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Learning Lyapunov Terminal Costs from Data
for Complexity Reduction in Nonlinear

Model Predictive Control
Shokhjakhon Abdufattokhov⋆, Mario Zanon, Alberto Bemporad

Abstract—A classic way to design a Nonlinear Model Pre-
dictive Control (NMPC) scheme with guaranteed stability is to
incorporate a terminal cost and a terminal constraint into the
problem formulation. While a long prediction horizon is often
desirable to obtain a large domain of attraction and good closed-
loop performance, the related computational burden can hinder
its real-time deployment. In this paper, we propose an NMPC
scheme with prediction horizon N = 1 and no terminal con-
straint to drastically decrease the numerical complexity without
significantly impacting closed-loop stability and performance.
This is attained by constructing a suitable terminal cost from
data that estimates the cost-to-go of a given NMPC scheme with
long prediction horizon. We demonstrate the advantages of the
proposed control scheme in two benchmark control problems.

Index Terms—Data-driven control, nonlinear model predictive
control, constrained systems, neural networks.

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is an
optimization-based control method that has gained increasing
popularity thanks to its ability to achieve good closed-loop
performance while handling nonlinear system dynamics and
enforcing hard constraints on the system variables [1]. Stability
is typically guaranteed in NMPC by introducing suitable
terminal cost and constraints in the problem formulation [2]–
[4]. In order to obtain a large domain of attraction and good
closed-loop performance one is often required to choose a
sufficiently long prediction horizon, which can result in a
significant computational complexity.

Preserving these desirable properties while reducing the
computational burden has motivated several research papers
in recent years. Some approaches aim at finding approximate
explicit NMPC laws through function regression methods [5]–
[8], although preserving feasibility with respect to system
constraints can be challenging [9]. When implicit NMPC is the
preferred choice, the computational burden of online optimiza-
tion can be decreased by shortening the number of degrees of
freedom using move blocking [10]–[12]; by parameterizing the
decision variables with basis functions [13], [14]; by decom-
posing the control input space to construct low-dimensional in-
put subspaces [15]; or by developing approximate but efficient
optimization algorithms [16], [17]. Regardless of the used
implicit NMPC approach, shortening the prediction horizon
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leads to lighter computational requirements. However, the
terminal cost and constraints may negatively impact closed-
loop performance and introduce conservativeness by restricting
the domain of attraction. The authors of [18] presented an
approach to remove the terminal constraint while ensuring its
satisfaction automatically and preserving asymptotic closed-
loop stability in a characterized domain of attraction. However,
achieving a good trade-off between closed-loop performance
and computational complexity requires properly tuning both
the prediction horizon and the terminal cost, which needs
to be a Lyapunov function in the (implicit) terminal region.
Unfortunately, designing a non-conservative Lyapunov func-
tion and the corresponding terminal region is, in general,
difficult [19]. One possibility to tackle this difficulty is to resort
to data-driven approaches, such as in, e.g., [20], [21]. Despite
obtaining some form of stability and recursive feasibility
guarantees, attaining good closed-loop performance with a
short horizon remains an open issue.

This paper proposes an implicit NMPC formulation with a
prediction horizon of length one, which retains good closed-
loop performance and satisfies Lyapunov stability conditions
on a given dataset. We combine the approach of [18] with
our recent work [22], where the terminal cost for an MPC
scheme with prediction horizon one is learned from data. A
feedforward neural network is used to fit given samples of the
cost-to-go associated with the original NMPC formulation. In
addition to our previous work, starting from a long-horizon
NMPC scheme, we obtain a horizon-one NMPC reformulation
by constructing a terminal cost from data that satisfies the
Lyapunov conditions on the data samples and is a good ap-
proximation of the cost-to-go of the original problem. We call
our design approach Learned Lyapunov Terminal Cost NMPC
(LLTC-NMPC). Besides being attractive from a computational
point of view, as opposed to approximate explicit NMPC
methods [23], [24], our approach has the advantage of keeping
the constraints on the system variables at the first step in the
optimization problem. We perform numerical simulations on
two benchmark control problems, showing that the proposed
control scheme drastically reduces online computational bur-
den with respect to the original NMPC formulation while
maintaining good closed-loop performance.

The remainder of this paper is organized as follows. After
providing preliminary results and formulations leading to an
NMPC optimization problem with a single prediction hori-
zon in Section II, we detail how to learn a quadratic Lya-
punov approximation of the cost-to-go function and discuss
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the proposed LLTC-NMPC formulation in Section III. The
effectiveness of the proposed approach is demonstrated in
simulations in Section IV. Finally, concluding remarks are
drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider the following discrete-time nonlinear system

xt+1 = f(xt, ut) (1)

where f : Rnx×Rnu → Rnx , and xt ∈ Rnx , ut ∈ Rnu denote
the state and input at a time instant t, respectively. The states
and the commanded inputs are constrained in the respective
compact sets X and U .

Assumption 1. Function f : X × U → X is continuously
differentiable over X × U and f(0, 0) = 0.

A. Classical NMPC

We introduce a classical NMPC problem PN (pt,XT(pt))
formulated as

JN (pt) = min
Ut,Xt

N−1∑
k=0

ℓ(xk|t, uk|t, pt) + F (xN |t, pt) (2)

s.t. x0|t = Mxpt

xk+1|t = f(xk|t, uk|t) k ∈ IN−1
0

uk|t ∈ U k ∈ IN−1
0

xk|t ∈ X k ∈ IN−1
1

xN |t ∈ XT(pt)

where pt ∈ Rnp is a vector of parameters, pt = [x′t x
′
r u

′
r]
′,

belonging to a bounded set P that consists of the current state
xt ∈ X and constant reference signals xr ∈ X and ur ∈ U ,
Mx = [I 0 0], Ut = (u0|t, . . . , uN−1|t) is the sequence of
manipulated variables uk|t ∈ Rnu , Xt = (x0|t, . . . , xN |t) is
the sequence of predicted states xk|t ∈ Rnx evaluated from
the initial state x0|t, and Iba is the set of all integers in the
interval [a, b].

