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In model-based control design one often has to describe the plant by a linear model. Deriving such a model poses issues of
parameterization, estimation, and validation of the model before designing the controller. In this paper, a direct data-driven control
method is proposed for designing controllers that can handle constraints without deriving a model of the plant and directly from data.
A hierarchical control architecture is used, in which an inner linear time-invariant or linear parameter-varying controller is first
designed to match a simple and a-priori specified closed-loop model. Then, an outer model predictive controller is synthesized to
handle input/output constraints and to enhance the performance of the inner loop. The effectiveness of the approach is illustrated
by means of a simulation and an experimental example. Practical implementation issues are also discussed.

Index Terms—Data-driven control, Linear parameter-varying systems, Constrained control, Model predictive control.

I. INTRODUCTION

Most model-based control design methods rely on the
availability of a linear dynamical model of the open-loop
process. Even in those applications where gathering data to
identify and validate a model of the plant is not costly nor
time-consuming, finding a mathematical linear time-invariant
(LTI) or parameter-varying (LPV) description of the plant
which is good for control design purposes is not an easy task.
In fact, when deriving a model of the plant, one always trades
off accuracy versus complexity, and, most of the times, one is
not able to decide a priori how accurate the model should be
to achieve a satisfactory closed-loop performance.

Recently, a data-driven method has been proposed for di-
rectly designing LTI/LPV controllers from data, thus avoiding
to parametrize, identify and transform an LPV model of
the open-loop system [1]. This approach sounds appealing
and shows many interesting features (e.g., the mapping with
respect to the scheduling signal does not need to be defined
a-priori). However, this approach cannot be always consid-
ered as a competitor of other state-of-the-art control design
techniques, since constraints on input and output variables
cannot be taken into account. Furthermore, being a model-
reference design method, it requires the desired closed-loop
model to be defined, and the choice of an adequate (i.e.,
practically achievable) reference model without knowing the
process dynamics may not be easy. These are well-known and
open problems in the direct data-driven control literature, both
in the LTI and in the LPV framework [2].

In this paper, we propose an extension of the data-driven
control design method in [1]. The controller is split into two
components, organized in a hierarchical fashion: an inner con-
troller, which accounts for matching a given simple reference
model, and an outer Model Predictive Controller (MPC) acting
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as a command governor [3], [4], aiming at enhancing the
closed-loop performance and ensuring that the constraints are
not violated. The main rationale behind this architecture is that
the reference model for the inner loop is chosen only to reduce
model complexity and uncertainty, but it is decoupled from
the desired closed-loop behavior, which is instead taken care
of by the outer part of the controller. Hence, the problem of
selecting an achievable reference model becomes less critical
than in [1], in that low-performance models are more easily
achieved than the desired closed-loop behavior. Moreover,
such low-performance models are often achieved by low-
order controller structures, which eases the identification of
the inner control law from data. Then, the outer model-
based controller manipulates the reference signal in such a
way that the constraints on inputs (rate and magnitude) and
outputs are fulfilled and closed-loop performance is improved,
without complicating the data-driven design procedure. We
will show that also the whole control design procedure does
not rely on the plant knowledge, according to the direct data-
driven philosophy of the method. To the best of the authors’
knowledge, this is the first work addressing the problem of
handling constraints in direct data-driven control design. The
overall control scheme can be seen as a predictive controller
for constrained systems directly designed from data.

The effectiveness of the hierarchical control architecture
is illustrated by means of two examples: (i) the simulation
case study of [1], which best highlights the improvements
with respect to [1]; (ii) an experimental case study concerning
the control of an RC circuit with switching load, to test the
performance of the method when dealing with real-world data.

Other design procedures for two-degree-of-freedom control
architectures have been proposed in [5], [6], [7]. Nonetheless,
in [5] and [6], the objective is to exploit the two-degree
of freedom scheme to match both the sensitivity and the
complementary sensitivity functions in the Iterative Feedback
Tuning (IFT) and Virtual Reference Feedback Tuning (VRFT)
method, respectively. Instead in [7], the goal of one block is
to linearize the system around an operating point, while the
other control block is used to boost the performance of the
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linearized system. The latter contribution is closer to what is
proposed here, with the major differences that, in [7]: (i) the
controller is not derived directly from data but a model of the
system is first identified, (ii) the framework is deterministic
with prior assumptions on the boundedness of the noise, while
a stochastic setting is considered in this paper.

The paper is organized as follows. In Section II, the control
problem is formally stated and the additional requirements
with respect to [1] are discussed. The hierarchical architecture
of the proposed approach is introduced in Section III, and the
design of the inner and the outer controller is discussed. The
two case studies are illustrated in Section IV.

