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Abstract

In nonlinear regression choosing an adequate model structure is often a challenging problem. While simple models (such as
linear functions) may not be able to capture the underlying relationship among the variables, over-parameterized models
described by a large set of nonlinear basis functions tend to overfit the training data, leading to poor generalization on unseen
data. Piecewise-affine (PWA) models can describe nonlinear and possible discontinuous relationships while maintaining simple
local affine regressor-to-output mappings, with extreme flexibility when the polyhedral partitioning of the regressor space is
learned from data rather than fixed a priori. In this paper, we propose a novel and numerically very efficient two-stage approach
for PWA regression based on a combined use of (i) recursive multi-model least-squares techniques for clustering and fitting
linear functions to data, and (ii) linear multi-category discrimination, either offline (batch) via a Newton-like algorithm for
computing a solution of unconstrained optimization problems with objective functions having a piecewise smooth gradient, or
online (recursive) via averaged stochastic gradient descent.
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1 Introduction

Regression analysis is a supervised learning method
which aims at reconstructing the relationship between
feature vectors x ∈ Rnx and continuous-valued target
outputs y ∈ Rny from a set of training data. Piece-
Wise Affine (PWA) functions provide simple yet flexible
model structures for nonlinear regression, as they can
describe nonlinear and possible discontinuous relation-
ships between the regressor x and the output y. They
are defined by partitioning the regressor space into a fi-
nite number of polyhedral regions with non-overlapping
interiors and by considering an affine model on each
polyhedron.

The PWA regression problem amounts to learning, from
a set of training data, both the partition of the regres-
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sor space and the parameters defining each affine sub-
model. PWA regression is an NP-hard problem in gen-
eral (see [15] for a detailed analysis on the complex-
ity of PWA regression), and several algorithms to esti-
mate PWAmaps from data are available in the literature
(see [13,20] for an overview). A convex relaxation, based
on ℓ1 regularization, is proposed in [19] to approximate
the underlying combinatorial problem arising fromPWA
regression. In [21] the authors solve the PWA regression
problem via mixed-integer programming. As the number
of integer variables increases with the number of train-
ing samples, the approach is limited to problems with a
small number of observations in which global optimal-
ity is sought. The algorithms proposed in [5, 11, 14, 18]
first compute the parameters of the affine local models,
then partition of the regressor space. The observations
are clustered by assigning each datapoint to a submodel
according to a certain criterion, estimating at the same
time the parameters of the affine submodels. In a sec-
ond stage, linear separation techniques are used to com-
pute the polyhedral partition. These algorithms have
shown good performance in practice, but can be numer-
ically inefficient. The greedy algorithm of [5] to parti-
tion infeasible sets of linear inequalities can be compu-
tationally heavy in case of large training sets. The Ex-
pectation Maximization (EM) algorithm used to numer-
ically implement the statistical clustering method of [18]
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can become inefficient in case of PWA maps with many
parameters. In [14], the submodel parameters are de-
scribed through probability density functions, which are
iteratively updated through particle filtering algorithms;
however, an accurate approximation of the probability
density functions might require a high number of parti-
cles. In [11], the regressor vectors are clustered through
aK-means-like algorithm and the submodel parameters
are obtained via weighted least-squares. Although [11]
is able to handle large training sets both in the cluster-
ing and in the parameter estimation phase, poor results
might be obtained when the affine local submodels are
over-parametrized (i.e., the local models depend on re-
dundant regressors), since the distances in the regressor
space (i.e., the only criterion used for clustering) turns
out to be corrupted by redundant, thus irrelevant, infor-
mation.

Another limitation affecting the PWA regression algo-
rithms mentioned above is that they can be executed
only in a batch mode and thus they are not suitable
for online applications, in which the PWA model must
be updated in real-time when new data are acquired. A
computationally efficient algorithm for online PWA re-
gression was proposed in [2], where training samples are
clustered iteratively and model parameters are updated
through recursive least-squares. A main limitation of the
approach is that the polyhedral partition of the regres-
sor space is given by the Voronoi diagram of the clusters’
centroids, a less flexible structure than general linear
separation maps that may limit regression capabilities.

This paper describes a novel approach for approximat-
ing vector-valued, and possibly discontinuous, functions
in PWA form, trying to overcome the aforementioned
limitations of existing methods. The proposed algorithm
consists of two stages: (S1) simultaneous clustering of
the regressor vectors and estimation of the model pa-
rameters, performed recursively by processing the train-
ing pairs {x(k), y(k)} sequentially; (S2) computation of
a polyhedral partition of the regressor space through ef-
ficient multi-class linear separation methods, either per-
formed in a batch way via a Newton-like method, or on-
line (recursively) via an averaged stochastic gradient de-
scent algorithm. Overall, the PWA regression algorithm
is computationally very effective for offline learning and
suitable for online learning, as shown in the example.
The application of the proposed PWA regression algo-
rithm to the identification of linear parameter-varying
and hybrid dynamical models is discussed in [8].

The paper is organized as follows. The PWA regression
problem is described in Section 2. Section 3 describes the
algorithm used to simultaneously cluster the observed
regressors and update the model parameters, and the
multi-category discrimination algorithms used to com-
pute the polyhedral partition of the regressor domain. A
simulation example is reported in Section 4 to show the
effectiveness of the proposed approach.