The stage cost function ℓ : Rnx × Rnu × Rnp ∈ R≥0 is
defined as

ℓ(xk|t, uk|t, pt) = ∥xk|t − xr∥2Qx
+ ∥uk|t − ur∥2Qu

(3)

where ∥z∥2Q = z′Qz, Qx and Qu are positive definite matrices,
XT(p) ⊆ X is a closed terminal constraint set containing xr
and F : Rnx × Rnp ∈ R≥0 is a quadratic terminal cost

F (xN |t, pt) = ∥xN |t − xr∥2P (4)

with a positive definite matrix P . Note that, while the terminal
cost could take a generic form, selecting it as quadratic eases
the enforcement of the necessary conditions for stability that
will be discussed next.

In what follows, FN (pt) defines the set of initial states
for which Problem PN (pt,XT(pt)) is feasible. Let U⋆

t =
(u⋆0|t, . . . , u

⋆
N−1|t) denote the optimal control inputs and X⋆

t =
(x⋆0|t, . . . , x

⋆
N |t) the corresponding state trajectory obtained

from (2). The NMPC law is defined by applying the first
optimal control action ut = u⋆0|t to the controlled system (1).

Assumption 2. For each pt ∈ P there exists an optimal
sequence U⋆

t from Problem PN (pt,XT(pt)).

Definition 1. A function µ : R≥0 → R≥0 is K∞ if it is
continuous, strictly increasing, unbounded, and zero at the
origin.

Assumption 3. For all p ∈ P , there exists a K∞-function
µ1(·) such that

µ1(∥x− xr∥) ≤ ℓ(x, u, p) ∀x ∈ FN (p), ∀u ∈ U (5)

The terminal cost and the terminal constraint are usually
chosen such that the following assumption holds, in order to
guarantee closed-loop stability.

Assumption 4. Let F : X × P → R, lT : P → R>0 and

XT(p) = {x ∈ X : F (x, p) ≤ lT(p)}

be such that F is a Lyapunov function associated to a local
stabilizing controller uT(x, p) : XT(p) × P → U , i.e., ∀x ∈
XT(p) and f(x, uT(x, p)) ∈ XT(p) it holds that

µ2(∥x− xr∥) ≤ F (x, p) ≤ µ3(∥x− xr∥) (6)
F (f(x, uT(x, p)), p)− F (x, p) + ℓ(x, uT(x, p), p) ≤ 0 (7)

where µ2 and µ3 are K∞ functions.

Under Assumptions 1-3, the authors of [25] proposed an
approach to construct the terminal set and the terminal cost
using a locally stabilizing linear controller for discrete-time
systems. Moreover, if Assumption 4 also holds, the optimal
cost JN in (2) is a Lyapunov function and the NMPC
feedback law asymptotically stabilizes the system for all initial
states in FN (pt). However, enforcing the terminal state to lie
inside the terminal region XT(pt) may yield a small region of
attraction. On the other hand, removing the terminal constraint
might jeopardize the feasibility and stability guarantees of the
problem PN (pt,XT(pt)).

B. NMPC without terminal constraint

The authors of [18] proposed an approach ensuring implicit
satisfaction of the terminal constraint of the problem PN (X ),
where, with a slight abuse of notation, the dependence on pt
has been dropped as their problem formulation is parameter-
independent. In the following, we extend their stability results
to cover the case of a parameter-dependent formulation, i.e.,
an MPC problem PN (pt,X ) defined as follows:

JN
CDA(pt) = min

Ut,Xt

N−1∑
k=0

ℓ(xk|t, uk|t, pt) + F (xN |t, pt)

(8)
s.t. x0|t = Mxpt

xk+1|t = f(xk|t, uk|t) k ∈ IN−1
0

uk|t ∈ U k ∈ IN−1
0

xk|t ∈ X k ∈ IN1
We will next characterize a positively invariant subset

ΩN (pt) of the region of attraction, for which we can
prove asymptotic stability. Therefore, we will denote problem
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PN (pt,X ) as NMPC with Characterized Domain of Attraction
(CDA-NMPC). In order to prove that ΩN is a positively
invariant set in which asymptotic stability can be proven, we
first introduce two useful intermediate results.

Lemma 1 (Extension of [26, Section 3.4]). Given optimization
problem PN (pt,X ), suppose that Assumptions 1-3 hold and
F (x0|t, pt), XT(pt) satisfy Assumption 4 for all x0|t ∈ XT(pt)
and for all pt ∈ P . Then JN

CDA(pt) ≤ F (x0|t, pt) holds.

Proof. Let U⋆
t be the optimal control input vector and X⋆

t be
the corresponding optimal predicted trajectories of the problem
PN (pt,X ), then Bellman’s principle of optimality implies the
following

JN
CDA(pt) =

N−1∑
k=0

ℓ(x⋆k|t, u
⋆
k|t, pt) + F (x⋆N |t, pt)

≤
N−2∑
k=0

ℓ(xk|t, uT(xk|t, pt), pt)

+ ℓ(xN−1|t, uT(xN−1|t, pt), pt) + F (xN |t, pt)

(7)
≤

N−2∑
k=0

ℓ(xk|t, uT(xk|t, pt), pt) + F (xN−1|t, pt)

=

N−3∑
k=0

ℓ(xk|t, uT(xk|t, pt), pt)

+ ℓ(xN−2|t, uT(xN−2|t, pt), pt) + F (xN−1|t, pt)
(7)
≤ . . .