II. PROBLEM STATEMENT

Let the output signal y(t) ∈ R, t ∈ Z, be generated by an
unknown single-input single-output (SISO) system Gp, driven
by the manipulated input u(t) ∈ R, a measured exogenous
signal p(t) ∈ P ⊆ Rnp , and an unmeasured disturbance
w(t) ∈ Rnw . From now on, we assume np = 1 to keep the
notation simple. The system Gp is assumed to be bounded-
input bounded-output (BIBO) stable. Assume that a collection
of data DN = {u(t), y(t), p(t); t ∈ IN

1 }, IN
1 = {1, . . . , N}

generated by the system Gp is available.
We aim at synthesizing a controller such that any user-

defined (admissible) reference signal can be accurately tracked
by the output, without possibly violating the following con-
straints on inputs and outputs:

umin ≤ u(t) ≤ umax, ∆umin ≤ u(t)− u(t− 1) ≤ ∆umax,
(1a)

ymin ≤ y(t) ≤ ymax, ∀t ∈ Z, t ≥ 0. (1b)

Notice that the constraints on the input are generally imposed
by actuator limitations, while the constraints on the output
might reflect, for instance, performance specifications or safety
conditions. Considering such constraints is therefore of pri-
mary importance for many critical engineering applications.

Rather than attempting at deriving a model of the open-loop
plant Gp, we aim at designing a tracking controller directly
from the available data set DN .

III. A HIERARCHICAL APPROACH

The proposed control design approach relies on the hier-
archical (two degrees of freedom) architecture illustrated in
Fig. 1, which integrates:

• an inner linear controller Kp(θ) described by

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(g(t)− y(t)),
(2)

where

AK(p, t, q−1, θ) = 1 +

naK∑
i=1

aKi (p, t, θ)q−i, (3)

BK(p, t, q−1, θ) =

nbK∑
i=0

bKi (p, t, θ)q−i. (4)

Note that controller (2) is of LPV nature for maximum
generality. LTI controllers can be used by simply drop-
ping the dependence on the external signal p.
The dynamical order of controller Kp(θ), defined by
the parameters naK and nbK

, is a-priori specified by
the user, while aKi (p, t, θ) and bKi (p, t, θ) are nonlinear
(possibly dynamic) functions of the scheduling variable
sequence p and depend on the design parameter vector
θ. For instance, if the coefficient function aKi (p, t, θ) is
parametrized as a two-degree polynomial in p(t), i.e.,

aKi (p, t, θ) = θ
(i)
0 + θ

(i)
1 p(t) + θ

(i)
2 p2(t), (5)

the coefficients θ(i)0 , θ
(i)
1 , θ

(i)
2 are design parameters of the

inner controller Kp(θ), and thus they are elements of the
design parameter vector θ.
The inner controller (i.e., the parameter vector θ) is
designed to achieve a desired LPV (or LTI) closed-loop
behavior Mp, a-priori specified by the user and described
by the state-space model

xM (t+ 1) = ĀM (p, t)xM (t) + B̄M (p, t)g(t),
yd(t) = C̄M (p, t)xM (t),

(6)
where yd denotes the desired closed-loop output for a
given reference signal g. The controller parameters θ
achieving the chosen reference model Mp, as well as
the functional dependence on p, are estimated directly
from the training data set DN , without first identifying a
model for the plant Gp. Such a data-driven procedure for
LPV control design was originally introduced in [1], and
it will be reviewed in Section III-A.

• an outer linear model predictive controller, designed
based on the desired closed-loop model Mp. The MPC
controller selects, on-line and according to a receding
horizon strategy, the optimal reference supplied to the
inner closed-loop system in order to fulfill the con-
straints (1), thus acting as a reference governor. Besides
constraint fulfillment, the outer MPC enhances the per-
formance of the inner closed-loop system.

By merging the two controllers together in the above
hierarchical fashion, one can choose a low-demanding (e.g.,
with slow dynamics and low damping factor) inner closed-loop
behavior Mp, which is known to be easily achievable by the
inner controller Kp(θ) (for this, only a rough knowledge of
the process dynamics is required). The tasks of optimizing
the closed-loop performance and fulfilling the input/output
constraints are then left to the outer MPC, which can be
designed based on the (known) closed-loop dynamics Mp.

A. Inner controller design

The main ideas behind the direct data-driven approach
introduced in [1] and employed in this work to design the
inner controller Kp(θ) are briefly recalled here. The design of
the outer MPC-based controller is discussed in Section III-B.

