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a b s t r a c t

The processing of stationary sounds relies on both local features and compact represen-

tations. As local information is compressed into summary statistics, abstract representa-

tions emerge. Whether the brain is endowed with distinct neural architectures predisposed

to such computations is unknown. In this magnetoencephalography (MEG) study, we

employed a validated protocol to localize cortical correlates of local and summary auditory

representations, exposing participants to sequences embedding triplets of synthetic sound

textures systematically varying for either local details or summary statistics. Sounds varied

for their duration and could be short (40 ms) or long (478 ms) to favor change detections

based on local or summary statistics, respectively. Results clearly revealed distinct acti-

vation patterns for local features and summary auditory statistics. Neural activations

diverged in magnitude, spatiotemporal distribution, and hemispheric lateralization. The

right auditory cortex, comprising both primary and neighboring temporal and frontal re-

gions were engaged to detect sound changes in both local features (for short sounds) and

summary statistics (for long sounds). Conversely, the left auditory cortex was not selective

to these auditory changes. However, the ventro-lateral portion of left frontal lobe, a region

associated with sound recognition, was engaged in processing changes in summary sta-

tistics at a long sound duration. These findings highlight the involvement of distinct

cortical pathways and hemispheric lateralization for the computation of local and sum-

mary acoustic information occurring at different temporal resolutions.

Significant statement: We revealed hemispheric specializations for auditory computations at

high (local) and low (summary statistics) temporal resolutions. The right hemisphere was

engaged for both computations, while the left hemisphere responded more to summary

statistics changes. These findings highlight the multifaceted functions of the right
a.it (M. Berto), davide.bottari@imtlucca.it (D. Bottari).

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2024.09.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2024.09.020&domain=pdf
mailto:martina.berto@imtlucca.it
mailto:davide.bottari@imtlucca.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2024.09.020&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2024.09.020
https://doi.org/10.1016/j.cortex.2024.09.020
https://doi.org/10.1016/j.cortex.2024.09.020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


c o r t e x 1 8 4 ( 2 0 2 5 ) 7 9e9 580
hemisphere in capturing acoustic properties of stationary sounds and the left hemisphere's

involvement in processing abstract representations.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sounds are processed at low and high temporal resolutions,

depending on the amount of information they encompass.

When sounds are short, the processing of fine-grained tem-

poral modulations (local features) is crucial for detecting

transient changes in the entering sound waves. As the

amount of information increases, the system relies on

compact summary representations. For stationary sounds

(e.g., sound textures, such as fire, rain, and typewriting) we

can mathematically describe such summary representations

as a set of time-averaged statistics (McDermott & Simoncelli,

2011).

In this context, the term "statistics” refers to measure-

ments extracted from a sound wave using an auditory model.

These measurements include averages and variations in in-

tensity at different frequencies, and changes in intensity over

time and represent the outcome of basic auditory computa-

tions, the processes by which the brain analyzes and in-

terprets sound signals. Average summary statistics

approximate outcomes of computations occurring in the pe-

riphery of the system and are encoded by both primary and

post-primary auditory cortices (Giordano et al., 2023;

McDermott & Simoncelli, 2011). The amount of acoustic in-

formation is crucial for extracting summary statistics from

local features; thus, the engagement of one computational

mode (local features processing) or the other (summary sta-

tistics) strictly depends on sound duration (McDermott et al.,

2013).

The role of local features and summary statistics in audi-

tory processing was evaluated in humans through computa-

tional methods (Berto et al., 2021, 2022; McDermott &

Simoncelli, 2011; McWalter & McDermott, 2019; Norman-

Haignere & McDermott, 2018; Zuk et al., 2020). Specifically,

systematic synthesis approaches provide means to create

sounds that are progressively more distinguishable at high,

but not low, temporal resolution, or vice-versa (McDermott

et al., 2013), objectively disentangling the auditory process-

ing based on local features from summary statistics.

Specifically, a previous study employed this approach to

isolate neural signatures of local features and summary

statistics of sound textures (Berto et al., 2023). The electro-

encephalogram (EEG) of participants was recorded while

they were exposed to streams of synthetic sound excerpts

comprising systematic changes in local features or sum-

mary statistics. To manipulate the reliability of local fea-

tures or summary statistics, the duration of the sound

excerpts could be short, medium, or long. Results showed a

clear dissociation: greater evoked responses were measured

for a change in local features compared to summary sta-

tistics when sounds were short, and the opposite when
sounds were long, while no difference was observed at

medium sound length. The significant effects emerged over

similar, but not identical, scalp locations, possibly indicating

different cortical sources. However, we did not compute

normalizations of the electrical activity measured at the

scalp level. Thus, it is possible that the different magnitudes

of electrical activity across conditions might be biasing the

observed topographic differences. Moreover, different

oscillatory profiles were associated with local or summary

changes, with changes in local features being encoded by

faster oscillations than changes in summary statistics (Berto

et al., 2023). Noteworthy, these results emerged without

explicit tasks. Thus, allowing to hypothesize that sound

discrimination occurring at high or low temporal resolutions

can be automatically driven by selective stimulus properties,

i.e., local features or summary statistics. For instance, the

discrimination of brief sound excerpts may rely on broad-

band impulse amplitude modulations, while the discrimi-

nation of long sounds may rely on spectral content averaged

over time.

While it was possible to distinguish local features or

summary statistics computations from neural activity, it

remained unknown which neural structures were specifically

associated with the processing of fine-grained information

compared to summary one. Here we specifically investigated

whether we could replicate the observed dissociation on an

independent sample of individuals and, most importantly,

whether these mechanisms differ solely in timing and in-

tensity (as shown in Berto et al., 2023) or arise from distinct

brain regions.We tackled this research question by employing

magnetoencephalography (MEG), which is known to have

better spatial resolution compared to the EEG, to provide

reliable source estimates of the automatic processing associ-

ated with local and summary acoustic information. Using a

previously validated protocol (Berto et al., 2023), we presented

short and long synthetic sounds as triplets, with the third

sound systematically differing for its local features or sum-

mary statistics, depending on the experimental context.

Noticeably, we utilized sound triplets to maintain consistency

with a presentation scheme validated at the behavioral (Berto

et al., 2021; McDermott et al., 2013) and electrophysiological

(Berto et al., 2023) level and to investigate the brain correlates

of automatic discrimination of novel sounds in an auditory

stream pattern. By disrupting the repetition of the first two

sounds (with the third one), we aimed to pinpoint neural

mechanisms involved in detecting a variation in the incoming

stimulation. Directly contrasting responses to the third

sounds changing for their local features or summary statis-

tics, we aimed to provide insights intowhich neural structures

were associated with these auditory analyses and their pro-

cessing dynamics.
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Sound excerpts used to generate sound tripletswere drawn

from a large pool of synthetic sound textures (e.g., fire, rain,

typewriting, waterfall, etc.) which ensured generalizing re-

sults across several sound categories. Triplets formed highly

variable sound streamswhich allowed to control for irrelevant

features by variability rather than elimination or

homogenization.

This approach allowed measuring brain correlates of

automatic discriminative responses to sound changes occur-

ring at high or low temporal resolution. Leveraging the high

temporal precision and spatial resolution of MEG, we aimed to

find neural correlates for local and summary acoustic

computations.
2. Material and methods

2.1. Participants

24 healthy individuals voluntarily participated in the in-

vestigations. Specifically, 8 females, 2 left-handed, with a

mean age of 35.42 years (std ¼ 13.37, range ¼ 20e63). Prior to

data collection, we did not have any specific hemispheric

lateralization hypothesis related to these auditory processes,

so we did not add constraints related to the handedness of

participants. Providing that we triplicated the total number of

trials per condition (from 216 in the original EEG study, Berto

et al., 2023, to 648 in the current MEG) and that the SNR of

the MEG is expected to be higher than EEG, leading to a

generally cleaner signal, we deemed a sample size of 22 as

adequate for the purpose of the study. All participants re-

ported no neurological impairments and normal hearing,

which was confirmed by performing an audiogram before the

experiment. Participants signed informed consent and were

paid 10V per hour for their contribution. The study was

approved by the Ethics Committee of the Paris-Lodron-

University of Salzburg, in accordance with the Declaration of

Helsinki.

