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Abstract
Network reconstruction is a well-developed sub-field of network science, but it has only recently
been applied to production networks, where nodes are firms and edges represent
customer-supplier relationships. We review the literature that has flourished to infer the topology
of these networks by partial, aggregate, or indirect observation of the data. We discuss why this is
an important endeavour, what needs to be reconstructed, what makes it different from other
network reconstruction problems, and how different researchers have approached the problem. We
conclude with a research agenda.

1. Introduction

Following the 2008 financial crisis, financial networks have been extensively studied by the complex systems
community. For example, studying liabilities in banking networks has been key to developing the notion of
systemic risk [1, 2], and explaining how certain banks’ interconnections may amplify the impact of isolated
shocks. A key component of this research was the development of methods to reconstruct the network of
interdependencies between financial institutions, which are not easily observable [3, 4].

More recently, the complex systems community has focused on systemic breakdowns in supply networks,
highlighted by disruptions following the Great East Japan Earthquake in 2011, protective equipment
shortages during the COVID-19 pandemic, supply disruptions following the Ever Given’s obstruction of the
Suez Canal, and the energy supply chain reorganization due to the war in Ukraine.

Production networks, also known as ‘supply chains’ or ‘supply networks’, consist of millions of firms
producing and exchanging goods and services. From a mathematical perspective, they can be represented as
weighted, directed graphs, where nodes symbolize firms (or establishments), and links denote a
supplier-buyer relationship. The weights of these edges are indicative of the scale of transactions, such as the
amount or monetary value of the goods and services supplied over a given period.

Supply networks share many properties with other economic networks. Some of their empirical
properties include [5]: small-world properties (short average path lengths and high clustering), heavy-tailed
degree distributions, heavy-tailed (link and/or node) weight distributions, strong correlations between node
strength and degree, and between in- and out-degrees. It is also relatively well documented that, like
biological and technological networks but unlike social networks derived from co-affiliation [6], supply
networks feature negative degree assortativity.

However, supply networks are in many ways unique. Their properties are deeply influenced by their
function. First, the likelihood of a link between any two firms is driven by what the two firms are producing:
for instance, steel manufacturers buy more iron than sugar. In general, each link in a supply network may
represent one or more types of products; the choice of which products the link represents may crucially affect
network properties such as the reciprocity of connections. Product quality also plays a role, with ‘high
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quality’ firms usually connecting with other ‘high quality’ firms [7].8 Second, supply networks are strongly
embedded in space, so that the likelihood of connections and their weight decreases with firms’ geographical
distance [8]. Third, supply networks are inherently dynamic, reflecting the transient nature of commercial
partnerships. Fourth, in contrast to financial networks, supply networks are less constrained by strict
external regulations, and emerge as the result of a decentralized multi-criteria optimization process whereby
millions of organizations simultaneously attempt to outsource in a way that maximizes their profits and
competitiveness.

Production networks are incredibly complex: in modern economies, a sophisticated product such as an
aircraft might involve contracting thousands of firms and sourcing millions of parts that cross national
borders multiple times. Organizations in the network choose their dyadic relations and make local decisions,
but hardly have visibility over their wider network. No single entity controls, designs and keeps track of the
large-scale emergent network. Visibility over the network is, however, increasingly important for several
reasons: monitoring of environmental pledges to ensure firms quantify their greenhouse gas emissions,
including those from their suppliers and customers; ensuring safety and authenticity of ingredients used in
products; analysing and improving supply chain resilience; and supply chain due diligence to ensure that
actors that violate human rights or engage in environmentally damaging actions are not present in the chain.

In the past decade, researchers in economics and complex systems have worked extensively to better
understand supply chains. A key barrier to these studies has been a lack of data, as supply chains compete
with one another [9], making information on them highly commercially sensitive. As a result, most studies
to date have used firm-centred (see, e.g. [10]) or sector-specific (e.g. global automotive [11], aerospace [12],
or computer and electronics [13]) supply chains. While firm-centric and industry-specific studies have been
important to gather insights into how network features shape the operation of supply chains, it remains hard
to generalize these findings, due to the sector-specific and incomplete nature of these datasets.

As a result of the above challenges, several recent studies have suggested the development of methods to
reconstruct or predict the existence of hidden links in supply networks, offering a variety of approaches.
These range from the use of natural language processing to extract and infer data from the World Wide Web
to probabilistic maximum-entropy methods, each with varying success rates.

In this paper, our main objective is to synthesize recent research on reconstructing supply networks.
More specifically, we aim to provide a comprehensive review of the data and methods used, a critical
discussion of the field’ progress and limitations, and a research agenda. Although existing literature [3, 4, 14,
15] reviews methods for general network reconstruction, none specifically address supply networks. In
general, there is no guarantee that the best-performing methods for network reconstruction, including those
for financial networks, will translate to production networks due to their unique characteristics. Thus, our
main contribution is to provide a fresh review on reconstructing production networks, highlighting why they
present specific challenges.

We start by describing the key problems: what data is available, what data is missing, and how to evaluate
reconstruction performance (section 2). We then summarise recent approaches to inferring the network
topology (section 3), and the values of transactions when the topology is known (section 4). We conclude
with a discussion (section 5) and two research agendas (section 6) focusing on macroeconomic and supply
chain management applications.

2. The supply network reconstruction problem

Production networks can be modelled at different levels of detail, both for nodes and edges. Naturally, the
properties of the network depend on the level of aggregation.

At the most granular level, nodes would represent individual production plants where goods undergo
processing and transformation. A more aggregate model would equate nodes with the companies operating
these plants. One could further aggregate by either consolidating firms under a common parent company or
grouping them by industry sector.9

Firms exchange various goods and services. In a very detailed approach, each product type could be
identified with a specific type of edge, rendering the production network as an edge-labelled multigraph.10 A
simpler model would connect two nodes if they are involved in any type of trade, irrespective of the products’

8 This pattern, from a supply chain management perspective, is the result of influence and co-evolution. An illustrative case is that of
Toyota’s Kyohokai, the suppliers’ association through which Toyota facilitates shared norms of quality among its members.
9 One could think that the industry level is more aggregated than the firm.While this is mostly true, it is sometimes important to recognize
that large firms span many industries. Indeed, industry-level input-output (I-O) networks produced by National Accounts arise from
Supply and Use tables, which attempt to reallocate the output and inputs of multi-product firms into their appropriate categories.
10 While a discussion of suchmultigraph, usually known asmultilayer ormultiplex networks, lies outside the scope of this review, we high-
light that physical processes onmultilayer networks produce phenomena that often cannot be observed on their single-layer counterparts,
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nature. Link weights can also have different definitions, measuring either the flow of goods (in terms of,
e.g. of number of items traded) or the monetary value of such flow.

In the context of this paper, we define a supply network as a graph G where nodes represent firms while
directed, weighted links represent the value of the flow of goods and services in a buyer-customer relation.
This definition proves practical when reconstructing real-world supply networks from empirical data, which
frequently adopts this format.

2.1. What data is available?
Almost all countries officially release Input-Output (I-O) tables, which provide the flow of money between
industries, typically at the level of 50–500 industries. While we focus on firms here, this data is sometimes
useful in the methods below. Besides, I-O tables provide a meso-scale ground truth that could be a good
target for reconstruction methods.

Bacilieri et al [5] provides a taxonomy of existing datasets documenting different representations of
supply networks. These are mainly: commercial datasets, confidential datasets held by governments,
payment data, and industry-specific datasets. We briefly describe these types of data below.

Purchasing data from data providers, such as FactSet, Capital IQ, or Bloomberg is relatively
straightforward, but commercial datasets can be very expensive; moreover, they cover only a fraction of
firms, a very small fraction of links, and do not systematically include the value of the transactions. As
commercial data providers typically assemble their data from publicly available information, researchers may
also decide to collect this information themselves. An example is the extraction of data from the World Wide
Web, after which machine learning algorithms are trained to predict supply-buy relationships [17]. Such an
approach enables researchers to successfully gather rudimentary maps of supply chains, although it is limited
to publicly available data, hence necessitating reconstruction efforts to identify missing relationships.

The option of using government-held data necessitates datasets to be shared by national authorities,
which may not always be feasible. However, data collected by a national authority tends to be of very high
quality. For example, value-added tax (VAT) reporting may contain the value of transactions and
timestamped data between virtually all firms within a country. Bacilieri et al [5] show that VAT datasets with
no reporting thresholds exhibit strikingly similar properties, while incomplete datasets (either because of a
reporting threshold or because they are assembled from publicly available information) usually have fewer
links so that many key statistics are likely to be highly biased. A limitation of VAT datasets, however, is that
they do not contain international links, although we can expect initiatives to match VAT and customs data
[18].

