩ = (V1, . . . , V8 )) . We indicate column vectors as |k ⟩ and their conjugate

transpose as ⟨k | = |k ⟩†. The state of an isolated physical system is represented as a unit vector |k ⟩
(called state vector), i.e. a vector such that ⟨k |k ⟩ = 1. The simplest example of a quantum physical

system is a qubit, which is associated with the two-dimensional Hilbert Space Ĥ = C2. The vectors

{|0⟩ = (1, 0)) , |1⟩ = (0, 1)) } form an orthonormal basis of Ĥ , called the computational basis. Other

important vectors in Ĥ are |+⟩ = 1√
2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
( |0⟩ − |1⟩), which form the diagonal

basis, or Hadamard basis.
Intuitively, di�erent bases represent di�erent observable properties of a quantum system. Note

that |+⟩ and |−⟩ are non-trivial linear combinations of |0⟩ and |1⟩, roughly meaning that the property
associated with the computational basis is undetermined in |+⟩ and |−⟩. In the quantum jargon, the
states in the diagonal basis are superpositions with respect to the standard basis. Symmetrically, |0⟩
and |1⟩ are themselves superpositions with respect to the diagonal basis.

2.3 Unitary Transformations

For each linear operator� on a Hilbert spaceH , there is a linear operator�†, the adjoint of�, which
is given by the conjugate transpose of � and is the unique operator such that ⟨k |�|q⟩ =

〈
�†k

��q
〉
.

A linear operator * is said to be unitary when ** †
= * †* = � . In quantum physics, the evolution

of a closed system is described by a unitary transformation: the state |k ⟩ at time C0 is related to
|k ′⟩ at time C1 by a unitary operator* , which only depends on C0 and C1, i.e. |k ′⟩ = * |k ⟩.
In quantum computing, the programmer manipulates the state of qubits by applying unitary

transformations. Some of the most common transformations on single qubits are: - that transforms
the qubit |0⟩ into |1⟩ and vice-versa (corresponding to the classical logical not); / that given
|k ⟩ = U |0⟩ + V |1⟩ returns U |0⟩ − V |1⟩; and � that maps |0⟩ and |1⟩ into |+⟩ and |−⟩ respectively.

- =

[
0 1

1 0

]
/ =

[
1 0

0 −1

]
� =

1
√
2

[
1 1

1 −1

]

2.4 Measurement

Quantum measurements are needed for describing systems that exchange information with the
environment. Performing a measurement on a quantum state returns a classical result and causes the
quantum state to change (i.e. to decay). Thus, measurements alter the state of the qubits. Moreover,
the result of a measurement is intrinsically probabilistic.
A measurement operator is a linear transformation that associates each input quantum state

with a probability and a resulting quantum state. A measurement is then a set of possible classical
outcomes: each of them is associated with ameasurement operator that encodes how the probability
of the outcome and the resulting quantum state depends on the current state |k ⟩.
Formally, a measurement is a set {"<}< of measurement operators, where < refers to the

classical outcomes, such that the completeness equation
∑

<"
†
<"< = � holds. If the state of the

system is |k ⟩ before the measurement, then the probability of< occurring is ?< = ⟨k |"†
<"< |k ⟩.

If< is the outcome, then the state after the measurement will be 1√
?<
"< |k ⟩.
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The simplest measurements project a state into one of the basis of H , e.g. "01 = {"0, "1}
with "0 = |0⟩⟨0| , "1 = |1⟩⟨1| in the computational basis of Ĥ , and "± = {"+, "−} with "+ =

|+⟩⟨+| , "− = |−⟩⟨−| in the Hadamard basis.
As expected, applying the measurement"01 on |0⟩ returns the classical outcome 0 and the state

|0⟩ with probability 1. When applying the same measurement on |+⟩, instead, the result may be 0
and |0⟩, or 1 and |1⟩ with equal probability. Note also that measuring |0⟩ with"± leads to either 0
and |+⟩, or 1 and |−⟩, also with equal probability.

2.5 Composite �antum Systems

We represent the state space of a composite physical system as the tensor product of the state spaces
of its components. Let H� and H� be = and<-dimensional Hilbert spaces: their tensor product
H� ⊗ H� is an = ·< Hilbert space. Moreover, if {|k1⟩ , . . . , |k=⟩} and {|q1⟩ , . . . , |q<⟩} are bases of
respectivelyH� andH� , then {|k8⟩ ⊗

��q 9

〉
| 8 = 1, . . . , =, 9 = 1, . . . ,<} is a basis ofH� ⊗H� , where

|k ⟩ ⊗ |q⟩ is the Kronecker product, de�ned as



G1,1 · · · G1,=
...

. . .
...

G<,1 · · · G<,=


⊗ � =



G1,1� · · · G1,=�
...

. . .
...

G<,1� · · · G<,=�


We often omit the tensor product and write |k ⟩ |q⟩ or |kq⟩. We write Ĥ⊗= for the 2=-dimensional

Hilbert space de�ned as the tensor product of = copies of Ĥ (i.e. the possible states of = qubits).
What is said above about unitary transformations and measurements also applies to composite

systems. Given a list of single-qubits unitaries*1,*2 . . .*= , their tensor product*1 ⊗*2 · · · ⊗*= is
a unitary transformation over = qubits. Not all unitaries on = qubits can be obtained in this way:
the most used that cannot be obtained via tensor product are the SWAP operator exchanging the
state of two qubits, i.e. SWAP |kq⟩ = |qk ⟩, and the controlled not (CNOT) over two qubits, de�ned
as

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ , CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩ .
A measurement for a composite system may measure only some of the qubits and leave others

unaltered, e.g. {"0 ⊗ � , "1 ⊗ � } measures (in the computational basis) the �rst qubit of a pair.
A quantum state inH� ⊗ H� is separable when it can be expressed as the Kronecker product

of two vectors ofH� and H� . Otherwise, it is entangled, like the Bell state |Φ+⟩ = 1√
2
( |00⟩ + |11⟩).

When two qubits are entangled, the evolution of the one depends on the transformations applied to
the other. Measuring e.g. the �rst qubit of |Φ+⟩ in the computational basis causes the state to decay
into either |00⟩ or |11⟩ with equal probability, where also the state of the second qubit is updated.

The Bell states {|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩} form the Bell basis for Ĥ⊗2, with

|Φ−⟩ = 1
√
2
( |00⟩ − |11⟩)

��Ψ+〉
=

1
√
2
( |01⟩ + |10⟩) |Ψ−⟩ = 1

√
2
( |01⟩ − |10⟩)

A de�ning feature of quantum computing is that qubits cannot be duplicated.

Proposition 2.1 (No-Cloning Theorem). There is no unitary operation * on H� ⊗ H� such

that* ( |k ⟩ ⊗ |q⟩) = |k ⟩ ⊗ |k ⟩ for all states |k ⟩ ∈ H� and |q⟩ ∈ H� .

As a result, qubits cannot be stored in multiple locations or broadcast to multiple receivers.

2.6 Density Operator Formalism

The density operator formalism puts together quantum systems and probability distributions by

considering mixed states, i.e. probabilistic mixture of quantum states. A point distribution |k ⟩ (called
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a pure state) is represented by the matrix |k ⟩⟨k |. In general, a mixed state Δ ∈ D(Ĥ⊗=) for = qubits
is represented as the matrix d ∈ C2=×2= , known as its density operator, with d =

∑
8 Δ(k8 ) |k8⟩⟨k8 |.

We write DO(H) for the set of density operators of H .

For example, the mixed state |0⟩ ⊕
1/3 |+⟩ being |0⟩ with probability 1/3 and in |+⟩ with probability

2/3 is represented as
1

3
|0⟩⟨0| + 2

3
|+⟩⟨+| = 1

3

[
2 1

1 1

]

Note that the encoding of probabilistic mixtures of quantum states as density operators is not
injective. For example, 1

2
� is called the maximally mixed state and represents both the distribution

Δ� = |0⟩ ⊕
1/2 |1⟩ and Δ� = |+⟩ ⊕

1/2 |−⟩. This is a desired feature, as the laws of quantum mechanics

deem indistinguishable all the distributions that result in the same density operator.
The evolution of mixed states is given as a trace-preserving superoperator E : DO(H) →

DO(H), a function de�ned by its Kraus operator sum decomposition {�8 }8 for 8 = 1, . . . , dim(H)2,
satisfying that E(d)= ∑

8 �8d�
†
8 and

∑
8 �

†
8 �8 = �H , where �H is the identity operator on H . Notice

that the operators �8 are not unitaries in general, see Nielsen and Chuang [2010, Section 8.2.3]. We
write TS(H) for the set of trace-preserving superoperators on H .

The tensor product of density operators d ⊗ f is de�ned as their Kronecker product, and of
superoperators E ⊗ F as the superoperator having Kraus decomposition {�8 ⊗ � 9 }8, 9 with {�8 }8
and {� 9 } 9 Kraus decompositions of E and F . Superoperators represent unitary transformations*
as E* with {* } its Kraus decomposition. Other transformations are possible, like the constant Setd
superoperators, transforming any input state in the given state d ; and the probabilistic combination
of unitaries having Kraus decomposition {√?8*8 }8 with

∑
8 ?8 = 1 and*8 a unitary transformation

(each*8 is applied with a given probability, which is useful for modelling noisy channels and gates).
Density operators can be used to describe the state of a subsystem of a composite quantum

system. Let H�� = H� ⊗ H� represents a composite system, with subsystems � and �. Given a
(not necessarily separable) d�� ∈ H�� , the reduced density operator of system �, d� = tr� (d��),
describes the state of the subsystem �, with tr� the partial trace over �, de�ned as the linear
transformation such that tr� ( |k ⟩⟨k ′ | ⊗ |q⟩⟨q ′ |) = |k ⟩⟨k ′ | tr( |q⟩⟨q ′ |). When applied to pure separable
states, the partial trace returns the actual state of the subsystem. When applied to an entangled
state, instead, it produces a probability distribution of states, because “forgetting” the information
on the subsystem � leaves us with only partial information on subsystem �. As an example, the
partial trace over the �rst qubit of d = |Φ+⟩⟨Φ+ | is the maximally mixed state.

3 A LINEAR PROCESS ALGEBRA

In the following sections we describe the syntax and the type system of lqCCS processes, as well
as a reduction-style semantics and a �rst notion of bisimilarity. Our process calculus is enriched
with a linear type system both for re�ecting the no-cloning theorem (see Proposition 2.1) and for
resolving the minor discrepancy on qubit visibility summarized in the �rst three rows of Table 1.