2.2. Data exclusion

Two participants were excluded from the analysis, leading to

a final sample size of 22 subjects, 7 females 7, 2 left-handed,

with a mean age of 35.09 years (std ¼ 13.92, range ¼ 20e63).

One participant was excluded due to technical problems

during the recording; the other participant's data was rejected

because of co-registration failure (for more details on the

latter, see the Source Reconstruction paragraph). Left-handed

participants were included as their activation patterns did not

diverge from the others, as revealed by their data visualiza-

tion. Additionally, performing data analysis excluding these

participants provided the same insights (see Supplementary

Information).
3. Stimuli

Experimental sounds were a sub-selection of the ones used in

the previous EEG study (Berto et al., 2022) and behaviorally
validated by Berto et al. (2021) with the same protocol by

McDermott et al. (2013). They represented short snippets

(either 40 or 478 ms long) extracted from 5s synthetic sound

textures. Each synthetic sound was produced by using the

computational Auditory Texture Model and the Sound

Texture Synthesis Toolbox (http://mcdermottlab.mit.edu/

downloads.html) designed by McDermott and Simoncelli

(2011). The synthesis procedure is described below. The

Dataset and Results, Code and Experimental protocol

(including the stimuli) are available online at this link: http://

doi.org/10.60817/Q5A6-H216.

3.1. Auditory Texture Model

A set of time-averaged summary statistics was extracted from

54 original recordings of 7s natural sound textures (i.e., rain,

applause, waterfall; see the complete list in Table S1, in Sup-

plementary Information). Statistics were measured using the

auditory texture model as in McDermott and Simoncelli

(2011). For clarity, we provide a summary of the model in the

following paragraph. For a detailed description, see the orig-

inal paper (McDermott & Simoncelli, 2011).

The model employed a filter bank cascade to process an

input sound waveform, xðtÞ, representing an original

recording of a sound texture, and extracted summary statis-

tics from their outputs. The procedure can be divided into two

processing stages.

First, to replicate the frequency analysis occurring in the

cochlea, the input sounds were filtered into subbands using a

bank of bandpass filters with varying center frequencies and

bandwidths. The model employed 4th-order gammatone fil-

ters consisting of 32 zero-phase bandpass filters with center

frequencies equally spaced on an equivalent rectangular

bandwidth (ERB; Glasberg&Moore, 1990) scale between 20 and

10,000 Hz. The filters had a bandwidth of 3 db. The outcome of

the filtering stage were cochlear subbands, the analytic signal

(or fine structure) at each center frequency. The envelope of

each subband was then computed via Hilbert transform. To

emulate the non-linearity of the basilar membrane compres-

sion, the envelopes were elevated by a power of .3 (Ruggero,

1992). Overall, this represented the first processing stage

resulting in the cochleagrams of sounds (examples of coch-

leagrams are displayed in Fig. 1A,B). For computational effi-

ciency, the subband envelopes were then downsampled to

400 Hz.

In the second processing stage, each cochlear envelope

was convolved with a second band of filters to obtain ampli-

tude modulation rate subbands. These modulation filters

consisted of 20 half-octave spaced bandpass filters (from .5 to

200 Hz) with a constant quality factor (Q) of 2 (for 3 dB band-

widths). This reflects the selectivity of the human auditory

system, likely a result of thalamic processing (Dau et al., 1997).

Auditory texture statistics were extracted from the

cochlear envelope subbands xkðtÞ and the modulation sub-

bands, bk;nðtÞ, where k and n indexed the cochlear and mod-

ulation channels, respectively.

The computed envelope statistics included three marginal

moments: (i) the mean, (ii) the coefficient of variance, (iii) and

the skewness. Respectively:

http://mcdermottlab.mit.edu/downloads.html
http://mcdermottlab.mit.edu/downloads.html
http://doi.org/10.60817/Q5A6-H216
http://doi.org/10.60817/Q5A6-H216
https://doi.org/10.1016/j.cortex.2024.09.020
https://doi.org/10.1016/j.cortex.2024.09.020


Fig. 1 e Stimuli and Experimental Protocol. (A) Cochleagrams of the first three sound pairs in a continuous stream presented

to one participant. Cochleagrams were computed by filtering the sound excerpts through the Auditory Texture Model

(McDermott& Simoncelli, 2011). (B) Spectral and temporal difference within a triplet. The top panel shows the cochleagrams

of the sound excerpts contained in two example triplets (one for each experiment). In this example, in both experiments,

the first two sounds (repeated) were a 478 ms excerpt from a white noise to which we imposed the auditory statistics of the

sound texture “Motorcycle idling”. In the Local features experiment, the third sound, (novel) was another exemplar of the

“Motorcycle Idling” sound texture; thus, it is a different white noise sample to which we impose the same statistics. In the

Summary Statistics experiment, the novel sound contains the statistics from the “Idling Boat” sound texture, but it is the

same white noise sample. The statistics embedded in the sounds influence the spectral density of the sound excerpts, as

depicted in the cochleagram. The bottom panels display the broadband envelopes of the repeated and novel sounds in both

experiments for the same three sounds displayed above (Motorcycle Idling and Idling Boat). Despite the spectral distribution

c o r t e x 1 8 4 ( 2 0 2 5 ) 7 9e9 582
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mk ¼
X
t

wðtÞxðtÞ (i)

s2

m2
k

¼
P
t
wðtÞðxkðtÞ � mkÞ2

m2
k

(ii)

hk ¼
P
t
wðtÞðxkðtÞ � mkÞ3

s3
k

(iii)

where mk is the mean, s2
k is the variance, hk is the skewness at

each cochlear channel, and w(t) is a windowing function, with

the constraint that
P
t
wðtÞ ¼ 1 (McDermott & Simoncelli, 2011).

The variance was normalized by the squared mean to make it

dimensionless, as the skewness (McDermott & Simoncelli,

2011). These marginal moments captured the sparsity of the

time-averaged subband envelopes. Note that, following the

original authors recommendations, compared to the previous

version of the model (McDermott & Simoncelli, 2011), our

implementation omitted the Kurtosis from the marginal mo-

ments, because proven to be not very informative.

The model included pairwise correlations between each

cochlear channel and the eight nearest neighbors.

Crosseband correlations capture broadband events that

would activate more cochlear bands at the same time (Nelken

et al., 1999).

The crosseband correlation coefficient can be computed as

follow:

cjk ¼
P
t
w
�
t
��
xjðtÞ � mk

�
sjsk

; j; k2½1:::32�

such that ðk � jÞ2½1;2;3;5;8;11;16;21�:
Note that to capture the envelope power at different mod-

ulation rates, the modulation subband variance was normal-

ized by the corresponding total cochlear envelope variance.

Another fundamental measure was the power at each

modulation rate, namely the modulation power. The modu-

lation power represents the major statistics of interest con-

cerning the modulation bands and may reflect modulation-

tuned properties in the thalamic neurons response (Dau

et al., 1997; Miller et al., 2002). To calculate it, the model
between repeated and novel sounds being more similar in the L

and repeated sounds correlated more in Summary Statistics (r ¼
reveals that the temporal structure of the sounds was influenced

rather than the similarity of the embedded statistics, which in t

and Statistics dissimilarity between novel and repeated sound

signal-to-noise ratio, SNR) are used to measure the similarity be

time-averaged auditory statistics, respectively) of repeated and

correlation coefficients (r) measured between the broadband en

(Local Features, Summary Statistics) and duration (40, 478 ms).

between auditory statistics of repeated and novel sounds. Highe

sound pairs. Within sound duration, the broadband envelopes

statistically more similar in the Summary Statistics experimen

statistics similarity showed a double dissociation according to so

the distributions. ***P < 00.001.
measured the variance of each modulation subband and

normalized it by the total envelope variance as follow:

sk;n ¼
P
t
w
�
t
��
bk;nðtÞ � mk;n

�2
s2
k

; k2 ½1…32�;n2½1…20�

Finally, the model employed octave-spaced modulation

filters (McDermott& Simoncelli, 2011) tomeasure correlations

(C1 and C2) between modulation subbands of different

cochlear channels. The frequency responses of the filters

(seven filters, with center frequencies in octave steps from

1.56 to 100 Hz) were half-cosines on a log-scale and more

broadly tuned with ¼ ffiffiffi
2

p
.