Based on the available training data set DN , the objective
is to design Kp(θ) achieving a desired closed-loop behavior
Mp a-priori specified by the user and described by the state-
space equations (6). Unlike [1], no specific requirement on
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Fig. 1. The proposed hierarchical control architecture: the inner controller
Kp provides minimal tracking capabilities for the unconstrained system Gp,
whereas the outer MPC controller enhances the performance and guarantees
that the constraints are not violated. Kp is designed from data so that the
inner loop matches as much as possible Mp.

the performance of the (inner) closed-loop behaviour Mp

is needed, as the outer MPC will handle the performance
requirements. The only assumption that needs to be satisfied
by Mp is that such a behavior is practically achievable. This
assumption is barely satisfied when a closed-loop Mp with
high performance (e.g., systems exhibiting a high bandwidth
and a low overshoot) is chosen. In other words, the chosen
parametrization for Kp(θ) might not be flexible enough to
achieve the desired closed-loop behavior. It is then advisable
to impose a low-performance closed-loop behaviour Mp.

Remark 1 The above observation can be further clarified
by considering a simple LTI example. Consider a model
matching problem for a non-minimum phase plant, in which
the reference model does not contain the non-minimum phase
zeroes of the plant. If the desired bandwidth is high, it is well
known that the optimal controller will be likely to destabilize
the system in closed-loop [8]. However, a reference model
with a lower bandwidth could still be achieved, as far as the
non-minimum phase zeroes are left beyond the desired cut-off
frequency.

In the following, the operator M(p, t, q−1) will be used
as a shorthand form to indicate the mapping of g to yd via
the reference model Mp. Formally, M is such that yd(t) =
M(p, t, q−1)g(t) for all trajectories of p and g. Further, we
define the left inverse of M(p, t, q−1) as the LPV mapping
M†(p, t, q−1) that gives g as output when fed by yd, for any
trajectory of p, i.e., M†(p, t, q−1)M(p, t, q−1) = 1.1

Let ε = yd − y be the error between the desired and actual
output in response to g. According to Fig. 2, we have

g(t)=M†(p, t, q−1)yd(t)=M†(p, t, q−1)(ε(t)+y(t)), (7a)

AK(p, t, θ)u(t) = BK(p, t, θ)(g(t)− y(t)), (7b)

∀t ∈ IN
1 . Thus, the controller parameters θ are computed by

minimizing the 2-norm of the error ε subject to (7b)-(7a), i.e.,

min
θ,ε

1
N

∑N
t=1 ε

2(t)

s.t. AK(p(t), t, θ)u(t)=BK(p(t), t, θ)
(
M†(p(t), t)ε(t)

+M†(p(t), t)y(t)− y(t)
)

(8)

1For reference maps given in the state-space form (6), the left inverse
M†(p, t, q−1) can be computed as indicated in [1, Proposition 1].

with {u(t), y(t), p(t)} ∈ DN . Notice that problem (8) is a
purely (non-convex) data-based problem, independent of Gp.
By introducing the residual

εu(θ, t) = BK(p(t), t, θ)M†(p(t), t)ε(t) =

= AK(p(t), t, θ)u(t)−BK(p(t), t, θ)(M†(p(t), t)y(t)− y(t)),

the original (nonconvex) problem (8) is replaced with the
following (convex) problem

min
θ

1

γ
∥θ∥2 + 1

N

N∑
t=1

|AK(p(t), t, θ)u(t)

−BK(p(t), t, θ)
(
M†(p(t), t)y(t)− y(t)

)∣∣2 , (9)

{u(t), y(t), p(t)} ∈ DN , where γ > 0 is a regularization
parameter. Besides the regularization term, the difference
between problems (8) and (9) is that the norm of ε(t)
is minimized in (8), while the norm of the filtered error
εu(θ, t) = BK(p(t), t, θ)M†(p(t), t)ε(t) is minimized in (9).
Unlike (8), the solution of (9) is given by simple least-
squares, provided that the controller coefficients aKi (p, t, θ)
and bKi (p, t, θ) are parametrized as linear functions of θ (e.g.,
like in (5)). However, since the residuals εu(θ, t) are not
white, the final estimate of the least-squares problem (9) is
not consistent (i.e., the final estimate θ is not guaranteed
to converge to the optimal parameters solving the original
problem (8)) and the bias can be significant in case of noise
w(t) of large variance. According to [1, Sec. 4], in order to
overcome this problem, the following slight modification of
problem (9), based on instrumental-variables, can be solved
instead of (9):

min
θ,εu

1

γ
∥θ∥2 + 1

N2

∥∥∥∥∥
N∑
t=1

z(t)εu(θ, t)

∥∥∥∥∥
2

, (10)

{u(t), y(t), p(t)} ∈ DN , where z(t) is the so-called instru-
ment, chosen by the user so that z(t) is not correlated with
the noise w(t). In [1, Proposition 2], it is shown that, in the
case w(t) is zero-mean and the output y(t) depends linearly
on w(t) (e.g., w(t) is a measurement noise), the final estimate
provided by (10) converges to the solution of problem (8).

