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Significance

 How do we visually segregate 
objects from other objects and 
the background? Humans readily 
see the boundaries that 
demarcate objects, but it is not 
well understood how boundaries 
are represented in the visual 
cortex. We used primate 
electrophysiology, human 
neuroimaging, and 
computational modeling to 
investigate how neurons in the 
visual brain detect and represent 
object boundaries and how they 
distinguish them from other 
image regions with a similar level 
of contrast or orientation energy. 
We report that the 
representation of object borders 
is enhanced in the early visual 
cortex. Enhanced activity during 
the start of neuronal responses 
reflects the tuning to features in 
the receptive field. A later 
response enhancement also 
reflects contextual influences, 
mediated by lateral and feedback 
connections.
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The visual system needs to identify perceptually relevant borders to segment complex 
natural scenes. The primary visual cortex (V1) is thought to extract local borders, and 
higher visual areas are thought to identify the perceptually relevant borders between 
objects and the background. To test this conjecture, we used natural images that had 
been annotated by human observers who marked the perceptually relevant borders. We 
assessed the effect of perceptual relevance on V1 responses using human neuroimaging, 
macaque electrophysiology, and computational modeling. We report that perceptually 
relevant borders elicit stronger responses in the early visual cortex than irrelevant ones, 
even if simple features, such as contrast and the energy of oriented filters, are matched. 
Moreover, V1 neurons discriminate perceptually relevant borders surprisingly fast, dur-
ing the early feedforward-driven activity at a latency of ~50 ms, indicating that they 
are tuned to the features that characterize them. We also revealed a delayed, contextual 
effect that enhances the V1 responses that are elicited by perceptually relevant borders 
at a longer latency. Our results reveal multiple mechanisms that allow V1 neurons to 
infer the layout of objects in natural images.

V1 | neurophysiology | fmri | nonhuman primates | natural vision

 The visual scenes that we perceive are filled with objects. We readily identify the extent of 
the objects and their borders, a process that is important for our understanding of an 
image’s meaning. A previous study developed the Berkeley Segmentation data Set (BSD), 
which is a library of natural images, and demonstrated that the judgments of people who 
are asked to segment regions occupied by objects and their borders are highly consistent 
( Fig. 1A  ) ( 1 ). Despite appearing effortless, the segmentation process requires subjects to 
discount the physical properties of the image, such as local contrast ( Fig. 1 B  and C  ). 
 Fig. 1A   shows the most relevant borders of an example image of the BSD, which was 
segmented by human observers, and  Fig. 1B   shows two isolated image patches. Although 
both patches contain a contrast-defined border ( Fig. 1C  ), only the object border is relevant 
to perception and was segmented by the observers. Thus, local contrast does not uniquely 
identify perceptually relevant borders. Nevertheless, boundary perception in natural images 
influences vision because image elements at object borders are better perceived than image 
elements at less relevant image locations ( 2 ,  3 ).        

 In a review in 2005, Olshausen and Fields ( 4 ) argued that models of simple and complex 
cells in the primary visual cortex (V1) based on oriented filters ( 5 ) are poorly equipped 
to detect the edges of objects. Newer approaches that use deep convolutional neural 
networks explain more variance of V1 responses ( 6 ). However, when applied to natural 
images, these models do not identify the perceptually relevant borders that are marked by 
human observers either ( Fig. 1D  ), and their output only bears a weak relation to scene 
perception. One possible reason is that these filter and neural network models primarily 
use feedforward connections that propagate information from lower to higher network 
levels. Another possibility is that V1 is not sensitive to the perceptual relevance, even 
though previous neurophysiological studies, which used artificial stimuli, demonstrated 
that segmentation signals influence V1 activity: The responses of V1 neurons increase if 
their RF is centered on an elongated contour that extends well beyond their RF ( 7 ,  8 ) 
( Fig. 1F  ). These influences are expressed during a delayed phase of the neuronal responses 
and presumably rely on feedback from downstream visual regions where neurons are tuned 
to more complex features of artificial stimuli, such as textures and displays with many line 
elements ( 7                 – 16 ) ( Fig. 1F  ).

