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Abstract

The variational approach to brittle fracture is herein extended to deal with the simultaneous interplay
of two failure mechanisms affecting grained heterogeneous materials in compression, namely fracture
in tension and crushing in compression. The problem is addressed in the context of a multi-phase field
variational approach, with two independent damage variables associated to each failure mechanism.
The proposed computational method implemented in the open source FEniCS finite element software
is applied to 2D mesoscale models of concrete specimens in compression. The predicted trends for
specimens with different aspect ratios and different degree of lateral confinement are consistent with
experimental trends on apparent compressive strength and with typically observed failure patterns.

Nomenclature

𝐸𝑚 Young’s modulus of the matrix [MPa]
𝐸𝑎 Young’s modulus of aggregates [MPa]
𝜈𝑚 Poisson’s ratio of the matrix
𝜈𝑎 Poisson’s ratio of aggregates
𝐺𝑐,𝑚 Fracture energy of the matrix [N/mm]
𝐺𝑐,𝑎 Fracture energy of the aggregates [N/mm]
𝐺𝑐,𝑐𝑚 Crushing energy of the matrix [N/mm]
𝐺𝑐,𝑐𝑎 Crushing energy of the aggregates [N/mm]
𝑙𝑐,𝑚 Internal length-scale of the matrix [mm]
𝑙𝑐,𝑎 Internal length-scale of the aggregates [mm]
𝑙𝑐,𝑐𝑚 Internal length-scale of the matrix in compression

[mm]
𝑙𝑐,𝑐𝑎 Internal length-scale of the aggregates in compres-

sion [mm]
𝑅𝑐 Cubic compressive strength [MPa]
𝑓𝑐 Cylindrical compressive strength [MPa]
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1. Introduction

Multi-field variational formulations (usually denomi-
nated phase field methods in the literature) have attracted
a significant attention by the research community as a
versatile tool for fracture mechanics simulations. Such an
approach accounts for a nonlocal phase variable governed by
a Poisson-type partial differential equation to model fracture
events, see [1, 2]. Phase field shares some mathematical
and modeling aspects with continuum damage mechanics
[3, 4, 5, 6]. The foundations of phase field approaches for
brittle fracture can be traced back to the classical energy-
based Griffith criterion [7] through the introduction of a
total energy functional that rules the competition between
the elastic energy contribution and the dissipated fracture
energy to create a new surface. The minimization of this
functional allows triggering crack nucleation, propagation
and coalescence in the continuum. Quasi-static phase field
formulations for brittle fracture have been proposed by
Bourdin et al. [8, 9] and the thermodynamically consistent
framework has been extensively developed by Miehe et al.
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[10, 11] and by many authors afterwards [12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23].

The basic method considers a decomposition of the
strain energy density to degrade the elastic properties only
in tension and not in compression. Various forms of decom-
positions have been proposed in the literature, including the
deviatoric/volumetric splitting in [2], the model presented in
[24], and the hybrid model [17].

However, brittle materials in compression exhibit a spe-
cific type of failure which involves material crushing, which
is a mechanism of energy dissipation physically distinct from
tensile fracture and, as such, it cannot be simulated within
the existing phase field models. Experimental uniaxial com-
pressive tests on concrete specimens [25, 26, 27] highlight
the occurrence of a mechanisms of material crushing which
leads to a specific energy dissipation in compression which
is one order of magnitude higher than in tension. Moreover,
they show the existence of an internal length scale corre-
sponding to the band where energy dissipation takes place.
Based on those considerations, the overlapping crack model

for damage in compression was pioneeringly proposed by
Carpinteri et al. [28], in close analogy with the cohesive

zone model in tension. The idea was to model the effect
of diffused energy dissipation during crushing events as an
equivalent single crack in compression where the energy
dissipated is the result of the work done by compressive
tractions multiplied by a fictitious material compenetration.

Although successfully applied to concrete specimens in
compression [29, 30] and to beams in three-point bending
[31] with a single tensile/overlapping crack, there is indeed
the need of an energetically rigorous fracture mechanics
model that could be applied not only at the global scale, but
also at the mesoscale.

Here, following the above seminal concepts, a novel
multi-phase field model for fracture in tension and crushing
in compression is proposed. The fundamental idea is to
distinguish the two damage mechanisms and related energy
dissipations in tension and compression, associating two
independent phase field variables. Moreover, while the phase
field variable for fracture will degrade the strain energy
density associated to a tensile stress state, with its specific
fracture energy and internal length scale, the additional
phase field damage for crushing will be used to degrade the
strain energy density associated to the compressive stress
state, with also its associated crushing energy and internal
length scale. Both phase field variable evolutions will be
ruled by a Poisson-type partial differential equation, as done
in single phase field models.