3.1 Syntax and Type System

The syntax of lqCCS is de�ned as follows

% F  | % ∥ % | % \ 2 | if 4 then % else %

 F 04̃ | g .% | E (4̃).% | " (4̃ ▷ G).% | 2?G .% | 2!4 |  +  
4 F G | 1 | = | @ | ¬4 | 4 ∨ 4 | 4 ≤ 4

where 1 ∈ B, = ∈ N, @ ∈ Q, G ∈ Var, 2 ∈ Chan with Q, Var, Chan denumerable sets of respectively
qubit names, variables and channels, each typed. We use 4̃ to denote a (possibly empty) tuple
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4̃ ∈ Σ̃

Σ ⊢ 04̃
Nil

Σ ⊢ %
Σ ⊢ g .% Tau

" : Meas(=) |� | = = 4̃ ∈ �̃ � ⊆ Σ ~ : N Σ ⊢ %
Σ ⊢ " (4̃ ▷ ~) .%

QMeas

Σ ⊢ %
Σ ⊢ % \ 2 Restrict

Σ ⊢ % Σ ⊢ &
Σ ⊢ % +& Sum

E : Op(=) |� | = = 4̃ ∈ �̃ � ⊆ Σ Σ ⊢ %
Σ ⊢ E(4̃) .%

QOp

2 : )̂ G : ) ∈ {B,N} Σ ⊢ %
Σ ⊢ 2?G .% CRecv

2 : Q̂ G : Q Σ ∪ {G} ⊢ %
Σ ⊢ 2?G .% QRecv

2 : Q̂ 4 : Q
{4} ⊢ 2!4

QSend

2 : )̂ 4 : ) ∈ {B,N}
∅ ⊢ 2!4 CSend

4 : B Σ ⊢ %1 Σ ⊢ %2
Σ ⊢ if 4 then %1 else %2

ITE
Σ1 ∩ Σ2 = ∅ Σ1 ⊢ %1 Σ2 ⊢ %2

Σ1 ∪ Σ2 ⊢ %1 ∥ %2
Par

Fig. 1. Typing rules for lqCCS

41, . . . , 4= of expressions. The process 04̃ discards the qubits in 4̃ . It behaves as a deadlock process
that maintains ownership of the qubits in 4̃ and makes them inaccessible to other processes. As
we will see, discard processes are semantically equivalent to any deadlock process using the same
qubits. The process 0@1,@2 is e.g. equivalent to 0@2,@1 and to 2?G .(2!@1 ∥ 2!@2 ∥ 2!G) \2 , since @1 and @2
will never be available. When 4̃ is the empty sequence, we simply write 0 to stress the equivalence
with the nil process of standard CCS. This feature of lqCCS allows to clearly mark which qubits
are hidden to the environment, thus relieving bisimilar processes to agree on them. Note that
“discard-like” processes can be written also in qCCS, but are never used in the literature. A symbol

E denotes a trace-preserving superoperator on Ĥ⊗= for some = > 0, and we write E : Op(=) to
indicate that E is a superoperator with arity =. A symbol" denotes a measurement {"0, . . . , ":−1}
with such operators acting on = qubits and with : di�erent outcomes: we write " : Meas(=) to
indicate that" is a measurement operator with arity =, and denote as |" | the cardinality : of" .
We let "01 and "± be the projective measurement over the computational and Hadamard basis
respectively. We say that the channel name 2 is bound in % \ 2 and free otherwise. We denote with
fc(%) the set of free channels and with fv(%) the set of free classical variables of % , de�ned as usual.

A�nity is often enforced in quantum process calculi for preventing qubits from being broadcast,
which is forbidden by the no-cloning theorem. We decided to go one step further and to impose a
linear type system, which forces the processes to either send or explicitly discard each qubit that
they own. Therefore, the visibility of qubits is explicitly stated, relieving us from performing an
arbitrary choice about the visibility of those qubits that are neither sent nor discarded.
Typing judgments are of the form Σ ⊢ % . The use of quantum names is subject to linearity and

those in use are collected in Σ ⊆ Q. The set of types is {Q,N,B}, respectively the type of quantum

names, naturals and booleans. The set of channel types is {Q̂, N̂, B̂}. From now on we will assume
that channels and variables are typed, and expressions involving natural and booleans are typed as

standard. The typing system is in Figure 1, where for a set � we use �̃ to denote the set of tuples
0̃ such that any element of � occurs exactly once in 0̃. Linearity is enforced by the combination
of rules Nil, QSend and Par. In particular, the former two are the only rules that introduce new
qubits into the quantum context, therefore each quantum name must be sent along some channel
or discarded; while the latter ensures that each qubit is not shared between parallel processes.

It is easy to show that the typing of processes is unique, therefore in the following we will simply
write Σ% for the unique set of quantum names such that Σ% ⊢ % .

Proposition 3.1 (Uniqe Type). If Σ ⊢ % and Σ
′ ⊢ % then Σ = Σ

′.

Proof sketch. By induction on the derivations of Σ ⊢ % and Σ
′ ⊢ % . □
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% ∥ 0 ≡ % SCParNil
% ∥ & ≡ & ∥ % SCParComm

% ∥ (& ∥ ') ≡ (% ∥ &) ∥ ' SCParAssoc

% + 04̃ ≡ % SCSumNil
% +& ≡ & + % SCSumComm

% + (& + ') ≡ (% +&) + ' SCSumAssoc

if � then % else & ≡ & SCIteF
if � then % else & ≡ % SCIteT

4 ⇓ E
% ≡ % [E/4] SCValExpr

04̃ \ 2 ≡ 04̃
SCRestrNil

% \ 2 \ 3 ≡ % \ 3 \ 2 SCRestrOrd
2 ∉ fc(%)

(% ∥ &) \ 2 ≡ % ∥ (& \ 2) SCRestrPar

Fig. 2. Structural congruence

As a simple example of lqCCS, we present the following quantum lottery protocol QL, which
uses a qubit to randomly select a winner between two competitors.

Example 3.2. Let QL = � (@)."01 (@ ▷G).((if G = 0 then 0!1 else 1!1) ∥ 0@). The qubit @ is �rstly
transformed with � and then measured in the computational basis. Depending on the outcome,
stored in G , either Alice or Bob is announced as the winner (through 0!1 and 1!1 respectively).
Finally, the qubit is discarded as it is no longer needed. The unique typing of QL is given by

{@} ⊢ QL, with 0 : N̂, 1 : N̂, G : N, and @ : Q.

3.2 Operational Semantics

The operational semantics of lqCCS is de�ned as a probabilistic reduction system (Conf⊥,→) over
closed processes (i.e., processes % such that fv(%) = ∅), where

• Conf⊥ is Conf ∪ {⊥}, with Conf the set of con�gurations of the form
〈〈
d, %

〉〉
, and ⊥ the

“deadlock” con�guration that always evolves in ⊥;
• → ⊆ Conf⊥ × D(Conf⊥) is the probabilistic transition relation.

Given a set Σ = {@1, . . . , @=} ⊆ Q, a global quantum state d is a density operator overHΣ = Ĥ⊗= ,
where @8 refers to the 8-th qubit in d . Expressions 4 are evaluated through a big step semantics 4 ⇓ E
with E a value, i.e. either = ∈ N, 1 ∈ B, or G ∈ Var. We restrict ourselves to standard boolean and
arithmetic operations, and therefore omit the rules and assume free variables are not evaluated.
The type system is extended to con�gurations by considering the qubits of the underlying

quantum state. In the following, we denote as Σd the set of qubits appearing in d .

De�nition 3.3. Let
〈〈
d, %

〉〉
∈ Conf and Δ ∈ D(Conf⊥). We let (Σd , Σ% ) ⊢

〈〈
d, %

〉〉
if Σ% ⊆ Σd . We

let (Σ, Σ′) ⊢ ⊥ for any Σ and Σ
′, and (Σ, Σ′) ⊢ Δ if (Σ, Σ′) ⊢ C for any C in ⌈Δ⌉.

Hereafter, we restrict ourselves to well-typed distributions. We extend the standard structural
congruence relation for CCS [Milner 1992] as presented in Figure 2, and we impose congruent
processes to be typed by the same Σ. The new rules allow the evaluation of expressions and
reduction of if · then · else · occurrences. We lift the congruence to distributions of con�gurations

by linearity and imposing ⊥ ≡ ⊥ and
〈〈
d, %

〉〉
≡
〈〈
d, % ′

〉〉
whenever % ≡ % ′.

The transition relation → is the smallest relation that satis�es the rules in Figure 3, augmented
with C → ⊥ if there is no Δ such that C → Δ [Deng 2018]. We have the standard rules for CCS
operators, so for example a process g .% performs a silent action that does not a�ect the quantum
state, and then continues its evolution as % , while % \ 2 behaves as % but the channel 2 is restricted,
i.e. % cannot synchronize with other processes on that channel. Along them we introduce rules
for superoperators and measurements. Since the arity of E can be smaller than the number of
qubits in the quantum state d , we de�ne E@̃ as the superoperator obtained by composing (8) a
suitable set of SWAP unitaries to bring the qubits @̃ in the �rst positions; (88) the tensor product
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〈〈
d, g .% +&

〉〉
−→

〈〈
d, %

〉〉 Tau

〈〈
d, %

〉〉
−→ Δ

〈〈
d, % \ 2

〉〉
−→ Δ \ 2

Restrict 〈〈
d, E(@̃) .% +&

〉〉
−→

〈〈
E@̃ (d), %

〉〉 QOp

d< = ("<)@̃ (d) ?< = tr(d<)
〈〈
d," (@̃ ▷ ~) .% +&

〉〉
−→ ∑ |" |−1

<=0
?< •

〈〈 d<
?<
, % [</~]

〉〉 QMeas

〈〈
d, %

〉〉
−→ Δ

〈〈
d, % ∥ &

〉〉
−→ Δ ∥ &

Par

〈〈
d, (2!E + ') ∥ ((2?G .%) +&)

〉〉
−→

〈〈
d, % [E/G]

〉〉 Reduce
% ≡ &

〈〈
d,&

〉〉
−→ Δ Δ ≡ Δ

′
〈〈
d, %

〉〉
−→ Δ

′ Congr

Fig. 3. lqCCS Semantics

of the superoperator E with the identity on untouched qubits on the right; and (888) the inverse
of the SWAP operators of point (8) to recover the original order of qubits [Lalire 2006]. The same

mechanism is applied to measurements to obtain ("<)@̃ from "< . If Δ =
∑

8 ?8 •
〈〈
d8 , %8

〉〉
, we let

Δ \ 2 and Δ ∥ & denote distributions
∑

8 ?8 •
〈〈
d8 , %8 \ 2

〉〉
and

∑
8 ?8 •

〈〈
d8 , %8 ∥ &

〉〉
. In the following,

we lift→ to distributions, writing → for lift(→) ∈ D(Conf⊥) × D(Conf⊥).
Noteworthy, the typing is preserved by the transition relation.

Theorem 3.4 (Typing Preservation). If (Σd , Σ% ) ⊢
〈〈
d, %

〉〉
and

〈〈
d, %

〉〉
−→ Δ then (Σd , Σ% ) ⊢ Δ.

Proof sketch. By induction on the derivation of
〈〈
d, %

〉〉
−→ Δ. The only interesting case is for

Reduce, for which we prove that substitution works if the new name is not in the typing context
of the process, i.e. that if Σ ∪ {G} ⊢ % and E ∉ Σ then Σ ∪ {E} ⊢ % [E/G]. Then it su�ces to note that
E ∉ Σ is guaranteed by the typing of parallel processes. Note also that Σd is not impacted by any
rule, therefore it is trivially preserved. □

Example 3.5. The semantics of QL from Example 3.2 on quantum state |0⟩⟨0| is as follows
〈〈
|0⟩⟨0| ,QL

〉〉
→

〈〈
|+⟩⟨+| , "01 (@ ▷ G).((if G = 0 then 0!1 else 1!1) ∥ 0@)

〉〉

→
(〈〈
|0⟩⟨0| , if 0 = 0 then 0!1 else 1!1

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , if 1 = 0 then 0!1 else 1!1

〉〉)
∥ 0@

≡
(〈〈
|0⟩⟨0| , 0!1

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 1!1

〉〉)
∥ 0@

3.3 A First Notion of Behavioural Equivalence

Since quantum mechanics is intrinsically probabilistic, quantum processes are commonly compared
by using some probabilistic version of bisimilarity [Deng and Feng 2012; Feng et al. 2007, 2012; Lalire
2006; Lalire and Jorrand 2004]. We follow the approach of Hennessy [2012], de�ning bisimulations
directly on distributions. Di�erently from the previous proposals, we do not use labels but rely
instead on contexts and barbs, i.e. de�ning a saturated bisimilarity à la Bonchi et al. [2014].
We start by de�ning barbs, i.e. atomic observable properties of the lqCCS processes.

De�nition 3.6. A process barb is a predicate ↓2 on processes satis�ed by % (written % ↓2 ) if
% ≡ (2!4 + ') ∥ & for some &, '. A distribution barb is a predicate ↓?

1
on distributions such that

• Δ satis�es ↓?2 , written Δ↓?2 , if
∑

%↓2 Δ
(〈〈
d, %

〉〉)
= ?;

• Δ satis�es ↓?⊥, written Δ↓?⊥, if Δ(⊥) = ? .