 Here, we asked how perceptual borders influence neuronal representations in the early 
visual cortex ( 17 ). We used the BSD to study the representation of object borders with 
human neuroimaging, electrophysiology in both awake and anesthetized monkeys, and 
computational modeling. We compared the neuronal activity elicited by object borders 
and other image patches with similar contrast-defined borders ( Fig. 1 C  and D   and 
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﻿SI Appendix, Fig. S1 ) in the early visual cortex. We report that V1 
neurons exhibit a sensitivity to perceptually relevant object borders 
that goes beyond what is predicted by current models of feedfor-
ward V1 tuning. 

Results

Stronger Responses to Object Borders in the Early Visual 
Cortex. We investigated the activity elicited by perceptually 
relevant borders in natural images using human neuroimaging, 
multiunit activity in awake macaque monkeys, and single neurons 
in anesthetized monkeys (Fig. 2), using images from the BSD (1). 
The BSD allowed us to compare the neuronal responses elicited 
by contours of the same contrast that had been labeled by the 
observers as object contours or had not been labeled (SI Appendix, 

Fig.  S1). To separate the influence of local contrast from that 
of object perception, we computed contrast response functions 
(CRFs; Fig. 1E), estimating the local contrast in the (population) 
receptive field (pRF) (18). Specifically, we compared activity in 
the same RMS contrast bin between stimuli with the (p)RF on 
object borders and nonsegmented contrast borders (SI Appendix, 
Fig. S1 A and B) (1, 19).

 First, we collected data of four human participants who 
viewed 45 images from the BSD with 7 Tesla fMRI (SI Appendix, 
Fig. S2 ) ( 20 ). We mapped the entire visual field ( Fig. 2A   and 
﻿SI Appendix, Fig. S3 ) and examined neuronal activity in multiple 
visual areas including V1, V2, V3, hV4, the lateral occipital 
visual field maps 1/2 (LO-1/2), and V3-a/b, comparing the activ-
ity elicited by image patches with and without object borders 
falling into the pRFs, at each cortical location (SI Appendix, 
Fig. S3 ) ( 21 ).

 Across the contrast levels, the neuronal responses elicited by 
object borders were stronger than those elicited by nonsegmented 
contrast borders in V1 ( Fig. 2B  ; P  < 0.001, bootstrap test), and 
V2 and V3 (SI Appendix, Fig. S3E﻿ ; P  < 0.001, bootstrap test). We 
will refer to the extra activity elicited by object borders as “border 
modulation (BoM).” Furthermore, these results also held for the 
individual participants (SI Appendix, Fig. S4 ). The effects of per-
ceptually relevant object borders were absent from the fMRI activ-
ity measured in areas V3ab, hV4, and LO-1 and 2 (all P s >0.05, 
bootstrap test; SI Appendix, Fig. S3E﻿ ), which might be caused by 
the large pRF sizes in those areas, making the effect harder to 
detect (Methods ). We conclude that the representation of object 
borders in natural images is enhanced in the early visual cortex of 
humans.

 Second, we investigated how perceptually relevant borders 
influence multiunit spiking activity (MUA) in two awake macaque 
monkeys. We recorded the response elicited by four BSD stimuli, 
using chronically implanted electrode arrays in V1, while the mon-
key fixated at the center of the screen. The RFs of the V1 neurons 
were confined to a limited region of the visual field, but we 
recorded the neural responses to more than 500 different locations 
by changing the image position in each trial, effectively scanning 
the images with the RFs of 77 MUA recording sites (number of 
sites, S = 44 in monkey B; S = 33 in monkey M). After they fixated 
the center of the screen, the monkeys made a sequence of eye 
movements across the image, following sudden shifts of the fixa-
tion point across the image with their gaze (SI Appendix, Fig. S1 ). 
However, we focused our main analysis on the first fixation, when 
the image appeared on the screen.