(7)
≤ ℓ(x0|t, uT(x0|t, pt), pt) + F (x1|t, pt)

(7)
≤ F (x0|t, pt)

where xk|t is the state trajectory obtained when applying the
terminal control law uT satisfying Assumption 4 to system (1)
from the initial state x0|t.

Lemma 2 (Extension of [18, Lemma 1]). Given optimization
problem PN (pt,X ), suppose that Assumptions 1-3 hold and
F (x0|t, pt), XT(pt) satisfy Assumption 4 for all x0|t ∈ FN (pt)
and for all pt ∈ P . Let X⋆

t be the optimal predicted sequence
of states corresponding to the optimal solution U⋆

t of the
problem PN (pt,X ). If x⋆N |t /∈ XT(pt), then x⋆k|t /∈ XT(pt)

for any k ∈ IN−1
0 .

Proof. Assume x⋆N |t /∈ XT(pt) and there exists a k ∈ IN−1
0

such that x⋆k|t ∈ XT(pt). Consider vector pk|t defined as

pk|t = [x⋆k|t
′ x′r u

′
r]
′ (9)

Let JN−k
CDA be the optimal cost for the CDA-NMPC problem

PN−k(pk|t,X ) with prediction horizon N− k, and Ū⋆
k|t =

(ū⋆k|t, . . . , ū
⋆
N−1|t), X̄

⋆
k|t = (x̄⋆k|t, . . . , x̄

⋆
N |t) be the respective

optimal control input and optimal predicted state vectors. As
a consequence of the optimality principle, we have ū⋆i|t = u⋆i|t
and x̄⋆i+1|t = x⋆i+1|t for i ∈ IN−1

k which implies

ℓ(x̄⋆i|t, ū
⋆
i|t, pk|t) = ℓ(x⋆i|t, u

⋆
i|t, pt), i ∈ IN−1

k (10)

F (x̄⋆N |t, pk|t) = F (x⋆N |t, pt). (11)

Thus, the optimal cost JN−k
CDA can be written as

JN−k
CDA (pk|t) =

N−1∑
i=k

ℓ(x⋆i|t, u
⋆
i|t, pt) + F (x⋆N |t, pt).

By applying Lemma 1 to the problem PN−k(pk|t,X ) and
combining the result with the equation above, we obtain the
following inequality

F (x⋆k|t, pt) ≥ JN−k
CDA (pk|t) ≥ F (x⋆N |t, pt) > lT(pt)

where the last inequality follows from the assumption x⋆N |t /∈
XT(pt). However, this implies x⋆k|t /∈ XT(pt), which contra-
dicts the initial assumption for x⋆k|t ∈ XT(pt).

Theorem 1. Suppose Assumptions 1 and 3 hold and let
the terminal cost F (x⋆N |t, pt) together with the terminal set
XT(pt) and lT(pt) satisfy Assumption 4. Then the CDA-
NMPC controller associated with problem PN (pt,X ) stabi-
lizes system (1) asymptotically for each initial state x0|t ∈
ΩN (pt) ⊆ FN (pt), with:

ΩN (pt) :=

{x0|t ∈ X : JN
CDA(pt) ≤ ℓ(x0|t, u

⋆
0|t, pt) + CN (pt)} (12)

where

CN (pt) := (N − 1)d(pt) + lT(pt) (13)

and

d(pt) := inf
x,u

ℓ(x, u, pt) (14)

s.t. x ∈ X \ XT(pt)

u ∈ U .

Remark 1. Note that d(pt) > 0 exists for all pt ∈ P since
ℓ(x, u, pt) is positive definite in x and u as per Assumption 3,
X and U are compact sets, and the target state is in the interior
of the terminal constraint set XT(pt). Note further that ΩN (pt)
does not depend on xt, but only on xr, ur, and we write it as
a function of pt for simplicity.

Proof of Theorem 1. We first prove that the optimal solution
of problem PN (pt,X ) satisfies the terminal constraint of
problem x∗N |t ∈ XT(pt). To this end, assume by contra-
diction that x⋆N |t /∈ XT(pt). Lemma 2 proves that x⋆k|t /∈
XT(pt), ∀ k < N . This implies that ℓ(x⋆k|t, u

⋆
k|t, pt) ≥ d(pt)

and F (x⋆N |t, pt) > lT(pt), and thus

JN
CDA(pt) =

ℓ(x0|t, u
⋆
0|t, pt) +

N−1∑
k=1

ℓ(x⋆k|t, u
⋆
k|t, pt) + F (x⋆N |t, pt)

> ℓ(x0|t, u
⋆
0|t, pt) + (N − 1)d(pt) + lT(pt)

= ℓ(x0|t, u
⋆
0|t, pt) + CN (pt) (15)

which contradicts x0|t ∈ ΩN (pt) as per (12). Therefore, the
terminal constraint is satisfied, i.e., x⋆N |t ∈ XT(pt).