1.1 Notation

Let Rn be the set of real vectors of dimension n. Let I ⊂
{1, 2, . . . , } be a finite set of integers and denote by |I| the
cardinality of I. Given a vector a ∈ Rn, let ai denote the
i-th entry of a, aI the subvector obtained by collecting
the entries ai for all i ∈ I, ∥a∥2 the Euclidean norm of
a, a+ a vector whose i-th element is max{ai, 0}. Given
two vectors a, b ∈ Rn, max(a, b) is the vector whose i-th
component is max{ai, bi}. Given a matrixA ∈ Rn×m,A′

denotes the transpose of A, Ai the i-th row of A, AI the
submatrix of A obtained by collecting the rows Ai for
all i ∈ I, AI,J the submatrix of A obtained by collecting
the rows and columns of A indexed by i ∈ I and j ∈ J ,
respectively. Let In be the identity matrix of size n, and
1n and 0n be the n-dimensional column vector of ones
and zeros, respectively. The symbol “∝” denotes linear
proportionality.

2 Problem statement

Consider a vector-valued PWA function f : X → Rny

defined as

f(x) =


A1[ 1 x′ ]′ if x ∈ X1,
...
As[ 1 x′ ]′ if x ∈ Xs,

(1)

where x ∈ Rnx , X ⊆ Rnx , s ∈ N denotes the number
of affine local models defining f , Ai ∈ Rny×(nx+1) are
parameter matrices, and the sets Xi, i = 1, . . . , s are
polyhedra, that form a complete polyhedral partition 1

of the space X. Function f is not assumed to be con-
tinuous over the boundaries of the polyhedra {Xi}si=1.
Therefore, to avoid that f might take multiple values at
the boundaries of {Xi}si=1, some inequalities can be re-
placed by strict inequalities in the definition of the sets
Xi to avoid ambiguities when evaluating f on the bound-
ary between neighboring polyhedra.

We address a PWA regression problem, which aims at
computing a PWA map f fitting a given set of N in-
put/output pairs {x(k), y(k)}Nk=1. Computing the PWA
map f requires (i) choosing the number of affine submod-
els s, (ii) computing the parameter matrices {Ai}si=1
that characterize the affine local models of the PWAmap
f and (iii) finding the polyhedral partitioning {Xi}si=1
of the regressor space X where those local models are
defined.

When choosing s one must take into account the trade-
off between fitting the data and avoiding model com-
plexity and overfit, with consequent poor generalization

1 A collection {Xi}si=1 is a complete partition of the regres-

sor domain X if
∪s

i=1 Xi = X and
◦
Xi ∩

◦
Xj = ∅, ∀i ̸= j, with

◦
Xi denoting the interior of Xi.
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on unseen data. This is related to one of the most cru-
cial aspects in function learning, known as bias-variance
tradeoff [23]. In this work, we assume that s is fixed by
the user. The value of s can be chosen through cross-
validation, with a possible upper-bound dictated by the
maximum tolerable complexity of the estimated model.

3 PWA regression algorithm

As mentioned in Section 1, we tackle the PWA regres-
sion problem in two stages: S1 (iterative clustering and
parameter estimation) and S2 (polyhedral partition of
the regressor space).

3.1 Recursive clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 1. The
algorithm is an extension to the case of multiple linear
regressions and clustering of the (computationally very
efficient) approach proposed in [1] for solving recursive
least squares problems using inverse QR decomposition.
Algorithm 1 updates the clusters and the model param-
eters iteratively and thus it is also suitable for online
applications, when data are acquired in real-time.

The algorithm requires an initial guess for the param-
eter matrices Ai and cluster centroids ci, i = 1, . . . , s.
Because of the greedy nature of Algorithm 1, the final
estimate depends on the chosen initial conditions, and
no fit criterion to minimize {∥y(k)−f(x(k))∥}Nk=1 is op-
timized. Zero matrices Ai, randomly chosen centroids
ci, and identity covariance matrices Ri are a possible
initialization. In alternative, if Algorithm 1 can be exe-
cuted in a batch mode, one can initialize the parameter
matrices A1, . . . , As all equal to the best linear model

Ai ≡ argmin
A

N∑
k=1

∥y(k)−A
[

1
x(k)

]
∥22, ∀i = 1, . . . , s (2)

that fits all data, classify the regressors {x(k)}Nk=1
through k-means clustering, compute the cluster cen-
troids ci =

1
|Ci|

∑
x(k)∈Ci

x(k) and the inverse of the clus-

ter covariancematricesRi =
1

|Ci|−1
∑

x(k)∈Ci

[x(k)− ci] [x(k)− ci]
′
.