C1 was computed as follow:

C1jk;n ¼
P
t
wðtÞ~bj;nðtÞ~bk;nðtÞ

sj;nsk;n
; j2½1:::32�; ðk� jÞ2½1;2�;n2½2:::7�;

and

sj;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

wðtÞ~bj;nðtÞ2
r

where ~bk;nðtÞ are the resulting bands of the correlation filters.

C2 is calculated as follow

C2k;mn ¼
P
t
wðtÞd*

k;mðtÞak;nðtÞ
sk;msk;n

; k2½1…32�;m2½1…6�; ðn�mÞ ¼ 1

where * denote the complex conjugate, a is the analytic signal

of the modulation bands comprising the response of the filter

and its quadratic twin, and d is the frequency doubling

resulting from squaring the analytic signal (complex-valued).

a and d are calculated as follow:

ak;nðtÞ¼ ~bk;nðtÞ þ iHð~bk;nðtÞÞ
and

dk;n ¼
a2
k;nðtÞ����ak;nðtÞ

����
where i ¼ ffiffiffiffiffiffiffi�1

p
and H is the Hilbert transform.

For each sound texture, a set of time-averaged texture sta-

tistics were measured and included in a parameter vector, z,
ocal Features experiment, the broadband envelope of novel

.6) than in the Local Features experiment (r ¼ ¡.03). This

by the original white noise sample used during synthesis,

urn influenced the spectral content of sounds. (C) Temporal

pairs. Two different metrics (correlation coefficients and

tween specific stimulus features (broadband envelope and

novel sounds. In the left panel, boxplots represent the

velopes of repeated and novel sounds in each experiment

In the right panel, we show the average SNRs measured

r SNRs would indicate higher statistical similarity between

between repeated and novel sounds were always

t than in the Local Features one. By contrast, auditory

und duration. Boxplots outline themedian and quartiles of

https://doi.org/10.1016/j.cortex.2024.09.020
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which was subsequently utilized to generate the synthetic

sounds.

3.2. Sound texture synthesis

We synthesized sound textures using the Sound Texture

Synthesis Toolbox and following the procedure described in

McDermott and Simoncelli (2011). The parameter vector (z) of

time-averaged statistics was measured for each of the 7s

original sound textures (n ¼ 54; listed in Table S1, Supple-

mentary Information).

The measured statistics were then imposed on a white

noise sample (seed). The algorithm measured the statistics

from the seed and iteratively adjusted them to match the

ones extracted from the original sound textures. To perform

this computation, we used a conjugate gradient descent

based on the ‘‘minimize’’ function by Carl Rasmussen

(embedded in the toolbox, see above; McDermott &

Simoncelli, 2011) which compares the total squared error of

statistics measured from the synthetic sound with those

from the original signal. Specifically, the procedure moni-

tored the convergence between the statistics of the two sig-

nals by calculating the signal-to-noise ratio (SNR). The SNR

was determined by comparing the squared error of a statistic

class (summed across all statistics within that class) to the

sum of the squared statistic values in that class. The iteration

procedure was stopped when all statistic classes had an SNR

of 30 dB or greater or after reaching 60 iterations. Conver-

gence was achieved when the average SNR of all statistic

classes reached 20 dB or higher (McDermott & Simoncelli,

2011). By seeding the synthesis algorithm with different

Gaussian noises, we could generate distinct exemplars of the

same sound texture, including auditory statistics that

converged with sound duration but retained a different fine

structure (local features). For each sound texture, the syn-

thesis algorithm was initialized with four different white

noise samples resulting in four different synthetic exemplars

of the same original texture.

All four synthetic exemplars were cut into excerpts of 40 or

478 ms to which a 20 ms half-Hann window was applied

(10 ms at the beginning and 10 ms at the end) to reduce edge

artifacts. Excerpts were numbered according to their position

along the 5-s signal (i.e., excerpt 1 occurs from 1 to 40 ms,

excerpt 2 from 41 to 80 ms, and so on). We will refer to this

number as their positional index (see below). All excerpts

were equalized to the same root mean squared amplitude

(rms) of .1 and had a sampling rate of 20 kHz.

3.3. Data acquisition

The brain activity was recorded using a 306-channel whole

head MEG system comprising 204 planar gradiometers and

102 magnetometers (Neuromag TRIUX, Elekta). Signal was

recordedwith a sampling rate of 1000 Hz and filtered online at

0.1 Hz. Prior to recording the MEG, digital head-shape points

(HSP) were measured on the scalp using a Polhemus Fastrak

system (Polhemus, Colchester, VT). Approximately 500 points

for subject were acquired, including three fiducials (nasion

and left and right preauricular points). Three electrodes were

applied to measure ocular and cardiac artifacts: two EOGs
(vertical and horizontal channels attached above and lateral

to the right eye) and one ECG.

Prior to commencing the experiment, we conducted stan-

dard clinical audiometry spanning from 125 to 8 kHz utilizing

an AS608 Basic audiometer (Interacoustics, Middelfart,

Denmark) to evaluate participants' auditory capabilities.

Participants were then accompanied in the magnetically

shielded room (AK3B, Vacuumschmelze, Hanau, Germany)

where the MEG system was located and sat comfortably in

front of a screen located at a ~110 cm distance. The experi-

mental instructions and a fixation cross were back projected

on the translucent screen. Stimuli and triggers were produced

and delivered through the VPixx system (comprising DATA-

Pixx2 display driver, PROPixx DLP LED projector, and

RESPONSEPixx response box by VPixx Technologies Inc.,

Saint-Bruno, Canada). Sounds were delivered by fMRI-

compatible air-tube earphones to avoid magnetic interfer-

ence in the MEG room. The experiment was programmed in

MATLAB using the Psychtoolbox-3 (Brainard, 1997). Addi-

tionally, a class-based abstraction layer (https://gitlab.com/

thht/o_ptb; Hartmann & Weisz, 2020) programmed on top of

Psychtoolbox was used to facilitate the management of audio

and triggers delivery in DataPixx.

3.4. Experimental protocol

The experiment consisted of 4 blocks of 5.4min each. Partici-

pants listened to streams of sounds but were instructed to

ignore them and simply press a button when a target one

occurred. The target sound was very infrequent (maximum

three sounds per block) and consisted of a 50 ms pure tone

with a frequency of 2200 Hz, an amplitude of 50 dB SPL, and a

sampling rate of 20 kHz.

Within each block, 648 sounds were presented at a

continuous stimulation rate (one sound every 500 ms). The

stream in each block contained sounds of one specific length,

either short (40ms) or long (478ms), so that the duration of the

stream was kept constant, but the amount of acoustic infor-

mation changed according to the size of the single sounds

(Fig. 1A). The sound streams consisted of instances of syn-

thetic excerpts, representing snippets cut from exemplars of

the same sound texture or a different one. Specifically, stimuli

were presented in triplets: two sounds were identical

(repeated; n ¼ 432), while the third one was different (novel;

n¼ 216). All three sound excerpts within a triplet had the same

positional index in the synthetic exemplar (i.e., all of them

were starting and ending at the same time point along the

corresponding 5s synthetic sounds they were extracted from).

Compared to the repeated sounds, in one experimental

context, the novel sound systematically varied for its local

features, while in the other for its summary statistics (Fig. 1B).