A third option is payment data, which is usually (but not always) limited to individual banks collecting
payment flows between their client firms (see, e.g., [19]). Although it is not guaranteed that every transaction
corresponds to a business link within a supply network, it can be viewed as a plausible indicator. These
datasets are extremely detailed for any subset of firms affiliated with the same bank. However, they do not
cover firms served by different banks or accounts held by their clients in different institutions.

Finally, datasets focusing on specific industry verticals are also sometimes gathered by private companies
(e.g., the MarkLines’ automotive dataset used in Brintrup et al [20], or the Achilles dataset used in Kosasih
et al [21]), and public regulatory bodies (e.g., the U.S. Drug Enforcement Administration’s dataset of
controlled substances flow). However, they are usually limited to specific geographies and production sectors.

There are no large-scale publicly available datasets on firm-level production networks, making it
impossible at the moment to portray the global supply network. In [18], the authors estimate that the full,
global firm-level supply network could have 300 million nodes and 13 billion links. Summing up the number
of nodes in the datasets reported in Bacilieri et al [5] gives less than 3m, so less than 1% of the 300m nodes
reported earlier. Merging all the available datasets would give only an even smaller portion of the links. This
limitation forces researchers to use alternative options to proxy supply networks from smaller-scale, more
specific datasets. These methodologies, developed to reconstruct or infer missing information about supply
networks, are the main focus of this paper.

2.2. A taxonomy of supply network reconstruction approaches
Clearly, what we actually mean by ‘reconstructing’ a supply network necessarily depends on the data already
available to the researchers and the ultimate use of the (inferred) network. We discuss these points in what
follows and classify the studies we review along four primary axes. We do not see these classifications as
having rigid boundaries, but rather as providing continuous dimensions along which models can be placed.

including enhanced diffusion in dynamical systems, mesoscale organization, and phase transitions [16]. Thus, the inclusion of different
types of edges could be relevant to the proper modelling of the production processes taking place on the networks, their evolution, and
their disruption.
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2.2.1. Predicting network topology and/or weights on transactions.
Consider a matrix Ω whereΩij shows the amount paid by j to i. We distinguish between methods that focus
only on finding the network’s topology, i.e. the presence or absence of a commercial connection between two
firms encoded in the (binary) adjacency matrix Aij = 1↔ Ωij > 0, and those that assume that the adjacency
matrix is known and try to infer the monetary value of the existing connections, i.e. the link weights
Ωij|Aij = 1 (see also point c below). Note that some methods try to simultaneously reconstruct both the
topology and the weights of the network. Most of the methods we review focus on network topology.

2.2.2. Predicting individual links or the full network.
Some methods focus on identifying the presence of specific links independently, while others try to
reconstruct the entire network at once. The difference is subtle, yet important. The task of trying to identify
the presence of specific links is usually known as link prediction [14, 15], while that of inferring the full
network architecture is referred to as network inference. In general, network inference computes the full
distribution P(G) over the set G = {G} of all possible networks. Link prediction, instead, computes the
marginal probability pij of an edge between nodes i and j.11 Again, there is no hard boundary between the
two methods, which are occasionally equivalent: if one considers link independence as (the result of) a
modelling assumption, computing the values {pij} for all pairs of nodes and reconstructing the whole
network become two equivalent operations, as the probability P(G) factorizes as

P(G) =
∏

(i,j)∈E(G)

pij
∏

(i,j)/∈E(G)

(
1− pij

)
, (1)

where E(G) denotes the set of edges realized in graph G. In this case, link prediction and network inference
coincide. On the other hand, whenever the full probability P(G) in a network inference method is available
(and irrespective of whether edges are assumed to be independent or not), it is always possible to compute
themarginal connection probability pij as pij = P

(
Aij = 1

)
=
∑

G∈G P(G)Aij and use it in a link prediction
exercise.

It is fair to say that the factorization in equation (1) is, at most, only approximately true: typically, links in
real-world production networks are not independent. For instance, some firms engage in exclusive deals to
foster strategic supply relationships: when they buy a key input from a supplier j, they are less likely to be
connected to other suppliers for that input. Thus, assuming independent edges is usually complemented
with imposing constraints over the space of possible solutions, or with more sophisticated sampling
strategies that can provide more plausible production networks. When complemented in such a way,
methods with independent edges can still capture meso- and macro-scale features of supply networks (see,
e.g., [19]) and, by framing the reconstruction problem as a binary classification task, facilitate an easy
comparison through standard performance metrics.

2.2.3. Using topological information or not.
Of course, all reconstruction methods need, at the end of the procedure, the whole empirical network as the
‘ground truth’ to test their predictions. However, while some methods need the full adjacency matrix also in
their training, other methods can learn from node-level or pair-level features only. This is important because
the methods that do not rely on the adjacency matrix for training can be used in contexts where the detailed
network is not observed, as long as certain node-level (and possibly pair-level) features are available (see
figure 1(a) for a typical setting).

2.2.4. Probabilistic or deterministic.
Some models produce deterministic outputs, usually finding a network configuration by optimizing a given
loss function. Consequently, their output is a single network realisation that is on one hand optimal
according to some score, but on the other hand very unlikely to represent the true network. Other methods
provide probabilities over possible network realisations. The goal of these methods can then be viewed as
finding a ‘good’ probability distribution, peaked ‘close’ to the true one. Equipped with this probability
distribution, researchers can find the typical and most likely realisations of the network and compute, for
instance, expected values and confidence intervals for properties of the network.

2.3. Evaluating the reconstructed networks
In their review paper on network reconstruction, Squartini et al [3] provide a useful taxonomy of
performance metrics: statistical, topological, and dynamical indicators.

11 More generally, link prediction methods produce a score sij, such that sij > skl =⇒ pij > pkl. However, such scores are not necessarily
smaller than one, and the ratio between two scores is not necessarily equal to the ratio between links probabilities.
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Statistical indicators evaluate the quality of the reconstructed network on a link-by-link (or
weight-by-weight) basis. Different statistical indicators apply to deterministic and probabilistic outcomes.

In the realm of deterministic outcomes, perhaps the most commonly employed indicator is accuracy (or
precision), the proportion of correct predictions. In supply networks, however, there is a strong class
imbalance: the number of pairs not linked is much higher than the number of pairs linked. Thus, it is
generally easy to make ‘correct’ predictions since predicting that a link does not exist is very likely to be
correct. For this reason, a commonly used metric is the F1-score, defined as the harmonic mean of precision
and recall (how many existing links are predicted as existing), which offers a more balanced performance
metric in unbalanced datasets.

For probabilistic reconstructions, the evaluation is often based on the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve. The AUROC, derived from the
receiver operating characteristic (ROC) curve, essentially quantifies the ability of the models to discern
between classes at varying threshold levels. The ROC curve plots the true positive rate (recall) against the
false positive rate for different decision thresholds (i.e. by considering ‘true’ all the predictions with
probability larger than a certain threshold τ , for different values of τ ), giving insights into the trade-off
between sensitivity (true positive rate) and specificity (true negative rate). The AUROC, being the area under
this curve, ranges from 0 to 1, with 1 implying an ideal classifier and 0.5 corresponding to no better than
random guessing.

Because statistical indicators focus on individual links, they may not adequately evaluate if the
reconstructed network replicates complex network structures. Topological indicators measure how well the
network’s macro-level and meso-level features are reproduced. Topological indicators gauge how effectively
the reconstruction captures the network ‘coarse-grained’ features. For instance, Ialongo et al [19] validate
their reconstruction methodology by assessing how accurately it replicates the network degree distribution.

Topological indicators can tell us whether the reconstructed and true networks are ‘similar’. However,
ultimately the key question is whether a reconstructed network is good enough to give good answers to
substantive economic questions. Dynamical (or more generallymodel-based) indicators assess the similarity
in the unfolding of economic processes on the real and reconstructed networks. As an example, Diem et al
[22] introduced the economic systemic risk index (ESRI) to quantify each firm’s importance within an
economy. The metric measures the percentage drop in the economy’s overall production caused by the
removal of a firm from the network. Its computation requires running a dynamical process, wherein the
sudden disappearance of a firm first impacts its suppliers and customers and, iteratively, spreads to firms that
are further away in the network, until the system reaches an equilibrium. Conceivably, accurately estimating
firm-level ESRI may only necessitate identifying a subset of key links, so a good prediction of the other links
is not necessarily important for the final economic result.