Intuitively, the barbs of a process are the visible channels on which a value is ready to be sent,
while the barbs of a distribution are de�ned as the probability of having a process capable to send
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on a given channel, or as the probability of having a deadlocked process. Notice that if Δ↓?⊥, then it
must be Δ = ⊥ ⊕? Δ

′ for some Δ′ such that Δ′ (⊥) = 0. Note also that barbs are purely classical.

In saturated bisimilarities, contexts� [ · ] play the role of observers that are used for discriminating
processes. In this �rst version of bisimilarity, they are de�ned as lqCCS processes with a typed hole.

De�nition 3.7. A context � [ · ]Σ is generated by the production � [ · ]Σ F [ · ]Σ ∥ % , up to
structural congruence and typed according to the rules in Figure 1 and to the following one

Σ
′ \ Σ ⊢ % Σ ⊆ Σ

′

Σ
′ ⊢ [ · ]Σ ∥ % Hole

A process % is applied to contexts by replacing the hole with % . Intuitively, a context Σ′ ⊢ � [ · ]Σ
is a function that given a process % returns a process � [%] obtained by replacing % for [ · ], where
Σ is the typing context of the valid inputs and Σ

′ the one of the outputs. Note that a context can
own some qubits and each qubit cannot be referred to in both % and � [ · ]. We apply Σ

′ ⊢ � [ · ]Σ
to con�gurations (Σd , Σ% ) ⊢

〈〈
d, %

〉〉
obtaining (Σd , Σ

′) ⊢
〈〈
d, � [%]

〉〉
when Σ

′ ⊆ Σd and Σ = Σ% , i.e.
when the qubits referred by � [ · ] are de�ned in d and the process % is as prescribed by � [ · ]. We
write � [

〈〈
d, %

〉〉
] for

〈〈
d, � [%]

〉〉
, � [⊥] for ⊥, and � [Δ] for the distribution obtained by applying � [ · ]

to the support of Δ. It is trivial to show that if Δ and Θ are typed by the same typing context, then
� [Δ] is de�ned if and only if � [Θ] is de�ned, and that their typing is unique.

In the following, we only consider well-typed distributions and contexts, and we impose bisimu-
lations to be over distributions of the same type (thus we avoid specifying types).

De�nition 3.8 (s-bisimilarity). A relation R ⊆ D(Conf⊥) × D(Conf⊥) is a saturated bisimulation

if ΔR Θ implies that for any context � [ · ] it holds
• Δ↓?

1
if and only if Θ↓?

1
;

• whenever � [Δ] → Δ
′, there exists Θ′ such that � [Θ] → Θ

′ and Δ
′ R Θ

′;
• whenever � [Θ] → Θ

′, there exists Δ′ such that � [Δ] → Θ
′ and Δ

′ R Θ
′.

Let saturated bisimilarity ∼B be the largest saturated bisimulation.

We say that two processes %,& are saturated bisimilar if
〈〈
d, %

〉〉
∼B

〈〈
d,&

〉〉
for any d .

When encoding a protocol or its speci�cation in lqCCS, each qubit must be sent on a visible
channel if its value is a relevant aspect of the given protocol, discarded otherwise. Notice that,
thanks to linearity, the visibility of qubits cannot be ambiguous, and that ∼B replicates the results
of the previous proposals in the unambiguous cases (see the �rst three rows of Table 1).

Example 3.9. Consider QL of Example 3.2. It is not di�cult to show that
〈〈
|0⟩⟨0| ,QL

〉〉
is bisimilar

to ΔQL =

(〈〈
d, g .g .0!1

〉〉
⊕

1/2
〈〈
d, g .g .1!1

〉〉)
∥ 0@ for any d ∈ Ĥ . Note that ΔQL → Δ

′
QL → Δ

′′
QL with

Δ
′
QL =

(〈〈
d, g .0!0

〉〉
⊕

1/2
〈〈
d, g .1!1

〉〉)
∥ 0@ and Δ

′′
QL =

(〈〈
d, 0!0

〉〉
⊕

1/2
〈〈
d,1!1

〉〉)
∥ 0@ . It su�ces then to

give the relation R below, which is a bisimulation once closed for congruence and contexts

R =

{(〈〈
|0⟩⟨0| ,QL

〉〉
,ΔQL

)
,
(〈〈
|+⟩⟨+| , "01 (@ ▷ G).(2!G ∥ 0@)

〉〉
,Δ′

QL

)
,
(
Δ
′′
QL,Δ

′′
QL

)
,
(
⊥,⊥

)}

Finally, note that this result depends on the use of discard, meaning that the messages over
0 and 1 are the outcome of the protocol, and not the resulting quantum state. For example,

the distribution
〈〈
|0⟩⟨0| , � (@)."01 (@ ▷ G).((if G = 0 then 0!1 else 1!1) ∥ 2!@)

〉〉
is not bisimilar to

〈〈
|0⟩⟨0| , g .g .0!1 ∥ 2!@

〉〉
⊕

1/2
〈〈
|0⟩⟨0| , g .g .1!1 ∥ 2!@

〉〉
. To prove that, it su�ces to consider the context

� [ · ] = [ · ] ∥ 2?G ."01 (G ▷ ~).if ~ = 0 then 0G else fail!G , which will eventually exhibit the barb
fail with the former distribution only.
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〈〈
|0⟩⟨0| , (% +&) [@/G]

〉〉

〈〈
|0⟩⟨0| , I!0 ∥ 0@

〉〉 〈〈
|+⟩⟨+| , ?!0 ∥ 0@

〉〉
⊕

1

2

〈〈
|−⟩⟨−| ,<!0 ∥ 0@

〉〉

〈〈
|1⟩⟨1| , (% +&) [@/G]

〉〉

〈〈
|1⟩⟨1| , >!0 ∥ 0@

〉〉 〈〈
|+⟩⟨+| , ?!0 ∥ 0@

〉〉
⊕

1

2

〈〈
|−⟩⟨−| ,<!0 ∥ 0@

〉〉

� [Δ]
〈〈
|0⟩⟨0| , (% +&) [@/G]

〉〉
⊕

1

2

〈〈
|1⟩⟨1| , (% +&) [@/G]

〉〉 〈〈
|0⟩⟨0| , I!0 ∥ 0@

〉〉
⊕

1

2

(〈〈
|+⟩⟨+| , ?!0 ∥ 0@

〉〉
⊕

1

2

〈〈
|−⟩⟨−| ,<!0 ∥ 0@

〉〉)

Fig. 4. On the bo�om, the evolution of � [Δ] into Δ′ and then Δ
′′. The last step is built by convex combination

of two freely chosen moves of the subdistributions, which are displayed above. It is clear that observers can

make di�erent non-deterministic choices for each subdistribution, also based on quantum states.

As a result of our saturated approach, entangled pairs are correctly distinguished from separable
states with the same partial trace (see the fourth row of the same table).

Example 3.10. The processes in the fourth row of Table 1 are distinguished by the context
� [ · ] = [ · ] ∥ 2?G .2?~." (G,~ ▷ I).(if I = (01)2 then 3!0 else 0 ∥ 0G,~), because it will eventually
exhibit the barb 3 if the state decays in |01⟩ (which is only possible for 1

4
� ).

Finally, notice that saturated bisimilarity equates the discard process 0@1,@2 with both 0@2,@1 and
2?G .(2!@1 ∥ 2!@2 ∥ 2!G) \ 2 . To prove that, it su�ces to give the relation associating Δ with Δ[%/&]
for any choice of % and & among the processes above. This is clearly a bisimulation, once closed
for contexts and congruence: for any context � [ · ], if � [%] → Δ then � [&] → Δ[%/&].

4 CURBING THE POWER OF NON-DETERMINISTIC CONTEXTS

The example in the �fth row of Table 1, shows that saturated bisimilarity is inadequate for the
quantum case (similarly to QPAlg [Lalire 2006] and qCCS [Deng and Feng 2012]). Moreover, we
trace the cause of this problem to the interaction between probabilistic and non-deterministic
behaviour. We de�ne a new semantics where non-determinism in contexts is constrained. These
constraints solve the problem above, matching a de�ning feature of quantum systems, i.e. that
states cannot be observed without being a�ected. Nonetheless, processes can still perform di�erent
non-deterministic choices upon known classical values. As a result of that, processes in the sixth
row of Table 1 are distinguished.

4.1 Non-deterministic Issues

In quantum theory, the encoding of probability distributions of quantum states as density operators
is not injective. Formally, a density operator represents an equivalence class of distributions of
quantum states that behave the same according to quantum theory. They are de�ned by the relation
R ⊆ D(H) × D(H) such that ΔR Θ whenever

∑
|k ⟩ Δ( |k ⟩) |k ⟩⟨k | =

∑
|k ⟩ Θ( |k ⟩) |k ⟩⟨k |.

Consider a pair of non-biased random qubit sources, the �rst sending a qubit in state |0⟩ or
|1⟩, the second in state |+⟩ or |−⟩. Quantum theory prescribes that such two sources cannot be
distinguished by any observer, as the received qubit behaves the same (see Nielsen and Chuang
[2010, Section 2.4.2]). Indeed, the (mixed) states of the qubits sent by the two sources are represented
by the same density operator 1

2
� . One expects the lqCCS encoding of these sources to be bisimilar.

Somewhat surprisingly, this is not the case.

Example 4.1. Take the �fth row of Table 1. After two steps with empty contexts, the two dis-

tributions evolve into Δ =
〈〈
|0⟩⟨0| , 2!@

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@

〉〉
and Θ =

〈〈
|+⟩⟨+| , 2!@

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@

〉〉
,
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〈〈
d, %, E(@̃) .'

〉〉
–⇝Y

〈〈
E@̃ (d), %, '

〉〉 OQOp
d< = ("<)@̃ (d) ?< = tr(d<)

〈〈
d, %," (@̃ ▷ ~).'

〉〉
–⇝Y

∑ |" |−1
<=0

?< •
〈〈 d<
?<
, %, ' [</~]

〉〉 OQMeas

2 ∉ �
〈〈
d, ((2!E + %) ∥ &) \ �, 2?G .' + (

〉〉
–⇝Y

〈〈
d,& \ �, ' [E/G]

〉〉 Input

2 ∉ �
〈〈
d, (((2?G .%) + % ′) ∥ &) \ �, 2!E

〉〉
–⇝Y

〈〈
d, (% [E/G] ∥ &) \ �, 0

〉〉 Output

〈〈
d, %

〉〉
−→ Δ

$ [
〈〈
d, %

〉〉
] –⇝⋄ $ [Δ]

Process

〈〈
d, %, '

〉〉
–⇝_ Δ〈〈

d, %, ' ∥ (
〉〉
–⇝ℓ ·_ Δ ∥ (

ParL

〈〈
d, %, (

〉〉
–⇝_ Δ〈〈

d, %, ' ∥ (
〉〉
–⇝A ·_ ' ∥ Δ

ParR

% ≡ % ′ ' ≡> '′
〈〈
d, % ′, '′

〉〉
–⇝c Δ

′
Δ
′ ≡> Δ

〈〈
d, %, '

〉〉
–⇝c Δ

Congr

Fig. 5. lqCCS enhanced semantics

encoding the qubit sources above. To see that Δ ≁B Θ, take � [ · ] = [ · ] ∥ 2?G .(% +&) where

% ="01 (G ▷ ~).((if ~ = 0 then I!0 else >!0) ∥ 0G ), and
& ="± (G ▷ ~).((if ~ = 0 then ?!0 else<!0) ∥ 0G ).