The methodology is herein employed to simulate com-
plex damage patterns observed in compressive tests of con-
crete specimens at the mesoscale with different aspect ratios
and with different degree of lateral confinement [32, 33].
Experimental results show that slender cylindrical speci-
mens usually fail due to splitting failure modes, due to the
propagation of sub-vertical cracks parallel to the loading
direction. On the other hand, cubic specimens tend to fail due
to diagonal crack propagation, while even shorter specimens
show a failure mode dominated by fragmentation. With the
aim of the proposed model, it will be shown that a full
range of damage patterns can be simulated in 2D mesoscale
models of concrete specimens, generated with a statistical
distribution of aggregates with diameters obeying the Füller
distribution density function proposed in [34].
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2. Mathematical formulation

Let consider an arbitrary body Ω ∈ ℝ𝑛𝑑𝑖𝑚 in the Eu-
clidean space of dimension 𝑛𝑑𝑖𝑚, in which an evolving inter-
nal discontinuity Γ is postulated. Here it is assumed that Γ =

Γ𝑓∪Γ𝑐 , where Γ𝑓 is associated to fracture caused by a tensile
stress state, while Γ𝑐 is associated to crushing caused by a
compressive stress state. The position of a material point is
denoted by the vector 𝐱 in the global Cartesian frame within
the bulk. The body forces are denoted by 𝐛 ∶ Ω → ℝ𝑛𝑑𝑖𝑚 .
The boundary of the body is denoted by 𝜕Ω ∈ ℝ𝑛𝑑𝑖𝑚−1.
Kinematic and traction boundary conditions are prescribed
along the disjoining parts 𝜕Ω𝑢 ⊂ 𝜕Ω and 𝜕Ω𝑡 ⊂ 𝜕Ω,
respectively, with 𝜕Ω𝑡 ∪ 𝜕Ω𝑢 = 𝜕Ω and 𝜕Ω𝑡 ∩ 𝜕Ω𝑢 = ∅,
yielding:

𝐮 = 𝐮 on 𝜕Ω𝑢 and 𝝈 ⋅ 𝐧 = 𝐓 on 𝜕Ω𝑡, (1)

where 𝐧 denotes the outward normal unit vector to the body,
and 𝝈 is the Cauchy stress tensor.

The variational approach to brittle fracture and material
crushing is set up through the definition of the following free
energy functional:

Π(𝐮,Γ) = ΠΩ(𝐮,Γ) + ΠΓ(Γ) =

= ∫Ω∖Γ
𝜓𝑒(𝜺) d𝐱 + ∫Γ𝑓

𝑐 dΓ + ∫Γ𝑐
𝑐,𝑐 dΓ,

(2)

where 𝜓𝑒(𝜺) is the elastic energy density that depends upon
the strain field 𝜺, and 𝑐 ,𝑐,𝑐 are, respectively, the fracture
energy in tension and the crushing energy in compression.

In many porous or grained materials, the fracture mode is
induced by the combination of both tensile and compressive
internal stress states. These micro-structurally complex ma-
terials exhibit very different fracture mechanisms in tension
and compression. In general, the crushing energy can be one
or two orders of magnitude greater than the fracture energy,

and plays a major role in the evolution of damage. The need
for distinguish between more than one failure mechanism
has been already claimed by many authors [36, 37], espe-
cially in concrete [5]. To account for these different damage
mechanisms, a multi-phase field state vector 𝐬 = (𝑠1, 𝑠2)T

with two damage variable components is herein introduced,
such that 𝑠1 and 𝑠2 are damage associated to tensile and
compressive internal stress states, respectively.

In Eq.(2), the term ΠΩ(𝐮,Γ) identifies the elastic energy
stored in the damaged body, while the energy required to
create the crack complying with the Griffith criterion or a
crushing zone is denoted by ΠΓ(Γ). The dissipated energy in
the bulk is a state function of the displacement 𝐮 and of the
internal damage-like variables 𝑠𝑖, 𝑖 = 1, 2, (𝑠𝑖 ∈ [0, 1] 𝑖 =

1, 2, where 𝑠𝑖 = 0 represents an intact material, while 𝑠𝑖 = 1

identifies the fully damaged state).
To account for different damage mechanisms, the follow-

ing decomposition of the energy density is proposed:

𝜓𝑒(𝜺, 𝑠1, 𝑠2) = {(1−𝑠1)2+𝑘}𝜓𝑒+(𝜺)+{(1−𝑠2)
2+𝑘}𝜓𝑒−(𝜺),

(3)

where the positive and negative parts of the energy density
are defined as:

𝜓𝑒±(𝜺) =
𝜆
2
⟨Tr(𝜺)⟩2± + 𝜇Tr(𝜺2±) (4)

and 𝜆 and 𝜇 are the Lamé constants, Tr(⋅) denotes the trace
operator, 𝑘 is a parameter that defines a residual stiffness to
prevent numerical instabilities in the computational imple-
mentation, and simultaneously preventing that the resulting
system of equations becomes ill-conditioned. With reference
to the spectral representation for the strain (with eigenvalues
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𝜖𝑖 and unit eigenvectors 𝒆𝑖), denoted as

𝜺 =
3
∑

𝑖=1
𝜖𝑖𝒆𝑖 ⊗ 𝒆𝑖, (5)

the strain is additively decomposed as 𝜺 = 𝜺+ + 𝜺−, so that
the tensile and compressive parts associated to 𝜺 are

𝜺± =
3
∑

𝑖=1
⟨𝜖𝑖⟩±𝒆𝑖 ⊗ 𝒆𝑖, (6)

respectively, where the Macaulay bracket operator is defined
for every scalar 𝑥 as ⟨𝑥⟩± = (𝑥 ± |𝑥|)∕2.