  Fig. 2C   shows the RF (Left ) and CRF (Right ) of an example V1 
recording site (S #18 in monkey B). Borders that were marked by 
the human observers elicited more activity than image regions of 
the same contrast that did not belong to object borders (time 
window 25 to 75 ms, P  < 0.001, bootstrap test). We replicated 
this effect across the population of V1 recording sites. Object 
borders elicited stronger responses than nonborder image regions 
with the same local contrast in V1 ( Fig. 2D  ; P  < 0.001, bootstrap 
test). BoM was present at most recording sites in monkey B (64% 
of the sites) and monkey M (81% of the sites—time window: 25 
to 75 ms; all P s < 0.05, bootstrap test). We next analyzed the V1 
activity elicited by the later fixations, during which a new part of 
the image appeared in the RF because the monkey shifted its gaze 
to a new position of the fixation point. These later fixations were 
preceded by saccades, causing a rapid movement of part of the 
image through the RF. The image was now familiar, and the mon-
key may have recognized and segmented the objects during the 
previous fixations. Accordingly, the BoM was also present when 
a saccade caused a border or nonborder image patch to fall in the 
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Fig. 1.   Identifying borders in natural scenes. (A) Perceptually relevant borders 
as segmented by human observers. The image comes from the BSD (1). 
(B) Two images patches that illustrate that local contrast does not predict 
perceptually relevant borders. (C) Pixels with the top 10% local image contrast 
are shown in green (1). (D) Pixels within the top 10% energy according to a 
complex-cell model (yellow, Left) and top 10% energy of the VGG-19 AI model, 
layer “conv3_1” (Right, purple). Neither local contrast nor current V1 models 
capture the borders that are perceptually most relevant. (E) We computed 
the CRFs evoked in the visual cortex by image elements based on the local 
contrast or orientation energy in their (p)RF. (F) The responses of V1 neurons 
are enhanced when their RF falls on an elongated contour (yellow circle) in 
a stimulus with many line elements. This response modulation represents a 
recurrent influence from outside the neurons’ RF.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 I
M

T
 A

L
T

I 
ST

U
D

I 
L

U
C

C
A

 L
IB

R
A

R
Y

 o
n 

Ja
nu

ar
y 

31
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

90
.1

47
.2

3.
94

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2221623121#supplementary-materials


PNAS  2024  Vol. 121  No. 46 e2221623121� https://doi.org/10.1073/pnas.2221623121 3 of 10

RF than if a new stimulus appeared on the screen (SI Appendix, 
Fig. S1 E  and F ; P  < 0.001, bootstrap test).

 Third, we investigated whether object borders influence single 
neuron responses in a published dataset with brief presentations 
(100 ms) of 53 BSD images, obtained in two anesthetized, para-
lyzed monkeys ( 22 ,  23 ). Anesthesia suppresses contextual modu-
lations in V1 neurons ( 20 ), and our analysis permits a comparison 
to studies that examined V1 models using neuronal activity 
recorded during anesthesia ( 6 ,  23 ). Akin to the experiment in 
awake monkeys, object borders induced a fast (time window  
25 to 75 ms) boost of V1 activity, which was independent of the 
local contrast in the RF ( Fig. 2E , P  < 0.001 , bootstrap test). Thus, 
our results using human neuroimaging, multiunit activity in 
awake macaques, and single neurons in anesthetized macaques 
were convergent by revealing that object borders increase neuronal 
activity in the early visual cortex.