Another example of an indicator used in supply chain reconstruction research is Page Rank (or Bonacich
centrality, or the ‘influence vector’) [23, 24], which is a classic node-level metric measuring the centrality of a
node. In that sense, it is a topological indicator. However, it also has specific interpretations in various
economic models (e.g. as the response of aggregate productivity to a productivity shock to node i in [25]), so
it can be conceived as a dynamical indicator.

Armed with these evaluation indicators, we now examine in detail the models employed for
reconstructing production networks, starting from methods focusing only on the network topology, and
then discussing methods for reconstructing network weights.

3. Reconstructing the network topology

We start by reviewing studies that reconstruct the network using link prediction, and then those that do so
using network inference methods. Table 1 provides an overall summary of the methods and their differences.

3.1. Link prediction
3.1.1. Setting up the problem
An early stream of research employs machine learning for link prediction in production networks. The key
idea is to construct a dataset in the form of figure 1(a), where for each pair (i, j), we collect some features f(i,j)
that can be features of each node (e.g. the product it makes, its total sales, etc) or of the pair (e.g. geographical
distance, whether they have a common supplier or client, etc), and the response Aij, which is equal to 0 or 1.

With such a dataset, one can then train a machine-learning classifier on a set of examples
{
f(i,j),Aij

}
.

Different papers have then made different choices for the predictors f(i,j) and the predictive algorithm, as we
will discuss in detail. But before, let us note another critical element, which is the construction of the dataset.
Production networks are very sparse [5], so the ratio between the number of existing (Aij = 1) and
non-existing (Aij = 0) links is very large. Therefore, training a model on the entire set of available examples
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Table 1. Overview of the papers that reconstruct the supply network topology.

Reference Coverage Test dataset
Data and features used as
inputs Probabilistic

Mori et al [26] Regional Tokyo Area
Manufacturing Firms,
Source unspecified

Several features regarding
firms’ activities, balance sheets,
management

No

Zuo et al [27] National Tokyo Shoko Research Firms’ sales, profits, industrial
sector, location, number of
employees, network centrality

No

Sasaki and Sakata
[28]

Regional Tohoku region, Teikoku
Databank

Firms’ sales, capital, size,
industrial sector, network
centrality

Yes

Lee and Kim [29] National Korean Enterprise Data Description of firms’ activities,
firms’ industrial sector and
location, aggregate transaction
volumes between industrial
sectors

Yes

Brintrup et al [20] Automotive Markline Automotive
Information Platform

Firms’ known connections,
products, intermediate inputs

Yes

Kosasih and Brintrup
[30]

Automotive Markline Automotive
Information Platform

Firms’ known connections Yes

Gopal and Chang
[31]

Global Bloomberg Industry classification, revenue
segmentation, location, balance
sheet, income statement,
statement of cash flows, raw
materials, company description

Yes

Minakawa et al [32] Global Asian bank’s transaction
data

Firms’ known connection,
description of firms’ activities

Yes

Mungo et al [33] Global, National Compustat, FactSet,
Ecuador VAT

Firms’ sales, industrial sector,
location

Yes

Zhang et al [34] Global Specialized Press
(Reuters)

Media coverage Yes

Wichmann et al [17] Global Specialized Press Media coverage No
Schaffer et al [35] Global Specialized Press Media coverage No
Fréesard [36] Global Compustat Business description from

firms’ ‘10 K’ reports, IOTs
No

Reisch et al [37] National Survey, European
Country VAT

Firms’ phone calls, national
IOTs

Yes

Hooijmaaijers and
Buiten [38]

National, 4
commodity
groups.

NA Firms’ known connections;
Firm sales, geographic location,
and industrial sectors; IOTs;
published network statistics

No

Buiten et al [39] National NA Firms’ known connections;
Firm sales, geographic location,
and industrial sectors; IOTs;
published network statistics

No

Hillman et al [40] National NA Firms’ strength-degree
relationship; Firms’ sales and
industrial sectors; IOTs

No

Hurt et al [41] National NA Firms’ sales, geographic
location, and industrial sectors;
IOTs; published network
statistics

Yes

Ialongo et al [19] National Dutch banks’ transaction
data

Firms’ sales, intermediate
expenses by sector, network
density (for calibration)

Yes

Mungo and Moran
et al [42]

Global FactSet Firms’ sales (time series),
industrial sector, network
sectoral structure

No

might simply be computationally intractable (there are∼ n2 pairs). Moreover, sampling a random subset
would usually lead to poor predictions, because the scarce number of positive examples hinders the model’s
ability to effectively discriminate between the two classes. This phenomenon, known as the class imbalance
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Figure 1. (a) Datasets for link prediction are usually built by filling rows with two nodes features ( fu, fv, fu,v) and by indicating if
there is a link between the two nodes (Au,v). (b) These datasets are usually undersampled: in the original dataset, a small minority
of the rows will be s.t. Au,v = 1 (blue), while most of the rows will be s.t. Au,v = 0 (red); undersampling discards a portion of
them to generate a more balanced dataset.

problem, can potentially lead to models that are biased toward predicting the majority class, thus failing to
accurately identify the existing links.

This problem is commonly addressed by applying undersampling (figure 1(b)), a technique that aims to
rebalance the class distribution. In the context of production networks, undersampling involves carefully
curating the training set to ensure a predetermined ratio between positive (Aij = 1) and negative (Aij = 0)
examples. This controlled selection helps foster a more balanced, discriminative model and was employed in
all the machine learning approaches that we are now set to survey.

However, this procedure has implications for model evaluation. Typically, an algorithm is trained on a
subsample (the training set), and evaluated on the remaining data (the testing set). If subsampling is done
before the split into a testing and training set, the testing set will contain many more positives than a
‘real-life’ testing set, so metrics such as accuracy will be severely biased. [33] found that metrics such as AUC
were not substantially affected by the undersampling ratio, so we will tend to report AUCs, which are more
comparable across studies. Many studies, however, report the F-score, which is highly dependent on class
imbalance [33], so when reporting F-scores we will also report undersampling ratios.

3.1.2. Predicting new business partners
Interestingly, link prediction in production networks has not been originally pursued to reconstruct existing
networks, but rather to build recommender systems that could suggest new partnerships to companies trying
to expand their supplier or customer bases. In this framework, the ability of a model to identify existing (or
past) supply-chain links is a target in so far as it is a proxy for their ability to make sensible
recommendations, i.e. to identify candidate links that firms could turn into existing ones.

Despite aiming for different goals, these studies share several similarities with those on network
reconstruction in the problem’s layout, framed as a link prediction task, and the tools used, often relying on
statistical models and network science.

Mori et al [26] focuses on∼30 k manufacturing firms in Japan. They build a business partner
recommendation system by feeding a support vector machine (SVM) with several companies’ features, such
as size, industrial sector, and geographic location. On a dataset comprising∼ 34 k links and an equal number
of negative instances, they achieve an F-score of 0.85. The approach is refined in [27], which still uses an
SVM but adds topological properties to the list of companies’ features, such as their degree, betweenness
centrality, and closeness centrality. For a network of 180 k firms and half a million links assembled through
the Tokyo Shoko Research dataset, and again an undersampling ratio of 1:1, they achieve an F-score of 0.81.

Sasaki and Sakata [28] explicitly incorporate the network of second-tier suppliers and their respective
industries, providing a more contextual analysis. The authors’ intuition is that two firms within the same
industry but with different suppliers will have different probabilities of selling to a specific customer. In other
words, establishing a relationship between firms A (supplier) and B (customer) does not depend solely on
the identity of A and B, but also on who is A’s supplier. Thus, the authors first extract from their network all
the triads of firms connected in sequence (i.e. all the motifs A→ B→ C). Then, they replace each firm with
its industrial sector (e.g. if we call Si the industrial sector of firm i, the triplet A→ B→ C becomes
SA → SB → SC), and use a Bayesian model called n-gram to compute the link probability between B and C
given B and C’s industrial sectors and the industrial sectors of B’s suppliers. Finally, the authors use these
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probabilities as features in a random forest model classifier, together with a few firms’ attributes (total
revenues, number of employees, etc.) and network centralities. The authors focus on∼50 k links in a
network of 130 k Japanese firms12, achieving an F-Score of 0.80 with an undersampling ratio of 1:1.

More recently, Lee and Kim [29] integrated information on firms’ geographical position and industrial
sector with aggregate trade volumes between sectors and textual information on companies’ activities and
products. The authors encode this information and use it to train a deep neural network. On a sample of
∼90 k connections between South Korean firms, where 20% of the examples are used as a test set, the
authors achieve an AUROC of 0.92.13

This trajectory of studies reflects a consistent evolution in methodology, with each iteration contributing
incremental enhancements in feature integration and model sophistication, partially akin to what we will see
now for papers which address supply network reconstruction specifically.