Within the regularized framework of the phase field
approach and in analogy with the formulation in tension
[41, 42], a crushing density functional 𝛾𝑐 is herein introduced
in addition to the crack density functional 𝛾 , to smear out
damage not only in tension but also in compression:

Π(𝐮, 𝑠1, 𝑠2) = ∫Ω
𝜓𝑒(𝜺, 𝑠1, 𝑠2) d𝐱 + ∫Ω

𝐺𝑐𝛾(𝑠1,∇𝑠1) d𝐱+

+ ∫Ω
𝐺𝑐,𝑐𝛾𝑐(𝑠2,∇𝑠2) d𝐱,

(7)

where𝜓𝑒 is defined in Eq. (3). Here,∇(⋅) denoting the spatial
gradient operator.

According to [10], the functional 𝛾(𝑠1,∇𝑠1) is set as a
convex function composed by a quadratic term of the phase
field variable 𝑠1 and another quadratic term involving its
gradient:

𝛾(𝑠1,∇𝑠1) =
1
2𝑙
𝑠21 +

𝑙
2
|∇𝑠1|2, (8)

where 𝑙 is the internal length scale associated to brittle frac-
ture. Similarly, we introduce here a functional 𝛾𝑐(𝑠2,∇𝑠2)
to regularize the localized damage in compression caused
by material crushing, this time function of the phase field

variable 𝑠2:

𝛾𝑐(𝑠2,∇𝑠2) =
1
2𝑙𝑐

𝑠22 +
𝑙𝑐
2
|∇𝑠2|2, (9)

where again another regularization length scale 𝑙𝑐 is intro-
duced, which in the most general case can be different from
𝑙.

The stress tensor corresponding to a generic state of
damage is now given by:

𝝈 = {
(

1 − 𝑠1
)2 + 𝑘}

(

𝜆⟨Tr(𝜺)⟩+𝐈 + 2𝜇𝜺+
)

+

+ {
(

1 − 𝑠2
)2 + 𝑘}

(

𝜆⟨Tr(𝜺)⟩−𝐈 + 2𝜇𝜺−
)

(10)

where 𝐈 denotes the second-order identity tensor. The ther-
modynamic consistency of the above constitutive theory,
in agreement with the Clausius-Duhem inequality, can be
proved in analogy with the procedure in [10].

3. Weak form and finite element formulation

In this section, the weak form corresponding to the
multi-phase field model for brittle fracture and compressive
crushing is derived and the corresponding finite element for-
mulation is discussed. Let be respectively 𝐇1(Ω) and𝐻1(Ω)

the vector and scalar spaces of square-integrable functions
defined on Ω having first weak derivative which is square-
integrable. And let be 𝐇1

0(Ω) and 𝐻1
0 (Ω) the corresponding

functional spaces of vanishing functions on the boundary
𝜕Ω. Following a standard Galerkin procedure, the weak form
of the coupled displacement and fracture problem according
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to Eq.(7) reads:

𝛿Π(𝐮, 𝑠1, 𝑠2) = ∫Ω
𝝈(𝐮, 𝑠1, 𝑠2) ∶ 𝜺(𝐯) d𝐱+

− ∫Ω
2𝑃1𝐻(1 − 𝑠1)𝜙1 d𝐱+

+ ∫Ω
𝐺𝑐

{1
𝑙
𝑠1𝜙1 + 𝑙∇𝑠1 ⋅ ∇𝜙1 d𝐱

}

− ∫Ω
2𝑃2𝐻𝑐(1 − 𝑠2)𝜙2 d𝐱+

+ ∫Ω
𝐺𝑐,𝑐

{ 1
𝑙𝑐
𝑠2𝜙2 + 𝑙𝑐∇𝑠2 ⋅ ∇𝜙2 d𝐱

}

− 𝛿Πext,

(11)

where 𝐯 is the vector of virtual displacement defined on
H1

0(Ω), 𝜙1, 𝜙2 stand for the phase field test functions de-
fined on H1

0(Ω), 𝐻 and 𝐻𝑐 are the strain history functions
accounting for the irreversibility of the crack [10, 18, 39]
and are defined as:

𝐻 = max𝜏∈[0,𝑡]
{

{(1 − 𝑠1)2 + 𝑘}𝜓+(𝜺(𝜏))
}

, (12)

and

𝐻𝑐 = max𝜏∈[0,𝑡]
{

{(1 − 𝑠2)2 + 𝑘}𝜓−(𝜺(𝜏))
}

(13)

where 𝑃𝑖 are activation flags for current crack driving forces
𝐻 and 𝐻𝑐 [40] such that:

𝑃1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if Tr(𝝈) > 0

0 otherwise
and 𝑃2 = 1 − 𝑃1. (14)

Notice that the criterion adopted to activate the phase field
evolution 𝑠1 or 𝑠2 is based on the computation of the internal
sate of stress in terms of the first invariant of the stress
tensor Tr(𝝈) which can be tensile or compressive [5]. It
is worth noting that the present model is applicable only
for monotonic loading conditions and should be extended
to deal with cyclic loading. In a more complex scenario

involving a cyclic tensile/compressive loading, if an internal
crack surface is created due to the tensile stress state in the
bulk (𝑠1 = 1), then, in the case of load reversal caused by a
subsequent compressive loading, a frictional contact model
should be considered to describe the response of the crack
flanks in contact. Without explicitly modelling the displace-
ment discontinuity, which would introduce complexities that
would highly reduce the advantages of a smeared damage
formulation, a strategy could be based on the introduction of
an internal history variable to track where damage reaches
1 in tension (𝑠1 = 1, i.e., a tensile crack is formed).
Then, the constitutive model in the bulk should be modified,
introducing effective elastic parameters that could take into
account, in an effective way, the response of the embedded
discontinuity subject to frictional contact.