� [Δ] reduces to Δ′
=

(〈〈
|0⟩⟨0| , % +&

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , % +&

〉〉)
[@/G], and � [Θ] can only reduce to Θ′

=
(〈〈
|+⟩⟨+| , % +&

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , % +&

〉〉)
[@/G] to match this move. By choosing % and& respectively in

the left and right part, Δ′ reduces to Δ′′
=

(〈〈
|0⟩⟨0| , I!0

〉〉
⊕

1/2
(〈〈
|+⟩⟨+| , ?!0

〉〉
⊕

1/2
〈〈
|−⟩⟨−| ,<!0

〉〉))
∥ 0@

that exhibits the barb I but not > . It is easy to check that Θ cannot replicate this behaviour: for any
choice of % and & it will either express both I and > , or none of them.

This result is paradigmatic, where di�erent mixtures of quantum states are discriminated by a
non-deterministic context that chooses how to reduce based on the value of the received qubit,
which in theory should be unknown (see Figure 4). Note also that the two sources above have a
deterministic behaviour, while non-determinism is only introduced by the context.
We argue that unconstrained non-deterministic contexts are too strong for representing the

real capacity of discriminating quantum processes. Therefore, in the following, we give a new
semantics that constrains non-deterministic contexts so that they cannot apply the strategy above to
discriminate between processes. Note that removing + from the contexts is not su�cient, as we can
replicate the same non-deterministic behaviour of Example 4.1 with just the parallel composition,
e.g. with �′ [ · ] = [ · ] ∥ 2?G .% ∥ 2?G .& .

4.2 Constrained Bisimilarity

We consider a special set of processes, called observers, that are used as constrained contexts for
lqCCS. An observer ' is a process without silent action, restrictions and with non-deterministic
choice limited to sums of receptions. We constrain non-deterministic choices for matching the
observational limitations prescribed by quantum theory, while silent actions and restrictions are
safely omitted for convenience, as they do not increase the discriminating capabilities of contexts
(as proved by Bonchi et al. [2014]).
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% + 04̃ ≡> %
SCCSumNil

% +& ≡> & + % SCCSumComm
% + (& + ') ≡> (% +&) + ' SCCSumAssoc

if � then % else & ≡> &
SCCIteF

if � then % else & ≡> %
SCCIteT

4 ⇓ E
% ≡> % [E/4]

SCCValExpr

Fig. 6. Structural congruence of lqCCS observers

Formally, an observer is de�ned by taking the pre-terms generated by the following grammar
and by imposing additional constraints over parallel composition

' F 04̃ | 2!4 | ) | ' ∥ ' | if 4 then ' else ' | E (G̃).' | " (G̃ ▷ ~).'
) F 2?G .' | ) +)

A pre-term ' is an observer if ) . 2?G .'′ + 2?~.'′′ +) ′ for any ) appearing in '. This additional
constraint forbids parallel processes in ' from performing non-deterministic choices upon reception,
and it could be decided by a suitable extension of our type system.

Despite the syntactical constraints, the major di�erence between a process % and an observer ' is
their treatment in our enhanced semantics, which is given on extended con�gurations: triples with
an observer as the third element. In the following, we sometimes write

〈〈
d, %

〉〉
for

〈〈
d, %, 0

〉〉
. We say

that (Σd , Σ) ⊢
〈〈
d, %, '

〉〉
if Σ = Σ% ∪ Σ' , Σ% ∩ Σ' = ∅, and Σ ⊆ Σd . Distributions of con�gurations

are typed as usual. Contexts $ [ · ]Σ are de�ned from observers ' up to structural congruence as
$ [ · ]Σ F [ · ]Σ ∥ '. Context application$

[〈〈
d, %, '

〉〉]
is de�ned over con�gurations as

〈〈
d, %,$ [']

〉〉
.

We de�ne a new congruence for observers, named ≡> , based on ≡ but lacking rules for parallel
and restriction operators (see Figure 6). We lift ≡> to distributions by linearity and imposing⊥ ≡> ⊥
and

〈〈
d, %, '

〉〉
≡>

〈〈
d, % ′, '′

〉〉
if % ≡ % ′ and ' ≡> '

′. Note that the commutativity of the parallel
operator is preserved for processes, while it does not hold for observers: we want to distinguish the
locus of the reductions for properly constraining the non-deterministic evolution of distributions.
We give an enhanced semantics for lqCCS in Figure 5, adopting the style of Degano and Priami
[2001]: an arrow –⇝c ⊆ Conf⊥ × D(Conf⊥) for any index c , which encodes the non-deterministic
choice of the observer (or ⋄ if only the process evolves). Indices are strings in {ℓ, A }∗ ∪ {⋄}, and we
write Y for the empty string, · for string concatenation, and _ for indices di�erent from ⋄.

In the rules In and Out, we write \� for any sequence of restrictions. We also write Δ ∥ ' and
' ∥ Δ meaning that ' is composed with the observers of Δ. As for the probabilistic semantics, the
–⇝c is extended by imposing that C –⇝c ⊥ if there is no Δ such that C –⇝c Δ In the following,
we lift semantic transitions, and write –⇝c instead of lift(–⇝c ) ∈ D(Conf⊥) × D(Conf⊥). The
observational power is limited by the indexing as the lifting of –⇝c allows a distribution to evolve
only when all its con�gurations reduce by performing the same choice. The absence of rules for
observer synchronization does not limit the observational power [Bonchi et al. 2014]. Note that the
transition system is still non-deterministic, but di�erent non-deterministic choices produce di�erent
indices. Nevertheless, the observer is still capable to behave di�erently in di�erent con�gurations
of the same distribution, but only through the if · then · else · construct or because of a sum of
receptions (where the choice is performed by the sending process and not by the observer). This
ensures that the observer choices are based on classical information obtained from the process.
We say that a con�guration satis�es the barb 2 , written

〈〈
d, %, '

〉〉
↓2 , if % ≡ (2!E + () ∥ & or

' ≡ 2!E ∥ ( (notice that we use ≡ instead of ≡> for ', thus considering also commutativity,
associativity, and identity). The extension of barbs to distributions is as usual.
We now de�ne constrained saturated bisimulation with the usual assumption that it is de�ned

over distributions of the same type, and that contexts are taken accordingly.
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De�nition 4.2 (cs-bisimilarity). A relation R ⊆ D(Conf⊥) × D(Conf⊥) is a constrained saturated
bisimulation if ΔR Θ implies that for any context $ [ · ] it holds

• Δ↓?
1
if and only if Θ↓?

1
;

• whenever $ [Δ] –⇝c Δ
′, there exists Θ′ such that $ [Θ] –⇝c Θ

′ and Δ
′ R Θ

′;
• whenever $ [Θ] –⇝c Θ

′, there exists Δ′ such that $ [Δ] –⇝c Θ
′ and Δ

′ R Θ
′.

Let constrained saturated bisimilarity ∼2B be the largest constrained saturated bisimulation. We say

that two processes %,& are constrained bisimilar if
〈〈
d, %, 0

〉〉
∼2B

〈〈
d,&, 0

〉〉
for each d .

Example 4.3. Consider Δ, %,& from Example 4.1 and take $ [ · ] = [ · ] ∥ 2?G .% ∥ 2?G .& (no-
tice that it emulates the context distinguishing Δ from Θ in Example 4.1). In the enhanced

semantics, $ [Δ] only performs $ [Δ] –⇝ℓ (
〈〈
|0⟩⟨0| , 0, % [@/G]

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 0, % [@/G]

〉〉
) ∥ 2?G .& or

$ [Δ] –⇝A (
〈〈
|0⟩⟨0| , 0, & [@/G]

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 0, & [@/G]

〉〉
) ∥ 2?G .% , as the indices must coincide for any

con�guration in the support of Δ. Indeed, we will later prove that Δ ∼2B Θ.

4.3 Behavioural Assessment of Constrained Bisimilarity

In the following, we state some important properties of ∼2B . A �rst result recovers the linearity of
the relation. We then prove that ∼2B is strictly coarser than the previously de�ned ∼B . Furthermore,
we show that our constraints are strong enough to agree with the limitations of the observational
power prescribed by quantum theory. More precisely, we consider the equivalence classes over
distributions of quantum states implicitly represented by density operators, and we generalize them
as classes of bisimilar distributions of lqCCS con�gurations. An undue curbing of contexts is not
better than a de�cient one, therefore, we �nally prove that the expressivity of the non-deterministic
sum of processes is preserved when justi�ed by classical information.

Theorem 4.4. If Δ8 ∼2B Θ8 for 8 = 1, 2, then Δ1 ⊕? Δ2 ∼2B Θ1 ⊕? Θ2 for any ? ∈ [0, 1].

Proof sketch. It follows from the linearity of barbs and the decomposability of –⇝c , which
hold by de�nition. □

Regarding quantum properties, the enhanced semantics limits the capability of the observer
to perform di�erent choices in di�erent con�gurations of the same distribution. As a result, cs-
bisimilarity is strictly broader than s-bisimilarity, as observers are less powerful.

Theorem 4.5. ∼B ⊊ ∼2B .

Proof sketch. Example 4.6 shows that ∼2B ⊈ ∼B . For ∼B ⊆ ∼2B we provide a translation L · M that
annotates a given ' with fresh barbs encoding the non-deterministic choices. We prove by induction
that the enhanced semantics of

〈〈
d, %, '

〉〉
corresponds to the standard semantics of

〈〈
d, % | |L' M

〉〉
,

where L' M is composed with the parallel operator (as required by ∼B ). In particular,
〈〈
d, %, '

〉〉
–⇝c Δ

if and only if L' M ↓c and
〈〈
d, % | |L' M

〉〉
→ Δ

′ with Δ
′↓0c (roughly, a –⇝c move corresponds to a →

one where the barb c is “consumed”). This allows us to prove that ∼B is a cs-bisimulation. □

From the proof above it follows that the enhanced semantics does not give cs-bisimilarity any
additional discriminating power with respect to the standard semantics. In other words, we could
have de�ned ∼2B without changing the semantics, just requiring instead that contexts express their
non-deterministic choices as barbs. The enhanced semantics — as well as the absence of congruence
rules for parallel observers — is then just a convenient way to assign a name to each possible
non-deterministic choice, which �ts well with the SOS-style rules.
We discuss now how cs-bisimilarity deals with the issue presented in subsection 4.1.
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Example 4.6. Let Δ =
〈〈
|+⟩⟨+| , "01 (@ ▷ G).2!@, 0

〉〉
, and Θ =

〈〈
|0⟩⟨0| , "± (@ ▷ G).2!@, 0

〉〉
. For each

$ [ · ],$ [Δ] evolves in$ [Δ′] with Δ
′
=
〈〈
|0⟩⟨0| , 2!@, 0

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@, 0

〉〉
, and$ [Θ] in$ [Θ′] with

Θ
′
=
〈〈
|+⟩⟨+| , 2!@, 0

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@, 0

〉〉
. As detailed in subsection 4.1, one would expect Δ′ ∼2B Θ

′,
as they send indistinguishable quantum states. We prove that this is the case, in particular, because
the process 2!@ is deterministic.

A distribution Δ is deterministic if its evolution is fully probabilistic, i.e. if it evolves in a single
distribution up to bisimilarity. For example, distributions without parallel operators and non-
deterministic sums are trivially deterministic.

De�nition 4.7 (Deterministic processes). A set of distributions A is deterministic if Δ ∈ A implies
that for any $ [ · ],Δ′,Δ′′, if $ [Δ] –⇝c Δ

′ and $ [Δ] –⇝c Δ
′′ then Δ

′ ∼2B Δ
′′ and Δ

′,Δ′′ ∈ A.
A distribution Δ is called deterministic if it is contained in a deterministic set. A process % is

deterministic if
〈〈
d, %, 0

〉〉
is deterministic for any state d .

As previously stated, mixed states represented by the same density operator are indistinguishable.
We recover an analogous result for lqCCS. Roughly, quantum states can be combined into a point
distribution when paired with identical deterministic processes.

Theorem 4.8. If % is deterministic, then for any d, f, ?, ',
〈〈
d, %, '

〉〉
⊕?
〈〈
f, %, '

〉〉
∼2B

〈〈
d ⊕? f, %, '

〉〉

where d ⊕? f is de�ned as the density operator ?d + (1 − ?)f .