We prove next that ΩN (pt) is a positively invariant set for
the closed-loop system. To this end, let (ū⋆1|t, . . . , ū

⋆
N−1|t)

and (x̄⋆2|t, . . . , x̄
⋆
N |t) be obtained from solving the problem
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PN−1(p1|t,X ) for the initial condition x0|1 = Mxp1|t con-
structed according to (9) and let JN−1

CDA (p1|t) be the associated
optimal cost. The following inequality can be inferred:

JN−1
CDA (p1|t)

(10)−(11)
=

N−1∑
k=1

ℓ(x⋆k|t, u
⋆
k|t, p1|t) + F (x⋆N |t, p1|t)

(7)
≥

N−1∑
k=1

ℓ(x⋆k|t, u
⋆
k|t, p1|t) + ℓ(x⋆N |t, uT(x

⋆
N |t, p1|t), p1|t)

+ F (f(x⋆N |t, uT(x
⋆
N |t, p1|t), p1|t)

≥
N∑

k=1

ℓ(x⋆k|t, u
⋆
k|t, p1|t) + F (x⋆N+1|t, p1|t)

= JN
CDA(p1|t) (16)

from which we also get

JN
CDA(p1|t)

(16)
≤ JN−1

CDA (p1|t)

(10)−(11)
=

N−1∑
k=1

ℓ(x⋆k|t, u
⋆
k|t, p1|t) + F (x⋆N |t, p1|t)

(15)
= JN

CDA(pt)− ℓ(x0|t, u
⋆
0|t, pt) ≤ CN (pt). (17)

This implies x⋆1|t ∈ ΩN (pt).
To prove that the optimal cost JN

CDA is a Lyapunov function
∀x0|t ∈ ΩN (pt) and ∀ pt ∈ P , we first establish the following
bounds. Using Assumption 3, the lower bound is obtained as

JN
CDA(pt) ≥ ℓ(x0|t, u

⋆
0|t, pt) ≥ µ1(∥x0|t − xr∥),

while from Lemma 1 we have

0 ≤ JN
CDA(pt) ≤ F (x0|t, pt) ≤ µ3(∥x0|t − xr∥)

∀x0|t ∈ XT(pt) ⊆ ΩN (pt), with µ3 from Assumption 4.
Finally, in order to prove the decrease condition for JN

CDA,
we use the inequality derived in (17) for JN

CDA(p1|t) and
JN
CDA(pt), and conclude that

JN
CDA(p1|t)− JN

CDA(pt) ≤ −ℓ(x0|t, u⋆0|t, pt)
≤ −µ1(∥x0|t − xr∥).

This proves asymptotic stability of system (1) in closed-loop
with the control law yielded by CDA-NMPC for initial states
x0|t ∈ ΩN (pt).

The result of Theorem 1 is important as it proves that the
easy-to-characterize set ΩN (pt) is a subset of the region of
attraction of the NMPC problem P(pt,X ). We focus next on
the data-driven version of CDA-NMPC with low complexity.

C. Complexity reduction

NMPC formulations with long prediction horizons may have
an excessive computational burden for real-time implementa-
tion. To overcome this issue, one option consists in designing
a proper cost-to-go function that allows a short prediction
horizon N without incurring excessive performance loss. In
this paper, we will take the extreme case N = 1.

Let us exploit Bellman’s principle of optimality and refor-
mulate the CDA-NMPC problem PN (pt,X ) as

JN
CDA(pt) = min

u0|t,x0|t,x1|t
ℓ(x0|t, u0|t, pt) + V(x1|t, pt)

s.t. x0|t = Mxpt

x1|t = f(x0|t, u0|t)

u0|t ∈ U
x1|t ∈ X (18)

where V : Rnx × Rnp → R is the cost-to-go defined as

V(x⋆1|t, pt) = min
U1|t,X1|t

N−1∑
k=1

ℓ(xk|t, uk|t, pt) + F (xN |t, pt)

s.t. xk+1|t = f(xk|t, uk|t) k ∈ IN−1
1

uk|t ∈ U k ∈ IN−1
1

xk|t ∈ X k ∈ IN2
(19)

with U1|t = (u1|t, . . . , uN−1|t) and X1|t = (x1|t, . . . , xN |t).

The formulation (18)–(19) highlights the well-known fact
that an NMPC problem with prediction horizon N = 1 can
yield the solution of a longer-horizon NMPC, provided that the
cost-to-go function is used as terminal cost. Unfortunately, this
does not immediately help reduce the complexity of NMPC,
due to the possible complexity of V . However, by accepting
some possible performance loss, one can replace V with a
different terminal cost V̂ which approximates V(x, pt) but
is functionally simpler and is a Lyapunov function, so that
asymptotic stability is ensured. In the next section, we will
discuss how to compute such a terminal cost using a learning-
based approach supported by neural networks, similar to [27]–
[29].

III. NMPC WITH LEARNED LYAPUNOV TERMINAL COST

In this section, we propose an approach to learn a Lyapunov
terminal cost function V̂LLTC(x, p) that approximates the cost-
to-go function V(x, p) from data using neural networks. This
will allow us to formulate problem PN (p,X ) with prediction
horizon N = 1, therefore reducing the computational burden
with respect to the original, long-horizon problem formulation.
Because computing a Lyapunov function is in general very dif-
ficult, we resort to a data-driven approach, in which we enforce
the Lyapunov conditions only on a finite amount of data points,
as we detail next. Clearly, in this case, the stability guarantees
only hold on training data. Extending stability guarantees
beyond training data would require additional assumptions and
possibly constraints imposed during the learning phase, a topic
that we leave for future research.

A. Learning a Lyapunov cost-to-go function

Asymptotic stability requires that the approximate terminal
cost is a Lyapunov function in ΩN (p), i.e., V̂LLTC(x, p) must
be a decreasing, continuous, and positive definite function for



5

all x ∈ ΩN (p) and all p ∈ P . While many functional forms
are possible, we propose to select

V̂LLTC(x, p) = (x− xr)
′P̂ (p)(x− xr), (20)

which is positive definite by construction, provided that
P̂ (p) ≻ 0. Because P̂ (p) : Rnp → Rnx×nx is a function of
the parameter to be learned, we enforce positive definiteness
by learning the lower-triangular matrix L̂ : Rnp → Rnx×nx

instead, and defining P̂ as

P̂ (p) = L̂(p)L̂′(p) + ϵI (21)

where ϵ > 0 is a small positive number and I is the identity
matrix. Note that, as L̂ is lower triangular, the parameteriza-
tion (20)- (21) consists of nx(nx+1)

2 functions of p.