3.1.3. Can a firm better understand its supply network dependencies?
From a supply chain management perspective, a focal firm is interested in understanding hidden
dependencies within its supply network - for instance, two suppliers may rely on a hidden ‘second tier’
supplier, creating a vulnerability for the focal firm that is invisible at first sight. In such a context, the focal
firm would typically see a fair part of the network and could use this topological information to make further
inferences.

This is the context of the early investigation by Brintrup et al [20], who focus on the supply networks of
three specific major car manufacturers (Jaguar, Saab, and Volvo, using data from the Marklines Automotive
Information Platform). Using their domain expertise, the authors create four features for each potential link
(i, j): Outsourcing Association (the overlap between the goods produced by company i and those bought by
company j), Buyer Association (how frequently firms that purchase the same inputs as firm i also buy the
products of firm j), Competition Association (the overlap between the products of firm i and those of firm j.),
and Degrees (the number of partners of each firm). Training a logistic regression and a Naive Bayes using
these features yields an AUROC of around 0.8.

In a subsequent paper [30], the authors refine their approach using graph neural networks (GNNs) [43].
The concept underlying GNNs is that the network’s topological information should not be distilled by the
researchers through the design of specific features (as was the case with the association measures of the
previous paper), but should instead be discovered automatically by the neural network. For production
networks, the intuition is that the association measures designed in earlier work [20], while informative,
might not convey all the information lying in the network’s topology. Instead, a neural network provided
with a sufficient amount of examples would identify patterns hidden to the researchers.

Practically, this is accomplished by: (1) for each link l= (i, j), isolating subnetworks Gi, Gj composed by
the nodes i and j, along with the set of their neighbours; (2) embedding each node u in the subnetwork
Gl = Gi ∪Gj in a vector fu,l;14 (3) feeding the nodes’ embeddings fu,l to a series of K graph convolutional
layers, which are nonlinear functions f k+1

ul = ϕ( f kul,{ku}), where ku are the degrees of the nodes in Gu; (4)
averaging the final vectors fKu,l across all the different nodes u, generating an embedding vector f ′l for the
subnetwork Gl; (5) feeding the embedding through a sequence of fully connected layers to generate a single
prediction for the probability pij.

The weights in the graph-convolutional and fully connected layers are trained with the usual
backpropagation algorithm. The authors find a significant improvement compared to the previous approach,
with the GNNs scoring an AUROC value∼0.95. While this is an impressive improvement in performance, a
downside of this approach is that it becomes very difficult to interpret the predictions made by the neural
network and develop novel insights into how firms connect.

A similar approach is proposed in [32], where the authors train a graph neural network with topological
information and textual information on firms’ activities, encoded via the Doc2Vec algorithm [44]. On a
network of 170 k firms and 1.2m edges provided by a large Asian bank, the authors achieve an AUROC of
0.94–0.95, depending on the respective sizes of the training and the test data. They do not report the
undersampling ratio.

Finally, GNNs are also used by [31]. The authors train a graph attention network on a large dataset
containing textual and financial information on 250 k firms. The textual information is encoded using BERT
[45]. The training procedure comprises two steps: in the first step the model learns how to choose suitable

12 The authors test their method on ‘new’ links, missing from their 2010 snapshot of the network and present in the 2011 snapshot. The
data is provided by Teikoku Databank Ltd a business intelligence company.
13 The authors do not specify the undersampling ratio of their exercise.
14 The embedding usually consists of computing an average distance d between node k and the nodes i and j, and then embedding k in a
vector f kij = δdd ′ . The dimension of this vector is the maximum possible distance, which must be specified as a parameter of the model.
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‘negative’ examples (i.e. non-existing links), while in the second it learns to discriminate between positive
examples and the negative examples selected in the first step. The authors do not report AUC scores. They
gather feedback from experts on the top 20 predicted links, after which they search for evidence of
relationship existence on the World Wide Web. They report a 91% success rate for relationships identified by
their method.

An extension to GNN-based predictions of supply dependencies is knowledge graphs, which represent
multiple types of entities as nodes and their relationships as links. Kosasih et al [21] proposed representing
production network entities as knowledge graphs, where nodes included products that firms produce, firm
capabilities, certifications and firm locations. They then converted the dependency prediction problem into a
knowledge graph completion problem, and queried whether representing production network data in this
way would allow additional, contextual knowledge to arise through relationship structures. Hence in their
work, not only supply-buy dependencies are constructed, but also supplier-product dependencies can be
predicted. The results show that this approach is feasible, and allows additional inference to be made. The
caveat is that as data across link types differ in their completeness, so does predictive performance.

3.1.4. Predicting the supply networks of entire countries where no network data exist
Mungo et al [33] use similar methods, but for a different purpose. They observed that in some countries,
excellent data is available, while in other countries (including the US), there is no fully reliable information
on firm-to-firm transactions, creating a need for methods that predict the supply network using only
information available locally (Hooijmaaijers and Buiten [38], reviewed in section 3.2.1, first developed a
method based on data held by most statistical offices). Based on this observation, they ask whether a model
trained on the production network of a country A accurately predicts links within firms in another country B.

In all countries, there is usually good data available on key features of firms and pairs of firms that could
determine link formation. For example, it is well established that large firms have more connections [5],
prefer to trade with geographically closer firms [8, 46], and have production recipes that put significant
constraints on the inputs they buy. Based on these hypotheses, for each candidate link, the authors build a
vector f(i,j) containing information on firms’ sales, industrial sector, and geographical distance. They then
train a gradient boosting model to predict link probability.

The study is run on three different datasets: two commercial, global datasets (Compustat and FactSet)
and one dataset covering (a subsample of) Ecuador’s national production network, assembled by Ecuador’s
government using VAT data. When tested on the same dataset used to train the model, the approach scores
an AUROC similar to that of the best approaches reviewed in the previous section (from∼0.91 to∼0.95
depending on the dataset), suggesting that indeed, knowing a firm’s products, location and size provides
sufficient information to make decent predictions.

For making predictions on unobserved countries, they conduct two tests. In the first test, they considered
different countries in the same dataset, for instance training their model on FactSet’s US and Chinese
networks and predicting links in Japan. In this case, the approach still performs relatively well (AUROC
>0.75). In the second test, they predict the links in Ecuador using FactSet and the other way around. Here,
the performance deteriorates substantially, which the authors explain by showing that the distribution of
features are very different in FactSet (an incomplete, commercial dataset with large firms in rich countries)
and Ecuador (a complete administrative dataset, with all firms from a developing economy).

This partial success suggests that there is a potential for further studies, but using multiple administrative
datasets. For instance, while it is not possible to predict the Ecuadorian administrative data using the
commercial data from FactSet, it might still be possible using similar administrative datasets, given the
results from [5] showing that administrative datasets exhibit strikingly similar topological properties. This is
a straightforward approach to reconstructing the global firm-level production network, using training data
from a few countries, and large-scale firm-level datasets such as ORBIS.

3.1.5. Leveraging alternative data: news, company reports, and phone calls
The idea in [34] and [17] is that significant commercial deals might be announced in press releases or
covered by the specialized press.

Frésard et al [34] build a system to automate the analysis of articles and investor comments coming from
Reuters and identify collaborative15 and competitive relationships between companies. The authors
web-scrape a corpus of∼130 k documents and manually annotate a sample of 6 k, overall identifying 1526
relationships. Then, they use a Latent Dirichlet Allocation (LDA) algorithm (a widely used algorithm in text
analysis) to examine these examples, finding that the algorithm identifies collaborative relationships with an
AUROC between 0.82 and 0.88.

15 Note that, for the authors, a ‘collaborative relationship’ has a broader meaning than a supply relationship.
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Similarly, [17] automates the analysis of textual data (coming from Reuters Corpora TRC2 and RCV1,
NewsIR16, and specific web searches) to find mentions of commercial deals between the firms. First, the
authors collect a text corpus describing the relationships between firms. Then, they classify these
relationships as either a commercial relationship (e.g. firm i supplies firm j), an ownership relationship (firm
i owns firm j), or none of the previous. The annotated examples are embedded into numerical vectors using
the word embeddings in the Glove dataset and finally use it to train a Natural Language Processing (NLP)
classifier with a BiLSTM architecture. 30% of the sentences were left out of the data and used to assess the
performance of the model, which scores an F1-score of 0.72 with a class imbalance of 1:7. Unfortunately, the
choice of evaluating the score on a binary metric (the F1-Score) does not allow a straightforward comparison
with the previous approaches. However, the authors report that a random classifier would get an F1-Score of
0.38. In a follow-up paper [35], the authors improve their results by running the same study using a BERT
model, reaching an F1-Score of 0.81.