That is, in the Local Features experiment, the third sound was

drawn from a synthetic exemplar of the same sound texture

but derived from a different white noise sample. The original

white noise sample used to initialize the synthesis is expected

to affect the temporal structure and the statistical values of

the sounds measured at the high temporal resolution, that is

in its local properties. In the other experiment (Summary

Statistics), the third sound originated from the same white

noise sample used to generate the two identical repeated

https://gitlab.com/thht/o_ptb
https://gitlab.com/thht/o_ptb
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sounds but was constrained by a different set of statistics. The

summary statistics of the imposed Sound Texture affect the

fine-grained spectral density measured at low temporal res-

olution (see below; Fig. 1C). Noticeably, the texture pairs in

this experimental condition were matched according to their

similarity based on previous evaluations (McDermott et al.,

2013). Overall, this presentation scheme permits controlling

for expectancy effects, as the novel sound always occurs as a

third element in the triplet. Moreover, creating regularities

and then disrupting them (by presenting two identical sounds

followed by a different one) permits the measurement of

discriminative responses driven by local and summary com-

putations without an explicit task. To generalize local and

summary computations to a vast pool of sounds, the excerpts

used in the experiments were drawn randomly among the

available ones; thus, the presentation order and stimuli were

never the same between participants and blocks (Berto et al.,

2022). This allowed us to specifically investigate the compu-

tation of interest while generalizing it to many different sta-

tionary sounds, disregarding their idiosyncratic properties

(i.e., frequency, pitch, timbre, and amplitude of single sound

excerpts).

Throughout the experiment, participants kept their eyes

open and were instructed to look at a fixation cross appearing

at the center of the screen.

No part of the study analyses and procedures was pre-

registered prior to the research being conducted.

3.5. Temporal structure and time-averaged statistics
similarities between excerpt pairs

To test whether the similarity in the temporal structure of

repeated and novel sound excerpts was influenced by the

original white noise sample used to initialize the synthesis

(different in Local Features; same in Summary Statistics), we

used the Auditory Texture Model (McDermott & Simoncelli,

2011; see above) to obtain the cochleagrams of each excerpt

pair presented in the experiments across all participants, for

each experiment (Local or Summary) and duration (40 or

478 ms). Note that the same sound excerpt can appear more

than once in this distribution, as we selected the precise

sound sequence presented in the experiment to participants

which included sounds from the same pool of available ones.

Furthermore, each participant received idiosyncratic stimu-

lation; that is, stimuli were randomly selected and paired

among the available ones sharing the desired properties and

sequences were never the same across participants. We then

averaged over frequency channels (n ¼ 32) at each time-point

to obtain the broadband envelopes. Pearson's rs transformed

to Fisher-z-scores were used as a metric to assess the simi-

larity between the broadband envelopes in the sound pairs

presented in the Local Features and the Summary Statistics

experiment. This procedure was done for each excerpt pair

presented in each experiment and duration (n ¼ 19,008). The

normalized coefficients in Local Features were statistically

compared to the ones in Summary Statistics (two-tailed t-

tests) within each sound duration. Results showed that the

envelopes were always significantly more similar when the

excerpts originated from the same white noise sample

compared to when they did not. That is, the correlation
coefficients were higher in Summary Statistics experiment

compared to Local Features one, both at short (P < .001; Local:

mean ¼ 1.45, std ¼ .47; Summary: mean ¼ 2.20, std ¼ .68) and

long (P < .001; Local: mean ¼ .36, std ¼ .25; Summary:

mean ¼ 1.02, std ¼ .46) durations. Correlation coefficients (r)

are displayed in Fig. 1C, left panel.

On the other hand, we expected statistical values between

repeated and novel sounds to be more similar depending on

sound duration and experimental context. To address the

statistical similarity between the couples of excerpts

(repeated and novel) in the study, we selected all the sound

pairs (repeated and novel) presented in the study, as done

before.

For each sound excerpt, we extracted the set of summary

statistics using the functions “generate_subbands_and_envs.m”

and “measure_texture_stats_from_envs.m” in the Sound Texture

Synthesis Toolbox (http://mcdermottlab.mit.edu/downloads.

html; McDermott & Simoncelli, 2011).

We then calculated the similarity between statistics from

repeated and novel sounds by estimating the Signal-to-noise

ratio (SNR) as in Berto et al. (2022). Specifically, for each

excerpt pairs (repeated and novel) and separately for each

statistic class (envelope mean, variance, skew, cross-

correlation, modulation power, C1, and C2), we calculated

the total squared error at each cochlear channel by subtract-

ing the value of statistics measured from novel sound from

the one measured from the repeated one and elevating by a

power of 2.When statistics hadmore than one dimension (i.e.,

modulation bands), the values in the other dimensions were

summed prior to computing the error (Berto et al., 2023;

McDermott & Simoncelli, 2011). We then defined the SNR as

follows:

SNR¼ 10 log10

0
B@

P
k

StatRepðkÞ2
P
k

εðkÞ

1
CA; k2½1;2;3…;32�

where k is a cochlear channel (n ¼ 32), StatRep represents the

value of a statistic class calculated from a repeated sound, and

ε is the squared error between the same repeated sound and

the corresponding novel one for that statistic class.

SNRs were computed separately for each statistic class in

each excerpt pair and then averaged across statistics to obtain

one average SNR for each sound pair (Berto et al., 2023). Higher

SNRs would indicate that, overall, summary statistics in the

repeated sounds were more similar to the ones in the novel

sounds. Average SNRs for each experiment (Local Features,

Summary Statistics) and duration (Short 40 ms, Long 478 ms)

are displayed in Fig. 1C, right. In order to test whether there

was a difference in SNRs between experiments and within

duration, we performed non-parametric Wilcoxon rank sum

tests comparing Local Features and Summary Statistics at

either short (40 ms) or long (478 ms) sound duration.

Results showed that when sounds were short, the SNRs

were significantly lower in the Local Features experiment

(P < .001; Local: mean ¼ 8.32, std ¼ 1.25) compared to the

Summary Statistics one (mean ¼ 9.91, std ¼ 2.42), meaning

that statistical values were significantlymore dissimilar in the

former. By contrast, when sounds were long, SNRs were lower

in the Summary Statistics experiment (P < .001; mean ¼ 6.74,

http://mcdermottlab.mit.edu/downloads.html
http://mcdermottlab.mit.edu/downloads.html
https://doi.org/10.1016/j.cortex.2024.09.020
https://doi.org/10.1016/j.cortex.2024.09.020


c o r t e x 1 8 4 ( 2 0 2 5 ) 7 9e9 586
std ¼ 2.09) compared to Local Features one (mean ¼ 9.31,

std ¼ 1.22).

Overall, these analyses show that while broadband enve-

lope similarity between repeated and novel sounds is influ-

enced by their original white noise seed, the similarity of

auditory statistics changes based on sound duration.

Based on these results, we would expect greater activation

in Local Features experiment compared to Summary Statistics

onewhen sounds are short, and the oppositewhen sounds are

long.
4. Data analysis

4.1. Preprocessing of MEG data

Right after the recording, a signal space separation method

from the Maxfilter software (MEGIN Oy, Espoo, Finland) was

used to correct for different head positions across blocks

within each participant and to clean channels from external

interference (Taulu et al., 2005).

Preprocessing of themax-filtered MEG data was performed

usingMNE-Python version 1.1.1 (Gramfort et al., 2013) running

on Python 3.9.16. For each participant, the signal recorded for

each block was concatenated; segments contaminated, by

either the beep sound or the button press, were marked for

rejection. Independent component analysis (using the fast ICA

method; Hyvarinen, 1999) was run to detect stereotypical ar-

tifacts (eyemovements, blinks, and heartbeat). We filtered the

signal below 1 Hz and downsampled it to 250 Hz to reduce

computational time and space on storage. To account for the

presence of different type of channels (e.g., EOG, ECG, MEG

sensors), and therefore different units (volts or tesla), the data

from each channel type were pre-whitened, that is, they were

scaled by the standard deviation across all channels (z-stan-

dardized). ICA was fit to the data using all 306 channels,

without any prior dimensionality reduction. A specific num-

ber of components was then automatically selected for each

subject based on the given variance level and accounting for

rank deficiency of the data. To select which components to

remove, we used a semi-automatic template-matching pro-

cedure (Campos Viola et al., 2009). Specifically, we manually

selected a component (template) from one subject which best

represented each artifact (one template for the eyes and one

for the heart; in this case, we selected the 2 templates from 2

different subjects). Templates were chosen after visual in-

spection of the topography of the inverse weights and double-

checked by looking at the IC activation scroll. To have addi-

tional proof that the selected templates represented eye and

cardiac artifacts, we also performed Pearson correlation be-

tween all components for the selected subjects and their EOG

and ECG components. Then we used the corrmap function

(implemented in MNE-Python) to detect all the other compo-

nents in our dataset (across all subjects) which correlatedwith

the template above a certain threshold (.85 for eye; .60 for

heart). Thresholds were selected so that corrmap could find at

least one IC for each subject that matches the template.