When working in a batch mode, estimation quality may
be improved by repeating Algorithm 1 iteratively, using
its output as initial condition for its following execu-
tion. It is worth remarking that a prior knowledge of
the noise covariance matrix Λe is barely available in
practice. A possible choice for Λe can be, for instance,
Λe = Iny (i.e., the regression errors are not weighted
in eq. (A1.1)). Alternatively, if Algorithm 1 is executed
in a batch mode and iteratively repeated by using the
output as initial condition for the next execution, an

Algorithm 1 Recursive clustering and parameter esti-
mation algorithm

Input: Observations {x(k), y(k)}Nk=1, desired number
s of affine submodels, noise covariance matrix Λe, for-
getting factor κ, 0 < κ ≤ 1, inverse matrix init param-
eter δ, δ ≫ 1; initial condition for matrices Ai, cluster
centroids ci, and covariance matrices Ri, i = 1, . . . , s.

1. let Ci ← ∅, i = 1, . . . , s;
2. let T i,j(0)← δInx+1, j = 1, . . . , ny, i = 1, . . . , s;
3. for k = 1, . . . , N do

3.1. let ei(k)← y(k)−Ai

[
1

x(k)

]
, i = 1, . . . , s;

3.2. let
i(k)←arg min

i=1,...,s
(x(k)−ci)′R−1

i (x(k)−ci)+ei(k)
′Λ−1

e ei(k);

(A1.1)
3.3. let Ci(k) ← Ci(k) ∪ {x(k)};
3.4. for j = 1, . . . , ny do

3.4.1. let u← 0nx+1, b← 1;
3.4.2. for ℓ = 1, . . . , nx + 1 do

3.3.4.1. a← 1√
κ

∑ℓ
h=1[T

i(k),j ]ℓ,hxh(k);

3.3.4.2. b1 ← b; b←
√
b2 + a2;

3.3.4.3. σ ← a
b , ρ←

b1
b ;

3.3.4.4. for t = 1, . . . , i do
d←[T i(k),j ]ℓ,t; [T

i(k),j ]ℓ,t← 1√
κ
ρd−σut;

ut←ρut +
1√
κ
σd;

3.3.4.5. end for;
3.4.3. end for;
3.4.4. update [Ai(k)]j,: ← [Ai(k)]j,: +

ei(k)

b u′;
3.5. end for;
3.6. let δci(k) ← 1

|Ci(k)| (x(k)− ci(k));

3.7. update the centroid ci(k) of cluster Ci(k)
ci(k) ← ci(k) + δci(k);

3.8. update the inverse of the cluster covariance
matrix Ri(k) for cluster Ci(k) through the Ma-
trix Inversion Lemma:

Q←R−1
i(k) −

R−1
i(k)

[
x(k)− ci(k)

] [
x(k)− ci(k)

]′
R−1

i(k)∣∣Ci(k)∣∣− 2 +
[
x(k)− ci(k)

]′
R−1

i(k)

[
x(k)− ci(k)

] ;

R−1
i(k) ←

∣∣Ci(k)∣∣− 1∣∣Ci(k)∣∣− 2

Q−
Qδci(k)δc

′
i(k)Q

|Ci(k)|−2

|Ci(k)|−1
+ δc′i(k)Qδci(k)

 ;

4. end for;
5. end.

Output: Estimated matrices {Ai}si=1, centroids
{ci}si=1, clusters {Ci}si=1, covariance matrices {Ri}si=1.

estimate Λ̂e of Λe can be computed at the end of each
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execution as the sample covariance matrix

Λ̂e =
1

N

s∑
i=1

N∑
k=1

x(k)∈Ci

(
y(k)−Ai

[
1

x(k)

]) (
y(k)−Ai

[
1

x(k)

])′
.

Step 2 initializes the inverse matrices T i,j needed by the
recursive least squares updates at a (large) value δInx+1,
where δ is a large number, for all output components
j = 1, . . . , ny and for all local linear models i = 1, . . . , s.

After computing the estimation error ei(k) for all mod-
els i at Step 3.1, Step 3.2 picks up the “best” submodel
i(k) to which the current sample x(k) must be associated
with, based on a tradeoff between reducing the predic-
tion error ei(k) and penalizing the distance (weighted by
matrix R−1

i ) between x(k) and the corresponding cen-
troid ci. This is motivated by the stochastic interpre-
tation described in Section 3.1.1. The clustering rule in
eq. (A1.1) is similar to the clustering criterion used in [2]
for online PWA regression. However, [2] does not pro-
vide guidance to properly weight the prediction error
and the distance from the cluster centroids. Instead, we
motivate the use of the chosen weighting parameters in
Section 3.1.1.

Steps 3.4.1–3.4.4 are derived from the inverse QR factor-
ization algorithm of [1] and recursively update each row
ℓ of matrix Ai(k) only for the selected submodel i(k), for
all ℓ = 1, . . . , ny. Step 3.6 updates recursively the cor-
responding centroid ci(k) and the corresponding cluster
covariance matrix Ri(k). Note that the remaining clus-
ters’ centroids and covariance matrices are not updated.

3.1.1 Cluster selection: a stochastic interpretation

In eq. (A1.1) each vector x(k) is assigned to a cluster Ci(k)
by trading off between minimizing the (weighted) re-
gression error and the (weighted) distance between x(k)
and the clusters’ centroids. This criterion is justified by
the following stochastic interpretation. Assume that the
conditional probability density function fx of x(k) given
that x(k) belongs to the cluster Ci is a Gaussian func-
tion centered at the centroid ci with covariance matrix
Ri, i.e.,

fx(x(k)|x(k)∈Ci)∝exp

{
−1

2
(x(k)−ci)′R−1

i (x(k)−ci)
}
.