Remark 2. Directly parameterizing the symmetric part of
P̂ (p), that also requires nx(nx+1)

2 predictors, is another valid
choice, though it would require constraining the learning prob-
lem. A further valid parameterization is P̂ (p) = L̂(p)DL̂′(p),
where L̂(p) is a lower triangular matrix with entries equal to
one along the main diagonal, and D a proper diagonal positive
definite matrix. Regardless of the chosen parameterization,
complexity either appears in the form of constraints or in the
parameterization itself.

In order to learn P̂ from data, we select samples pi =[
xi0

′
xir

′
uir

′
]′

, with xir ∈ X , uir ∈ U , and xi0 ∈ ΩN (pi), for i ∈
IM1 . Then, we solve problem PN (pi,X ) and store the optimal
control input ui0 := u⋆0|t, the corresponding next optimal state
xi1 := x⋆1|t, the optimal initial stage cost ℓi0 := ℓ(xi0, u

i
0, p

i),
the cost-to-go Vi

1 := V(xi1, pi) given by (19), and the value
Ci

N := CN (pi) given by (13), which we collect in dataset D as
summarized in Algorithm 1. Note that the number of iterations
of such a semi-algorithmic data collection procedure depends
on how stringent the condition xi0 ∈ ΩN (pi) is.

In order to learn V̂LLTC as in (20)-(21) using the col-
lected dataset D, we parameterize matrix L̂(p) using a finite-
dimensional parameter θ. In the following, we will denote
this parameterized matrix as L̂θ(p). In this article, we adopt
a feedforward neural network (FNN) as it is a universal
approximator [30], which takes the following form

Φ(p; θ,H) = [AH+1◦GθH+1
◦AH◦GθH◦· · ·◦A1◦Gθ1 ](p) (22)

where Φ(p; θ,H) yields the vectorized form of L̂θ(p). The
function is therefore obtained as a sequence of layers in which
function GθH(zh−1) is affine, takes as input the output zh−1

of layer h − 1, and is composed with an activation function
Ah to yield the output zh of layer h as

Gθh(zh−1) = whzh−1 + bh,

zh = Ah(Gθh(zh−1)), h ∈ IH+1
1

with z0 = p and θ ∈ Rnθ

θ = [θ1, θ2, . . . , θH+1],

with θh = [wh, bh] containing weights wh ∈ Rnh−1
n ×nh

n and
biases bh ∈ Rnh

n , where nhn stands for a number of neurons
in the layer h. Additional details on neural networks are

Algorithm 1: Data collection
Input: M , f , X , U , PN (p,X ).
Output: Training data D

1 Initialization: D = ∅, i = 1 ;
2 while i ≤M do

3 pick pi =
[
xi0

′
xir

′
uir

′
]′

randomly, with
xi0, x

i
r ∈ X , uir ∈ U ;

4 solve PN (pi,X ) to obtain
U i = (ui0, . . . , u

i
N−1), X

i = (xi0, . . . , x
i
N ) ;

5 calculate ℓi0 := ℓ(xi0, u
i
0, p

i) using (3),
Vi
1 := V(xi1, pi) using (19), d(pi) using (14),
Ci

N := CN (pi) using (13), JN
CDA(p

i) = ℓi0 +Vi
1 ;

6 if JN
CDA(p

i) ≤ ℓi0 + Ci
N then // xi0 ∈ ΩN (pi)

7 D = D ∪ {pi, xi1, ℓi0, Vi
1, C

i
N} ;

8 i = i+ 1 ;
9 else

10 go back to 3 ;
11 end
12 end

discussed in [31]. In this work, we consider a Rectified Linear
Unit (ReLU) activation function

Ah(Gθh) = ReLU(Gθh) := max{Gθh , 0}, h ∈ IH1 (23)

As schematically illustrated in Figure 1, we employ the
network Φ(p; θ,H) defined in (22) to parameterize the non-
zero entries of matrix L̂θ(p). Hence, we rewrite (20)-(21) in
the following form

V̂LLTC
θ (x, p) = (x− xr)

′P̂θ(p)(x− xr) (24)

P̂θ(p) = L̂θ(p)L̂
′
θ(p) + ϵI. (25)

Finally, we obtain the following finite-dimensional learning
problem

min
θ

γ∥θ∥22 +
1

M

M∑
i=1

ϕ(Vi
1, V̂LLTC

θ (xi1, p
i)) (26a)

s.t. V̂LLTC
θ (xi1, p

i) ≤ Ci
N i ∈ IM1

(26b)

V̂LLTC
θ (xi1, p

i)− V̂LLTC
θ (xi0, p

i) + ℓi0 ≤ 0 i ∈ IM1
(26c)

where ϕ : R × R → R is a suitably defined loss function;
constraint (26b) ensures the positive invariance property of the
domain of attraction ΩN (pi); and constraint (26c) enforces the
decrease of the Lyapunov terminal cost for all observed sam-
ples, and an L2-regularization with parameter γ is introduced
to prevent overfitting.