In case the controller coefficients aKi (p, t, θ) and bKi (p, t, θ)
in (3) and (4) are parametrized as a linear combination of
known basis functions of p (like in (5)), problem (10) is
a parametric quadratic programming problem. In case the
dependence of aKi (p, t, θ) and bKi (p, t, θ) on p is not a-priori
specified, the dual version of (10) can be formulated and the
kernel-based approaches described in [1, Sec. 5.2] can be
used to compute a nonparametric estimate of the controller
coefficients aKi (p, t, θ) and bKi (p, t, θ). When Gaussian kernels
are used, only the hyper-parameter σ, representing the width
of the kernels κ(t, j) = e

(p(t)−p(j))2

σ is specified by the user.
In this case, the design parameter vector θ contains the kernel
width σ and all the parameters used to describe the coefficients
aKi (p, t, θ) and bKi (p, t, θ) in terms of kernels. The reader
is referred to [1, eqs. (55)] for a kernel representation of
aKi (p, t, θ) and bKi (p, t, θ).
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Fig. 2. Equivalent single-input two-output LPV model describing the rela-
tionship between the MPC output g(t) and the plant input and output signals.

B. Outer controller design

The outer MPC controller, acting as a reference governor,
is designed based on the equivalent single-input two-output
model M′

p depicted Fig. 2, where the dynamics of the inner
closed-loop system are now described by the (known) model
Mp. The augmented LPV model M′

p thus describes the rela-
tionship between g(t) and u(t), y(t). Within this framework,
the role of the inner LPV controller Kp(θ) is to transform
the behaviour of the unknown plant Gp into that of a known,
usually simpler, and a-priori specified LPV model Mp.

Consider the following, not-necessarily minimal, state-space
realization of M′

p ξ(t+ 1) = AM (p(t))ξ(t) +BM (p(t))g(t)[
y(t)
u(t)

]
= CM (p(t))ξ(t) +

[
0

DM (p(t))

]
g(t),

(11)
where the matrices AM (p(t)), BM (p(t)), CM (p(t)), DM (p(t))
can be derived from the description of the reference model
Mp (eq. (6)) and the inner controller Kp (eq. (2)).

Based on the prediction model (11), the outer MPC con-
troller is designed both to impose input/output constraints and
to possibly improve the tracking quality of the reference signal
r. As shown in the equivalent scheme of Fig. 2, only the
reference model Mp and the model of the controller Kp(θ)
are needed to predict the behaviour of u(t) and y(t). Then,
also in this second step, a model of Gp is not required.

The design method is as follows. By assuming that the state
vector ξ(t) of the inner-loop model Mp is fully accessible or,
alternatively, estimated from measurements of u, y and p, for
example by means of a linear time-varying Kalman filter, at
each time instant t, the reference tracking MPC problem can
be formulated, at each time instant t, as in (12), where Np and
Nu denote the prediction and control horizon, respectively, Qy ,
Qu, Q∆u, Qg , Qϵ are nonnegative weights, uref is a desired
input reference (that is typically generated from the output
reference r by means of static optimization), Vy , Vu, V∆u

are positive vectors that are used to soften the constraints, so
that (12) always admits a solution, that can be computed via
Quadratic Programming (QP).

In the MPC formulation (12), the following terms are
penalized: (i) the tracking error between the reference signal
r and the output y; (ii) the tracking error between the input
reference signal uref and the manipulated variable u; (iii) the
increments of the plant input u (the larger the weight Q∆u the
less aggressive the control action); (iv) the error between the

reference signal r and the MPC output g and (v) the violation
of the constraints. From a practical point of view, the goal
of the penalty on g − r is to guarantee that the reference
signal g of the inner closed-loop system does not differ too
much from the reference signal r, so as to avoid to excite
unmodeled (nonlinear) dynamics. In case p(t + k) is known
at time t for the future Np steps, we set p(t+ k|t) = p(t+ k)
and call the MPC formulation (12) Linear Time-Varying MPC
(LTV-MPC). In case future values of p are not known, we set
p(t+ k|t) ≡ p(t) and call the formulation Linear Parameter-
Varying MPC (LPV-MPC), in which the prediction model is
LTI but depends on p(t), and therefore the MPC controller
itself is LPV. Alternatively, the LPV MPC scheme in [9] can
be used to design a robust LPV MPC-based controller. In such
an approach, the future values of the scheduling variable are
assumed to be uncertain and to vary within a polytope.