Further suppose that the residual e(k) = y(k)−Ai

[
1

x(k)

]
given that x(k) belongs to the cluster Ci follows a Gaus-
sian distribution with zero mean and covariance matrix
Λe. Thus, the conditional probability density function fy
of the observed output y(k) given the regressor x(k) and

the information that x(k) belongs to the cluster Ci is:

fy(y(k)|x(k), x(k) ∈ Ci) = fy
(
y(k)−Ai

[
1

x(k)

])
∝

exp

{
−1

2

(
y(k)−Ai

[
1

x(k)

])′
Λ−1
e

(
y(k)−Ai

[
1

x(k)

])}
.

The criterion in eq. (A1.1) thus maximizes over
i = 1, . . . , s the conditional posterior probability
fxy(x(k), y(k)|x(k) ∈ Ci), which is given by:

fxy(x(k), y(k)|x(k) ∈ Ci)) =
= fy(y(k)|x(k), x(k) ∈ Ci)fx(x(k)|x(k) ∈ Ci) ∝

exp

{
−1

2

(
y(k)−Ai

[
1

x(k)

])′
Λ−1
e

(
y(k)−Ai

[
1

x(k)

])
+

−1

2
(x(k)− ci)

′
R−1

i (x(k)− ci)

}
.

3.2 Partitioning the regressor space

We propose here a variation of the multicategory dis-
crimination technique of [6] to separate the clusters
{Ci}si=1 that partition the regressor space in a much
more computationally efficient way, especially when
dealing with a large number N of data points.

For i = 1, . . . , s, let Mi be a mi × nx dimensional ma-
trix (with mi denoting the cardinality of cluster Ci) ob-
tained by stacking the regressors x(k)′ belonging to Ci in
its rows. The linear multicategory discrimination prob-
lem aims at computing a piecewise affine separator func-
tion ϕ : Rnx → R discriminating between the clusters
C1, . . . , Cs. The piecewise affine separator ϕ is defined as
the maximum of s affine functions {ϕi(x)}si=1, i.e.,

ϕ(x) = max
i=1,...,s

ϕi(x), (3)

and, based on the definition of ϕ, each polyhedron Xi

turns out to be described by:

Xi={x ∈ Rnx : ϕi(x) = ϕ(x)} . (4)

The affine functions ϕi(x) are described by the param-
eters ωi ∈ Rnx and γi ∈ R, namely:

ϕi(x) = [x′ − 1]
[
ωi

γi

]
. (5)

In case of linearly separable clusters, the affine functions
ϕi(x) satisfy the inequality constraints[
Mi −1mi

][
ωi

γi

]
>
[
Mi −1mi

] [
ωj

γj

]
, i, j=1, . . . , s, i ̸=j,
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or, equivalently,[
Mi −1mi

] [
ωi

γi

]
≥

[
Mi −1mi

] [
ωj

γj

]
+ 1mi , (6)

i, j = 1, . . . , s, i ̸= j,

where the constant vector 1mi on the right side of eq. (6)
is used only for normalization purposes.

A piecewise-affine separator ϕ thus satisfies the condi-
tions:

ϕ(x) = [x′ − 1]
[
ωi

γi

]
, ∀x ∈ Ci, i = 1, . . . , s

ϕ(x) ≥ [x′ − 1]
[
ωj

γj

]
+ 1, ∀x ∈ Ci, i ̸= j

(7)

Remark 1 According to the definition of ϕ (eq. (3))
and ϕi (eq. (5)), and the conditions in (7), the polyhedra
{Xi}si=1 are defined as

Xi=
{
x∈Rnx : [x′ −1]

[
ωi−ωj

γi−γj

]
≥1, j=1, . . . , s, j ̸= i

}
.

�

Rather than solving a linear program as in [6], we de-
termine {ωi, γi}si=1 by solving the convex unconstrained
optimization problem

min
{ωi,γi}s

i=1

λ

2

s∑
i=1

(
∥ωi∥22 + (γi)2

)
+ (8)

s∑
i=1

s∑
j = 1

j ̸= i

1

mi

∥∥∥∥([Mi −1mi

] [
ωj−ωi

γj−γi

]
+ 1mi

)
+

∥∥∥∥2
2

,

where λ
2

∑s
i=1

(
∥ωi∥22 + (γi)2

)
, with λ > 0, is an ℓ2-

regularization term introduced to better conditioning
problem (8) and to guarantee that (8) has a unique so-
lution. Furthermore, by tuning the hyper-parameter λ
through cross-validation, the ℓ2-regularization termmay
lead to an improvement of the generalization perfor-
mance of the final separator ϕ.