Eq.(11) holds for any test functions 𝐯 and 𝜙1, 𝜙2. The
external contribution to the variation of the bulk functional
in Eq.(11) is defined as follows:

𝛿Πext(𝐮, 𝐯) = ∫𝜕Ω
𝐓 ⋅ 𝐯 dΓ + ∫Ω

𝐛 ⋅ 𝐯 d𝐱. (15)

For the finite element formulation, the mechanical prob-
lem reads: given the prescribed loading condition 𝐮𝑛 and
traction𝐓𝑛 at step 𝑛, find 𝐮 ∈ 𝐔 =

{

𝐮 |𝐮 = 𝐮𝑛 on 𝜕Ω𝑢,𝐮 ∈ 𝐇1(Ω)
}

such that:

𝐮(𝐮, 𝑠1, 𝑠2; 𝐯) = ∫Ω
𝝈(𝐮, 𝑠1, 𝑠2) ∶ 𝜺(𝐯) d𝐱 − ∫𝜕Ω

𝐓
𝑛
⋅ 𝐯 dΓ

− ∫Ω
𝐛 ⋅ 𝐯 d𝐱 = 0, ∀𝐯 ∈ 𝐇1

0(Ω),

(16)

while the two phase field problems are formulated as fol-
lows:
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Find 𝑠1 ∈ H1(Ω) such that

𝑠1 (𝐮
𝑘, 𝑠1;𝜙1) = ∫Ω

𝐺𝑐𝑙 ∇𝑠1 ⋅ ∇𝜙1 d𝐱

+ ∫Ω

{𝐺𝑐
𝑙

+ 2𝑃1𝐻
}

𝑠1𝜙1 d𝐱

− ∫Ω
2𝑃1𝐻𝜙1 d𝐱 = 0, ∀𝜙1 ∈ H1

0(Ω)

(17)

and 𝑠2 ∈ H1(Ω) such that

𝑠2 (𝐮
𝑘, 𝑠2;𝜙2) = ∫Ω

𝐺𝑐,𝑐𝑙𝑐 ∇𝑠2 ⋅ ∇𝜙2 d𝐱

+ ∫Ω

{𝐺𝑐,𝑐
𝑙𝑐

+ 2𝑃2𝐻𝑐

}

𝑠2𝜙2 d𝐱

− ∫Ω
2𝑃2𝐻𝑐𝜙2 d𝐱 = 0, ∀𝜙2 ∈ H1

0(Ω).

(18)

To solve the quasi-static evolution problems for brittle
fracture and compressive crushing, isoparametric linear tri-
angular finite elements are used for the spatial discretiza-
tion, and a staggered solution scheme is considered for
the coupled problem. Staggered schemes based on alternate
minimization exploit the convexity of the energy functional
with respect to each individual variable 𝐮 and 𝑠𝑖, 𝑖 = 1, 2

[10]. Here, an ad hoc developed solver has been imple-
mented in the software FEniCS, see Alg. 1 for the algorithm
description.
Algorithm 1 Staggered iterative scheme for multi-phase
field fracture at a step 𝑛 ≥ 1

1: Input: Displacements and phase fields
(𝐮𝑛−1, 𝑠𝑛−11 , 𝑠𝑛−12 ) and prescribed loads (𝐮𝑛,𝐓𝑛):

2: Initialize (𝐮0, 𝑠10, 𝑠
2
0) ∶= (𝐮𝑛−1, 𝑠𝑛−11 , 𝑠𝑛−12 );

3: for 𝑘 ≥ 1 staggered iteration do:
4: Given 𝑠𝑘−11 , 𝑠𝑘−12 , solve the mechanical problem:

𝐮(𝐮, 𝑠𝑘−11 , 𝑠𝑘−12 ; 𝐯) = 0 for 𝐮, set 𝐮 ∶= 𝐮𝑘;
5: Given 𝐮𝑘, solve the phase field problems

𝑠𝑖 (𝐮
𝑘, 𝑠𝑖;𝜙) = 0 for 𝑠𝑖 (𝑖 = 1, 2) and set 𝑠𝑖 ∶= 𝑠𝑘𝑖 ;

6: if max{||𝐮𝑘−𝐮𝑘−1||∕||𝐮𝑘−1||, |𝑠𝑘1−𝑠𝑘−11 |∕|𝑠𝑘1|, |𝑠
𝑘
2−

𝑠𝑘−12 |∕|𝑠𝑘2|} < tol: then
7: set (𝐮𝑘, 𝑠𝑘1 , 𝑠𝑘2) ∶= (𝐮𝑛, 𝑠𝑛1, 𝑠

𝑛
2);8: else 𝑘 + 1 → 𝑘.

9: end if
10: end for
11: Output: (𝐮𝑛, 𝑠𝑛1, 𝑠

𝑛
2).

Despite the splitting of the two problems makes the
phase field problem linear, the mechanical problem is still
nonlinear because of the spectral decomposition of the strain
tensor. In this work, the procedure based on the derivatives
of the eigensystem is adopted to linearize the jacobian, based
on the work in [20].