For practical purposes, as this allows us to use standard
learning algorithms, we reformulate the problem above as
an unconstrained problem by using ℓ1-penalties on constraint
violations, as proposed in [32]. This yields the following
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Fig. 1: A schematic illustration of FNN Φ(p; θ,H = 1) to predict the matrix L̂θ(p) for a given input p.

unconstrained learning problem

θ⋆ := argmin
θ

γ∥θ∥22 +
1

M

M∑
i=1

ϕ(Vi
1, V̂LLTC

θ (xi1, p
i))

+λ1E i
dom(θ) + λ2E i

dec(θ) (27)

where

E i
dom(θ) := max

{
V̂LLTC
θ (xi1, p

i)− Ci
N , 0

}
E i
dec(θ) := max

{
V̂LLTC
θ (xi1, p

i)− V̂LLTC
θ (xi0, p

i) + ℓi0, 0
}

and λ1, λ2 are sufficiently large positive penalty parameters
to ensure that the optimal solution matches the one of prob-
lem (26), if the latter exists.

B. LLTC-NMPC

Once the Lyapunov terminal cost V̂LLTC
θ⋆ (x, p) is learned,

the data-driven NMPC optimization problem is formulated as:

JLLTC(pt) = min
u0|t,x0|t,x1|t

ℓ(x0|t, u0|t, pt) + V̂LLTC
θ⋆ (x1|t, pt)

s.t. x0|t = Mxpt

x1|t = f(x0|t, u0|t)

u0|t ∈ U
x1|t ∈ X (28)

which we call NMPC with Learned Lyapunov Terminal Cost
(LLTC-NMPC) and denote problem (28) as PLLTC(pt,X ).
The LLTC-NMPC control strategy at time t is summarized
in Algorithm 2. As opposed to standard NMPC approaches,
once the initial state is known, we first evaluate the FNN (22)
to define the terminal cost and then solve the 1-step-ahead
NMPC problem (28).

IV. ILLUSTRATIVE EXAMPLES

We consider two benchmark optimal control problems, the
first related to controlling a chemical process and the second
to an autonomous driving application. To demonstrate the

Algorithm 2: LLTC-NMPC scheme
Input: xr, ur, θ⋆ ∈ Rnθ , Φ(pt; θ⋆,H), ϵ > 0
Output: ut

1 get pt = [x′t, x
′
r, u

′
r]
′ ∈ P;

2 obtain L̂θ⋆(pt) from Φ(pt; θ
⋆,H);

3 evaluate P̂θ⋆(pt) = L̂θ⋆(pt)L̂
′
θ⋆(pt) + ϵI;

4 solve problem PLLTC(pt,X ) and obtain u⋆0|t;
5 apply ut = u⋆0|t to system (1);
6 set t = t+ 1 and go back to 1.

potential of the proposed method, we perform simulations
that show the superiority of our LLTC-NMPC in terms of
computational time as compared to classic NMPC and CDA-
NMPC, in which the terminal conditions, i.e., lT(p), XT(p),
and F (x, p) satisfying Assumption 4 for all p ∈ P are chosen
by following the procedures proposed in [25].

The computational performance is compared based on the
worst-case Tw and the average-case Ta execution time defined
as

Ta :=
1

Ninit

Ninit∑
i=1

1

Nsim

Nsim∑
t=0

τ(pit) (29a)

Tw := max
1,...,Ninit

max
1,...,Nsim

τ(pit) (29b)

where Nsim is the simulation length, Ninit the number of
simulations from different initial conditions xi0, and τ(pit)
the execution time measured at each time step t to solve
the NMPC problem for a given initial condition xi0, i =
1, . . . , Ninit.

In order to demonstrate the necessity of incorporating
constraints (26b)-(26c) while learning V̂LLTC

θ⋆ (x, p), we make a
comparison with the approach proposed in [22], called Learned
Terminal Cost NMPC (LTC-NMPC), which also learns the
terminal cost from data, but does not include (26b)-(26c).

We employ CasADi [33] via its MATLAB interface to
formulate all NMPC problems and automatically generate the
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corresponding nonlinear programming (NLP) problems. These
are solved using Ipopt [34], with computational time τ(pit)
measured on an Intel Core i5-5200U (2.7GHz) processor. The
continuous-time systems are discretized using a fourth-order
explicit Runge-Kutta integrator. The computational results
might be further improved by exploiting specialized libraries
for real-time MPC such as, e.g., Acados [35].

To make a fair comparison without exaggerating the com-
putational cost required to solve CDA-NMPC for each given
initial condition, the prediction horizon is selected as follows:
Ninit random initial conditions pi are generated; for each
N ∈ [10, 100], the closed-loop cost over Nsim time steps is
computed by solving the problem PN (pi,XT(p

i)) for all pi;
the prediction horizon N is selected such that longer prediction
horizons do not yield significant performance improvements.

The M data samples for learning the approximate Lyapunov
terminal cost function V̂LLTC

θ⋆ (x, p) are generated by executing
Algorithm 1. We use Mtrain = 0.8M training samples for
learning the FNN parameters using the quadratic loss function
ϕ(z1, z2) = (z1 − z2)

2. The remaining Mtest = 0.2M test
samples are used to assess the performance of the learned
network model in terms of Normalized Root Mean Squared
Error (NRMSE) and R2

score (coefficient of determination). Ad-
ditionally, we count the number Cdom and Cdec of samples for
which constraints (26b) and (26c) are, respectively, violated.
Finally, we also compare the computational time Tw and Ta.