Problem (8) generates a piecewise-affine function that
minimizes the (averaged) squared 2-norm of the viola-
tion of the inequalities (6). The problem is solved by us-
ing a regularized piecewise-smooth Newton method with
Armijo’s line search similar to the one proposed in [3]
for functions g : Rnξ → R of the form

g(ξ) =
λ

2
∥ξ∥22 +

ng∑
j=1

∥gj(ξ)+∥22, (9)

where gj : Rnξ → R are convex and twice continu-
ously differentiable functions. In particular, we exploit

the linearity of functions gj ’s. In fact, for the special
case of solving Problem (8), the optimization vector is
ξ = [(ω1)′ . . . (ωs)′ γ1 . . . γs]′ ∈ Rnξ , nξ = s(nx + 1),
and gj ’s are affine functions:

gj(ξ) = a′jξ−bj , j = 1, . . . , ng, (10)

where ng = N(s − 1) and aj ∈ Rnξ , bj ∈ R are easily
obtained from (8) as a function of matrices {Mi}si=1 and
coefficients {mi}si=1. By letting

A = [a1 . . . ang]
′, B = [b1 . . . bng ]

′, (11)

given a vector ξ ∈ Rnξ , let I(ξ) = {i ∈ {1, . . . , ng} :
Aiξ − Bi > 0}. Then,

g(ξ) =
λ

2
ξ′ξ +

∑
i∈I(ξ)

(Aiξ − Bi)2 (12a)

∇g(ξ) = λξ +A′
I(ξ)(AI(ξ)ξ − BI(ξ)) (12b)

∇2g(ξ) = λI +A′
I(ξ)AI(ξ) = λI +

∑
i∈I(ξ)

A′
iAi (12c)

are, respectively, the function to minimize, its gradient,
and its generalized Hessian at ξ.

The proposed approach to solve (8) is summarized in
Algorithm 2. The algorithm uses the solution d of the
linear system

(∇2g(ξ) + δ(ξ)I)d = −∇g(ξ) (13)

at the current ξ as a search direction, where δ(ξ) =
ζ∥∇g(ξ)∥ and ζ ∈ (0, 1). Due to the special structure
of ∇2g in (12c), the linear system (13) is solved at
Steps 5.1–5.2 as the least squares problem

min
d

1

2

∥∥∥∥∥∥
[

AI(ξ)√
λ+ δ(ξ)Inξ

]
d+

AI(ξ)ξ − BI(ξ)
λ√

λ+δ(ξ)
ξ

∥∥∥∥∥∥
2

2

(14)

using the QR factorization of

[
AI(ξ)√

λ+δ(ξ)Inξ

]
.

Note that since ∇g(ξ) > 0 during iterations, δ(ξ) is also
positive, and therefore R is full column rank, so that
the upper-triangular linear system in Step 5.2 is always
solvable.

A good initial guess for ξ ∈ Rn can be obtained by
running Algorithm 2 first on decimated clusters, then
use the result as the new initial condition in Algorithm 2
for the full problem with N regressors.

Numerical experiments have shown that allowing a vary-

ing ζ = ζ0
min{1,∥∇g∥}

∥∇g∥ , where 0 < ζ0 ≪ 1, reduces the

5



Algorithm 2 Piecewise-smooth Newton method for
solving the multicategory discrimination problem (8)

Input: Regressors {x(k)}Nk=1, clusters Ci, i = 1, . . . , s;
scalars σ ∈ (0, 1/2), ζ ∈ (0, 1); ℓ2-regularization hyper-
parameter λ ≥ 0; initial guess ξ ∈ Rn; maximum num-
ber K of iterations; tolerances gtol > 0 and δtol > 0.

1. Initialize matrices Mi ∈ Rmi×nx , whose rows are
the transposed regressors x(k) ∈ Ci, i = 1, . . . , s;
nξ ← s(nx + 1), ng ← N(s − 1); define A, B as
in (10)–(11), j = 1, . . . , ng;

2. k ← 0;
3. c← Aξ − B; I ← {i ∈ {1, . . . , ng} : ci ≥ 0};
4. g ← c′IcI +

λ
2 ξ

′ξ; ∇g ← A′
IcI + λξ; δ ← ζ∥∇g∥;

5. while g > gtol and δ > δtol and k < K do

5.1. (Q,R)← QR factorization of
[ AI√

λ+δInξ

]
;

5.2. solve the upper-triangular linear system

R{1,...,nξ}d =− (Q{1,...,|I|},{1,...,nξ})
′cI

− λ

λ+ δ
(Q{|I|+1,...,|I|+nξ},{1,...,nξ})

′ξ; (A2.1)

5.3. α← 1; q ← Ad; ξα ← ξ + d;
5.4. Iα ← {i ∈ {1, . . . , ng} : c+ q ≥ 0};
5.5. gα ← (cIα + qIα)

′(cIα + qIα) +
λ
2 ξ

′
αξα;

5.6. while gα > g + ασ∇g′d do
5.6.1. α← 1

2α; ξα ← ξ + αd
5.6.2. cα ← c+ αq;
5.6.3. Iα ← {i ∈ {1, . . . , ng} : cαi ≥ 0};
5.6.4. gα ← (cαIα)

′cαIα + λ
2 ξ

′
αξα;

5.7. end while;
5.8. ξ ← ξα; g ← gα; I ← Iα; c← cα;
5.9. ∇g ← A′

Iα
cαIα + λξ; δ ← ζ∥∇g∥;

5.10. k ← k + 1;
6. retrieve ωi, γi, i = 1, . . . , s, from the solution ξ;
7. end.