The linear form defined by the residual is given by:

𝐹𝐮(𝐮; 𝐯) = ∫Ω
((1 − 𝑠1)2 + 𝑘)𝝈+(𝐮) ∶ 𝜺(𝐯) d𝐱+

+ ∫Ω
((1 − 𝑠2)2 + 𝑘)𝝈−(𝐮) ∶ 𝜺(𝐯) d𝐱+

− ∫𝜕Ω
𝐓 ⋅ 𝐯 dΓ − ∫Ω

𝐛 ⋅ 𝐯 d𝐱.

(19)

Given 𝐮𝑘 the current Newton-Raphson approximate so-
lution at iteration 𝑘, the correction 𝛿𝐮 is therefore the
solution of the following linear variational problem: find
𝛿𝐮 ∈ 𝐔0 =

{

𝐮 |𝐮 = 𝟎 on 𝜕Ω𝑢,𝐮 ∈ 𝐇1(Ω)
} such that

𝐽𝐮(𝛿𝐮,𝐮𝑘, 𝑠1, 𝑠2; 𝐯) = −𝐹𝐮(𝐮𝑘, 𝑠1, 𝑠2; 𝐯), ∀𝐯 ∈ 𝐇1
0(Ω) , and

then iterate as 𝐮𝑘+1 = 𝐮𝑘 + 𝛿𝐮. The Jacobian entering the
formulation is

𝐽𝐮(𝛿𝐮,𝐮; 𝐯) = ∫Ω
((1 − 𝑠1)2 + 𝑘)𝜕𝝈+(𝛿𝐮,𝐮) ∶ 𝜺(𝐯) d𝐱+

+ ∫Ω
((1 − 𝑠2)2 + 𝑘)𝜕𝝈−(𝛿𝐮,𝐮) ∶ 𝜺(𝐯) d𝐱 ;

for details about the terms 𝜕𝝈−, 𝜕𝝈+ the reader is referred to
[20].

The formulation has been implemented in the open
source finite element software FEniCS [43].

4. Mesoscale model of concrete specimens

with aggregates

The material mesostructure of concrete and other partic-
ulate materials is described by a Pareto distribution [34] of
grain diameters 𝑑. In particular, let 𝜙min and 𝜙max denote the
minimum and maximum grain size of a particulate material,
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and defining the ratio 𝛼 = 𝜙max∕𝜙min, the probability
density function of the diameter for the grain size in a volume
is:

𝑓𝑑(𝑑) =
𝜏

1 − 𝛼−𝜏
𝜙𝜏min

𝑑𝜏+1
, (20)

where the exponent 𝜏 varies typically between 2 and 3.5. The
value 𝜏 = 2 corresponds to the distribution of perfect self-
similarity. The case 𝜏 = 2.5 is the so called Füller mix, which
is the most common in concrete technology. To construct 2D
surrogates of the 3D mesostructure, the probability density
function 𝑔𝑑(𝑑) of the grain diameters intercepted by a plane
is:

𝑔𝑑(𝑑) =
𝜏 − 1

1 − 𝛼−(𝜏−1)
𝜙𝜏−1min
𝑑𝜏

. (21)

Under the assumption that the grains are circular, a series of
randomly distributed locations of circles has been generated
in Matlab according to the Füller mix. The coordinates and
radii of the circles have been used to generate mesh samples
to be tested in silico (virtual) compressive tests.

The present formulation could be extended to consider
also an additional micro-scale of grains having diameter
lower than 𝜙min by using the probability density function in
[44].

Considering 𝜙min = 4 and 𝜙max = 16, the order of
magnitude of number of aggregates intercepted by a plane
in a cubic specimen of 100 mm lateral size is 102, which
requires a fine finite element mesh to properly discretize the
thin ligaments of mortar in between the particles. Corre-
spondingly, the number of linear triangular finite elements
required to discretize a cubic specimen is of the order of 104.
The computation time requested to solve a compressive test
is of the order of 2 hours on a laptop ASUSPRO P3540FA-
BQ1244R, Intel® Core™ i7, 1.8 GHz, 8 GB, 256 GB.

5. Effect of friction on the compressive

strength of cubic and cylindrical samples

In this section, two geometries of a mesoscale concrete
sample are considered, namely: a square of size𝐿 = 100mm

and a rectangle having a base of 𝐿 = 100 mm and height
𝐻 = 200 mm, which correspond to 2D replica of cubic
and cylindrical specimens. For each of the two geometries,
a number 𝑁 = 10 of random mesostructure realizations are
generated and tested. A plane stress state is assumed in all
the cases.