 We wondered whether the BoM could be explained by current 
models of V1 tuning. We selected two models that predict the 
activity of V1 neurons: a model of complex cells and a model 
based on the convolutional VGG-19 network. The complex cell 
model is a classical description of the selectivity of V1 neurons to 
contrast, orientation, and spatial frequency ( 5 ) (see Methods  for 
details; we also tested several advanced variants of this model in 
﻿SI Appendix, Supplementary Results﻿ ). The VGG-19 model is based 
on layer “conv3_1” of VGG-19, which represents the state-of-the- 
art in predicting V1 responses to natural images ( 6 ). Strong BoM 
was also observed when we equated the orientation energy, i.e., the 
output of the complex cell model, between object borders and other 
image regions and we obtained the same result when we equated 
the output of the VGG-19 model in awake ( Fig. 2 F  and G  ; all P s 
< 0.001, bootstrap test) and anesthetized monkeys (SI Appendix, 
Fig. S1C﻿ ; all P s < 0.001, bootstrap test). Furthermore, we evaluated 
models that include cross-orientation suppression and surround 
suppression but observed that these models also do not account for 
the BoM (SI Appendix, Supplementary Results﻿ ). Hence, our results, 
taken together, indicate that the BoM cannot be explained by 
 classical or state-of-the-art models of V1 processing.  

The Latency of Object BoM in the Primary Visual Cortex. To 
estimate the latency of the BoM, we examined the time course of 
V1 activity in awake monkeys (Fig. 3; for anesthetized monkeys, 
see SI Appendix, Fig. S1D), fitting a curve to the difference in 
activity elicited by the object borders and nonsegmented image 
borders, averaged across recording sites. We estimated latency as 
the time point at which the fitted function reached 33% of its 
maximum (Methods) (12, 13, 24). The BoM had a latency of 46 
± 15 ms when sorting trials based on RMS contrast (mean ± SD 
across bins) and the latency was similar when we binned using 
the complex cell model (54 ± 6 ms) or VGG-19 (55 ± 34 ms) 
(Fig. 3). Thus, object borders modulate the initial transient phase 
of the V1 response. This short latency of the BoM suggests that 
V1 neurons are tuned to features characterizing object borders in 
natural images, without the need of feedback from higher visual 
areas because these recurrent influences usually occur at a longer 
delay (7, 9, 10, 12).

BoM in the Absence and Presence of Contextual Information. 
The early timing of the V1 BoM indicates that it might be driven 
by the information inside the RF, unlike BoM in previous studies 
using artificial stimuli that held the stimulus in the RF constant 
but varied the context (7, 16) (Fig. 1F). We carried out additional 
experiments in awake monkeys to examine whether the early BoM 
reflects V1 tuning. In the first additional experiment, we focused 
on the influence from inside the RF by removing the information 
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Fig. 2.   Object borders enhance V1 responses in humans and both awake 
and anesthetized monkeys. (A) Visual field coverage of pRFs in V1: To examine 
the coverage of the images by V1, we plotted the pRF center positions (yellow 
dots) across all participants. The dotted line indicates the portion of the visual 
field covered by at least one pRF. (B) Normalized fMRI activity elicited by 
the object borders (red) and other image regions (blue) in human V1 (data 
averaged across 45 images and four participants). See SI Appendix, Fig. S4 
for the data of the individual participants. (C) Example V1 recording site. Left, 
RF of a representative recording site in an awake monkey (S #18 in monkey 
B). Right, normalized MUA responses elicited by the object borders (red) and 
other image regions as function of RMS contrast (blue). (D) Normalized MUA 
responses elicited by the object borders (red) and other image regions (blue) 
in area V1 as function of RMS contrast (data averaged across all recording 
sites in two awake monkeys). (E) Activity elicited by single neurons in V1 of 
anesthetized monkeys (data averaged across 53 images and two monkeys). 
(F and G) We binned the V1 activity in awake monkeys based on a complex 
cell model (F, orange) and VGG-19 model energy (G, purple). Note that the 
output of these models did not account for the difference in activity elicited 
by object borders (red) and other image regions (blue) (data averaged across 
four images and two awake monkeys). The equivalent result for the single 
units in anesthetized monkeys is shown in SI Appendix, Fig. S1C. Shaded regions 
denote 95% CI of the CRFs (determined by bootstrapping). Error bars indicate 
SEM across voxels (B) recording sites (D) or neurons (E). *** indicates P < 0.001, 
bootstrap test. S indicates the number of recording sites while N indicates the 
number of single neurons.D
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outside the RF, and in the second experiment, we focused on the 
contextual influences by keeping the information inside the RF 
constant.