For a given complexity, quantified as the total number
of neurons in the network Φ(p; θ,H), we analyze the in-
fluence of the layer structure on the approximation quality
of V̂LLTC

θ⋆ (x, p). In all considered networks, we adopt the
ReLU(·) activation function (23). The neural networks are
trained in Pytorch [36], using Adam [37] to solve problem (27)
over 5000 epochs with penalty parameters λ1 = λ2 = 104,
learning rate α = 10−3, first and second moment decay
rates β = (0.995, 0.999), and L2-regularization parameter
γ = 10−6. We refer the reader to [38] for a wide range
of possible alternative loss functions, validation metrics, and
numerical optimization algorithms.

A. CSTR problem

For an exothermic and irreversible reaction a −→ b with
constant liquid volume V = 100 l and flow rate q =
100 l/min, a continuous time stirred tank reactor (CSTR)
model based on a component balance for reactant a is given
as follows [39]

Ċa =
q

V
(Cn

a − Ca)− Cak0 exp
− E

RT

Ṫ =
q

V
(Tn

a − T )− Ca
∆H

ρCp
k0 exp

− E
RT +

UA

ρV Cp
(Tc − T )

where Ca is the concentration of the reactant a in the reactor,
T is the reactor temperature, and Tc is the temperature of the
coolant stream. The unstable steady state Cr

a = 0.5 mol/l,
T r = 350 K, and T r

c = 300 K is chosen under the
following nominal operating conditions: Cn

a = 1 mol/l and
Tn
a = 350 K, k0 = 7.2 · 1010 min−1, E/R = 8750 K,

∆H = −5 ·104 J/mol, ρ = 103 g/l, Cp = 0.239 J/g ·K, and
UA = 5 ·104 J/min ·K. A nonlinear discrete-time state-space

model is obtained with sampling time Ts = 0.03 min. The
state and the commanded input of the system, together with the
corresponding reference signals, are defined as x = [Ca T ]′,
xr = [Cr

a T r]′, u = Tc and ur = T r
c , respectively. The system

is subject to the box constraints

U = [280, 370] X = [0, 1]× [280, 370]

where the units are omitted as they are clear from context.
The MPC problems are formulated using the stage cost

defined in (3) with weight matrices Qx = diag[50, 1] and
Qu = 1. Our prediction horizon selection procedure yields
N = 50. Moreover, we obtain CN (p) = 2.01 · 103 from (13),
with lT(p) = 1.77 · 103 and d(p) = 4.53. The Classic
NMPC and the CDA-NMPC schemes that solve problems
PN (p,XT(p)) and PN (p,X ), respectively, are designed with
the ellipsoidal terminal set XT(p) = {x ∈ X : F (x, p) ≤
1.77 · 103} where the terminal cost F (x, p) in (4) is quadratic
with Hessian matrix

P =

[
83223 1735
1735 62

]
We collect a dataset consisting of M = 8000 samples; the
corresponding state trajectories are shown in Figure 2.

Fig. 2: State trajectory samples generated by CDA-NMPC
with N = 50 for a given initial state xi0.

We learn matrix P̂θ⋆(p) defining V̂LLTC
θ⋆ (x, p) as in (24)

using ϵ = 0.02. For this problem, the FNN has np = 5 inputs
and no = 3 outputs. For a given budget of 120 neurons, we
test different FNN structures with H hidden layers each having
nh neurons, as reported in Table I. The table shows that the
structure with 3 hidden layers, each containing 40 neurons,
yields the best model to represent V̂LLTC

θ⋆ (x, p), since there is
no stability constraint violation and small NRMSE and R2

score

are obtained.
All controllers are simulated over Nsim = 100 steps from

Ninit = 10 different initial states. The corresponding state
trajectories are displayed in Figure 3, where it can be seen
that the Classic NMPC and CDA-NMPC schemes yield indis-
tinguishable trajectories, while the LLTC-NMPC trajectories
only slightly differ due to the imperfect approximations of the
cost-to-go defined in (19).

The computational time required by each controller is shown
in Figure 4. As the evaluation time of the FNN yielding P̂θ⋆(p)
is 0.023 ms, i.e., essentially negligible, the proposed LLTC-
NMPC scheme yields a significantly lower computational time
compared to CDA-NMPC and Classic NMPC.
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TABLE I: Analysis of trained Lyapunov terminal-cost models based on different FNN structures. For each metric (NRMSE,
R2

score, Cdom, Cdec), the values obtained on train/test data are reported.

FNN model
architecture

fit quality violation of stability constraints

NRMSE R2
score Cdom Cdec

H = 1, nh = 120 0.034 / 0.046 0.906 / 0.882 450 / 75 900 / 132

H = 2, nh = 60 0.023 / 0.027 0.918 / 0.912 400 / 50 600 / 68

H = 3, nh = 40 0.015 / 0.017 0.956 / 0.951 0 / 0 0 / 0

H = 4, nh = 30 0.014 / 0.015 0.964 / 0.960 0 / 0 175 / 25

Fig. 3: State trajectories of different NMPC schemes starting from initial state x0|t.

Worst-case Average-case
0

10

20

30

40

50

C
P

U
 [
m

s
]

LLTC-NMPC

CDA-NMPC

Classic NMPC

Fig. 4: Average and worst-case computational time compari-
son.

In order to discuss the importance of including Lya-
punov conditions in the learning the cost-to-go approxi-
mation V̂LLTC

θ⋆ (x, p), we compare our LLTC-NMPC with
the LTC-NMPC approach proposed in [22], which approx-
imates V(x, p) by solving problem (26) without constraints
(26b) (26c). The terminal cost V̂LTC

θ⋆ (x, p) is modeled with
the same FNN structure used for V̂LLTC

θ⋆ (x, p). As shown in
Figure 3, the LTC-NMPC yields trajectories that are closer
to CDA-NMPC than LLTC-NMPC: because of the absence
of the Lyapunov constraints, V̂LTC

θ⋆ (x, p) of V(x, p) yields
a more accurate cost-to-go approximation than V̂LLTC

θ⋆ (x, p).
However, LTC-NMPC violates the stability constraints (26b)
and (26c) 24 and 75 times respectively, while LLTC-NMPC

never violates any constraint.