Proof sketch. For any deterministic % , we prove by structural induction that

R = { (⊥,⊥) } ∪
{(〈〈

d ⊕? f, %, '
〉〉
,
〈〈
d, %, '

〉〉
⊕?
〈〈
f, %, '

〉〉)
| d, f, ?, '

}

is a bisimulation up to convex hull [Bonchi et al. 2017] and up to bisimilarity (the soundness of
which is given by Proposition 4.19 and according to Pous and Sangiorgi [2011]).
The result mainly follows from the fact that the classical components of the distributions are

identical, while the quantum components are indistinguishable, as superoperators and measure-
ments are convex, i.e. F (d) ⊕? F (f) = F (d ⊕? f) for any superoperator or measurement F .
The hypothesis of determinism is required for the cases of non-deterministic sums and parallel

compositions. Indeed, Δ =
〈〈
d, % ∥ &, 0

〉〉
⊕?
〈〈
f, % ∥ &, 0

〉〉
may evolve di�erently with the left and

right component, e.g. choosing % in the left and & in the right. The hypothesis of the process being
deterministic ensures that no information is leaked about d and f , and ensures that the choice of Δ

is irrelevant, allowing
〈〈
d ⊕? f, %, 0

〉〉
to replicate its move. This is not possible in general, as shown

in Example 4.10. □

Remarkably, transitivity of ∼2B su�ces for proving the bisimilarity of deterministic processes
paired with distributions of quantum states that are represented by the same density operator. Note

for example that
〈〈
|0⟩⟨0| , 2!@

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@

〉〉
and

〈〈
|+⟩⟨+| , 2!@

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@

〉〉
of Example 4.6

and 4.1 are both bisimilar to
〈〈
1

2
� , 2!@

〉〉
. More in general, the equivalence classes represented by

density operators are lifted to lqCCS distributions, yielding the equivalence R ⊆ ∼2B relating Δ and
Θ deterministic whenever

∑
d Δ

(〈〈
d, %, '

〉〉)
d =

∑
d Θ

(〈〈
d, %, '

〉〉)
d for all %, '. Note also that, thanks

to the linearity of ∼2B , the property above is not limited to syntactically identical processes.
A consequence of Theorem 4.8 is that ∼2B is not decomposable, similarly to other proposals

addressing the limitations of probabilistic bisimilarity [Deng 2018; Feng and Ying 2015].

Corollary 4.9. cs-bisimilarity is not a decomposable relation.
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% ′ ⪯ % &′ ⪯ &
% ′ □ & ′ ⪯ % □ &

□ ∈ {∥, +} % ′ ⪯ %

`.% ′ ⪯ `.%
` ∈ {g, 2?G, E(4̃), " (4̃ ▷ G)} % ′ ⪯ %

% ′ ⪯ % +&
& ′ ⪯ &

& ′ ⪯ % +&
% ′ ⪯ %

% ′ \ 2 ⪯ % \ 2
% ′ ⪯ % &′ ⪯ &

if 4 then % ′ else & ′ ⪯ % +&
% ′ ⪯ % &′ ⪯ &

if 4 then % ′ else & ′ ⪯ if 4 then % else &

Fig. 7. Refinement relation over lqCCS processes.

Proof sketch. Take Δ =
〈〈
|0⟩⟨0| , 2!@

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@

〉〉
and Θ =

〈〈
|+⟩⟨+| , 2!@

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@

〉〉
.

Notice that Δ ∼2B Θ by Theorem 4.8. Then, for ∼2B to be decomposable, Θ should be equal to

Θ1 ⊕
1/2 Θ2 for some Θ1 ∼2B

〈〈
|0⟩⟨0| , 2!@

〉〉
. But since Θ1 can only be either

〈〈
|+⟩⟨+| , 2!@

〉〉
,
〈〈
|−⟩⟨−| , 2!@

〉〉

or a combination of them,Θ1 ≁2B
〈〈
|0⟩⟨0| , 2!@

〉〉
as they send observably di�erent quantum values. □

Theorem 4.8 targets deterministic processes because they represent fully de�ned physical pro-
cesses, e.g., where all the choices are performed by boolean conditions. Indeed, there is no reason
to expect the property to hold for processes expressing non-determinism à la CCS, as it does not
encode any physical behaviour considered in quantum theory. More in detail, an extension of this
theorem for general processes can only hold with overly constrained non-deterministic sums, and
it would contradict Theorem 4.12 below, attesting to the preservation of the expressiveness of
non-determinism in processes. We show an example of a non-deterministic process, derived from
the sixth row of Table 1, for which Theorem 4.8 does not apply.

Example 4.10. Consider the following pair of processes of the last line of Table 1

Set|+⟩⟨+| (@)."01 (@ ▷ G).(2!@ + 3!@) and Set|0⟩⟨0| (@)."±(@ ▷ G).(2!@ + 3!@)

Wewill later show that the distributionsΔ =
〈〈
|+⟩⟨+| , "01 (@ ▷ G).if G = 0 then % else &, 0

〉〉
andΘ =

〈〈
|0⟩⟨0| , "± (@ ▷ G).if G = 0 then % else &, 0

〉〉
to which the two processes reduce are not bisimilar.

As discussed previously, this is expected as we want to restrict the non-determinism of observers
only. Non-deterministic sum is typically used in processes to model unspeci�ed behaviour, to be
instantiated in future re�nements. Thus, we do not want to constrain non-determinism to the point
that + cannot replicate the behaviour of its re�nements like boolean conditions.

We say that % ′ re�nes % , if % ′ can be obtained from % by substituting some occurrences of& +& ′

with either & , & ′, or if 4 then & else & ′ for an arbitrary 4 .

De�nition 4.11. The re�nement relation % ′ ⪯ % is the smallest re�exive relation satisfying the
rules in Figure 7. We say that % ′ re�nes % , and that a con�guration

〈〈
d, % ′

〉〉
re�nes

〈〈
d, %

〉〉
, if % ′ ⪯ % .

We let ⊥ re�ne all the con�gurations, and de�ne distribution re�nement by linearity.

A process is expected to be capable of matching any move of its re�nements, thus, when
considering % = "01 (@ ▷ G) .(& +& ′), the moves of all % ′ ⪯ % should be available for % , included
the ones of "01 (@ ▷ G) .if G = 0 then & else & ′ where the choice between & and & ′ depends on
the outcome of the measurement.
We prove in the following that our constraints on non-determinism are not too restrictive,

namely, that a distribution can simulate all its re�nements.

Theorem 4.12. Let Δ′ ⪯ Δ. If Δ′
–⇝c Θ

′ then Δ –⇝c Θ for some Θ such that Θ′ ⪯ Θ.

Proof sketch. We prove by rule induction that whenever % ′ ⪯ % and
〈〈
d, % ′, '

〉〉
–⇝c Δ

′ then〈〈
d, %, '

〉〉
–⇝c Δ for some Δ such that Δ′ ⪯ Δ. The proof for Congr relies on the fact that re�nement
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〈〈
|+⟩⟨+| , "01 (@ ▷ G) .if G = 0 then 2!@ else 3!@, 0

〉〉 〈〈
|+⟩⟨+| , "01 (@ ▷ G) .(2!@ + 3!@), 0

〉〉

〈〈
|0⟩⟨0| , 2!@, 0

〉〉
⊕

1

2

〈〈
|1⟩⟨1| , 3!@, 0

〉〉 〈〈
|0⟩⟨0| , 2!@, 0

〉〉
⊕

1

2

〈〈
|1⟩⟨1| , 3!@, 0

〉〉

⪯

=

⋄ ⋄

Fig. 8. The existence of the dashed arrow on the right is guaranteed by the solid one on the le� by Theorem 4.12.

and structural congruence works well together. In detail, we show that given % ′ ⪯ % with % ′ ≡ & ′

we can �nd some & such that & ′ ⪯ & and % ≡ & . In the other cases it su�ces to use the induction
hypothesis. The theorem then holds by decomposability of –⇝c . □

As a result of this property, the distributions Δ and Θ of Example 4.10 are distinguishable.

Example 4.13. Consider Δ and Θ of Example 4.10, and notice that Δ′ ⪯ Δ, where Δ′ sends on

2 if and only if the qubit is in |0⟩. Formally Δ
′
=
〈〈
|+⟩⟨+| , "01 (@ ▷ G).if G = 0 then 2!@ else 3!@, 0

〉〉

(see Figure 8). By performing this choice, Δ′ is implicitly communicating the outcome of the
measurement to the observer (through a side-channel, we could say). Consider the context

$ [ · ] = [ · ] ∥ (2?G ."01 (G ▷ ~).(if ~ = 0 then I!0 else >!0 ∥ 0G )) + (3?G .g .0G )
and note that, after two steps, $ [Δ′] reduces to a distribution expressing barb I but not > , which is
impossible for $ [Θ]. As a result of Theorem 4.12, Δ can replicate this move of Δ′, hence Δ ≁2B Θ.

Our constrained bisimilarity is the �rst one to verify both Theorem 4.8 and 4.12, while all
the previously proposed ones either fail in equating indistinguishable quantum states, or overly
constrain non-determinism (see Table 1 for an in-depth comparison).

4.4 Properties of Constrained Bisimilarity

We now investigate our cs-bisimilarity. We �rst recover two de�ning properties of [Deng and
Feng 2012], namely that ∼2B is closed for superoperator application on qubits not appearing in
the processes, and that the state of such qubits is required to match in bisimilar distributions.
Then we show that discarded qubits can be “traced out” from the quantum state without a�ecting
bisimilarity. Finally, we discuss up-to techniques for proving constrained bisimilarity.
We start by recovering trace-identity and closure over superoperator application.

Proposition 4.14. Let
〈〈
d, %, 0

〉〉
∼2B

〈〈
f,&, 0

〉〉
, then

(1)
〈〈
E@̃ (d), %, 0

〉〉
∼2B

〈〈
E@̃ (f), &, 0

〉〉
, for any E@̃ and @̃ not in Σ̃% ;

(2) trΣ% (d) = trΣ% (f).

Proof sketch. For the �rst point, take any superoperator E@̃ , then there is a context that per-
forms such transformation, so a context-closed relation is necessarily superoperator-closed. For the
second one, we proceed by contradiction: if the reduced density operators of two con�gurations are
di�erent, then we can build a context which measures such qubits obtaining a di�erent distribution
of outcomes and thus distinguishing the con�gurations via fresh barbs. □

Note that this is a useful result for disproving bisimilarity, as e.g., distributions with di�erent
partial trace are immediately deemed distinguishable.
A result that helps instead in proving bisimilarity is that the state of discarded qubits can be

ignored. In order to prove this in general, we extend the partial trace as follows.
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De�nition 4.15. The partial trace tr@̃
(〈〈
d, %, '

〉〉)
over @̃ of a con�guration is

〈〈
tr@̃ (d) , % ′, '

〉〉
when

% ≡ % ′ ∥ 0@̃ . We let tr@̃ (⊥) = ⊥, and de�ne the partial trace of distributions by linearity.

Intuitively, we remove the discarded qubits together with the discard processes. Note that such
an operation is de�ned only on distributions of con�gurations that discard the same qubits.

Proposition 4.16. Let Δ,Θ be distributions such that tr@̃ (Δ) and tr@̃ (Θ) are well-de�ned for a
given @̃. If tr@̃ (Δ) ∼2B tr@̃ (Θ) then Δ ∼2B Θ.

Proof sketch. We show, by induction on –⇝c , that the semantics of C and of tr@̃ (C) are
equivalent, and since the partial trace does not a�ect barbs, the desired property follows. □

Note that, even if this property is given for the process 0@̃ , we can apply it to any “discard-like”
process thanks to the linearity of ∼2B , i.e. to any process bisimilar to 0@̃ .
The capacity to ignore discarded qubit is useful in a lot of proofs, as for the example below.