 In the first additional experiment, we removed the context by 
copying circular image patches from the BSD that matched the 
V1 MUA RFs in size onto a gray background. We chose patches 
with the same RMS contrast that did or did not contain a seg-
mented object border and centered them on the RFs of neurons 
at 50 recording sites in monkey B which was awake and fixating 
( Fig. 4A  ).        

 The isolated patches with object borders elicited a stronger V1 
response than nonborder image regions with the same contrast  
(P  < 0.001, Wilcoxon signed-rank test;  Fig. 4 B  and C  ), with a 
BoM (i.e., the difference in response between object borders and 
nonobject image regions) up to more than 20%, in line with 
previous reports ( 12 ). We repeated this analysis also for the indi-
vidual neurons of the two anesthetized monkeys ( 22 ). Again, 
responses elicited by image patches with object borders were 
stronger than those elicited by contrast-matched patches without 
segmented borders (P  < 0.001, Wilcoxon signed-rank test;  Fig. 4D  ). 
The median BoM of the single units was comparable to that of 
MUA in awake monkeys, but several neurons showed much 
stronger effects, up to more than 50% response enhancement. 
Hence, V1 neurons are tuned to features that uniquely characterize 
object borders, but these features are not captured by current V1 
models. This form of V1 tuning explains part of the extra activity 
elicited by object borders.

 The second additional experiment isolated possible contextual 
effects by placing the RF of 98 V1 recording sites (68 in monkey 
B and 30 in monkey M) on object borders and other locations in 
12 natural images from the BSD, while keeping the image patch 
in the RF constant ( Fig. 5A  ). Specifically, we copied an image 
patch with an object border and pasted it at a background location 
to create a condition in which the same image patch is not per-
ceived as object border. An example image is shown in  Fig. 5 A  , 
﻿Left  where we copied a part of the back of the elephant into the 
background.        

 On average, the object contours elicited a stronger V1 response 
than the same image patches presented at background locations 
(P  < 0.001, Wilcoxon signed-rank test across recording sites, time 
window 0 to 300 ms;  Fig. 5B  ). The latency of BoM in this exper-
iment was 81 ms, i.e., it now occurred during the delayed phase 

of the V1 response. The presence of a perceivable border increased 
the V1 response by 5%, on average, which is in line with the 
modulation observed using artificial textures ( 12 ). Thus, the con-
text also influences the V1 response but at later time points, akin 
to experiments with artificial stimuli ( 8 ,  25 ,  26 ).

 Finally, we aimed to remove the contextual effect by placing 
the image patches at identical locations of synthetic metamers of 
these images. The metamers had the same orientations, phases, 
spatial frequencies, auto- and cross-correlations, and marginal 
statistics, but the layout of objects was scrambled ( 27 ). In the 
example metamer of  Fig. 5 A  , Middle  and Right , the transitions 
between water, trees, and air were at the same locations, but the 
elephant was removed (other example metamers are shown in 
﻿SI Appendix, Fig. S5 ).

 BoM was absent for the metamers (P  > 0.05, Wilcoxon 
signed-rank test;  Fig. 5C  ). To investigate whether the level of BoM 
differed between the metamers and the original images, we per-
formed a repeated-measures two-way ANOVA with object border 
and scrambling (two levels each) as factors. The main effects of 
object borders and scrambling were both significant (object border, 
F1,97  = 28.6, P  < 0.001; scrambling, F1,97  = 5.42, P  = 0.022). 
Importantly, the interaction was also significant at the population 
level (F1,97  = 6.74, P  = 0.011) and for many of the individual 
recording sites (at P  < 0.05; 40% of the sites in monkey B and 
73% in monkey M). Hence, if the RF stimulus is kept constant, 
contextual information can also enhance the V1 activity elicited 
by object borders, at a latency of ~80 ms.