Frésard et al [36] leverages the business description section of the ‘10 K’ company reports, which are
essential disclosure documents for U.S. publicly listed companies, to establish an ‘upstreamness’ score
between pairs of firms. This score is intended to reflect the degree to which one firm i is a supplier to another
firm j. Their methodology involves the generation of simple, ‘one-hot’ word vectors from the text of these 10
K reports and the textual descriptions of industries found in the I-O tables’ manual. They then associate
firms with industries by computing the cosine similarity between firms’ and industries’ word vectors. The
resulting upstreamness score of firm i relative to firm j is determined by the association of firm i with
industries that serve as suppliers to those associated with firm j. Although the authors’ objective is not
necessarily to reconstruct the true supply network, their findings indicate that their text-based approach
outperforms simpler, classification system-based methods in identifying links within the Compustat and
Capital IQ datasets.

In [37], instead, the authors use phone calls between companies and survey data to track down
supplier-customer relationships in an undisclosed European country. The survey asked companies to list
their ten most important suppliers and customers. On this subsample of the network, the authors find that if
the average daily communication time between two firms i and j, denoted τ ij, is greater than 30 seconds, the
probability that these two firms are connected is pij ≈ 0.7. Equipped with this observation, the authors
reconstruct the network by first assuming the presence of a link between i and j if τij > 30 s and then
assigning a direction to the link stochastically with a probability

p(i→ j) =
ωai bj

ωai bj +ωbjai

,

where ai and bj are i and j’s respective industrial sector, and ωab is the total amount of trade (in monetary
value) from firms in sector a to firms in sector b, as reported in the country’s I-O tables.16 The authors do not
provide any ‘standard’ evaluation metric for their reconstruction. However, they mention that choosing a
threshold τij = 30 s/day minimizes the Kullback-Leibler divergence between the degree distribution of the
reconstructed network and the degree distribution of a well-studied network, the Hungarian production
network. The authors’ ultimate goal was to compute firms’ economic systemic risk index (ESRI, see
section 2.3) in the reconstructed network, and they do find a good qualitative agreement between the ESRI
sequence of firms in the reconstructed and in the Hungarian network.

3.2. Network inference
A second stream of research tries to reconstruct the production network as a whole rather than link-by-link.
We distinguish three sets of approaches: matching algorithms, maximum entropy methods, and methods
based on time series correlations.

3.2.1. Matching algorithms
A few papers have used matching algorithms to create supply networks. We classify these under ‘Network
Inference’ because while they reconstruct the network link-by-link, they typically try to match aggregate
constraints, taken from I-O tables and/or from meso-level statistics published independently.

An early study is the one from Hooijmaaijers and Buiten ([38], see [47] for details), who devise an
algorithm that matches firms based on commonly observable firm characteristics (industry, size, location)
and I-O tables.

Roughly speaking, their method works as follows. First, using a relationship between sales and degrees of
si ∝ k1.3i [48], the authors estimate firms’ out-degrees based on total sales. Using the I-O tables, they then

16 A consequence of the algorithm choosing edge direction is that the reconstructed network has null reciprocity, while we know that real
networks exhibit reciprocity of around a few per cent [5].
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estimate the expenses of each firm by industry, and assuming that in-degree by industry is a (specific)
increasing function of expenses by industry, they estimate the number of industry-specific suppliers for each
firm.

Knowing the degrees of all firms, the next task is to match them. To do this, they create pairwise scores
based on assumptions about what determines the likelihood of a match. The final score is a linear
combination of three scores: one that increases with firm size, one that decreases with distance, and one that
acts as a bonus or penalty if the firms are in industries that trade in I-O tables. The matching algorithm then
starts with the buyer that has the highest purchasing volume and goes in descending order. The number of
suppliers connected to each buyer is determined by the buyer’s in-degree. Among the potential suppliers,
those with the highest scores are considered the most likely to trade with the buyer. If any of these top-rated
suppliers have no remaining outgoing links, then the next most likely supplier in line is considered instead.

Buiten et al [39] have improved this method by making use of firm-level commodity supply and use,
available from surveys asking individual firms to report their production and use of each of 10–20
commodities. Firms within an industry may have fairly different sets of inputs and outputs [49], so
determining the input and output vector of each firm can potentially improve the quality of firm-to-firm
matching. A further enhancement of the new study is the approach to handling trade from and to retail and
wholesale firms. Adhering to national accounting rules, the authors posit that these firms do not purchase or
resell products that they do not alter. Consequently, trade flows are assigned directly from the producer to the
consumer. Retail and wholesale sectors are treated as purveyors of ‘trade services’, with inputs such as
buildings and energy (see [39], section 3.1 and [5], appendix A.1 for details). This assumption, together with
several other suitable adjustments, ensures that the reconstructed network is compatible with I-O tables,
which proves valuable for macroeconomic modelling (see section 6.2); however, actual firm-to-firm links
(e.g. producer-to-wholesaler and wholesaler-to-buyer) may still be more useful in some applications, such as
modelling the impact of natural disasters [50].

Hillman et al [40] introduced another algorithm, driven by their need to create a synthetic firm-level
network for their agent-based model of the impact of the Covid-19 pandemic. Again, their method makes
use of I-O tables and data on sales, although it does not use location information. Their algorithm essentially
works by first using I-O tables to determine which industries a firm should sell to, then allocating chunks of
its sales to randomly selected firms in the buying industry. They show that their algorithm can reproduce a
positive strength-degree relationship.

Finally, Hurt et al [41] have produced an ambitious supply network reconstruction. Their goal is to
reconstruct the supply network of 30m EU firms and their estimated 900m links, to evaluate their risk of
having child or forced labour in their supply chain. The basic idea is to create a network in a way that is
compatible with multiregional IOTs and with supply network statistics such as degree distributions provided
by [5]. To do this, they assign (in- and out-)degrees to firms based on their sales (inferred separately), and on
the sales-degrees relationships mapped by [5]. Next, they sample pairs of industries according to their
strength in the IOT, and draw one firm from each industry of the pair, with probability proportional to their
(in-) or (out-) degree. They then add the link if it does not already exist, and repeat until 900m links have
been placed. While direct validation is impossible, the authors show that the out-degree distribution
(number of customers) of the reconstructed network has fatter tails than its in-degree distribution, as
observed in large-scale VAT datasets [5].

3.2.2. Maximum-entropy for network inference
In a sense, matching algorithms try to distribute connections randomly while matching some aggregate
properties of the network. However, to do so they introduce plausible assumptions, such as specific
functional forms to create scores. Instead of introducing assumptions, the Maximum Entropy method
assigns a probability to each possible network in a ‘maximally non-committal’ way. This leads to the question
of whether introducing assumptions about what is not fully known is better than just maximizing entropy
conditional only on what is fully known. This is the question addressed by Rachkov et al [47], who showed
that the networks obtained from the matching method proposed in [38] have different properties than those
obtained using a simple maximum-entropy model, suggesting possible biases in heuristics-based
reconstructions. That being said, simple maximum entropy methods are not well-suited for complete supply
networks (i.e. not commodity-specific), because they do not use information on firms’ products, which we
know is a critical determinant of their probability to link.

Ialongo et al [19] introduced a method that tackles this issue and simultaneously reconstructs the whole
network topology and link weights (see section 4 for the weights). Following a well-known approach in
network reconstruction [3], they compute a probability distribution P(G) over the set of all possible graphs
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G that maximizes the Shannon Entropy S ,

S =−
∑
G∈G

P(G) lnP(G) .

The maximization is subject to a normalization constraint,
∑

G∈G P(G) = 1, and a collection of constraints c̃
representing the macroscopic properties enforced on the system. These constraints are usually enforced in a
soft way, that is, by constraining the expected values of some metric ci over the set of all possible networks G,∑

G∈G
P(G) ci (G) = c̃i.

The authors expand on a pre-existing model [51], constraining the network’s density ρ, each firm’s total
sales ωout

i and the money spent by firm i on inputs from each industrial sector a, {ωa→i}. However, as we
have already emphasized, a crucial feature in supply networks is that firms connect to others specifically for
the products they make. A method that does not take into account the product or industry of the firm is, in
the context of supply networks, doomed to fail.