Example 4.17. The two distributions below are bisimilar

Δ =
〈〈
|Φ+⟩⟨Φ+ | , "01 (@1 ▷ G).2!@1 ∥ 0@2 , 0

〉〉
and Θ =

〈〈
|Φ+⟩⟨Φ+ | , "± (@1 ▷ G) .2!@1 ∥ 0@2 , 0

〉〉

Taken any $ [ · ], they evolve in $ [Δ′] with Δ
′
=

(〈〈
|00⟩⟨00| , 2!@1, 0

〉〉
⊕

1/2
〈〈
|11⟩⟨11| , 2!@1, 0

〉〉)
∥ 0@2

and $ [Θ′] with Θ
′
=

(〈〈
|++⟩⟨++| , 2!@1, 0

〉〉
⊕

1/2
〈〈
|−−⟩⟨−−| , 2!@1, 0

〉〉)
∥ 0@2 .

Finally, tr@2 (Δ′) ∼2B tr@2 (Θ′) holds because tr@2 (Δ′) =
〈〈
|0⟩⟨0| , 2!@1, 0

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@1, 0

〉〉
and

tr@2 (Θ′) =
〈〈
|+⟩⟨+| , 2!@1, 0

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@1, 0

〉〉
, and the two are equated by Theorem 4.8.

Finally, we report a general proof technique. While proving bisimilarity of two distributions
usually requires giving a bisimulation relating the two, up-to techniques allows using smaller
relations in place of proper bisimulations. Given a relation R ⊆ D(() ×D((), its convex hull �E (R)
is the least relation such that (∑8∈� ?8 • Δ8 ) �E (R) (

∑
8∈� ?8 • Θ8 ) whenever Δ8 R Θ8 for all 8 ∈ � .

Bisimulations up to �E [Bonchi et al. 2017] are then de�ned as follows.

De�nition 4.18 (Bisimulation up to convex hull). A relation R ⊆ D(Conf⊥) × D(Conf⊥) is a
cs-bisimulation up to �E if ΔR Θ implies that for any context $ [ · ] it holds

• Δ↓?
1
if and only if Θ↓?

1
;

• whenever $ [Δ] –⇝c Δ
′, there exists Θ′ such that $ [Θ] –⇝c Θ

′ and Δ
′ �E (R) Θ′;

• whenever $ [Θ] –⇝c Θ
′, there exists Δ′ such that $ [Δ] –⇝c Θ

′ and Δ
′ �E (R) Θ′.

Giving a bisimulation up to convex hull is a sound proof technique for ∼2B .

Proposition 4.19. If Δ R Θ with R a bisimulation up to convex hull, then Δ ∼2B Θ.

Proof sketch. We need to show that�E is compatible [Pous and Sangiorgi 2011], which follows
from the linearity of barbs and from the fact that –⇝c is decomposable. □

5 CONSTRAINED BISIMILARITY AT WORK

We discuss real-world protocols: quantum teleportation, superdense coding and quantum coin
�ipping. We show how lqCCS models them, and how ∼2B is used for proving their properties.
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5.1 �antum Teleportation

The objective of quantum teleportation [Bennett et al. 1993] is to allow Alice to send quantum
information to Bob without a quantum channel. Alice and Bob must have each a qubit of an
entangled pair |Φ+⟩. The protocol works as follows: Alice performs a �xed set of unitaries to the
qubit to transfer and to their part of the entangled pair; then Alice measures the qubits and sends
the classical outcome to Bob, which applies di�erent unitaries to their own qubit according to
the received information. In the end, the qubit of Bob will be in the state of Alice’s one, and the
entangled pair is discarded. Note that Alice is not required to know the state of the qubit to send.
Consider the following encoding of the protocol where we assume that Alice (A) and Bob (B)

already share an entangled pair (@1, @2) (we write (=)2 to stress that = is in binary representation)

A = CNOT (@0, @1).H (@0)."01 (@0, @1 ▷ G).(<!G ∥ 0@0,@1 )
B =<?~.if ~ = (00)2 then I (@2).out!@2 else (if ~ = (01)2 then X (@2).out!@2

else (if ~ = (10)2 then Z (@2).out!@2 else ZX (@2) .out!@2))
Tel = (A ∥ B) \<

We let Δ =
〈〈
|kΦ+⟩⟨kΦ+ | ,Tel, 0

〉〉
, with Θ =

〈〈
|kΦ+⟩⟨kΦ+ | , SWAP (@0, @2).g .g .g .g .(out!@2 ∥ 0@0,@1 , 0

〉〉

its speci�cation, for |k ⟩ = U |0⟩ + V |1⟩, and sketch the proof for Δ ∼2B Θ below.
Since there is no qubit in |kΦ+⟩⟨kΦ+ | apart from the ones in ΣTel, ' is in deadlock for any context

$ [ · ] = [ · ] ∥ '. Thus, all subsequent transitions are of the kind $ [Δ] –⇝⋄ $ [Δ′] with Δ –⇝⋄ Δ′

until a send operation on an unrestricted channel is reached (and the same for Θ). For simplicity,
we will therefore omit the contexts in the �rst steps

Δ –⇝
3

⋄
∑

3

8=0

1

4
•
〈〈
|8⟩⟨8 | ⊗ |k8⟩⟨k8 | , (<!8 ∥ 0@0,@1 ∥ B) \<, 0

〉〉

–⇝
2

⋄ Δ
′
=

∑
3

8=0

1

4
•
〈〈
|8⟩⟨8 | ⊗ |k8⟩⟨k8 | , (0@0,@1 ∥ out!@2) \<,'

〉〉

Θ –⇝⋄
〈〈
|Φ+k ⟩⟨Φ+k | , g .g .g .g .(out!@2 ∥ 0@0,@1 ), 0

〉〉
–⇝

4

⋄ Θ
′
=
〈〈
|Φ+k ⟩⟨Φ+k | , out!@2 ∥ 0@0,@1 , '

〉〉

where |k0⟩ = |k ⟩, |k1⟩ = V |0⟩ + U |1⟩, |k2⟩ = U |0⟩ − V |1⟩, |k3⟩ = V |0⟩ − U |1⟩, and where, abusing
notation, we use |0⟩ = |00⟩ , |1⟩ = |01⟩ , |2⟩ = |10⟩ and |3⟩ = |11⟩ when speaking of pairs of
qubits. All intermediate steps happen with the same label (⋄) and no barb is expressed, as the
channel< is restricted. Finally, since >DC !@2 is a deterministic process, it is immediate to prove that
tr@0,@1 ($ [Δ′]) ∼2B

〈〈
|k ⟩⟨k | , out!@2, '

〉〉
= tr@0,@1 ($ [Θ′]) by applying Theorem 4.8. The bisimilarity

of Δ′ and Θ
′ then follows from Proposition 4.16, therefore Δ ∼2B Θ.

5.2 Superdense Coding

We consider a generalization of the superdense coding protocol [Bennett andWiesner 1992]. Assume
Alice and Bob have each a qubit of a Bell pair |Ψ+⟩. The protocol allows Alice to communicate a
distribution of two-bit integers to Bob by sending their single qubit to Bob.

The protocol works as follows: Alice chooses a distribution of integers in [0, 3] and encode it by
performing suitable transformations to their qubit, which is then sent to Bob; Bob receives the qubit
and decodes the distribution by performing CNOT and H ⊗ I on the pair of qubits (the received
qubit and their original one), and then a measurement on the standard basis. By measuring the
qubits, Bob recovers the distribution chosen by Alice, and can use it as they like.
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We consider the following instantiation of the protocol, where Bob uses the received value to
decide (in an unspeci�ed way) on which channel to send the received qubit (either channel 0 or 1)

A = E(@0).2!@0
B = 2?G .CNOT (G, @1).H (G)." (G, @1 ▷ ~).((0!G + 1!G) ∥ 0@1 )

SDC = A ∥ B \ 2
More in detail, Alice encodes: the point distribution 0̄ by applying the unitary I, 1̄ with - , 2̄ with Z,
and 3̄ with ZX. In general, they apply a superoperator E with Kraus decomposition

{√?0� ,
√
?1-,

√
?2/,

√
?3/- } for some ?8 ∈ [0, 1] such that

∑
8
?8 = 1

Consider now the following where Rob (in place of Bob) forgets to measure the qubits

R = 2?G .CNOT (G, @1).H (G) .g .((0!G + 1!G) ∥ 0@1 )
Ideally, Rob cannot base their decision on the value sent by Alice, hence we expect SDC to be

distinguishable from the case where R is substituted for �>1. Indeed,
〈〈
|Ψ+⟩⟨Ψ+ | ,A ∥ B \ 2

〉〉
and

〈〈
|Ψ+⟩⟨Ψ+ | ,A ∥ R \ 2

〉〉
are not constrained bisimilar in general. Consider, for example, E with Kraus

decomposition { 1
2
I, 1

2
X, 1

2
Z, 1

2
ZX} (i.e. Alice encodes a fair distribution of all the possible values).

Assume we always take the empty observer $ [ · ] = [ · ] whenever we do not specify otherwise,
and note that the following steps are forced

〈〈
|Ψ+⟩⟨Ψ+ | , SDC

〉〉
–⇝⋄

〈〈
d, 2!@0 ∥ B \ 2

〉〉
, with d =

1

4

(��Φ+〉〈
Φ
+�� + |Φ−⟩⟨Φ− | +

��Ψ+〉〈
Ψ
+�� + |Ψ−⟩⟨Ψ− |

)

–⇝⋄
〈〈
d,CNOT (@0, @1).H (@0)." (@0, @1 ▷ ~).((0!@0 + 1!@0) ∥ 0@1 ) \ 2

〉〉

–⇝
2

⋄
〈〈 1
4
� , " (@0, @1 ▷ ~).((0!@0 + 1!@0) ∥ 0@1 ) \ 2

〉〉
–⇝⋄ ΔB

where ΔB is de�ned as
∑

3

9=0

1

4
•
〈〈
| 9⟩⟨ 9 | , (0!@0 + 1!@0) ∥ 0@1

〉〉

Similarly, for Rob we have that the following are forced
〈〈
|Ψ+⟩⟨Ψ+ | ,A ∥ R \ 2

〉〉
–⇝⋄

〈〈
d, 2!@0 ∥ R \ 2

〉〉

–⇝⋄
〈〈
d,CNOT (@0, @1).H (@0).g .((0!@0 + 1!@0) ∥ 0@1 ) \ 2

〉〉

–⇝
2

⋄
〈〈 1
4
� , g .((0!@0 + 1!@0) ∥ 0@1 ) \ 2

〉〉
–⇝⋄ ΔR =

〈〈 1
4
� , (0!@0 + 1!@0) ∥ 0@1

〉〉

Take now the following context

$ ′ [ · ] = [ · ] ∥ 0?I." (I ▷ A4B) (if A4B = 0 then BD224BB!I else fail!I + 1?I.g .0I)
and assume $ ′ [ΔB] evolves as

1

4
•
〈〈
|00⟩⟨00| , 0@1 , 0 ∥ " (@0 ▷ A4B) (if A4B = 0 then BD224BB!I else fail!I

〉〉

+ 1

4
•
〈〈
|01⟩⟨01| , 0@1 , 0 ∥ " (@0 ▷ A4B) (if A4B = 0 then BD224BB!I else fail!I

〉〉

+ 1

4
•
〈〈
|10⟩⟨10| , 0@1 , 0 ∥ g .0@0

〉〉
+ 1

4
•
〈〈
|11⟩⟨11| , 0@1 , 0 ∥ g .0@0

〉〉

After a reduction,$ ′ [ΔB] expresses the barbs success and fail with probability 1/2 and 0 respectively.
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On the contrary, $ ′ [ΔR] may only evolve as either

〈〈 1
4
� , 0@1 , 0 ∥ " (@0 ▷ res) (if res = 0 then success!I else fail!I

〉〉
or

〈〈 1
4
� , 0@1 , 0 ∥ g .0@0

〉〉
,

and, after a reduction, must express both the barbs BD224BB and fail with either probability 1/2 or 0.
This important result is due to the Theorem 4.12, which allows B to behave as if any boolean

conditional was in place of +, thus to send the qubit on 0 if the outcome of themeasurement is strictly
lower than 2, and on 1 otherwise. The other proposed behavioural equivalences for addressing
the problem of the standard probabilistic bisimilarity deem the two distributions indistinguishable
(see section 6 for an in depth comparison).