When both the nominal reference model Mp and the inner
controller Kp are LTI, problem (12) is a more standard LTI-
MPC problem, that has computational advantages over LTV-
MPC and LPV-MPC, in that the QP problem matrices can
be precomputed offline, and an explicit MPC approach [10],
[11] may reduce the upper control layer to a piecewise affine
function. However, having M′

p LTI barely happens in practice,
in particular when the behavior of the true plant Gp is strongly
influenced by the scheduling signal p. In this context, even
when the selected reference model Mp is LTI, a parameter-
varying controller Kp may be needed to achieve the desired
behavior.

IV. CASE STUDIES

The effectiveness of the proposed hierarchical control ap-
proach is shown in this section on two case studies. The
first one is the simulation example (concerning the control
of a servo positioning system) used in [1] to illustrate the
direct data-driven LPV control method. The second case study
is an experimental application addressing the control of the
output voltage in a RC electric circuit with switching load.
These examples show that complex dynamics of quasi-LPV
and switching systems can be dealt with using the approach of
the paper. All computations are carried out on an i7 2.40-GHz
Intel core processor with 4 GB of RAM running MATLAB
R2014b, and the Model Predictive Control Toolbox [12] is
used to design the outer MPC.

A. Simulation case study: the servo positioning system

As a first case study, we consider the control of a voltage-
controlled DC motor with an additional mass mounted on the
rotation disc. In what follows, we show that the hierarchical
control structure in Fig. 1 may significantly improve the
results of [1], besides allowing us to impose constraints on
the input/output signals.

The mathematical model of the DC motor, used to simulate
the behaviour of the system, is represented by the continuous-
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min
{g(t+k|t)}Nu

k=1

Qy

Np∑
k=1

(y(t+ k|t)− r(t+ k))
2
+Qu

Np∑
k=1

(u(t+ k|t)− uref(t+ k))
2

+Q∆u

Np∑
k=1

(u(t+ k|k)− u(t+ k − 1|t))2 +Qg

Nu∑
k=1

(r(t+ k)− g(t+ k|t))2 +Qϵϵ
2 (12a)

s.t. ξ(t+ k + 1|t) = AM (p(t+ k|t))ξ(t+ k|t) +BM (p(t+ k|t))g(t+ k|t), k = 0, . . . , Np − 1 (12b)[
y(t+ k|t)
u(t+ k|t)

]
= CM (p(t+ k|t))ξ(t+ k|t) +

[
0

DM (p(t+ k|t))

]
g(t+ k|t), k = 1, . . . , Np (12c)

− Vyϵ+ ymin ≤ y(t+ k|t) ≤ ymax + Vyϵ, −Vuϵ+ umin ≤ u(t+ k|t) ≤ umax + Vuϵ, k = 1, . . . , Np (12d)
− V∆uϵ+∆umin ≤ u(t+ k|t)− u(t+ k − 1|t) ≤ ∆umax + V∆uϵ, k = 1, . . . , Np (12e)
g(t+Nu + j|t) = g(t+Nu|t), ξ(t|t) = ξ(t), g(t) = g(t|t) j = 1, . . . , Np −Nu (12f)

TABLE I
PHYSICAL PARAMETERS OF THE DC MOTOR [13]

. Description Value
R Motor resistance 9.5 Ω
L Motor inductance 0.84·10−3 H
K Motor torque constant 53.6·10−3 Nm/A
J Complete disk inertia 2.2·10−4 Nm2

b Friction coefficient 6.6·10−5 Nms/rad
M Additional mass 0.07 kg
l Mass distance from the center 0.042 m

time state-space equations α̇(τ)
ω̇(τ)

İ(τ)

=

 0 1 + sin(α(τ))
α(τ) 0

mgl
J

sin(α(τ))
α(τ) − b

J
K
J

0 −K
L −R

L


α(τ)
ω(τ)
I(τ)


+
[
0 0 1

L

]⊤
V (τ),

y(τ) =
[
1 0 0

]  α(τ)
ω(τ)
I(τ)

 ,

where V (τ) [V] is the control input voltage over the armature,
I(τ) [mA] is the current, α(τ) [rad] is the shaft angle and ω(τ)
[rad/s] is the angular velocity of the motor. The nomenclature
of the parameters characterizing the DC motor is reported in
Table I, along with their values. The output signal is observed
with a sampling time Ts = 10 ms.