Implementing the template-matching method allowed to

improve and speed up bad component detection even for

those subjects where EOG and ECG channels were
compromised. After the components to exclude were

selected, they were removed from the original unfiltered, full-

resolution (1000 Hz) dataset. On average, 2.68 components per

subject were removed (std ¼ .82; range ¼ 2e5). The signal was

then lowpass filtered at 40 Hz (one-pass, zero-phase, non-

causal FIR filter; windowed time-domain design, window

type ¼ hamming; passband ripple ¼ .0194; stopband

attenuation ¼ 53 dB; upper passband edge ¼ 40 Hz; upper

transition bandwidth ¼ 10 Hz; -6 dB cutoff frequency ¼ 45 Hz;

filter length ¼ 331 samples) and highpass filtered at 0.1 Hz

(one-pass, zero-phase, non-causal FIR filter; windowed time-

domain design, window type ¼ hamming; passband

ripple ¼ .0194; stopband attenuation ¼ 53 dB; lower passband

edge ¼ .10 Hz; lower transition bandwidth ¼ .10 Hz; -6 dB

cutoff frequency ¼ .05 Hz; filter length ¼ 33,001 samples).

4.2. Epoching

Data was epoched into segments from �100 to 500 ms from

the onset of the novel stimulus and downsampled to 250 Hz.

To correct for the physical delay of 16.5 ms in sound delivery

due to transmission in the air-conducting earphones, the

signal was shifted in time by .0165 s. For each participant,

within all the 216 epochs, the ones compromised by the

occurrence of the infrequent target (beep sound) and/or cor-

responding button press (minimum 1, maximum 6 per block)

were excluded from the analysis; for each sound duration, the

remaining number of epochs was equalized between different

experimental conditions (the difference depended on the

number of beeps presented in each specific condition block).

All valid epochs (range 208e215) were then averaged to

compute event-related fields (ERFs) and baseline correction

was applied by subtracting the averaged pre-stimulus period

activation from �100 to 0 ms from each time point post-

stimulus.

4.3. Source localization

A semi-automatic co-registration pipeline was used to

compute the head models. This approach has been shown to

lead to comparable results as compared to manual co-

registration ones (Houck & Claus, 2020). Participants’ head

shapes were co-registered to a “standard” model created by

the combination of 40 MRI scans of real brains (fsaverage;

Fischl, 2012). For each subject, co-registration was performed

in 4 steps. In step 1, we loaded the max-filtered head-shape

points (HSP) and defined the fsaverage template from Free-

surfer (Fischl, 2012). In step 2, we estimated three fiducial

points from the fsaverage template and aligned them to the

fiducials in the digitized HSP. In step 3, the outcome was

refined using the Iterative Closest Point (ICP; Besl & McKay,

1992) algorithm with a small number of iterations (n ¼ 6).

Any point in the HSP with a distance from the scalp above

5mmwas considered an outlier and omitted. Finally, in step 4,

ICP was performed once again, with a higher number of iter-

ations (n¼ 20) for the final co-registration fit. Headmodels and

sensors were displayed at the end of any stage for visual in-

spection, to evaluate the quality of the fit and make sure that

the headmodel was comprised within the sensors and did not

fall outside. For three participants, co-registration was

https://doi.org/10.1016/j.cortex.2024.09.020
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successful after step 3 andworsened at step 4, whichwas then

omitted. For one participant, co-registration was effective at

step 2, so steps 3 and 4 were both ignored. Finally, for one

participant, co-registration failed at all steps, thus the subject

was excluded from further data analysis.

The co-registered head models were used to calculate the

forward solution.

First, we computed the single-layer boundary element

model (BEM (Akalin-Acar & Gençer, 2004); to create a BEM

solution for the fsaverage template brain. Second, to define

the position and orientation of the sources, we create a deci-

mated dipole grid on the white matter surface using an ico-

sahedron subdivision (ico-4) which included 2562 sources for

hemispheres. Assuming a cortical surface of 1000 cm2, the

approximate spacing between the grid pointswas 6.2mm, and

each voxel occupied 39 mm2 of the cortical surface.

To control for field patterns related to noisy sources (e.g.,

human-based or environmental), we weighted each channel

by a full noise covariance matrix computed on the nearest

empty room recording. That is, prior to any daily data acqui-

sition, 2 min of empty room measurements (data collected

with no subject) were recorded in the MEG; depending on the

date of testing, the closest measurement was found for each

subject and preprocessed in the exact sameway (max filtered;

high-pass filter: 0.1 Hz; low-pass filter: 40 Hz). The Noise

covariance matrix and the true rank were computed from the

empty room measurement and used to calculate the inverse

solution based on the L2 Minimum Norm Estimates.

Finally, Source Time Courses were estimated by applying

the inverse operator (lamba¼ 2; SNR ¼ 3; method¼minimum

norm estimates (MNE); H€am€al€ainen & Ilmoniemi, 1994) on the

evoked data and pre-stimulus periods (from �100 to 0 ms)

were cropped to reduce computational space and time (as

statistics were performed at latencies above 0; see Statistical

Analyses below).

4.4. Statistical Analyses

Since repeated sounds were always identical in both Local

features and Summary Statistics, assessing whether the re-

sponses to the novel sounds differed between experiments

would reveal if and which brain correlates discriminate based

on local features and summary statistics changes. Thus, we

measured statistical differences between experiments (Local

vs. Summary) and within duration (Short 40 ms and Long

478 ms) for the evoked response to the novel sounds in source

space.

Statistics were assessed using eelbrain, a Python toolkit

(Brodbeck et al., 2022).

Source estimates were imported in eelbrain from MNE-

Python for each subject, experiment, and duration. A

cluster-based permutation test for paired sampleswas used to

test for differences in source activation at any time-point

(Maris & Oostenveld, 2007). The procedure works as follows.

We ran a two-tailed t-test, with a critical alpha of .05 at all

latencies (from 0 to 500 ms) and all sources. To form spatial

clusters, an adjacency matrix is computed based on the fsa-

verage template brain and the ico-4 source space. To address

the multiple comparison problem, we used a threshold-free

cluster enhancement procedure (TFCE; Smith & Nichols,
2009). For every permutation of the data (n ¼ 10,000), we

computed a parameter map and processed it with the cluster

enhancement algorithm in steps of .1. Subsequently, for each

permutation, the maximum value of the test statistic was

measured across thewholemap to obtain the distribution of t-

values under the null hypothesis. Based on its position in the

distribution, each data point in the parametermap is assigned

a p-value. To avoid considering spurious results, we assumed

a stringent spatiotemporal criterion, and accepted only clus-

ters of activation perduring at least 20 ms and including a

minimum of 20 sources.
5. Results

In this study, we addressed whether, depending on sound

duration, a change in specific sound properties (local details or

summary statistics) engaged different brain correlates. That

is, we tested if the auditory cortex is organized in sub-regions

for selective computations based on the temporal resolution

at which the sound change has occurred. To this aim, we

compared the response to novel sounds between Local Fea-

tures and Summary Statistics experiments within short

(40 ms) and long (478 ms) sound duration. Any dissociation

according to sound duration would indicate that the brain is

endowed with distinct neural substrates for the processing of

local details and summary statistics. This was clearly sup-

ported by our findings.