5.3 �antum Coin Flipping

We present now a more complex example, namely the Quantum Coin Flipping (QCF) protocol.
Suppose Alice and Bob do not trust each other, and want to randomly select a winner between
them. Bennet and Brassard [2014] propose a protocol in which Alice chooses either the 01 or ±
basis at random, then generates a sequence of random bits and encodes them into a sequence of
qubits in the selected basis (the �rst element of the basis stands for bit 0, the second for 1). The
qubits are then sent to Bob, who measures each of them in a random basis (01 or ±). Finally, Bob
tries to guess the basis chosen by Alice: Bob wins if the guess is correct.
Bob has no way to �nd Alice’s basis from the received qubits, so the guess will be correct or

wrong with equal probability. Alice could cheat, lying about their basis. To protect Bob, at the end
of the protocol, Alice must reveal their basis and the original bit sequence. Bob then compares the
original sequence with the previously stored outcomes of the measurements. For qubits where
Alice’s basis coincides with Bob’s one, the outcomes must coincide with the original bit sequence.

Hereafter, we let G8 be the 8-th bit of the integer G , and resort to some minor extensions of lqCCS

•
〈〈
d, '0=3�8C (G).%

〉〉
evolves as

〈〈
d, % [0/G]

〉〉
⊕

1/2
〈〈
d, % [1/G]

〉〉
, and could be implemented with

an additional qubit.
• We assume a mapping V from bit to bases with V (0) and V (1) the 01 and ± basis.
• We assume a polyadic extension of lqCCS type system and semantics where 2!Ẽ and 2?G̃ allow
substituting tuples of values Ẽ = E1, . . . , E= for variables G̃ = G1, . . . , G= .

We formalize QCF as follows, where = is the number of qubits, and the outcome is sent on 0 and 1
(1 if Bob wins and 0 otherwise). We use 1 =8=C 1

′ for comparing digits, de�ned as (1−1) (1−1′) +11′.

Alice = '0=3 (secretvalue) .AliceV (secretvalue)
Alice01 = H (@̃)."01 (@̃ ▷F).(AtoB!@̃ ∥ guess?6.(0!(6 =8=C 0) ∥ secret!0 ∥ witness!F))
Alice± = � (@̃)."± (@̃ ▷F).(AtoB!@̃ ∥ guess?6.(0!(6 =8=C 1) ∥ secret!1 ∥ witness!F))

Bob = AtoB?Ĩ .
((( n=

8=1
Server8

)
∥ Bob′

)
\ {base8 }=8=1 \ {bit8 }=8=1

)

Bob′ = base1?11 . . . base=?1= .bit1?G1 . . . bit=?G= .'0=3 (6).(guess!6 ∥ Bob′′)

Bob′′ = secret?6′ .witness?F.
(
1!(6 =8=C 6

′) ∥
( n=

8=1
if (18 = 6′ ∧ G8 ≠ F8 then cheat!0 else 0

))

Server8 = '0=3 (1)."V (1 ) (I8 ▷ G).(base8 !1 ∥ bit8 !G ∥ 0I8 )
QCF = (Alice ∥ Bob) \ {AtoB, guess, secret,witness}

Thanks to cs-bisimilarity, we can analyse three properties of QCF, namely that the outcome is fair,
that Bob cannot cheat, and neither Alice can. As reported by Bennet and Brassard [2014], the �rst
two properties hold, but an attack exists allowing Alice to decide the outcome of the protocol.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 43. Publication date: January 2024.



�antum Bisimilarity via Barbs and Contexts: Curbing the Power of Non-deterministic Observers 43:23

Fairness. We show that
〈〈
|0=⟩⟨0= | ,QCF

〉〉
∼2B

〈〈
|0=⟩⟨0= | , FairCoin

〉〉
, with FairCoin de�ned as

g4=+5.'0=3 (G).(0!G ∥ g .g .1!G ∥ 0@̃). As before, it su�ces to consider the empty context, and we
show the evolution of the protocol for = = 1, as the other cases follow the same pattern.

〈〈
|0⟩⟨0| ,QCF

〉〉
–⇝⋄

(〈〈
|0⟩⟨0| ,Alice01 ∥ Bob

〉〉
⊕1

2

〈〈
|0⟩⟨0| ,Alice± ∥ Bob

〉〉)
\�

where� = {AtoB, guess, secret,witness}. We will focus just on the execution of �;82401, as the other
one is symmetrical. The �rst actions of Alice are to prepare the qubit at random and send it to Bob.
The latter will then measure it in a random basis and record the result. Formally

〈〈
|0⟩⟨0| ,Alice01 ∥ Bob

〉〉

–⇝
3

⋄
∑

9∈{0,1}
1

2
•
〈〈
| 9⟩⟨ 9 | ,Alice′01 [ 9/F] ∥ Bob′ ∥ Server

〉〉

–⇝
2

⋄
1

2
•
(∑

9∈{0,1}
1

2
•
〈〈
| 9⟩⟨ 9 | ,Alice′01 [ 9/F] ∥ Bob′ ∥ (base!0 ∥ bit! 9 ∥ 0@)

〉〉)

+ 1

2
•
(∑

9∈{0,1}
1

2
•
〈〈
� | 9⟩⟨ 9 |�,Alice′01 [ 9/F] ∥ Bob′ ∥ (base!1 ∥ bit! 9 ∥ 0@)

〉〉)

where Alice′01 = guess?6.(0!(6 =8=C 0) ∥ secret!0 ∥ witness!F). After the measurement (and after
synchronsing with the server processes) Bob send their random guess of the secret basis to Alice,
who reveals the correct one. Bob checks the consistency of Alice response, and if the protocol is
executed correctly the two parties will agree on the outcome: either 0 or 1 with equal probability.

1

2
•
(∑

9,:∈{0,1}
1

4
•
〈〈
| 9⟩⟨ 9 | , 0@ ∥ Alice′01 [ 9/F] ∥ guess!: ∥ Bob′′ [0/1] [ 9/G] [:/6]

〉〉)

+ 1

2
•
(∑

9,:∈{0,1}
1

4
•
〈〈
� | 9⟩⟨ 9 |�, 0@ ∥ Alice′01 [ 9/F] ∥ guess!: ∥ Bob′′ [1/1] [ 9/G] [:/6]

〉〉)

–⇝
3

⋄

(∑
9,:∈{0,1}

1

4
•
〈〈
| 9⟩⟨ 9 | , 0@ ∥ 0!: ∥ 1!:

〉〉)
⊕1

2

(∑
9,:∈{0,1}

1

4
•
〈〈
� | 9⟩⟨ 9 |�, 0@ ∥ 0!: ∥ 1!:

〉〉)

It is easy to see that in this last step QCF expresses the barbs ↓ 0 and ↓ 1, sending the same values
as the speci�cation FairCoin, and the two are indeed bisimilar.

Dishonest Bob. In order to cheat, Bob needs to discover Alice’s secret from the sent qubits alone.
This is impossible, because Theorem 4.8 deems the initial pre�xes of Alice01 and Alice± bisimilar.

A01 =

∑
2
=−1
9=0

1

2=
•
〈〈
| 9⟩⟨ 9 | , �C>�!@̃

〉〉
∼2B

∑
2
=−1
9=0

1

2=
•
〈〈
�⊗= | 9⟩⟨ 9 |�⊗=, �C>�!@̃

〉〉
= A±

Note that �01 ≁B �±, as shown in Example 4.1. Traditional probabilistic bisimilarity à la Hennessy
[2012] fails in analysing Quantum Coin Flipping and similar protocols.

Dishonest Alice. Interestingly, Alice can cheat by using additional qubits entangled with the ones
they sends to Bob. By measuring their entangled qubits in Bob’s chosen basis, Alice forges a fake
witness for deceiving Bob (in the process, Alice wins and 0 is sent on 0 and 1). We call this attacker
Alison, and show that

〈〈��02=
〉〈
0
2=
�� , (Alison ∥ Bob) \�

〉〉
∼2B

〈〈��02=
〉〈
0
2=
�� ,UnfairCoin

〉〉
.

Alison = (4CΦ+ (@1, @′1) . . . (4CΦ+ (@=, @′=).
(
AtoB!@̃ ∥ Alison′)

Alison′
= guess?6.(0!0 ∥ secret!(1 − 6) ∥ "V (1−6) (@′ ▷ G ′).(witness!G ′ ∥ 0@̃′ ))

UnfairCoin = g5=+3.(0!0 ∥ g .g .g .1!0 ∥ 0@̃ ∥ 0@̃′ )
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The UnfairCoin speci�cation always selects Alison as the winner, and never expresses the ↓2ℎ40C
barb. In other words, (Alison ∥ Bob) \� ∼2B UnfairCoin means that Alison is always capable of
tricking Bob without being discovered.
The behaviour of Bob is identical to the previous case. Indeed, the reduced density operator of

the qubits sent by Alison is indistinguishable from the one of the honest Alice. But after receiving
Bob’s guess, Alison can measure their own qubits, which have decayed as the ones of Bob. In this
way, her fake witnessF ′ will always be correct, as we show for the case = = 1

〈〈
|00⟩⟨00| , (Alison ∥ Bob) \�

〉〉

–⇝
11

⋄

(∑
9∈{0,1}

1

2
•
〈〈
| 9 9⟩⟨ 9 9 | , 0@ ∥ 0!0 ∥ 1!0

〉〉)
⊕1

2

(∑
9∈{+,−}

1

2
•
〈〈
| 9 9⟩⟨ 9 9 | , 0@ ∥ 0!0 ∥ 1!0

〉〉)

6 RELATED WORKS

We focus on the quantum process calculi most similar to our proposal, as well as likely the better
established and developed, namely QPAlg [Lalire 2006; Lalire and Jorrand 2004], CQP [Davidson
2012; Gay and Nagarajan 2005, 2006], and qCCS [Deng 2018; Deng and Feng 2012; Feng et al. 2014,
2007, 2012; Feng and Ying 2015; Ying et al. 2009]. When comparing the proposed behavioural
equivalences, we abstract from the “classical” details and focus on the quantum-related features,
restricting ourselves to the strong version of the bisimulations. A �rst di�erence with lqCCS is
that they are mostly based on labelled bisimilarities. Table 1 summarizes distinctive prototypical
processes (in the lqCCS syntax) deemed bisimilar or not according to di�erent approaches.
One of the discrepancies is the visibility of qubits that are neither sent nor discarded. The �rst

three lines contain processes whose bisimilarity depends on the assumption about the visibility of
these unsent qubits. Our linear type system makes the former assumptions irrelevant. In the fourth
line, the processes send pairs of qubits with the same partial trace if taken separately, even if a pair
is entangled and the other is not. The �fth line compares processes where the state of the sent qubits
is represented by the same density operator, whose bisimilarity is implied by Theorem 4.8. Finally,
the sixth line compares two processes where a qubit is sent non-deterministically over two channels:
for each channel, the state of the sent qubits is represented by the same density operator, but if the
chosen channel depends on the outcome of the measurement the two processes can be distinguished.
Bisimilarities that do not distinguish these two processes cannot satisfy Theorem 4.12.

6.1 QPAlg

The Quantum Process Algebra (QPAlg) is an extension of synchronous value-passing CCS with
primitives for unitary transformations and measurements. As common, quantum operations are
silent, and quantum communication updates quantum variables. They propose a probabilistic
branching bisimilarity, adapted for stateful computations by requiring bisimilar processes to send
the same quantum state, de�ned as the partial trace of the global quantum state. However, this
bisimilarity is coarser than prescribed by the theory when states are entangled [Davidson 2012].