The material properties of the aggregates (a) and the ma-
trix (m) are, respectively, 𝐸𝑎 = 90 [MPa], 𝐸𝑚 = 10 [MPa],
𝜈𝑎 = 0.22, 𝜈𝑚 = 0.33, 𝐺𝑐,𝑎 = 16 [N∕mm], 𝐺𝑐,𝑚 =

0.016 [N∕mm], 𝑙𝑎 = 0.39 [mm], 𝑙𝑚 = 0.0009 [mm]. For
crushing, we set 𝐺𝑐,𝑐 = 1.5 [N∕mm] and 𝑙𝑐 = 0.0009 [mm]

for both aggregate and matrix.
The present model allows simulating a fracture process

into the matrix or inside the aggregates. The crack path can
pass along the interface between the two phases, but a spe-
cific constitutive response of the interfacial transition zone
has not been set. Modelling the interfacial transition zone
between aggregates and cement paste could be important,
but especially for high strength concrete, where the crack
path is strongly influenced by the high adhesion between
the two material phases. In this case, an annulus of finite
elements around the aggregates, with specific phase field
parameters, could be introduced to distinguish their specific
responses, inspired by [45]. Alternatively, interface finite
elements with cohesive zone models could be inserted at the
interface, as for fiber-reinforced composites [46].

In the simulations, a compressive displacement 𝑢 =

−5 × 10−3 mm is imposed on the top side of the sample.
Two set of boundary conditions are considered for the nu-
merical simulations, namely low friction and high friction,
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corresponding respectively to full slip and full slip regimes,
see Fig. 1. Details of the finite element meshes used in the
simulation are shown in Fig. 2. The mesh size is chosen as
ℎ < min {𝑙𝑚, 𝑙𝑐∕2}. Low friction is simulated by imposing
𝑢𝑦 = 0 on the lower boundary of the sample, which corre-
sponds to a situation where lateral displacements are allowed
as in the case of a vanishing friction coefficient between the
specimen and the steel platen when a lubricant or Teflon is
inserted. High friction is simulated by setting 𝑢𝑥 = 𝑢𝑦 = 0 on
the specimen base, fully restraining the lateral displacements
as it happens for a very high friction coefficient, see [33].

Figure 1: Schemes of the specimens for the numerical simu-
lation: a: 𝐻∕𝐵 = 1 cubic concrete sample under high friction
boundary condition. b: 𝐻∕𝐵 = 2 cylindrical concrete sample
under low friction boundary conditions. c: Mesoscale structure
corresponding to a Füller mix of grains used to generate the
finite element meshes.

Figure 3(a) depicts the envelope (in grey color) of the
whole set of predicted stress-displacement curves obtained
from the numerical simulations for 𝐻∕𝐵 = 1 (cubic spec-
imen) and low friction boundary conditions. The average
response over 10 random realizations of the mesostruc-
ture is shown with a solid curve in red. As a qualitative
comparison with experimental data, although referring to
a single compression test, we report with square dots the
stress-displacement curve related to normal strength con-
crete specimens taken from [30], which has similar cubic

Figure 2: Typical finite element mesh used for the numerical
simulation and detail of the mesoscale aggregate structure.

geometry and material properties as those herein used in the
simulations. The experimental data are representative of the
behaviour of a specimen without lateral confinement, i.e. the
sample has been tested by interposing Teflon between the
steel platen and concrete. Fig. 3(b) shows the same results
but in the case of high friction boundary conditions.

The deformed mesh with the crack pattern and the cor-
responding contour plots of the phase field variable 𝑠1, asso-
ciated to tensile fracture, and 𝑠2, associated to compressive
crushing, is shown in Fig. 4 for three increasing values of
the applied strain level. They refer to one representative
simulation among the 10 tests on random realizations of the
cubic specimen with low friction boundary conditions. Due
to a lack of frictional restrain at the boundaries, portions of
the specimen tend to separate from the sides by splitting, as
highlighted by the vertical alignment of phase field cracks
in the contour plot of 𝑠1. Crushing is almost absent, as
highlighted by the contour plot of 𝑠2.

By changing the boundary conditions as high friction
on the same specimen, the deformed mesh with the crack
pattern and the corresponding contour plots of the phase
field variables 𝑠1 and 𝑠2 significantly change, as shown in
Fig. 5. The frictional restrain at the boundaries reduces the
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(a) 𝐻∕𝐵 = 1, low friction boundary conditions

(b) 𝐻∕𝐵 = 1, high friction boundary conditions

Figure 3: Numerical results on compressive tests on 𝐻∕𝐵 = 1
cubic sample under low friction and high friction boundary
conditions. The shaded areas represent the envelope of nu-
merical predictions resulting from 10 random realizations of
the material mesostructure. Experimental data on a specimen
with the same geometry and similar material properties taken
from [30] are reported for a qualitative comparison.

amount of sub-vertical splitting cracks, as highlighted in
the contour plot of 𝑠1, while material crushing takes place
diagonally, leading to a shear band formation, as shown in
the contour plot of 𝑠2.

Figure 6(a) depicts the envelope (in grey color) of the
whole set of predicted stress-displacement curves obtained
from the numerical simulations for 𝐻∕𝐵 = 2 (cylindrical
specimen) and low friction boundary conditions. The aver-
age response over 10 random realizations of the mesostruc-
ture is shown with a curve in red. Figure 3(b) shows the same
results but in the case of high friction boundary conditions.
Again, as a qualitative comparison with experimental data,
although referring to a single compression test, we report

Figure 4: Crack pattern and phase field variables for a
simulated compression test on a cubic specimen 𝐻∕𝐵 = 1
under low friction conditions, for three applied strain levels.

Figure 5: Crack pattern and phase field variables for a
simulated compression test on a cubic specimen 𝐻∕𝐵 = 1
under high friction conditions, for three applied strain levels.

with square dots the stress-displacement curve related to
normal strength concrete specimens taken from [30], which
has similar material properties and cylindric geometry as
those herein used in the simulations and have been tested
without lateral confinement. The computational model is
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able to predict the increased deformation of the post-peak
branch at failure, as compared to cubic specimens.