Consequently, the authors design a new model able to handle sector-specific constraints. For instance, in
a hypothetical economy with two sectors, a and b, the model enforces three constraints on each firm: one for
total sales,

∑
G∈G P(G)ω

out
i = ω̃out

i and one for spending on each of the sectors: the money spent on inputs
from sector a,

∑
G∈G P(G)ωa→i = ω̃a→i, and the spending on inputs from sector b,

∑
G∈G P(G)ωb→i = ω̃b→i

(we use tildas to denote observed quantities). The model accepts an analytical solution for the marginals pij,

pij =
zω̃out

i ω̃ai→j

1+ zω̃out
i ω̃ai→j

, (2)

where ai is the industrial sector of firm i, and z is chosen such that
∑

i

∑
j ̸=i pij = ρ̃.

The authors show that their method significantly improves upon the model by [51], where each firm is
subject to a single constraint for the overall intermediate expenses. In a maximum-entropy framework,
imposing only one constraint on the intermediate expenses would distribute a firm’s supplier equally across
all industrial sectors. This is at odds with the reality of supply chains, where firms require only a select range
of goods from the basket of products available in an economy.

The authors do not report any standard reconstruction metric, but they show that the in-degree and
out-degree distributions of the reconstructed network are, in expectation, in good agreement with the
empirical degree distributions. Moreover, the relationship between degrees and strengths of firms is generally
well replicated.

A limitation of all the studies discussed so far is that they consider only firm-to-firm links. For
macroeconomic applications, it would be useful to reconstruct complete synthetic populations (see
section 6), including links between firms (including banks) and consumers/workers. Hazan [52] uses a
maximum-entropy approach (more precisely, the fitness-induced configuration model, [53]) for
firm-to-firm networks and firm-to-consumer networks, taking average degrees from the literature to
estimate z separately in each network.

Furthermore, none of the maximum-entropy methods surveyed makes use of the geographical distance
within firms. As outlined in the introduction, production networks are inherently spatial, with geographical
distance playing a prominent role in shaping firms’ connections. This is highlighted in [33], and in the
literature on Gravity Models [54] for aggregate world trade. The principles of gravity models, which suggest
that, ceteris paribus, firms are more likely to trade with closer firms, could improve the predictions of
maximum entropy models [55].

3.2.3. Leveraging the correlation matrix using graph learning
An established literature tackles the problem of reconstructing a network starting from N node-level time
series encoded in vectors x(t) ∈ RN [56, 57]. The general philosophy is that the structure of the network G
determines the joint probability distribution of the observations. If one assumes that each observation x(t) is
drawn from a probability distribution p(x|Θ) with a parameter matrixΘ ∈ RN×N, the problem of
reconstructing a graph, or graph learning, becomes that of finding the correct value ofΘ.

Production networks serve as a contagion channel for economic shocks. They spread negative or positive
shocks from one firm to its customers and suppliers, generating correlations between firms’ fundamentals,
such as market valuation and sales [58–60]. Starting from this observation and leveraging the graph learning
literature, Mungo and Moran [42] introduce a method to reconstruct the production network from the time
series of firm sales, si (t). First, the authors show empirically that the correlation between the log-growth rates
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of firms connected in the production network surpasses the average correlation yielded by randomly
sampled firm pairs, and this excess correlation decreases as firms get further apart in the supply chain. Then,
the authors harness this observation to design a network reconstruction approach, framed within Gaussian
Markov random fields [56]. Adapting a modern graph learning strategy [61], the authors assumed that the
growth time series data could be modelled as a sequence of draws from a multivariate Gaussian distribution.
This distribution’s precision matrix (the inverse of the covariance matrix) is, in turn, identified with the
network Laplacian L= D−A where Dij = kiδij. To estimate the precision matrix, the authors employed a
maximum likelihood approach, constraining the possible Laplacians L to preserve the expected connections’
density within and across economic sectors. In addition, a penalization term is included to enforce network
sparsity.

Upon assessment against smaller network fragments, their methodology reports an F1-score within the
range of 0.2–0.3. Nevertheless, it does not consistently surpass all benchmark tests under consideration.
While it is true that, on average, firms that are more closely connected are more correlated, there is a lot of
overlap between the distributions of correlations at various distances. In other words, knowing that firms are
highly correlated is not very informative of their distance, making the task of network inference based on
time series data very challenging.

4. Inferring the value of transactions

While methods for reconstructing weights have been used extensively on financial and global trade networks
[e.g. 3, 4, 62] and aggregate I-O tables [e.g., 63], their application to firm-level networks is relatively novel. A
first set of methods uses meso-level information from I-O tables, while another set of papers relies on the
maximum entropy principle.

4.1. Matching I-O tables
Inoue and Todo [64] incorporate aggregate I-O information into their estimates of the weights in the supply
network of Japan. They assign to each link between a supplier i and a customer j a weight proportional to the

product of firm sales, ωij ∝ ω̃out
i

ω̃out
j∑

j∈Ni
ω̃out

j
, where

∑
j∈Ni

means that the sum runs only on i’s customers. The

weights are then rescaled to align with the aggregate transaction amounts within industry sectors ω̃ab,

ωij = ω̃out
i

ω̃out
j∑

j∈Ni
ω̃out
j

ω̃ai bj∑
k∈ai,l∈bj

ω̃out
k ω̃out

l

,

where ai and bj denote the respective industrial sectors of i and j. A similar approach has been used by [40]
where, starting from data on firms’ sales and inputs, the authors construct firm-level networks, that, when
aggregated, align with I-O tables. The authors rescale firms’ input and output to match I-O tables,17 and then
allocate links in the network with an iterative algorithm that matches buyers to suppliers, while also
imposing that larger firms will have more customers. The weight of each connection is then set to the
smallest value between the supplier’s maximum capacity and the customer’s demand.

Instead of reconstructing the weights, Carvalho et al [60] estimate the input shares αij of each link,

αij =
ωij∑
i ωij

.

For any given customer-supplier pair of firms (i, j) in the data, they assign αij proportionally to the I-O table
entry corresponding to industries i and j belong to, i.e. αij ∝ ω̃ai bj , and renormalize them to ensure∑

iαij = 1.
Real-world scenarios often present situations where it is unfeasible to find weights that align with

aggregate observations. In [65], the authors design an inference strategy that aims to minimize the
discrepancy between reconstructed and observed aggregate properties of the network. More specifically, the
authors observe that, given a binary network G, it is not always possible to assign weights ωij that satisfy
constraints

∑
jωij = ω̃out

i and
∑

jωji = ω̃in
i . Take as an example a firm i who supplies only a single firm j, and

assume that i is the only supplier of j. The aggregate constraints will only be satisfied if i’s sales match exactly
j’s expenses, ω̃out

i = ω̃in
j , a condition not always respected in the data. The authors solve this issue by

introducing a ‘residual node’ r to capture the portion of the economy that is not covered by the network G.

17 More precisely, they match intermediate inputs (roughly, inputs that are neither labour nor investment goods), and gross output
(roughly, total sales).
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Table 2. Overview of the papers that infer supply network weights.

Coverage Dataset Inputs Probabilistic MaxEnt

Inoue and Todo [64] National,
Japan

Tokyo Shoko
Research

Firm sales,
national IOTs

No No

Carvalho et al [60] National,
Japan

Tokyo Shoko
Research

Firm sales,
national IOTs

No No

Welburn et al [65] National, US S&P Capital IQ,
EDGAR.

Firm sales and
inputs (COGS).

No No

Hazan [52] National,
Czech
Republic

Full IOTs Full IOTs No No

Bacilieri and
Astudillo-Estevez [66]

National,
International

Factset, Ecuador VAT Firm sales,
intermediate
expenses, network
density

Yes Yes

Ialongo et al [19] National Dutch banks’
transaction data

Firm sales,
intermediate
expenses by sector,
network density
(for calibration)

Yes Yes

This node accounts for all the firms that are not present in the data. They propose to find the set of weights
ωij that minimize the loss L=

∑
iωi,r +

∑
iωr,i, where ωij are subject to the usual constraints.

Finally, [52] reconstructs the weights for a complete stock-flow consistent economy, with households,
firms, banks, and flows of money in the form of consumption, firm-to-firm payments, wages, and interest
payments. After reconstructing the network using maximum entropy methods (section 3.2.2), stock-flow
consistency makes it possible to write a linear system for the weights, which can be solved using non-negative
least squares to avoid negative values.

The performance of the methods reviewed in this subsection is unfortunately unknown, as information
on the real weights was not available to the authors, who could not compare their reconstructions to the
respective ground truths. However, in the future, researchers using these methods could partially validate
their results by comparing them to the empirical regularities observed in [5] for weight distributions and the
relationships between in- and out-degrees and strengths.