 These results, taken together, indicate that there are two pro-
cesses that jointly explain the enhanced activity elicited by object 
borders. The tuning of V1 neurons enhances their representation 
from an early time point onward (~50 ms), and the scene context 
causes an additional activity increase at a longer latency (~80 ms).   

Discussion

 We investigated how object borders in natural images influence 
the response of V1 neurons using human neuroimaging, record-
ings of multiunit activity in macaque monkeys, and single neurons 
in anesthetized monkeys. The results obtained with these methods 
were convergent by showing that perceptually relevant borders 
enhance neuronal activity in area V1. Indeed, the neuronal 
responses in V1 were similar between awake and anesthetized 
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monkeys, and between monkeys and humans ( Fig. 2 ). We 
observed an influence of perceptually relevant borders on both 
the early V1 responses, which were driven by portions of the image 
that fell within the neurons’ RFs, and we also observed a delayed 
influence of object borders, which was driven by image regions 
outside the RF. 

Early and Later Object Border Signals. Unexpectedly, natural 
images elicited BoM during the initial V1 response at a latency 
of ~50 ms. This is much earlier than in previous studies that 
used well-controlled, but artificial stimuli to keep the RF stimulus 
identical between relevant and nonrelevant contour conditions (7, 
16). In these previous studies, the contextual effects on neuronal 
firing rates were attributed to feedback from higher cortical areas 
and/or lateral connections within V1, which can inform neurons 
about information outside the RF. The synaptic and propagation 
delays associated with these recurrent routes explain why BoM 
occurs a few tens of milliseconds after the initial V1 response 
(16, 25). Our results indicate that the early BoM signals evoked 
by natural images are not contextual but reflect the tuning of V1 

neurons. On average, the object borders elicit more activity than 
nonborder image patches with equated energy, independently 
from the specific model used to compute the energy. Apparently, 
these strong V1 responses to object borders are more complex 
than can be described by complex-cells Gabor filters (6, 28, 29) 
or divisive normalization (SI Appendix, Supplementary Results), i.e., 
“classical” models of V1 tuning (30) and were not predicted by 
existing models of V1 tuning, including state-of-the-art models 
based on AI (6, 29). We replicated the tuning to object borders 
by showing isolated image patches (Fig. 4) and in a dataset in 
anesthetized monkeys, supporting the view that these effects do 
not depend on feedback, because contextual feedback influences 
are diminished under anesthesia (20, 31). Future research is 
needed to understand how these influences are produced by the 
connectivity from the LGN to V1 and the local connectivity inside 
cortical columns in area V1 (32, 33).

 In addition to their effect on the feedforward response, object 
borders also elicited a contextual influence on V1 activity. When 
we matched the image elements of object and nonobject contours 
in the RF of V1 neurons, the activity elicited by the object con-
tours was still stronger than that elicited by other, nonobject con-
tours ( Fig. 5 ). BoM now occurred at a latency of 81 ms, which is 
30 ms later than the feedforward response, which is in line with 
previous studies that used synthetic stimuli to keep the RF content 
constant while controlling contour salience by the layout of image 
elements in the surround ( 7 ,  16 ). This additional delay suggests 
that contextual BoM depends on feedback from higher areas and/
or horizontal connections within V1. It is of interest that these 
putative feedback signals increased the activity elicited by contours 
that are predicted by an object’s overall shape. This result is not 
in accordance with popular “predictive coding” schemes ( 34 ), 
which suggest that feedback connections should suppress the activ-
ity of contours that are predicted by the shape of the object. 
Instead, we found that object borders increase the neuronal activ-
ity in the visual cortex, both during the early and later phases of 
the V1 response.