(a) 𝐻∕𝐵 = 2, low friction boundary conditions

(b) 𝐻∕𝐵 = 2, high friction boundary conditions

Figure 6: Numerical results on compressive tests on 𝐻∕𝐵 = 2
cylindrical samples under low friction and high friction bound-
ary conditions. The shaded areas represent the envelope of
numerical predictions resulting from 10 random realizations of
the material mesostructure. Experimental data on a specimen
with the same geometry and similar material properties taken
from [30] are reported for a qualitative comparison.

The deformed mesh with the crack pattern of one of the
10 tests on random realizations of the cylindrical specimen
with low friction boundary conditions is shown in Fig.7,
along with the contour plot of the phase field variables 𝑠1
and 𝑠2. Failure is the result of subvertical tensile splitting
cracks that are laterally unconfined due to the low friction
boundary conditions.

The same results in case of high friction boundary con-
ditions, depicted in Fig.8, show some crushing occurring in
the middle portion of the specimen on the left side, which

originates a kind of internal hinge enhancing the formation
of splitting cracks on the right side.

Figure 7: Crack pattern and phase field variables for a
simulated compression test on a cylindrical specimen 𝐻∕𝐵 = 2
under low friction conditions, for three applied strain levels.

In the former situation, the lateral deformation is en-
hanced due to the low friction coefficient, whereas in the
latter the contact surface is in stick condition, i.e. with van-
ishing relative tangential displacements between platen and
concrete along the interface. It can be noticed that the frac-
ture patterns is very different in the case of extcolorbluehigh
friction and extcolorbluelow friction boundary conditions.
In the first case, it can be noticed the formation of shear
bands and crushing in compression, while in the second case
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Figure 8: Crack pattern and phase field variables for a
simulated compression test on a cylindrical specimen 𝐻∕𝐵 = 2
under high friction conditions, for three applied strain levels.

the lateral expansion is allowed, thus inducing multiple crack
patterns in the direction parallel to the imposed load related
to internal states of tensile stress.

The randomness of the material mesostructure has an im-
portant effect on the scatter of the 2D numerical predictions.
In order to provide a further quantitative comparison with
experimental trends, to assess the predictive capabilities of
the proposed computational method, we examine how the
cubic and the cylindrical compressive strengths are affected
by the frictional conditions applied to the boundary of the
specimen. It is in fact well-known from experiments and
simulations [33] that the cubic compressive strength, 𝑅𝑐 , is

significantly affected by friction, while slender cylindrical
specimens with aspect ratios𝐻∕𝐷 > 2 are minimizing such
an effect upon the cylindrical compressive strength 𝑓𝑐 .

To this aim, the set of force-displacement curves from
numerical simulations is analyzed by extracting the com-
pressive strengths 𝑅𝑐 and 𝑓𝑐 as the maximum values of the
stress level reached during the test. Due to the randomness
in the material mesostructure, we also associate to each
simulated test a value of the equivalent Young’s modulus
in compression, 𝐸∗, computed as the slope of the stress-
strain curve by linear interpolation within the strain level of
𝜀 = 0.2%.

Numerical results are depicted in Fig.9 for (a) cubic and
(b) cylindrical specimens. In each plot, in addition to the
individual values extracted from each virtual experiment,
we reported also the average strength values for the extcol-
orbluelow friction boundary condition (solid line) and for
the extcolorbluehigh friction boundary condition (dashed
line). Numerical results confirm the experimental trends.
The average cubic compressive strength is significantly af-
fected by friction between steel platens and the concrete
specimen: the average value of𝑅𝑐 increased from 66.9MPa (
extcolorbluelow friction) up to 80.8 MPa ( extcolorbluehigh
friction), while the effect is almost negligible for cylindrical
specimens where the average value 𝑓𝑐 is 52.1 MPa ( extcol-
orbluelow friction) or 54.4MPa ( extcolorbluehigh friction).

Moreover, again consistently with experimental trends
[33], the cubic compressive strength is higher than the cylin-
drical compressive strength. The numerically predicted con-
version ratio from cylinder to cubic strength, 𝑓𝑐∕𝑅𝑐 , varies
from 0.8 for extcolorbluelow friction boundary conditions
to 0.6 in the case of extcolorbluehigh friction. Numerical
predictions based on an elastoplastic model for concrete and
frictional contact betweeen the steel platen and concrete in
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[33] predicted 𝑓𝑐∕𝑅𝑐 = 0.9 for extcolorbluelow friction and
𝑓𝑐∕𝑅𝑐 = 0.78 for a lateral confinement given by a friction
coefficient of 0.6.

(a) Cubic compressive strength

(b) Cylindrical compressive strength

Figure 9: Predicted cubic, 𝑅𝑐 , and cylindrical, 𝑓𝑐 , compressive
strengths vs. equivalent elastic modulus in compression, 𝐸∗.
Dashed lines refer to high friction boundary conditions, while
solid lines refer to high friction boundary conditions.