4.2. Maximum entropy for weight inference
Another way of predicting weights given some aggregate trade information is to use the maximum entropy
principle. The intuition behind this principle is computing a distribution that ismaximally non-committal
with respect to unknown information [67] or, in simpler words, to build a distribution that minimizes
unjustified assumptions about the network. In section 3.2.2, we saw how maximum entropy can be used to
compute probabilities for possible binary networks. We are now going to see how it can be used to predict
weights.

If we consider the weights ωij, subject to the (‘hard’) constraints
∑

jωij = ω̃out
i , and

∑
jωji = ω̃in

i , where

ω̃out
i and ω̃in

i represent the observed total outflow (intermediate sales) and inflow (intermediate expenses) of
firm i, we find that the set of weights that maximize the Shannon Entropy

S =−
N∑
i

N∑
j

ωij lnωij,

are

ωij =
ω̃out
i ω̃in

j

Ω̃
, (3)

where Ω̃ =
∑

i ω̃
out
i =

∑
i ω̃

in
i . This approach was also used in [37] for an undisclosed European country.18

18 Bartolucci et al [23] show that ‘upstreamness’, a classicmetric in I-O economics, can be recovered verywell fromnetworks reconstructed
frommaximum entropy, as long as the networks are not too sparse. This is because, under very general conditions for the original network,
the first-order approximation of a node’s upstreamness is its upstreamness in themaximumentropy-reconstructed network [68]. Geneson
et al [24] studies the bounds on the errors when the influence vector, a highly related quantity, is computed using missing data.
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A different application of the maximum-entropy principle, where constraints are imposed softly (see
section 3.1), results in the solution used in [66] to reconstruct Ecuador’s national production network and in
[19] to reconstruct the transaction network between customers of two Dutch banks. Building on [51], these
papers first reconstruct the network’s topology,19 then sample the (positive) weights ωij of the existing links
from an exponential distribution,

P
(
ωij = x

)
= βij exp

(
−βijx

)
,

where βij is selected so that the expected value of ωij, conditional to the existence of a link, is

Eij

[
ωij|Aij = 1

]
=

ω̃out
i ω̃in

j

pij
∑

i ω̃
out
i

.

In Ialongo [19], pij is defined by equation (2). In contrast, [66] omits sector-specific constraints for
intermediate inputs20, and defines pij as

pij =
zω̃out

i ω̃in
j

1+ zω̃out
i ω̃in

j

.

Bacilieri and Astudillo-Estevez [66] reports a cosine similarity of 0.928 between inferred and actual
weights, and also compute a few ‘higher-order’ properties of the nodes that describe the propagation of
shocks in production networks in an established macroeconomic model [25], which the reconstructed
network fails to capture adequately (the cosine similarity for the most relevant property, the influence vector,
is∼0.5).

In [19], visual inspection of the results shows a substantial enhancement in weight reconstruction when
applying sector-specific constraints to firms’ inputs, further underscoring the crucial role the economy’s
sectoral structure plays in the accurate reconstruction of production networks.

5. Discussion

In this section, we take stock of what we can learn from existing studies, and provide suggestions on how the
field could be further advanced.

5.1. What have we learned?
A first, clear message from the review is that in the context of supply networks, knowing the kind of product
a firm makes is extremely important and substantially improves the reconstruction. This is evident both in
the link prediction studies on industry data [20], commercial or country-level data [33], and in the
maximum entropy reconstruction on payment data [19]. Unsurprisingly, ongoing research tries to predict
the firms’ products at a granular level, for instance from websites [69].

Second, the importance of products leads us to ask: to what extent can we, or should we rely on existing
(national or inter-country) I-O matrices? While some studies reconstruct weights (conditional on links)
using I-O links [40, 60, 64], others refrain from doing so [66], by fear that differences in accounting
conventions [5] may create inconsistencies. Here the answer may depend on the goal of the reconstruction
(see next section). A useful avenue for further research, however, would be to develop methods that easily
make it possible to switch between business- and national accounting conventions. Such methods would
necessarily use techniques and assumptions to allocate flows of money based on partially observed data,
potentially starting from the methods reviewed here.

Third, we have seen that more sophisticated machine learning methods do provide substantial boosts in
performance. This is clear from the improvement in link prediction performance between the logistic
regression and graph neural nets in the automotive dataset [20, 30], and between simpler methods and
gradient boosting in Mungo et al [33].21

19 In the case of [5], the topology is assumed to be known.
20 [19] simply assume that the meso-level constraints are observable since they have this in their firm-level data. [40, 60, 64] cannot read
this information from the data, so they take meso-level information from the I-O tables. Bacilieri and Astudillo–Estevez [66] argue that
differences in accounting standards between firm- and industry-level networks are large so that the meso-level structure of a firm network
should not be constrained to be like the I-O tables. Bacilieri et al [5] shows that there are indeed some important differences, especially
in industries that follow different accounting conventions, such as retail and wholesale trade.
21 However, in both studies, predictions made by sophisticated models are harder to interpret.
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Fourth, there appears to be substantial scope for improving performance using ‘alternative’ data. Zhang
et al [34] and Wichmann et al [17] have provided a proof of concept that mining news and websites for
supplier-buyer relations can be automated, and we have already mentioned that websites can be an
important source of key metadata for link prediction (especially product-related information). While phone
data is likely to be difficult to access, it is worth remembering the impressive result in [37] that firms with
average daily communication of more than 30s/day have a 70% probability of being connected.

A related question for further research will be to establish the potential of ‘dynamical’ data. Mungo and
Moran [42] showed that while there is information about the network in the sales growth rates correlation
matrix, predicting the network remains difficult, as the distribution of pairwise correlation for connected
and unconnected pairs overlaps greatly, even though their average is statistically significantly different.
Nevertheless, there are interesting developments in this area for networks generally, with only one
application to supply networks. One limitation has been that very few supply networks’ datasets have a
reasonable time-series dimension, but as these become more common it will perhaps become possible to
find other firm-level dynamical features that contain fingerprints of their network.

Most of the methods we surveyed produced probabilistic reconstructions of the network. These methods
produce a more informative outcome than their deterministic counterparts and can be used for a wider
range of tasks. For instance, probabilistic reconstructions can be used to recommend potential new
customers and suppliers, thus providing a valuable tool for modelling the network evolution and, potentially,
guiding an efficient rewiring in the aftermath of a shock. However, working with probabilistic
reconstructions is, in general, harder, often requiring the use of sampling algorithms to create networks
based on the calculated distributions, which is itself a technical challenge. This is particularly true for
methods that assume link independence, where, as we mentioned, building networks by picking the most
plausible links could result in implausible network configurations.

Finally, many studies have shown that baking sensible economic intuition into the models usually
improves predictions. To sum up, we have learned (or confirmed from existing literature) that link formation
is likely driven by the kind of products firms make, their geographical distance, and their size. We have seen
that firms that communicate a lot with one another are likely to be in a supply-buy relationship and that
firms that are in a relationship are likely to have a substantial co-movement in sales. While prediction is in
some cases the ultimate goal, favouring methods that prioritize performance over interpretability [30], the
quest for better reconstruction models has also prompted a deeper investigation into the behavioural and
economic principles influencing how firms make and unmake their connections [20, 33]. Currently, no fully
realistic supply network formation model has been developed (however, see [70] for an early example); we
anticipate that reconstruction methods and the development of null models will, at least partly, go hand in
hand.

5.2. How can we learn more?
What method works best for which task? We are not yet able to properly answer this question because the
literature uses different datasets, takes different features of the data to make predictions, and uses different
evaluation metrics. While this is warranted by the diversity of goals and applications, we think it would be
valuable to organize ‘horse races’, as has been done for financial networks [62], and provide standard
benchmark datasets, as is common in the machine learning community.

Let us first discuss the lack of comparability between studies. The methods proposed are very diverse and
usually require distinct data to operate. The diversity of datasets and features used is understandable and
valuable. For example, Kosasih and Brintrup [30] use topological features because one of their realistic use
cases is to augment an existing observed network dataset, while Mungo et al [33] avoid using topological
information because their envisioned use case is to port a trained model to a context where no such features
are available. As another example, while phone data is very hard to access, the study using this data made it
possible to evaluate the systemic risk of each firm in an entire European country.

A slightly less justified ‘diversity’ is the lack of standardized assessment metrics, as it is in principle
relatively easy to report several metrics.