To gather data, the plant is excited with a discrete-time
filtered zero-mean white noise voltage (followed by a zero-
order hold block) with Gaussian distribution and standard
deviation of 20 V. The input filter is a first order digital filter
with a cutoff frequency of 1.6 Hz. The output measurements
are corrupted by an additive colored noise w(τ) with zero
mean and variance such that the Signal-to-Noise Ratio (SNR),
namely the ratio between the signal and noise variances, is
19 dB. A second experiment with the same input is also
performed to build the instruments z(t) used in (10).

1) Design of the inner LPV controller Kp

A training data set DN with N = 1500 input/output
measurements is used to identify the inner LPV controller Kp

through the procedure discussed in Section III-A. The chosen
reference model Mp is described by the state-space equations:

xM (t+ 1) = 0.99xM (t) + 0.01g(t)
αM (t) = xM (t),

(14)

that is, the desired (inner) closed-loop behaviour Mp is
a simple discrete-time first-order LTI model, with a cutoff
frequency of about 6 Hz.

The chosen structure for the inner controller Kp is a fourth-
order LPV system with integral action, described by:

u(t) =
4∑

i=1

aKi (Π(t), θ)u(t− i) +
4∑

j=0

bKj (Π(t), θ)eint(t− j)

eint(t) = eint(t− 1) + (g(t)− y(t)) ,

where Π(t) = p(t − 1), with p(t) = α(t) = y(t) (i.e., the
output signal measurement is chosen as scheduling variable).

An a-priori parametrization of the coefficient functions
aKi (Π(t), θ) and bKj (Π(t), θ) is not specified, and Gaussian
kernels with width σ = 2.4 are used to estimate the functions
aKi (Π(t), θ) and bKj (Π(t), θ) achieving the desired closed-
loop behaviour Mp in (15) (the reader is referred to [1, Sec.
5] for an explicit representation of the coefficient functions
in terms of kernels). The hyper-parameter γ in (10) is set
to 180. The values of γ and the kernel width σ are found
through cross-validation as follows. A two-dimensional grid
search over the hyper-parameters σ and γ is performed. For
each value of σ and γ, a controller Kp is estimated and the
one providing the best performance, in terms of mean square
error, is chosen. The controller performance is measured on
a calibration set DNC = {u(t), y(t), p(t)}NC

t=1 of NC = 500
samples generated from an open-loop experiment, in terms of
its capabilities to reconstruct the (open-loop) input sequence
u(t) given the scheduling variable observations p(t) and the
virtual tracking error e(t) = M†y(t) − y(t). To give an
idea of the estimated p-dependent coefficients, the plots of
aK1 (Π(t), θ) and bK3 (Π(t), θ) are provided in Fig. 3.

Once Kp is designed, a closed-loop experiment is performed
using a piecewise constant signal as a reference excitation.
The response of the inner closed-loop system is plotted in
Fig. 4, and compared with the output yd = αM of the desired
closed-loop model Mp (computed for the same reference
excitation). The input voltage u(t) = V (t) provided by the
controller Kp and applied to the motor is plotted in Fig. 5.
Results in Fig. 4 show a good matching between the actual
output y and the output yd of the desired reference model
Mp. However, the closed-loop system exhibits slow dynamics,
with a 10-90% rise time of about 4 s and a 2%-settling time
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Fig. 3. Example 1: Estimated coefficient functions aK1 (Π(t)) (left) and
bK3 (Π(t)) (right).

TABLE II
CUT-OFF FREQUENCY OF DIFFERENT REFERENCE MODELS Mp VS MEAN

SQUARE (MS) OF THE DIFFERENCE BETWEEN DESIRED AND ACTUAL
CLOSED-LOOP OUTPUT. THE MS IS NOT REPORTED WHEN THE ACHIEVED

CLOSED-LOOP SYSTEM IS UNSTABLE.
Cut-off

frequency [Hz] 1 3 6 10 20
MS 0.0092 0.0571 0.1080 − −

time
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Fig. 4. Example 1: inner loop behaviour. Reference signal g(τ) (red), desired
step response of the shaft angle yd(τ) (solid blue) and actual controlled output
y(τ) (dashed black).

(defined as the time elapsed by the output to enter and remain
within a 2% error band) of about 6 s. Due to the limited
degrees of the freedom in the controller structure, it has not
been possible to achieve desired reference models Mp with
faster dynamics. A sensitivity analysis with respect to different
reference models Mp is reported in Table II, which shows
the cut-off frequencies of different desired reference models
Mp vs the mean squares (MS) of the differences between the
desired closed-loop output yd and the actual one y, for the
same reference signal in Fig. 4. Note that, on the one hand, as
the cut-off frequency of the reference model Mp decreases,
the mismatch between desired and actual closed-loop output
decreases, at the price of achieving slower dynamics. On the
other hand, for reference models with a cut-off frequency
larger than 10 Hz, the actual output y diverges.