Prior to performing analysis in source space, as a control

analysis, we run a spatiotemporal cluster-based permutation

(Maris & Oostenveld, 2007) comparing experiments (Local vs.

Summary) within each sound duration (40 or 478 ms; see

Supplementary Information). In Fig. 2, we report the time

course of the evoked response -Global Field Power (GFP)- to

novel sounds of planar gradiometers-at sensors compatible

with auditory cortex activations in the right and left hemi-

spheres. These plots highlight the overall higher contribution

of right auditory regions in response to novel sounds. This

difference is especially pronounced for Local Features at short

sound duration (40 ms) and Summary Statistics at long ones

(478 ms; see Fig. 2).

Multiple regions of the right hemisphere were selectively

engaged for Local Feature changes occurring with short

duration. Indeed,when comparing the brain response to novel

sounds between Local Features and Summary Statistics ex-

periments for short sound duration (40 ms), we found a large

cluster of higher activation for the Local Features experiment

selectively in the right hemisphere (P < .001; max t-

value ¼ 8.06; Cohen's d ¼ 1.22; Fig. 3A). The cluster started

148 ms after stimulus onset, lasted until 224 ms (duration:

76 ms), and spatially comprised multiple (177) voxels of

cortical sources. The cluster involved voxels embedded in

several cortical regions in the auditory cortex, specifically: the

superior temporal sulcus (STS) and gyrus (STG), the anterior

transverse temporal gyrus (Heschl gyrus; HG), the planum

temporale (PT), and the posterior segment of the lateral

fissure. Other regions outside of the auditory cortex included:

the central operculum, the angular and supramarginal gyri

(AG and SMG), the postcentral and central sulci, the superior

segment of the circular sulcus of the insula, the Jensen sulcus,

https://doi.org/10.1016/j.cortex.2024.09.020
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Fig. 2 e Evoked response at the sensor level. Global Field Power (GFP) of the evoked response to novel sounds of planar

gradiometers in the left and right auditory cortex are plotted separately for each experimental condition (Local Features and

Summary Statistics at 40 and 478 ms). The plots show that the right auditory cortex is more engaged in auditory

discrimination compared to the left one, especially for Local Features at short duration and Summary Statistics at long one.

Shaded areas represent a confident band of 95% (the threshold for a bootstrap estimation of the confidence interval).
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the interparietal sulcus, and transverse parietal sulci (Table

1A).

Conversely, changes associated with Summary Statistics

occurring for long sounds (478 ms) engaged both left and right

hemispheres. For sounds of this duration, two large regions

were significantly more responsive to novel sounds in the

Summary Statistics experiment as compared to the Local

Features one: (i) one in the right hemisphere and (ii) the other

in the left one (Fig. 3B and C).

(i) The cluster found in the right hemisphere (P < .001; t-

max ¼ 6.62; Cohen's d ¼ 1.11) perdured from 180 to

312 ms after stimulus onset (duration ¼ 132 ms) and

comprised 589 voxels of cortical sources. Some of the

sources overlapped with the cluster observed in

response to local features at the short duration, specif-

ically around the primary auditory cortex, Heschl gyrus

(HG), some temporal auditory regions such as STG, PT,
STS, the lateral fissure, and other areas such as the

Jensen sulcus, AG, SMG, the circular sulcus of the insula,

the interparietal and transverse parietal sulci, and the

central and postcentral sulci. The other non-

overlapping regions comprised frontal areas, including

portions of the superior, middle, and inferior frontal

sulci (S-M-IFS) and gyri (S-M-IFG), and the inferior part

of the precentral sulcus and gyrus; some temporal re-

gions such as the transverse temporal sulcus, the mid-

dle temporal gyrus (MTG), the lateral fissure, and

several parts of the insular cortex and central opercu-

lum; finally, some posterior regions in the occipital lobe

(Table 1B).

(ii) The other large cluster was found in the left hemisphere

(p-value ¼ .004; t-max ¼ 5.77; Cohen's d ¼ 1.13; Fig. 3C).

The left localized cluster started 168 ms after stimulus

onset and lasted until 332 ms (duration ¼ 164 ms). It

included 289 voxels of cortical space, located mainly

https://doi.org/10.1016/j.cortex.2024.09.020
https://doi.org/10.1016/j.cortex.2024.09.020


Fig. 3 e Clustersofdifferentactivationbetweenexperimentsat short (40ms) and long (478ms)durations. (A) Source localization

of regionswhose activitywashigher for Local Features as compared to Summary Statisticswhen soundswere short (40ms). (B)

Source localization of regions in the right hemisphere whose activity was higher for Summary Statistics than Local Features

when sounds were long (478 ms). (C) Source localization of regions in the left hemisphere in which activity was higher for

SummaryStatistics thanLocal Featureswhensoundswere long (478ms). Foreachfigure (A, B, orC), the top left panel shows the

t-values of significant differences between the conditionsplotted on the brain surface, at the latencies displayed below.The top

right panel represents the time course of activation (computed with MNE) extracted from the selected regions of interest

pertaining to the cluster of activation shownon the left for bothexperiments (Local or Summary). Shadedareasare the standard

error of themean (SEM). Gray lines represent latencieswhere activations significantly differ between experiments (P< .05). The

bottom panel displays the spatiotemporal course of cluster t-maps plotted on the brain surface at latencies displayed below.
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Table 1 e List of cortical regions in the clusters.

A. Cortical regions in RHCluster for short (40ms)
sounds

% of
voxels

Planum temporale or temporal plane of the superior

temporal gyrus *

88.24

Supramarginal gyrus * 74.24

Posterior ramus (or segment) of the lateral sulcus (or

fissure) *

62.5

Postcentral sulcus * 39.68

Subcentral gyrus (central operculum) and sulci 37.14

Sulcus intermedius primus (of Jensen) * 36.36

Lateral aspect of the superior temporal gyrus * 30.95

Superior temporal sulcus (parallel sulcus) * 12.61

Postcentral gyrus * 12.5

Anterior transverse temporal gyrus (of Heschl) * 12.5

Central sulcus (Rolando's fissure) * 8

Superior segment of the circular sulcus of the insula * 7.69

Angular gyrus * 1.92

Intraparietal sulcus (interparietal sulcus) and

transverse parietal sulci *

1.49

B. Cortical regions in RH cluster for long (478 ms)

sounds

% of voxels

Anterior transverse temporal gyrus (of Heschl) * 100

Planum temporale or temporal plane of the superior

temporal gyrus *

100

Transverse temporal sulcus 100

Posterior ramus (or segment) of the lateral sulcus (or

fissure) *

100

Long insular gyrus and central sulcus of the insula 100

Subcentral gyrus (central operculum) and sulci 100

Vertical ramus of the anterior segment of the lateral

sulcus (or fissure)

83.33

Supramarginal gyrus * 81.82

Superior segment of the circular sulcus of the insula * 71.79

Inferior part of the precentral sulcus 68.97

Opercular part of the inferior frontal gyrus 68.18

Sulcus intermedius primus (of Jensen) * 63.64

Superior temporal sulcus (parallel sulcus) * 62.18

Inferior frontal sulcus 58.33

Lateral aspect of the superior temporal gyrus * 52.38

Inferior segment of the circular sulcus of the insula 48.57

Central sulcus (Rolando's fissure) * 48

Short insular gyri 45.45

Angular gyrus * 44.23

Postcentral gyrus * 41.67

Postcentral sulcus * 41.27

Superior frontal sulcus 36.17

Middle frontal gyrus 35.38

Precentral gyrus 28.81

Triangular part of the inferior frontal gyrus 26.67

Superior occipital sulcus and transverse occipital

sulcus

21.74

Anterior segment of the circular sulcus of the insula 21.43

Intraparietal sulcus (interparietal sulcus) and

transverse parietal sulci *

16.42

Middle frontal sulcus 12.9

Middle occipital gyrus (lateral occipital gyrus) 6.06

Middle temporal gyrus 5.77

Superior frontal gyrus

C. Cortical regions in LH cluster for long (478 ms)

sounds

% of voxels

Subcentral gyrus (central operculum) and sulci 92.68

Inferior part of the precentral sulcus 87.1

Anterior transverse temporal gyrus (of Heschl) 54.55

Supramarginal gyrus 46.88

Table 1 e (continued )