Traditional statistical indicators (accuracy, AUROC, PR-AUC) provide an easy, well-known benchmark,
and have already been functional in, e.g. propelling the development of computer-vision models [71]. They
are the reference evaluation metrics for link-prediction problems [15], and the theoretical analysis of their
properties is still an active field [72]. Yet, the question remains as to whether they are sufficient to evaluate
the reconstruction of a network, and what additional metrics should be adopted to supplement them. Some
metrics, initially conceived for balanced datasets, may not hold up as reliably when applied to sparse
networks, where non-existing links greatly outnumber the existing ones. Overall, the AUROC seems robust
in the face of class imbalance: if one makes the imbalance more and more severe, its value does not change
substantially (see Supplementary Material [33]). Consequently, AUROC is a sensible metric to compare
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results. However, AUROC is occasionally prone to giving high scores to algorithms that successfully assign
lower probabilities to non-existing links, even when their ability to identify existing connections is moderate
[15].

A possible alternative is the area under the Precision-Recall curve (PR-AUC), which is more sensitive to
the performance of the model on the minority class. Nevertheless, PR-AUC is also very sensitive to the level
of imbalance in the data; thus, PR-AUC and imbalance should always be reported jointly. Another relevant
measure is the PR-CAUC (constrained AUC), obtained by calculating the AUC of the subcurve where the
number of nonexisting links mistakenly accepted by the classifier is equal to or lower than the total number
of links in the original network. The justification behind using PR-CAUC for link prediction in supply
networks [20] is that a method does not need to classify most edges correctly in order to be successful, but
needs only to correctly identify a significant set of links with high certainty.

Reporting basic topology metrics of the reconstructed network is also a logical approach, as there is
substantial evidence [5] that some topological properties are universally shared by all production networks.
For instance, Bacilieri et al [5] showed that the tail exponents for the in- and out-degree distributions are
remarkably similar in national, VAT-assembled datasets.

Ultimately, as we plug reconstructed networks into economic models, the optimal metric will be the one
that best correlates with accurate economic predictions. Identifying these proper ‘dynamical’ indicators
needs to go hand-in-hand with the development of economic models that are carefully validated on
real-world data and can become legitimate standards for evaluating reconstruction performance.

While agreeing on a set of metrics and features appears relatively easy, the key challenge ahead is data
availability. To follow our previous analogy, in computer vision, researchers can access standard, large-scale
datasets [73] of annotated images to train and evaluate their models. Similar datasets for production network
reconstruction are not currently available and, due to the confidential or proprietary nature of such data, its
assembly seems unlikely in the near future. The research community should unite to devise strategies to
circumvent this issue, possibly by considering the use of synthetic data [74] as an alternative to real data.
While synthetic data generation is currently an active and exciting area of research, it is less well-developed
for networks than for tabular data and still suffers from either a lack of privacy guarantees (for traditional
methods) or a lack of interpretability of the privacy guarantees (for differential privacy).

6. Two research agendas

For many practical applications, it is necessary to know much more than the value of transactions between
firms. We lay out two research programs - one that aims to reconstruct supply networks to allow for
real-time monitoring of disruptions and logistics optimization; and one that aims to reconstruct a granular
version of global macroeconomic datasets.

6.1. Towards supply chain visibility for risk management
Recent decades have seen a shift towards cost optimization in supply chains, marked by the implementation
of just-in-time strategies that eliminated excess inventory and the expansion of supply lines through
offshoring, making them longer and more international.

While high-impact, rare events such as COVID-19 highlighted the vulnerability of these global, highly
complex modes of operation, organisations often struggle with increased volatility in their day-to-day
procurement. Supply chain researchers are increasingly seeking methods to build resilience in what is now
frequently termed a ‘shortage economy’ [75]. However, these efforts are often hindered by a lack of visibility
on supply chain dependencies as companies do not disclose commercially sensitive information such as
whom they buy goods and services from [18, 76].

As link prediction and reconstruction methods presented in this paper do not rely on companies’
willingness to share data, they have the potential to become a primary toolset in supply chain risk
management. Our review shows that buyer-supplier link prediction is possible with various differing
methodologies and success rates. Recently proposed methods for reconstructing knowledge graphs go
beyond who-supplies-whom, but also enable prediction of other types of relevant information such as where
firms are located, and what they produce, paving the way for a new era of ‘digital supply chain
surveillance’ [77].

Much further work is needed in this context. For instance, use cases that evaluate how the identification
of risky supplier locations and production dependencies might help with effective mitigation strategies such
as multi-sourcing, supply chain reconfiguration, insurance, or inventory buffers. Beyond addressing supply
disruption risk, an understanding of supply chain structure could be informative for the detection of supply
chain fraud and counterfeit products. Improved visibility may help improve regulatory compliance on the
Environmental, Social and Governance (ESG) practice. Methods that help detect transaction volumes could
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improve supply chain financing in which lenders often struggle with identifying financial risk exposure. To
achieve these, different ontologies are needed to be built and integrated into existing knowledge graph
completion methods. New methods for inferring compliance, fraud, and other areas of interest from
knowledge graphs need to be developed. Lastly, any resulting graph will be limited by underlying
assumptions and incomplete data, which, in turn, may be shaped by the observable data at hand. Hence data
imputation and uncertainty quantification will need to inform the resulting graphs.

6.2. Towards granular global economic accounts
Firm-level production networks hold great potential to improve our grasp of macroeconomic phenomena.
Yet, they are only one piece of the broader picture. In macroeconomic applications, our interest extends
beyond the simple monetary transactions between firms. Macroeconomics concerns quantities such as GDP,
which represents at the same time the total income, total expenditures, and total value added of an economy.
Firm-to-firm transactions are not sufficient to truly understand how economic agents create value,
redistribute income, and spend on goods and services.

As a result, to support the development of large-scale realistic agent-based models, we need an ambitious
agenda to develop semi-synthetic populations. This entails incorporating all available micro-level
information and enhancing it with synthetic micro data to achieve meso- and macro-level aggregates that
align with the quantities observed in national accounts. We elaborate briefly on three strands of research
within this agenda.

First, it will be important to ensure compatibility between micro- and meso-level data, which are usually
compiled using different accounting rules. National accounting principles provide a solid conceptual
framework, so developing reconstructed datasets that respect these principles would have many advantages,
including making it easier to use this data in macro models, easier to improve this data using macro-level
information, and easier to match this data with other relevant datasets. However, firm-level data is usually
compiled using business accounting rules, so that simply ‘summing up’ firm-level data does not necessarily
lead to the supposedly equivalent concept in national accounts. As we have highlighted, this is a potential to,
for instance, use IOTs as additional information to reconstruct firm-level networks.

Second, modern work in economics shows that employer-employee-matched data and datasets on
consumer baskets’ heterogeneity are crucial to understanding inequality, long-run growth, or carbon
emissions. As a result, a straightforward extension of the ‘reconstruction of supply networks’ program would
be to predict employer-employee relations and consumer-firm relations (see [52] for a first attempt).
Existing efforts to develop data-driven agent-based models rely on such synthetic populations. While there
exists a lot of work on recommender systems for suggesting products to consumers, and more recently some
work on career suggestions, these efforts have not been leveraged to create reliable synthetic populations.

Third, many of the studies presented here worked with money flows, omitting a distinction between
prices and quantities. This is driven by the fact that firm-level supply networks with both price and quantity
information are very rare, but this is a serious issue for economic modelling, where prices play a key role. To
model inflation, and understand growth and business cycles, we need measures of quantities produced (or
inflation-adjusted values). New methods for inferring prices, perhaps based on companies’ websites and
other features, would be very extremely helpful in this context.

7. Conclusion

The reconstruction of supply networks through mathematical methods is a young field. This paper offers a
review of methodologies that researchers have proposed to grapple with this challenge.

Good proof-of-concept studies exist, but much remains to be done. A striking feature of the literature is
the diversity of methods, datasets and evaluation metrics. While this is justified by the different backgrounds
and motivations of the researchers, we think that progress in this area would benefit from the availability of
open datasets and the definition of standard metrics, so that horse races could be organised.

We were able to propose some guidelines to standardize performance metrics, but the path to open
datasets is more complicated and will require international cooperation that either facilitates researchers’
access or fosters the creation of high-fidelity synthetic datasets.

Despite this difficulty, we think that reconstructing supply networks is an excellent playing ground for
the complex systems community, as it requires a deep understanding of networks, statistics, and dynamical
systems, together with an appreciation that these networks emerge from the decentralized interactions of
millions of highly heterogenous, bounded-rational agents operating with different objectives at different
time scales.
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