2) Design of the outer MPC
Based on the chosen reference model Mp (which is used

to describe the behaviour of the inner closed-loop system) and
the designed LPV controller Kp, an outer MPC is designed
in order to achieve the following objectives: (i) improve the
performance of the inner loop, in terms of rise time and settling
time; (ii) enforce the following constraint on the input voltage
rate: V (tTs)− V ((t− 1)Ts) ≤ 0.2V, t = 1, 2, . . ..

The MPC horizons and the weights defining the MPC cost
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Fig. 5. Example 1: inner loop behaviour. Plant input V (τ) and input
increments ∆V (tTs) = V (tTs)− V ((t− 1)Ts).

function (12) are tuned through closed-loop simulation, by
using model Mp to simulate the behaviour of the inner closed-
loop system. We stress that this step is very application-
dependent, nevertheless no additional knowledge about the
process Gp is required, being totally based on the chosen
reference model Mp. The chosen values are equal to Np = 10,
Nu = 10, Qy = 8.5, Qu = 0, Q∆u = 0.2 and Qg = 1.7.

The response of the closed-loop system for the same refer-
ence signal used in Section IV-A1 is plotted in Fig. 6, while
the input voltage applied to the motor is plotted in Fig. 7. For
the sake of comparison, the output of the inner loop achieved
without the proposed hierarchical structure is plotted in Fig.
6. The obtained results show that, although constraints on the
variation of the input voltage are enforced, the hierarchical
MPC structure allows us to achieve a faster reference tracking
than the inner-loop system, with a 10-90% rise time of about
1.3 s (about 3x smaller than the inner-loop rise time) and a
2%-settling time of about 2.2 s (about 2.7x smaller than the
inner-loop settling time). The obtained results show that the
proposed hierarchical control architecture makes the choice
of the reference model Mp less critical than in [1]. In fact,
with the chosen structure of the controller K and the reference
model Mp, closed-loop systems with a cut-off frequency
larger than 6 Hz were not achieved by [1] (see Table II). On
the other hand, with the approach discussed in this paper, the
(low performance) reference model Mp is achievable with the
selected inner controller Kp. Thus, the inner controller design
phase does not guarantee the desired performance, but returns
an accurate model of the inner loop. The task of enhancing the
performance is then left to the outer MPC loop, whose design
is based on Mp. Within this setting, it cannot be stated a-priori
whether an LTI model is better than a LPV one, in that what
is important here is the matching between the desired and the
actual output for a given reference.

The computation time of the MPC layer is 18 ms (including
various MATLAB overheads) on the used i7 Intel processor,
based on the code generated by the Model Predictive Control
Toolbox, which is already in the order of magnitude of the
sampling time Ts = 10 ms. Although computational feasibility
is not the main aim of this case study, it is realistic to assume
that the controller could be implemented in real-time to control
the motor by adopting a fast C implementation of the QP
constructor of problem (12) and QP solver, see also [14].
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Fig. 6. Example 1: closed-loop behaviour. Reference signal r(τ) (red),
controlled output y(τ) (solid blue), and inner-loop output achieved without
outer MPC (dashed black).
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Fig. 7. Example 1: closed-loop behaviour. Input voltage V (τ) and input
increments ∆V (tTs) = V (tTs)−V ((t−1)Ts), constrained between ±0.2
V (dashed lines).

B. Experimental case study: switching RC circuit

We address the problem of controlling the output voltage of
an RC circuit with switching load. The aim of this example is
not to improve the current state of the art in electric network
control, but to show that the proposed method provides good
performance also in real-world setups, with a physical plant
and measurements gathered from real A/D converters.

The schematic of the network is shown in Fig. 8. An
Arduino UNO board is used for: (i) measuring the output
voltage Vout (namely, the output y(t)); (ii) generating the input
voltage Vin (namely, the input u(t)) applied to the circuit; (iii)
turning on and off the switch (whose driving signal is the
exogenous scheduling signal p(t)).

All the computations (including those related to inner and
outer control laws) are carried out in MATLAB. The data
are transmitted from the Arduino board to MATLAB, and
viceversa, via a serial communication at a rate of 9600 baud.

In order to gather the training set DN used to identify Kp,
the following open-loop experiment is performed:

• a piecewise-constant signal is applied as an input voltage
Vin(t) to the electronic circuit;

• an exogenous piecewise-constant Boolean signal s(t)
drives the switch as follows: s(t) = 1 for Switch ON,
and s(t) = 0 for Switch OFF.