A. Cortical regions in RHCluster for short (40ms)
sounds

% of
voxels

Precentral gyrus 45

Posterior ramus (or segment) of the lateral sulcus (or

fissure)

42.42

Central sulcus (Rolando's fissure) 41.77

Superior segment of the circular sulcus of the insula 40.43

Opercular part of the inferior frontal gyrus 40

Long insular gyrus and central sulcus of the insula 33.33

Sulcus intermedius primus (of Jensen) 33.33

Inferior segment of the circular sulcus of the insula 30.77

Superior part of the precentral sulcus 28.57

Transverse temporal sulcus 25

Postcentral gyrus 21.82

Lateral aspect of the superior temporal gyrus 20.93

Postcentral sulcus 20.29

Short insular gyri 14.29

Planum temporale or temporal plane of the superior

temporal gyrus

14.29

Middle frontal gyrus 9.23

Inferior frontal sulcus 8.11

Superior temporal sulcus (parallel sulcus) 4.67

Angular gyrus 4.26

Superior frontal sulcus 2.17

Table 1. Extended labels (from Destrieux et al., 2010) of cortical

regions associated with the voxels in the three clusters with higher

activation in Local Features for short (40 ms) sound duration and

Summary Statistics for long (478 ms) sound duration. For each re-

gion, we specify the percentage of cortical surface that was

included in the cluster (for instance, when the percentage of voxels

is 100, the entire surface of the parcellated area is embedded in the

cluster; when it is 50, only half of the voxels in that specific region

belongs to the cluster, and so on). Stars * indicate the regions in the

right hemisphere that are shared between the first and second

clusters (A and B; See also Fig. 3A and B). Cortical regions are labeled

using the parcellation atlas available in the FreeSurfer package

(Freesurfer v7.3.2, aparc.a2009s; Destrieux et al., 2010).
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over the frontal lobe. In particular, the activation

differed mostly over the SFS, IFS, IFG, MFG, the pre-

central, central, and postcentral sulci and gyri, while the

cluster included fewer voxels in the temporal and pa-

rietal lobes, mainly over smaller portions of STS, STG,

PT, HG, the transverse temporal sulcus, the Jensen sul-

cus, the insular cortex, the lateral fissure, the central

operculum, and the SMG and AG (Table 1C).

The percentage of significant voxels for each region is

displayed in Table 1. Noticeably, the cluster in the right

hemisphere observed in response to summary statistics (long

sounds) covered 100% of the cortical space in the primary

auditory cortex (see Table 1A), suggesting that processing a

change in summary statistics compared to one in local fea-

tures requires a greater engagement of the right auditory

cortex. Importantly, the areas in the right hemisphere

responding to changes in local features when sounds were

short and summary statistics when sounds were long, over-

lapped over auditory regions (Table 1A, B). That is, to some

extent, the same regions in the right auditory cortex seemed

to be involved in local features or summary statistics pro-

cessing depending on sound duration. However, brain
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responses to summary statistics (long sounds) were more

extended and involved anterior temporal areas and frontal

regions as well.

The latencies of the two effects observed in the right

hemisphere were also different, with the response to local

features changes (short sounds) preceding in time (32 ms

before) the response to summary statistics with long sounds

(Fig. 1). These findings suggest that the right auditory cortex is

differently engaged by one computation or the other based on

sound duration; moreover, detecting a change in summary

statistics, compared to local features, engages a broader

network of frontotemporal regions outside auditory core ones.

Conversely, the left hemisphere was involved selectively in

the processing of summary statistics at long durations. The

response to summary statistics predominantly involved

frontotemporal areas and to a less extent primary auditory

regions. When considering its temporal dynamic, the left

hemisphere response to summary statistic changes (Fig. 3C)

started somewhere in between the responses observed for

local and summary statistics changes in the right hemi-

spheres (Fig. 3A and B) and lasted longer.

Overall, these findings suggest that strong hemispheric

asymmetries exist in processing Local or Summary acoustic

information and that these computations rely on partially

different brain sources. Specifically, when sound excerpts

were short, a change in local features, with unchanged sum-

mary statistics, involved only the right hemisphere, at the

level of the auditory cortex (Fig. 3A). As more information was

provided (e.g., stimulus duration increases), a change in

summary statistics (compared to local features only) elicited

higher bilateral responses in a broad network of fronto-

temporal areas (Fig. 3B and C).
6. Discussion

This study investigated whether the human brain is endowed

with specialized neural architectures for the computation of

local and summary statistics of stationary sounds.

We employed a validated protocol (see Berto et al., 2022)

and theMEG to estimate cortical sources of these two auditory

modes of functioning. We presented sound streams

composed of triplets of sounds, with the first two elements

being repeated and the third systematically varying for either

its local features or summary statistics. Specifically, we

employed synthetic sound excerpts paired according to their

temporal or summary statistics similarity. Using the same

original white noise sample for the synthesis led to synthetic

outcomes with similar temporal amplitude modulations,

disregarding the imposed generative statistics (Fig. 1B and C,

left panel). As auditory statistics are averaged in time, when

sounds were short, their statistics similarity was influenced

by temporal local features; as sound duration increased,

summary statistics similarity of excerpts including different

generative statistics decreased, even when their input white

noisewas the same (Fig. 1C, right panel). Thus, sound duration

represents a crucial factor for measuring auditory discrimi-

nation based on local features or summary statistics. Sincewe
expected local and summary processing to rely on different

sound properties (i.e., envelope and time-averaged statistics,

respectively), we hypothesized they could also rely on

different auditory networks.

Our findings confirmed this prediction. We measured

greater activation for changes in local features than in sum-

mary statistics, in short sounds. The opposite was found for

long sounds, with higher activation in response to a change in

summary statistics compared to local features. This clear

dissociation suggested that discriminative responses to sound

changes are, at least partially, guided by stimulus properties

measurable at high or low temporal resolutions. Specifically,

when little information is presented, the processing of local

features subtends to detecting sound changes; as sound

duration increases, local features become less relevant, and

deviant discrimination relies on summary statistics. Inter-

estingly, these differences in activation do not require an

explicit task, are engaged by a systematic, regular change in

incoming stimulation, and represent a general mechanism of

encoding the selective type of sound change. Given the large

variability of sound textures employed to generate triplets,

this effect could not be stimulus-specific. The only constant

was the change in local features or statistics between novel

and repeated sounds which was ensured by using synthetic

sounds.

6.1. Functional cortical specialization for local features
and summary statistics

Source localization highlighted partially different correlates in

response to sound changes based on local features or sum-

mary statistics.

For short sounds, a change in local features elicited higher

activations selectively in the right hemisphere, involving

several regions, including the primary auditory cortex (HG),

the PT, the middle portion of the STG, and the SMG (Fig. 3A;

Table 1A). The higher response in these areas was sustained

for several milliseconds (148e224 ms) and suggested an

increased sensitivity of the right auditory cortex to changes in

the local details of brief sound excerpts. A recent study high-

lighted the contribution of both HG and STG in the perceived

dissimilarity of sounds and the active role of these regions in

processing fine-grained acoustic details (Giordano et al., 2023).

Interestingly, in the context of complex-sounds perception,

the PT has been described as a computational hub devoted to

segregating spectrotemporal features from complex auditory

patterns (Griffiths & Warren, 2002). This includes computa-

tions relying on basic acoustic properties, such as amplitude

(Giraud et al., 2000) and frequency (Hall et al., 2002) modula-

tions. Finally, the right SMG was appointed as part of a

network involved in auditory memory (Jerde et al., 2011) and

rhythmic perception (Schaal et al., 2017). Higher activations in

the right PT and SMG may reflect the perception of a pattern

influenced by the acoustic dissimilarity between repeated and

novel sound excerpts.

Conversely, for long sounds, both hemispheres were more

responsive to the processing of summary statistics changes.