Example 6.1. The processes in the fourth line of Table 1 are bisimilar in QPAlg, as they send
pairs of qubits with the same partial trace (CA@0 (Φ+) = CA@1 (Φ+) = CA@0 ( 14 � ) = CA@1 (

1

4
� ) = 1

2
� ). Such

processes are not bisimilar according to ∼2B , as the context of Example 3.10 discriminates the two.

Finally, behaviourally equivalent processes are not required to behave similarly on unsent qubits,
e.g. � (@).0 and - (@).0 of the �rst line of Table 1. In lqCCS, the above processes are not legal, but a
similar result holds for � (@).0@ and - (@).0@ .
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6.2 CQP

The calculus of Communicating Quantum Processes (CQP) is inspired by the c-calculus and it is
enriched with qubits declarations (that extend the quantum state) and quantum transformations,
but without guards or match operators, thus lacking the form of classical control used in lqCCS.
They introduce an a�ne type system prescribing that every qubit is sent at most once. CQP comes
with a reduction semantics [Gay and Nagarajan 2005, 2006] and a labelled one [Davidson 2012],
both based on pure quantum states. Davidson proposes mixed con�gurations, i.e. con�gurations
where a single process is paired with a probability distribution of classical and quantum states.
Mixed con�gurations represent non-observable probabilities due to measurements whose result
is not communicated yet, and they are treated as a single state by the semantics. Our proposal
generalizes CQP mixed con�gurations to distributions of con�gurations with possibly di�erent
processes. This is necessary for extending the approach to processes with boolean guards.
A branching bisimilarity is de�ned for the labelled semantics of CQP. To avoid the problem of

QPAlg with entangled states, bisimilarity requires that the reduced state obtained by collecting
all the sent qubits coincide. Moreover, mixed con�gurations allow relating processes sending
indistinguishable quantum states. The resulting bisimilarity is a congruence for parallel composition
and is capable of equating interesting cases such as the one of the �fth line of Table 1.

Example 6.2. Consider
〈〈
|+⟩⟨+| , "01 (@ ▷ G)) .2!@

〉〉
and

〈〈
|0⟩⟨0| , "± (@ ▷ G).2!@

〉〉
. Even though they

end up in di�erent quantum states, the two con�gurations above are bisimilar according to CQP,
because they send on channel 2 qubits with the same partial trace. Our proposed bisimilarity
replicates this result by resorting to contexts with constrained non-determinism (see Example 4.6).
Indeed, a context receiving the qubit cannot behave di�erently depending on its state if not through
measurement, and when measured, the states of the two qubits coincide.

Our cs-bisimilarity extends the one of CQP in a context-based fashion over standard distributions.
CQP behaves as QPAlg with respect to unsent qubits (see the �rst line of Table 1).

6.3 qCCS

Our process calculus takes its most direct inspiration from qCCS, a synchronous CCS-style calculus
with superoperators and measurements where syntactic restrictions guarantee each qubit is sent at
most once. A feature of qCCS is the support for recursive processes, which we postpone to future
work. Two di�erent labelled bisimilarities are proposed for qCCS: the �rst is based on standard
probabilistic bisimulations; the second one relies on transition consistency and subdistributions.

The probabilistic bisimilarity [Feng et al. 2007, 2012] (denoted by ∼? in Table 1) requires bisimilar
processes to send the same names on the same channels and to produce the same quantum state of
qubits that are not owned any more. In addition, bisimulations must be closed under applications
of trace-preserving superoperators on not-owned qubits. Therefore, the processes of the �rst line
of Table 1 are distinguished. We recover this assumption by sending the qubits (see the third line).

Moreover, Proposition 4.14 shows that cd-bisimilarity replicates the ∼? requirements over super-
operators and not owned qubits. The probabilistic bisimilarity of qCCS is proved to be a congruence
with respect to parallel composition. Further extensions are the (weak) open bisimilarity proposed
in Deng and Feng [2012], proven to be a weak barbed congruence, and a symbolic version of the
bisimilarity in Feng et al. [2014], that relieves from considering all the (universally quanti�ed)
quantum states of a con�guration when verifying bisimilarity.

Con�gurations like the ones of the �fth line of Table 1 are not bisimilar for ∼? , even though they
are indistinguishable according to quantum theory. This discrepancy was signalled in Kubota et al.
[2012] and lead to a new proposal called distribution bisimilarity [Deng 2018; Feng and Ying 2015]
(denoted by ∼3 in Table 1), which is directly de�ned on distributions and is based on transition
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consistency. A distribution is called transition consistent if any con�guration in its support has
exactly the same set of enabled visible actions. In addition to closure with respect to superoperator
application, bisimilar distributions are required to be such that: (8) the weighted sums of the state of
not owned qubits in the support coincide; (88) the possible transitions of one transition consistent
distribution are matched by the other one, and; (888) if the distributions are not transition consistent,
then they must be decomposable in bisimilar transition consistent distributions. On the one hand,
considering distributions as a whole when comparing the quantum states equates processes like the
ones of the �fth line of Table 1. On the other hand, transition consistent decompositions recover a
weakened version of decomposability, avoiding equating distributions that cannot evolve because
the processes in the supports enable di�erent actions only.
The use of transition consistency in ∼3 implicitly constrains non-determinism. In the last line

of Table 1, we compare such constraints with the ones we impose on lqCCS. While our ∼2B is
capable of distinguishing the two processes, ∼3 cannot. In fact, the lifting of the labelled semantics
of qCCS forbids processes from replicating the moves of their re�nements (as lqCCS does).

Example 6.3. Consider the pair of processes of the last line of Table 1. They reduce to

Δ =
〈〈
|0⟩⟨0| , 2!@ + 3!@

〉〉
⊕

1/2
〈〈
|1⟩⟨1| , 2!@ + 3!@

〉〉
Θ =

〈〈
|+⟩⟨+| , 2!@ + 3!@

〉〉
⊕

1/2
〈〈
|−⟩⟨−| , 2!@ + 3!@

〉〉

We show in Example 4.13 that Δ ≁2B Θ, as Δ can choose to send the qubit over 2 only when it is
set to |0⟩, while Θ cannot. In the distribution bisimulation of Feng and Ying [2015], instead, only
the moves that choose the same channel in all the con�gurations of the support are considered,
deeming the two distributions bisimilar. This means that "01 (@ ▷ G).(2!@ + 3!@) cannot use the
value of G to choose the channel over which to send, as it would be expected, and thus that the
constraints over non-determinism are arguably too strong in Feng and Ying [2015].

Finally, Feng and Ying [2015] acknowledge thatweak distribution bisimilarity is not a congruence.
Its strong version is not a congruence either: take Δ ∼3 Θ and � [ · ] of Example 4.1, it is easy to show
that � [Δ] ≁3 � [Θ]. The same also holds for ∼2B , which is a congruence with respect to observers
but not to parallel composition. We believe that ∼3 actually veri�es the indistinguishability property
over deterministic processes of Theorem 4.8, and � [Δ] ≁3 � [Θ] shows that the result cannot be
extended to general processes. On a similar note, ∼3 does not preserve the expressiveness of
non-deterministic choices based on classical information stated in Theorem 4.12.

7 CONCLUSIONS AND FUTURE WORK

We presented lqCCS, a quantum process calculus with asynchronous communication and a linear
type system guaranteeing that each qubit is sent or discarded exactly once. The latter lifts the
semantics from making arbitrary assumptions about the observability of unsent qubits, which was
a discrepancy among related works.
The main result of this work is a novel stateful reduction semantics together with a saturated

probabilistic bisimilarity that relies on contexts for distinguishing quantum processes. These choices
allowed us to investigate and compare the discriminating capabilities of the bisimilarity against
the principles of quantum theory. By employing standard contexts, we found that the problems
highlighted by Davidson [2012] and Kubota et al. [2012] are caused by the interaction between
non-determinism and quantum features. In particular the standard notion of non-determinism
subverts a de�ning feature of quantum theory by allowing contexts to perform moves based on the
possibly unknown quantum state, without performing a measurement and thus perturbing it. We
enhanced the semantics of lqCCS and constrained non-determinism by requiring the contexts to
perform the same move in all the con�gurations of a given distribution (when no classical branching
is possible). The resulting bisimilarity relation is strictly coarser than the unconstrained one.
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We prove two main properties: (8) indistinguishability of quantum states can be lifted to classes
of bisimilar distributions of lqCCS con�gurations; and (88) non-deterministic choices can perform
moves according to known classical values, simulating the semantics of boolean guards. Intuitively,
the �rst guarantees that constraints are indeed su�cient to prevent non-determinism from subvert-
ing quantum features, while the second ensures that constraints are not too restrictive. Moreover,
we showed by counterexample in Table 1 that no bisimilarity in the literature satis�es both of them.

Furthermore, we proved that the novel bisimilarity is linear with respect to probabilistic compo-
sition, and closed for superoperator application on qubits not appearing in the processes, which
are also required to be equal in bisimilar distributions. Moreover, discarded qubits can be “traced
out” without a�ecting bisimilarity. An up-to technique is given to aid bisimilarity proofs. We tested
our approach by modeling and analysing three real-world protocols. Finally, we compared our
�ndings with previously proposed bisimilarities, using simple prototypical cases that highlights
dinstinguishability features required by quantum theory.

Discussion. Our work starts with an example-based analysis of the proposed bisimilarities and
their adherence to expected indistinguishability results prescribed by quantum theory. Through
our analysis, we identify some desired properties that we later prove for our proposed bisimilarity
(mainly, Theorem 4.8 and Theorem 4.12). Bisimilarities for quantum processes are di�cult to justify
and validate, as we have no touchstone but the prescriptions of quantum mechanics about what
can be operationally distinguished. Our set of examples and the properties they suggest help with
this problem, and they are su�cient to tell apart cs-bisimilarity and the previous proposals.
We opted to work with a well established and fairly standard calculus, limiting changes to the

ones needed for addressing the problems at hand. Thus, we left unaltered the semantics of processes,
only restricting the behaviour of observers, and we stick with a classical probabilistic approach.
Alternative approaches may be considered. One could characterise feasible non-deterministic

choices in general, constraining them also in processes. Unfortunately, the expressivity of processes
would be weaker than the ones considered in the related works, since this approach may result in
overly constrained processes, thus making the comparison less direct. Otherwise, one could look
for a more suitable notion of quantum distribution that naturally satisfy the desired properties of
indistinguishability, similarly to what is done by Davidson [2012] and Feng et al. [2014].

Both these approaches seem promising follow-ups for our work, that can serve as a preliminary
investigation on how process semantics should be changed to accommodate to quantum theory.

Future Work. One aim of our future work is to extend lqCCS, namely with qubit declaration
primitives and recursive processes. We will also explore weak versions of the constrained bisimilar-
ity, as done by Feng et al. [2007] and Davidson [2012], and enhanced proof methodologies, i.e. by
investigating pruning techniques and by looking for an equivalent labelled bisimulation, following
the approach of Bonchi et al. [2014]. The advantage would be two-fold: to avoid the universal
quanti�cation over contexts and to identify an adequate set of observable properties.
Moreover, we will further investigate some of the shortcomings of probabilistic bisimulation

with respect to non-determinism. The solution presented in this work is only one of many possible
approaches, where non-determinism is unconstrained in the processes and constrained in the
contexts. An alternative approach is to characterize feasible choices in general, constraining non-
determinism also in processes, by taking into account all the legit reasons for con�gurations of the
same distribution to behave di�erently. We guess this will give a bisimilarity that is a congruence
and that still satis�es our desired properties, something which is missing among current proposals.
Finally we will investigate how spurious non-deterministic moves impact on model checking

when applied to quantum systems.
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