• the voltage across the capacitor Vout(t) is measured at a
sampling time of Ts = 150 ms with an analog-to-digital

Vin

10 kΩ

100 µF

10 kΩ

Vout

Fig. 8. Example 2: schematic of the electronic circuit. The ON/OFF switch
is implemented using a MOSFET.
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Fig. 9. Example 2: open-loop experiment. Input voltage Vin(τ) (top panel);
switching signal s(τ) (middle panel); output voltage Vout(τ) (bottom panel).

(A/D) converter available on Arduino2. 2000 samples are
acquired. A second measurement of Vout(t) is taken from
another A/D converter to build the instruments.

The signals Vin(t), s(t) and Vout(t) are plotted in Fig. 9.
A new data set with 500 samples is also built for tuning the

hyper-parameters γ and σ via cross-validation.
1) Inner LPV controller design
The following first-order LTI model is chosen as a reference

model Mp for the inner loop:

xM (t+ 1) = 0.95xM (t) + 0.05g(t)
yd(t) = xM (t).

(15)

A first-order LPV controller Kp with an integral action and
static dependence on the scheduling variable p(t) is used, i.e.,

u(t) = aK1 (p(t− 1))u(t− 1) +
1∑

j=0

bKj (p(t− 1))eint(t− j)

eint(t) = eint(t− 1) + (g(t)− y(t)) ,

The parameters aK1 , bK1 , bK2 defining the LPV controller Kp

are identified through the procedure discussed in Section III-A.
The values of the hyper-parameter γ is 1000, while kernels
width is σ = 1.

2The A/D converter has an input rage of 0−5 V and a resolution of 10 bits.
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Fig. 10. Example 2: closed-loop experiment. Top panel: reference signal
(red); controlled output Vout(τ) (solid blue) and inner-loop output achieved
without the outer MPC (dashed black). Bottom panel: switching signal s(τ).

2) Design of the outer MPC

As the Arduino micro-controller can only provide voltage
signals within the range 0−5 V, such a constraint on the signal
u(t) = Vin(t) is taken into account while computing the MPC
law for generating g(t). Furthermore, the controlled output
y(t) = Vout(t) is also constrained to belong to the interval
[0, 5] V, representing the input range of the A/D converters
used in Arduino to measure the voltage Vout(t).

The following values of the MPC parameters Np = 3, Nu =
3, Qy = 0.45, Qu = 0Q∆u = 0 and Qg = 0.1 are used. These
parameters are tuned by means of closed-loop simulations,
using the reference model Mp as the model of the inner loop.

The performance of the designed controllers is then tested
by running a closed-loop experiment, with the trajectory of
the switching driver signal s(τ) plotted in Fig. 10 (bottom
plot). The obtained controlled output voltage Vout is shown
in Fig. 10 (top plot), along with the desired reference signal
r(τ). For the sake of comparison, Fig. 10 also shows the
output voltage Vout achieved by the inner closed-loop system,
for the same reference, in the absence of the outer MPC.
Such a comparison highlights an improvement in terms of
raising time for the system with MPC. The trajectory of the
input signal Vin is plotted in Fig. 11. The obtained results
show that the proposed hierarchical architecture allows us to
efficiently track piecewise constant reference voltages in an
RC circuit also in the presence of disturbance loads. Moreover,
the obtained closed-loop dynamics turn out to be faster than
the ones achieved by using only the inner LPV controller.
Notice that the sudden change of the output load causes only
a negligible oscillation on the controlled output voltage Vout

(see Fig. 10 at around τ = 90 s and τ = 320 s).
The CPU time required to compute the MPC law g(t)

at each time instant t ranges between 9 ms and 19 ms,
significantly smaller than the sampling time Ts = 150 ms.

time [s]
0 100 200 300 400

V
 [

V
]

0

2.5

5
input voltage

Fig. 11. Example 2: closed-loop experiment. Input voltage Vin(τ).

V. CONCLUSIONS

This paper has introduced a method for model-free design
of feedback controllers for constrained linear systems directly
from data. With respect to other existing direct control design
methods, constraints on input and output variables can be
handled. Moreover, the choice of the reference model is less
critical, in that it is no longer related to the desired perfor-
mance, but only to design a high performance MPC outer
loop. From a different perspective, the proposed approach
allows one to design data-driven predictive controller directly
from data, without explicitly modeling the open-loop plant
dynamics, thus saving substantial development time. Future
research will deal with: (i) extension to multivariable systems;
(ii) efficient on-line implementation of the outer MPC-based
controller; (iii) design of robust controllers to take into account
a possible mismatch between the desired and the actual inner
closed-loop behaviour.
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