Such differential activation involved a broad frontotemporal
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network comprising several auditory regions of the right

hemisphere (Fig. 3B; Table 1B). Compared to the right hemi-

sphere activation favoring local features changes in short

sounds, the one favoring summary statistics at long durations

involved more anterior and ventral temporal regions. Previous

evidence showed that regions located posterior-laterally to HG

tend to encode broadband spectral information with high

temporal precision; conversely regions located more antero-

ventrally preferably process fine-grained spectral information

at lower temporal resolutions (Giordano et al., 2023; Kumar

et al., 2007; Santoro et al., 2014). As more information is accu-

mulated, spectral content is summarized in time, and thus, the

difference in activation between local and summary statistics

extends to the anterior and ventral parts of the auditory cortex.

The activation also spread towards the posterior parts of STS,

compatibly with the emergence of abstraction mechanisms

(Warren et al., 2005). The STG is part of the ventral stream

(“what” pathway) for sound recognition; the posterior part,

especially laterally to HG, is bilaterally activated by environ-

mental and natural sounds (DeWitt & Rauschecker, 2012;

Doehrmann et al., 2008). Moreover, different groups of neurons

in STG may be responding to selective properties of sounds;

such activations are then processed in higher-order areas

(possibly ventrolateral prefrontal cortex; Hjortkjær et al., 2018)

to resolve the category-specificity of the information (Giordano

et al., 2023). Coherently, not only we observed frontal activa-

tions in the right hemisphere but also in the left one.

The left hemisphere was more engaged for a change in

summary statistics, selectively at long sound duration. Such

activation comprised fewer auditory regions and more areas

located in the inferior frontal lobe (Fig. 3C). Inferior frontal

regions, known as “auditory-related areas,” have been asso-

ciated with sound-object selection and are responsive to both

targets and non-targets sounds, if relevant (Steinschneider

et al., 2014). Previous studies suggested that local informa-

tion supports sound differentiation while the emergence of

summary statistics may support sound recognition (e.g., Zhai

et al., 2020). In the same vein, the automatic tuning to sys-

tematic changes in generative statistics would also signify a

systematic change in sound category and involve a network of

activation spreading towards non-core auditory regions and

frontal auditory-related areas.

Overall, these findings showed that the processing of

acoustic changes at high or low temporal resolutions relies on

overlapping as well as on different brain regions suggesting a

functional specialization in the auditory pathway for the

processing of local and summary representations.

6.2. Hemispheric specialization of auditory
computations at high and low temporal resolution

Previous studies investigated hemispheric specialization in

auditory processing (i.e., Flinker et al., 2019; Zatorre & Belin,

2001). Auditory regions of one hemisphere can be more sen-

sitive to specific sound properties than their contralateral

homolog. The left hemisphere is predisposed to processing

temporal modulations, while the right one spectral informa-

tion (Zatorre & Belin, 2001). Other studies showed that the left

hemisphere specialized in processing information at high
temporal resolutions while the right hemisphere at slower

temporal rates (Flinker et al., 2019). A recent study in mice

demonstrated that activations of single neurons in the right

auditory cortex persist longer than in the left one (Neophytou

et al., 2022). This could underlie a right hemispheric speciali-

zation in retaining brief auditory signals in memory, consis-

tent with previous findings in humans showing longer

integration windows in the right STG (Arnal et al., 2015).

Hemispheric auditory specializations emerged in areas

outside the core auditory regions and the temporal lobe (e.g.,

SMG Schaal et al., 2013, 2017).

By using a systematic synthesis approach, we could tackle

specific auditory computations (local and summary process-

ing) while generalizing to a vast category of stimuli, dis-

regarding the idiosyncratic characteristics of each sound (i.e.,

pitch, acoustic frequency). We showed that the right and left

hemispheres are engaged differently depending on which

computation is involved in the discrimination. When sounds

were short, the processing of local features was favored and

involved auditory regions located in the right hemisphere;

when sounds were long, higher activations were observed for

a change in summary statistics compared to local features in

both hemispheres.

When both hemispheres are involved in a function in the

same way, it indicates functional symmetry, which would

suggest that both hemispheres contribute equally or simi-

larly to that cognitive process. In the context of auditory

discrimination, functional symmetry may have several im-

plications. For instance, both hemispheres could be equally

involved in sound processing. However, in our specific case,

we report a case of functional asymmetry, when one hemi-

sphere of the brain is more heavily involved or specialized

than the other as a function of the features underpinning

auditory discriminations. That is, regions in the right hemi-

sphere involved in local feature processing of short sounds

were also involved in processing summary statistics changes

in long sounds, suggesting their computational role adapted

to sound duration. Conversely, the left hemisphere selec-

tively processed summary statistics at long duration; its

activation preceded the one in the right hemisphere and was

more sustained in time, suggesting it may reflect a mecha-

nism of selective attention. Hemispheric asymmetry may

have specific roles in auditory processing. Hemispheric

lateralization may suggest that each hemisphere has

different cognitive functions that it specializes in, while the

other hemisphere supports or complements its function.

Several studies have previously documented right hemi-

spheric dominance for auditory discrimination. For instance,

the right auditory cortex contributes significantly more than

the left one in tasks involving fine auditory temporal dis-

criminations (De Sanctis et al., 2009), audio-spatial percep-

tion (Dietz et al., 2014), and comparison between stimuli and/

or target detection tasks (Gilmore et al., 2009). Additionally,

right-hemispheric dominance has been documented for

auditory steady-state responses (ASSR) when participants

hear periodic amplitude-modulated sequences of tones (Ross

et al., 2005).

The findings described here add to the list of auditory

functions that are right lateralized and suggest a predominant
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role of the right hemisphere in discriminating local features

and summary statistics information in stationary sounds.

This highlights the specialized function of the right hemi-

sphere, potentially indicating its superior ability to analyze

subtle differences in sound frequencies, tones, and patterns.

Importantly, we showed that the right hemisphere indeed

dominates in processing local features, but as the duration

and complexity of information increase (for example, changes

in summary statistics), the left hemisphere also supports

processing at the level of frontal regions, thereby com-

plementing automatic auditory discrimination functionality.

Supporting this hypothesis, left hemispheric specialization in

the attentional selection of fine-grained acoustic information

has previously been reported (e.g., Bidet-Caulet et al., 2007).

Altogether, these findings suggest that hemispheric

asymmetry for local features and summary statistics pro-

cessing of stationary soundsmay reflect complementary roles

of the two hemispheres, with each hemisphere contributing

uniquely to acoustic processes at different levels of process-

ing. The right hemisphere may be more involved in general

operations subtending to both local and summary computa-

tions, such as features retention and their subsequent inte-

gration into compact representations. On the other hand, the

left hemisphere may have specialized at a higher level of

processing. For instance, top-down regulations to guide the

averaging of statistics, evaluating whether features belong to

a different sound-object when a change in statistics is detec-

ted, or, in general, selecting which computations to entrain

(local or summary) based on monitoring the amount of

entering information.

The asymmetry in auditory processing may have signifi-

cant implications for understanding how the brain processes

language, music, and other auditory stimuli. Moreover, it

underscores the complexity of hemispheric specialization in

perception and cognitive functioning, highlighting the

importance of further research to elucidate the underlying

neural mechanisms driving this phenomenon.
7. Conclusion

Our results revealed a clear dissociation in the processing of

local features and summary statistics according to sound

duration. These findings allowed us to uncover the neural

regions associated with these two modes of acoustic repre-

sentation of stationary sounds. We highlighted how the right

hemisphere developed a similar architecture to perform

sound discrimination based on local features and summary

statistics but possesses the ability to adapt its computations

based on sound duration. On the other hand, the left hemi-

spherewas selectively involved at a higher level of processing.

By combining computational auditory modeling, a systematic

approach to synthesizing sounds, and the measurement of

brain activity using MEG, we provide evidence concerning the

foundations of different sensory computations and their

associated cortical networks.

Overall results revealed that the human brain is endowed

with partially overlapping and partially specialized neural

architectures for the computation of local and summary sta-

tistics of stationary sounds.
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