Output: Coefficients ωi, γi, i = 1, . . . , s defining the
piecewise affine separator ϕ in (3)–(5).

number of iterations and prevents excessive regulariza-
tion in (13) when ∥∇g∥ is large. Moreover, while setting
λ > 0 complicates the number of operations required by
the algorithm at each iteration (in particular to compute
the solution of eq. (A2.1)) and bias the solution with
respect to the piecewise affine multicategory discrimi-
nation function minimizing only the squared 2-norm of
the violation of the inequalities (6), it leads to a smaller
number k of iterations, and overall to a reduced compu-
tation time.

3.3 Recursive multicategory discrimination via online
convex programming

As an alternative to Algorithm 2, or in addition to it for
refining the partition ϕ online based on streaming data,
we introduce a recursive approach to solve problem (8)
based on techniques of online convex programming.

Let us treat the data-points x ∈ Rnx as random vectors
and assume that an oracle function i : Rnx :→ {1, . . . , s}
exists that to any x ∈ Rnx assigns the corresponding
mode i(x) ∈ {1, . . . , s}. Function i implicitly defines
clusters in the data-point space Rnx . Let us also assume
that the following values

πi = Prob[i(x) = i] =

∫
Rnx

δ(i, i(x))p(x)dx

are known for all i = 1, . . . , s, where δ(i, j) = 1 if i = j or
zero otherwise, i, j ∈ {1, . . . , s}. Each value πi represents
the relative “volume” of cluster i, where clearly

s∑
i=1

πi =

∫
Rnx

s∑
i=1

δ(i, i(x))p(x)dx =

∫
Rnx

p(x)dx = 1.

Problem (8)–(9) can be generalized to the following un-
constrained convex stochastic optimization problem

ξ∗ = argmin
ξ

Ex∈Rnx [ℓ(x, ξ)] +
λ

2
∥ξ∥22 (15)

ℓ(x, ξ) =
s∑

j = 1

j ̸= i(x)

1

πi(x)

(
x′(ωj − ωi(x))− γj + γi(x) + 1

)2

+

with Ex[·] denoting the expected value w.r.t. x. The
solution of problem (15) provides a piecewise affine mul-
ticategory discrimination function satisfying (3)–(5).
This aims at violating the least, on average over x, the
condition in (6) for i = i(x). We assume that the ℓ2-
regularization hyper-parameter λ is such that λ > 0, so
that the objective function in (15) is strongly convex 2 .

When learning the discrimination function ϕ online, the
data-points xk are acquired in real-time and one would
like to update ϕ recursively, without the need of stor-
ing all past data-points x0, . . . , xk−1. We achieve this
by solving problem (15) by online convex optimization
and, in particular, by the averaged stochastic gradient
descent method of [22] as proposed in [7] (cf. also [24]),
whose application to the linear multicategory discrimi-
nation problem (15) is described in Algorithm 3.

The initial estimate ξ0 can be either zero (or any other
value), or the result of the execution of the batch Algo-
rithm 2 on a subset of data preprocessed offline. The coef-
ficients πi can also be estimated from offline data, namely
πi =

mi

N , and possibly updated while Algorithm 3 is run-
ning. Numerical experiments have shown that constant
and uniform coefficients π = 1

s work equally well.

2 A differentiable function f is strongly convex if, for all
points x, y in its domain, ∃ m > 0 such that f(y) ≥ f(x) +
∇f(x)⊤(y − x) +m∥x− y∥22.
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Algorithm 3 Averaged stochastic gradient descent al-
gorithm for solving the linear multicategory discrimina-
tion problem (15)

Input: Regressor flow x(0), x(1), . . .; cluster assign-
ment function i : Rnx → {1, . . . , s}; ℓ2-regularization
parameter λ ≥ 0; scalar ν0 ≥ 0; initial guess ξ ∈ Rn.

1. for k = 0, 1, . . . do:
1.1. compute the gradient ∇ξℓ(ξk, xk) as follows:

1.1.1. Ik ← {j ∈ {1, . . . , s}, j ̸= i(xk) : x′
k(ω

j
k −

ω
i(xk)
k )− γj

k + γ
i(xk)
k ≥ −1};

1.1.2. set

∂ℓ(ξk, xk)

∂
[
ωj

γj

] ← λ

[
ω
j
k

γ
j
k

]
+

1

πi(xk)
×



∑
j∈Ik

(
x′
k(ω

j
k − ω

i(xk)
k )− γj

k + γ
i(xk)
k + 1

) [−xk
1

]
if j = i(xk)(

x′
k(ω

j
k − ω

i(xk)
k )− γj

k + γ
i(xk)
k + 1

) [ xk
−1

]
if j ̸= i(xk), j ∈ Ik

0 otherwise.

1.2. compute

νk←ν0(1+ν0λk)
− 3

4 ; µk←1/max{1, k−nx, k−nξ};
ξk+1←ξk−νk∇ξℓ(ξk, xk); ξ̄k+1← ξ̄k+µk(ξk+1−ξ̄k);

1.3. retrieve ωi
k, γ

i
k, i = 1, . . . , s, from ξ̄k;

2. end.