 BoM is presumably related to border-ownership coding, which 
is expressed by many neurons in V2, V3, V4, and by some V1 
neurons, and it also occurs for natural images ( 35   – 37 ). The activity 
of neurons with border-ownership signals depends on the side of 
the figural region relative to the border that falls in the RF. For 
example, if the border is vertical, some neurons prefer stimuli in 
which the border in their RF is owned by a figure to the left, 
whereas other neurons have the opposite preference. Hence, 
border-ownership neurons can link the shape of the border to the 
surface properties of the object’s interior, and they may therefore 
play an important role in object recognition and segmentation. 
In many situations, the local shape of a border falling in a RF can 
provide information about the side of the figure ( 38 ). In these 
situations, neurons express border-ownership early, during the 
feedforward response. However, if the RF stimulus is kept con-
stant, border-ownership coding occurs after an additional delay 
( 37 ). Our design did not allow us to measure border-ownership 
tuning, but it is probable that some of the extra activity elicited 
by the object borders observed by us is related to the neurons’ 
preferred figure-side and, hence, that the two effects are intimately 
related.   

Conclusion

 We conclude that the object borders in natural images increase 
the response of V1 neurons. The extra neuronal activity occurs 
during the early response phase if the local image elements in the 
RF are indicative of an object border and later in time if it depends 
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on contextual information outside the RF. The selectivity for object 
borders represents an unexpected dimension of V1 tuning that goes 
beyond oriented filter models and state-of-the-art deep networks. 
Future studies may now further explore the features that characterize 
object borders detected in V1, thereby aligning the mechanistic func-
tions of this brain region with its critical role in object perception.  

Methods

RMS Contrast and Models of V1 Tuning.
RMS contrast. To derive the RMS contrast, we computed the contrast of every 
natural image within each site/neuron’s RF or voxel’s pRF. The (p)RF was modeled 
as a circular symmetric Gaussian function, described by parameters for position 
(xc, yc) and size (σ), giving rise to a Gaussian weighting function wi:

wi = exp

(
(

xi−xc
)2
+
(

yi−yc
)2

2�2

)

,

where xc and yc define the location of the center of the (p)RF in the visual field, 
σ determines the size of the (p)RF, and xi and yi define the location of the i-th 
pixel of the image. We computed each site/neuron/voxel’s contrast value to each 
natural image by calculating the RMS contrast (39, 40) of the part of the image 
inside their (p)RF. RMS contrast was defined as the SD of the luminance of the 

pixels relative to the mean. The RMS-contrast was weighted by the (p)RF Gaussian 
function to obtain the local contrast-energy value:

RMS contrast energy =

�

�

�

�

�

1
∑N

i=1
wi

�N

i=1
wi

�

Li− L
�2

L2
,

where N is the number of pixels in the stimulus window, L is the mean luminance 
of the pixels inside the spatial window, Li is the luminance of the i-th pixel (2), 
and wi comes from Eq. 1.
Complex cell model. The magnitude of the complex-cell response was computed as

Complex cell energy =
√

E2
x,y,F ,�,Φ=0

+ E2
x,y,F ,�,Φ=90

,

where E is the dot product of the stimulus (grayscale) pixel luminance with a 
2D Gabor with coordinates x and y, F is spatial frequency, θ orientation, and Φ 
phase. For neurons in anesthetized monkeys, F and θ were computed using a 
separate set of stimuli containing Gabor patches with varying spatial frequency, 
orientation, and phase. For recording sites in awake monkeys and fMRI voxels, F 
and θ were free parameters of the model and were optimized for every recording 
site before we calculated the explained variance. We used Matlab’s lsqcurvefit 
function to compute the fits.
VGG-19. We extracted the activity of units of VGG-19’s layer conv3_1, which is state 
of the art in predicting V1 responses to natural images (6, 29), and followed the 
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approach of ref. 6 with two modifications. We used a two-step mapping (41, 42),  
described by following the equation:

rVGG−19energy = fVGG−19
(

input
)