6. The role of the crushing energy and the

interplay with tensile fracture

In this section, a rectangular sample with very small
aspect ratio 𝐻∕𝐵 = 0.5 is simulated, with base 𝐵 =

200 mm, and height 𝐻 = 100 mm, and it is subjected to a
compressive test with low friction boundary conditions. This
case study is chosen as representative of a situation where
material crushing is often observed in the experiments [32].

The material parameters and the mesostructural features
are the same as those considered in the previous section,

except for the crushing energy which is parametrically varied
as 𝐺𝑐,𝑐∕𝐺𝑐 = {25, 50, 150, 200}, where 𝐺𝑐 is the fracture
energy. The stress/displacement curves obtained for numer-
ical simulations of compressive tests are collected in Fig. 10.

Figure 10: Stress vs. displacement curves from numerical
simulations of compressive tests on a sample with 𝐻∕𝐵 = 0.5,
for different crushing energies.

By increasing𝐺𝑐,𝑐 , the peak stress in the force-displacement
curves largely increases. To explain the reasons behind such
an effect, we compare in Figs.11 , 12 and 13 the crack pattern
on the deformed mesh, the phase field variable 𝑠1 associated
to tensile fracture, and the phase field variable 𝑠2 associated
to crushing for the cases 𝐺𝑐,𝑐∕𝐺𝑐 = 25 and 200, as limit
cases.

For 𝐺𝑐,𝑐∕𝐺𝑐 = 25, which implies a crushing energy 25
times higher than the fracture energy, both failure mech-
anisms occur under the form of a series of sub-vertical
splitting cracks governed by the phase field variable 𝑠1 = 1.
Crushing also takes place, and it is activated for 𝜖 > 0.03.
Specifically, from the contour plot of 𝑠2, we note the for-
mation of three initially separated sub-horizontal crushing
zones that eventually coalesce at failure.

For 𝐺𝑐,𝑐∕𝐺𝑐 = 200, the energy to be dissipated due to
crushing is 4 times higher than in the previous case study,
and 100 times higher than the fracture energy. As a conse-
quence, the competition between cracking and crushing is
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favoring tensile crack propagation, since the corresponding
failure mechanism requires less energy to dissipate in order
to reach the condition 𝑠1 = 1. The resulting crack pattern is
close to that observed in the case of fragmentation.

Figure 11: Deformed mesh of the sample with 𝐻∕𝐵 = 0.5 and
low friction conditions, for different strain levels of increasing
value from the top to the bottom. On the left the case with
𝐺𝑐,𝑐∕𝐺𝑐 = 25, while on the right the case with 𝐺𝑐,𝑐∕𝐺𝑐 = 200.

7. Conclusion

In this work, a variational approach to brittle fracture in
tension and compressive crushing in compression has been
proposed through a multiple (two) phase field approach. The
proposed methodology allows simulating the two different
physical failure mechanisms associated to tensile fracture

Figure 12: Contour plot of the phase field variable 𝑠1 associated
to fracture for the sample with 𝐻∕𝐵 = 0.5 and low friction
conditions, for different strain levels of increasing value from
the top to the bottom. On the left the case with 𝐺𝑐,𝑐∕𝐺𝑐 = 25,
while on the right the case with 𝐺𝑐,𝑐∕𝐺𝑐 = 200.

and compressive crushing occurring in quasi-brittle mate-
rials. Each dissipation mechanisms is ruled by its critical
dissipated energy (fracture energy vs. crushing energy) and
internal length scale.

The proposed variational approach has been applied to
2D mesoscale models of concrete specimens, considering
typical material properties in tension and in compression
available in the literature. For the sake of simplicity, and
in absence of more accurate microscopical information, the
internal length scales of the two failure mechanisms has been
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Figure 13: Contour plot of the phase field variable 𝑠2 associated
to crushing for the sample with 𝐻∕𝐵 = 0.5 and low friction
conditions, for different strain levels of increasing value from
the top to the bottom. On the left the case with 𝐺𝑐,𝑐∕𝐺𝑐 = 25,
while on the right the case with 𝐺𝑐,𝑐∕𝐺𝑐 = 200.

kept the same, although they can be treated as independent
variables. Similarly, the same Poisson-type partial differen-
tial equation and the same form of the degradation function
𝑔 has been kept for both failure mechanisms.

In spite of the above assumptions and the simulations
restricted for now to 2D models, numerical predictions show
an excellent ability to predict the well-known trends ob-
served in the experiments. The simulated crack patterns of
cylindrical and cubic specimens in compression are seem-
ingly close to the experimentally observed ones. Cylindrical

specimens tend to fail in splitting, no matter of the degree
of lateral constraint. On the other hand, the failure pattern of
cubic specimens varies from splitting to shear band forma-
tion by increasing the level of lateral confinement. The effect
upon the apparent strength is also quantitatively in line with
experimental trends. Finally, Section 6 has highlighted the
tole of the crushing energy and the interplay with tensile
fracture, which is properly captured by the computational
method.

Once the present multi-phase field approach to tensile
fracture and compressive crushing is established, further
research is deemed to be essential for the fine tuning of the
model parameters, especially the internal length scale asso-
ciated to crushing. In that regard, in-situ compressive tests on
quasi-brittle materials with digital microscopy observation
of damage in the specimen might be crucial. Finally, it is
worth mentioning that possible applications of the present
model may concern not only quasi-brittle grained materials,
but also porous materials as hard biological tissues.
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