Output: Coefficients {ωi
k, γ

i
k}si=1, defining the separa-

tor ϕ in (3)–(5) at each step k = 0, 1, . . ..

4 Simulation example

In this section, we show the effectiveness of the proposed
PWA regression algorithm in a simulation example. Fur-
ther applications of the proposed method, including the
identification of linear parameter-varying and hybrid dy-
namical models, can be found in [4] and [8].

All computations are carried out on an i7 2.40-GHz In-
tel core processor with 4 GB of RAM running MATLAB
R2014b. In validating the obtained models on a data se-
quence not used for training, we will denote by yo and ŷ
the vector stacking the measured and estimated outputs,
respectively, and by ȳo the vector staking the sample
mean of the measured output. The Best Fit Rate (BFR)

indicator BFR = max

{
1− ∥yo − ŷ∥2
∥yo − ȳo∥2

, 0

}
· 100% is

used to assess model quality.

The data are generated by the (unknown) function

fo(x) =


h(x) if − 0.5 ≤ h(x) ≤ 0.5,

0.5 if h(x) ≥ 0.5,

−0.5 if h(x) ≤ −0.5,
(16)

with h : R3 → R, h(x) = 0.6 sin
(
x1 + x2

2 − x3

)
. The

B
F
R

0.8

0.85

0.9

σ
0 0.2 0.4 0.6

ζ
00.20.40.6

Fig. 1. BFR vs tuning parameters σ and ζ.

regressor x(k) ∈ R3 is a white noise sequence with

uniform distribution on the box [−1 1]
3

and length
N = 1250. The output of the function fo is corrupted
by an additive zero-mean white noise eo(k) ∈ R,
with Gaussian distribution and variance Λe = 0.022

(i.e., y(k) = fo(x(k)) + eo(k)). This corresponds
to a Signal-to-Noise Ratio (SNR) of 25 dB, where

SNR = 10 log

∑N
k=1 (y(k)− eo(k))

2∑N
k=1 e

2
o(k)

.

4.1 Estimation results

We run Algorithm 1 not considering the forgetting factor
(i.e., κ = 1) and with δ set equal to 103. The initial
guess for the parameters Ai, the cluster centroids and
covariance matrices {Ri}si=1 are computed by running
an instance of Algorithm 1 without the first term in
eq. (A1.1), with Λe = 1 and Ai initialized as in (2).
Algorithm 1 is then run again 25 times, with the full
criterion (A1.1), by initializing Ai, ci and Ri with the
output of the previous run. The clusters generated by
Algorithm 1 are then separated by solving problem (8)
via the Piecewise-smooth Newton method described in
Algorithm 2, with parameters K = 300, σ = 0.4, λ =
10−5, ζ = 10−5, gtol = δtol = 10−6, and ξ = 0 as initial
guess. A sensitivity analysis with respect to the tuning
parameters σ and ζ is also performed. Fig. 1 shows the
BFRs computed on 250 samples (not used for training)
for different values of the tuning parameters. We observe
that Algorithm 2 is basically not sensitive to σ and ζ.

The number s of local affine submodels is chosen by
means of cross validation. Specifically, the quality of the
estimated function is assessed on a calibration data set
with 250 samples not used for training. For each value
of s, the BFR is computed and, among the estimated
PWA functions, we selected the one providing the largest
BFR. This is achieved for s = 12.

The quality of the estimated PWA model is assessed on
a validation dataset with NV = 200 samples. The ob-
tained BFR is 85.19 %. The total CPU time for solv-
ing the regression problem is 3 s, of which 0.257 s are
taken to compute the polyhedral partition through Al-
gorithm 2. For comparison, the same regression problem
is solved through the regression algorithm of [11] 3 , us-
ing the Proximal Support Vector Classifier (PSVC) [12]

3 The Hybrid Identification Toolbox [10] has been used.
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-ŷ

-0.4
-0.2

0
0.2

Fig. 2. Output signal (left panel): black = true, red = pro-
posed PWA regression method, green = method in [12]. Es-
timation error (right panel): red = proposed PWA regression
method, green = method in [12].
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Fig. 3. BFR vs number of runs of Algorithm 1. N = 1250
(blue); N = 12500 (red); N = 125000 (black).

to compute the partition 4 . The CPU time needed to
solve the regression problem is around 149 s (i.e. 49x
slower than the method proposed in this paper). The ob-
tained BFR is 53.40 %. To provide another element of
comparison, Fig. 2 shows the true output yo and the out-
put ŷ of the functions estimated with the method pro-
posed in this paper and the approach in [12]. The error
yo(k) − ŷ(k) is also plotted. For a better visualization,
only the samples from time 141 to 180 are reported.

4.2 Convergence properties

As the accuracy of the final model estimate and the total
CPU time is influenced by the number M of runs of
Algorithm 1, the performance of the proposed learning
approach has been tested with respect to bothM and the
dimensionN of the considered training set. The obtained
BFR as a function of iterations of Algorithm 1 is plotted
in Fig. 3 for different lengths of the training dataset.
Algorithm 1 converges after 15 runs.