B. Autonomous parking problem
In order to demonstrate the effectiveness of the proposed

control scheme also for fast-sampling mechanical systems, we
consider next a vehicle parking problem.

Consider a vehicle with nonlinear dynamics ẋ = f(x, u)
with x = [sx sy ψ]

′; u = [v δ]′ and f given by the following
continuous-time bicycle model f : R3 × R2 → R3

ṡx = v cos(ψ)
ṡy = v sin(ψ)

ψ̇ = δ
(30)

where (sx, sy) denote the Cartesian position of the vehicle on
a fixed reference frame, ψ the orientation of the vehicle with
respect to the x-axis, v the longitudinal velocity, and δ the
angular velocity. The system is discretized with sampling time
Ts = 0.1 s. The control task consists in driving the vehicle
towards the reference point xr = [0.3 0.5 π/4]′ and ur = [0 0]′

within the box constraints defined by

U = [−0.2, 0.6]× [−π/3, π/3]
X = [−2, 2]× [−2, 2]× [−π, π]

(all units are in the SI).
The stage cost function is defined by matrices Qx =

diag[3 5 0.01] and Qu = diag[0.5 0.01]. CDA-NMPC is
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designed with N = 60, d(p) = 0.32, and the terminal
set XT(p) = {x ∈ X : F (x, p) ≤ 1.31}, which yields
CN (p) = 20.19. We generate M = 5000 data samples and
learn V̂LLTC

θ⋆ (x, p) and V̂LTC
θ⋆ (x, p) with fit results NRMSE =

0.11/0.13 and R2
score = 0.88/0.86, and NRMSE = 0.06/0.09

and R2
score = 0.961/0.949 for the train/test datasets, respec-

tively. The matrix P̂θ⋆(p) is defined using ϵ = 10−3, and the
FNN has np = 8 inputs, no = 6 outputs and H = 3 hidden
layers with nh = 15 neurons each.

We simulate the system in closed loop over Nsim = 80
steps, starting from Ninit = 15 initial states x0|t picked outside
the terminal region XT(pt). LLTC-NMPC steers the system
to the reference by respecting the stability constraints, while
LTC-NMPC violates them. As shown in Figure 5, the terminal
cost V̂LTC

θ∗ is not a Lyapunov function as it does not always
decrease.

The computational times of LLTC-NMPC and CDA-NMPC
are reported in Table II, where it can be seen that the proposed
data-driven approach requires a significantly shorter execution
time than CDA-NMPC: even though one needs to also evaluate
the FNN in LLTC-NMPC, the LLTC-NMPC computational
time is approximately 9 times smaller than the one of CDA-
NMPC.

V. CONCLUSIONS

This work presented a computationally efficient data-driven
NMPC technique that employs a one-step-ahead prediction
horizon in combination with a learned Lyapunov terminal
cost. The proposed control scheme successfully approximates
a given long-horizon NMPC problem and satisfies Lyapunov
stability conditions on a given training dataset. For two bench-
mark problems, our proposed method yields good control per-
formance while requiring significantly smaller computational
time compared to long-horizon NMPC.

Future work will be devoted to extending the proposed
approach to generalize the approach to control tasks with
more general costs, e.g., economic costs and time-varying
references.

REFERENCES

[1] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Commu-
nications and Control Engineering. Springer International Publishing, 2
edition, 2017.

[2] H. Michalska and D. Q. Mayne. Receding Horizon Control of Nonlinear
Systems. Proceedings of the 28th IEEE Conference on Decision and
Control,, 1:107–108, 1989.

[3] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive
Control : Theory, Computation and Design. Nob Hill Publishing, 2019.

[4] H. Chen and F. Allgöwer. A Quasi-Infinite Horizon Nonlinear Model
Predictive Control Scheme with Guaranteed Stability. Automatica,
34(10):1205–1217, 1998.

[5] S. Chen et al. Approximating Explicit Model Predictive Control using
Constrained Neural Networks. In American Control Conference, pages
1520–1527, 2018.

[6] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer. Learning an
Approximate Model Predictive Controller with Guarantees. IEEE
Control Systems Letters, 2(3):543–548, 2018.

[7] S. Lucia and B. Karg. A Deep Learning-based Approach to Robust
Nonlinear Model Predictive Control. IFAC-PapersOnLine, 51:511–516,
2018.

[8] A. Gersnoviez, M. Brox, and I. Baturone. High-Speed and Low-
Cost Implementation of Explicit Model Predictive Controllers. IEEE
Transactions on Control Systems Technology, 27(2):647–662, 2019.

[9] A. Grancharova and T. A. Johansen. Nonlinear Model Predictive
Control. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[10] R. Cagienard, P. Grieder, E.C. Kerrigan, and M. Morari. Move Blocking
Strategies in Receding Horizon Control. Journal of Process Control,
17(6):563–570, 2007.

[11] R.C. Shekhar and C. Manzie. Optimal Move Blocking Strategies for
Model Predictive Control. Automatica, 61:27–34, 2015.
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TABLE II: Computational performance of LLTC-NMPC and CDA-NMPC.

Controller
NLP dimension Convergence Computational time [ms]

# decision variables # constraints # iterations FNN Tw Ta
CDA-NMPC with N = 60 303 183 + 600 23 - 73.151 55.530

LLTC-NMPC 8 6 + 10 7 0.017 8.321 6.124
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