4.3 Performance of multicategory discrimination algo-
rithms

We compare the following four multicategory discrimi-
nation algorithms used to generate the partition of the
regressor space against the 200-length validation dataset
previously used in Section 4.1:

• robust linear programming (RLP) [6] 5 ;

4 Among all the classifiers available in HIT, the PSVC is
the one which provided the best results.
5 The solver Gurobi is used to compute the solution of the
formulated linear programming problem.
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Fig. 4. BFR vs tuning parameter ν0.
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Fig. 5. Algorithm 2. BFR vs regularization parameter λ.
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Fig. 6. Algorithm 3. BFR vs regularization parameter λ.

• regularized piecewise-smooth Newton (RPSN)
method (Algorithm 2), using the same parameters
reported in Section 4.1;
• averaged stochastic gradient descent (ASGD)
method (Algorithm 3), with λ = 10−5 and
ν0 = 0.01. The weights πi and the initial estimate
ξ0 are computed by executing the batch Algo-
rithm 2 on the first 50 training samples. The re-
maining training samples are processed recursively.
A sensitivity analysis w.r.t. the parameter ν0 is
also performed. Fig. 4 shows the BFRs computed
for different values of ν0, pointing out that the per-
formance of Algorithm 3 decreases as ν0 increases.
This is a typical behaviour of stochastic gradient
descend methods, where convergence to the global
optimum improves as the parameter ν0 decreases,
at the price of a lower convergence speed.
• multicategory support vector machines (MSVM)
with linear kernels [9], implemented in the MSVM-
pack 1.5 toolbox [16] 6 .

A sensitivity analysis w.r.t. the regularization parameter
λ is also performed. Fig. 5 and Fig. 6 show the BFRs
obtained for different values of λ by Algorithms 2 and 3,
respectively. Note that, for λ ≤ 0.1, the final estimate is
fairly insensitive to the regularization parameter λ.

The CPU time required to generate the polyhedral par-
tition of the regressor space is given in Table 1. The per-
formance of the MSVM approach is evaluated only in re-
lation to small/medium training sets, as large data sets
take too long to be processed. Notice that, for a large
training set (i.e., N = 125000), Algorithms 2 and 3 are
about 454x and 65200x faster, respectively, than the ro-
bust linear programming method of [6].

The obtained BFRs are reported in Table 2, along with
the BFR obtained when the Voronoi diagram induced

6 The default parameters are used.
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Table 1
CPU time required to partition the regressor space vs length
N of the training set.

N = 1250 N = 12500 N = 125000

RLP [6] 1.336 s 125 s 8541 s

RPSN (Algorithm 2) 0.257 s 1.762 s 18.8 s

ASGD (Algorithm 3) 0.0014 s 0.018 s 0.131 s

MSVM [17] 6.545 s 3870 s –

Table 2
BFR vs length N of the training set.

N = 1250 N = 12500 N = 125000

RLP [6] 86.56 % 87.41 % 93.88 %

RPSN (Algorithm 2) 85.19 % 86.47 % 91.86 %

ASGD (Algorithm 3) 84.78 % 82.30 % 92.99 %

MSVM [17] 80.91 % 80.02 % –

Voronoi 81.75 % 83.96 % 86.60 %

Table 3
Monte Carlo simulation: BFR (mean ± std).

RPSN (Algorithm 2) ASGD (Algorithm 3)

BFR (87.01± 3.07) % (86.88± 2.59) %

by the clusters’ centroids (given as an output by Algo-
rithm 1) is used to partition the regressor space. Results
in Table 2 show that the employed algorithms lead to an
accurate estimate of the true function in terms of out-
put prediction, with BFRs larger than 80 % also in the
case of small training set (N = 1250). This aspect indi-
cates that the training samples are accurately clustered
by Algorithm 1. Furthermore, the first three discrimi-
nation algorithms lead to BFRs larger than 90 % for a
large training set (N = 125000). In the latter case, the
Voronoi diagram does not achieve similar performance.
This suggests that the Voronoi diagram induced by the
clusters’ centroids is not flexible enough in partitioning
the regressor space. As a matter of fact, the Voronoi dia-
gram only depends on the clusters’ centroids, and it does
not take into account how the points are spread around
the centroids.

4.4 Monte-Carlo simulation

A Monte Carlo simulation with 100 runs, with new real-
izations of both the input u and the measurement noise
eo at each run, is carried out to assess the robustness of
the estimation algorithm w.r.t. different realizations of
the training data. The obtained results are reported in
Table 3, which shows the mean and the standard devi-
ation of the BFR over the Monte Carlo simulation for
training data sets of length N = 12500.

5 Conclusions

The strengths of the PWA regression approach of this
paper are (i) its computational efficiency, (ii) the abil-
ity to be run both in a batch and in a recursive way,
and (iii) the quality of fit that can be achieved. Future
research will be devoted to generalize the approach to
piecewise-nonlinear models (such as piecewise polyno-
mial) by feeding regression data manipulated through
nonlinear basis functions to Algorithms 1, 2 and 3.
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