∗ Ws ∗ Wd ,

where rVGG−19energy is the predicted response of a V1 recording site/neuron, fVGG−19 
(input) is the output of VGG-19’s conv3_1 to our stimulus set (i.e., input ), and Ws 
and Wd are two sets of weights defining spatial and feature selectivity, respectively. 
The spatial mask ( Ws , set as the 2D Gaussian RF estimate) approximates the RF and 
a weighted sum of the nodes in the ANN ( Wd ) approximates the feature selectivity 
of the recorded sites/neurons (41). Ws and Wd were determined separately for 
every recording site/neuron, while training occurred at the same time for all of 
them. We trained the model to optimize Wd to predict V1 responses to the training 
set (i.e., input in Eq. 4). We cross-validated the model for each site/neuron and 
used the final model to extract VGG-19 energy for each trial. For recording sites in 
the awake monkeys, we cross-validated using random 50% splits of the trials. For 
neurons in the anesthetized monkeys, we used 217 images for training, and 27 
images for testing. For the anesthetized monkeys, the training images were fixed 
and the test sets differed across neurons because the test images depended on 
the presence of object borders in the RF. To avoid overfitting, we fitted models (i.e., 
optimized Wd ) using images within the 25th-75th percentiles of object border 
relevance (see below in the section on quantification of object borders) and used 
the other images during testing. We tested the object BoM using VGG-19 energy 
with the 27 held-out stimuli, only including neurons for which VGG-19 energy 
predicted the neural responses on the test images (N = 26, Pearson’s correlation 
r > 0.323, P < 0.05 uncorrected, t test).
CRFs. For RMS contrast (and for the models of tuning), we computed the CRF of 
the MUA recording sites and single neurons in V1, and voxels of areas V1, V2, V3, 
hV4, LO-1/2, and V3-a/b (see below) by measuring their responses as a function 
of local contrast (or the model energy) inside their (p)RF. We chose energy bins 
such that every bin spanned 10% of the contrast (or energy) distribution and 
fitted the following equation (modified from ref. 43):

R(C) = a
Cq

Cq + Qq
,

where R is the neural response, C is the contrast (or model energy) inside the pRF, 
Q represents the model energy value where R is at half of its maximum response, 
and q determines the slope (a, Q, and q are free parameters). The number of bins 
did not influence the outcome.
Quantification of object borders. The BSD images have been annotated by 5 to 9 
human observers who drew lines to segment object borders that are relevant for the 
scene’s interpretation (1, 19). We used these measurements to define the perceptually 
relevant borders of the scene. Every pixel i of the manually labeled images has a value 
for the confidence of observers that the pixel belongs to an object border, Si, between 
0 (not labeled by any observer) and 1 (labeled by all observers). The border relevance 
in the pRF is calculated as a weighted sum across pixels that fall in it:

Perceptual border relevance =

∑N

i=1
wi ⋅ Si

∑N

i=1
wi

.

Here, wi are the weights of the (p)RF estimate (Eq. 1), and N is the total number 
of pixels in the (p)RF. For every (p)RF, we computed the distribution of border 
relevance across images, and we included the lowest quartile of the distribution 
as “nonborder patches” and the highest quartile as “object borders.” We then 
computed the CRFs within these classes (SI Appendix, Fig. S1). These thresholds 
were not critical because we replicated the results when we included all responses, 
i.e., with a median split (not shown).
Statistics. We used a bootstrapping procedure to determine the significance of 
differences in CRFs between conditions. We sampled the images with replace-
ment 1,000 times, fit the CRF for the two simulated conditions, and computed 
the mean difference in the area under the curve of the two conditions. We derived 
the P-value from this distribution of differences.

Electrophysiological Experiments in Awake Monkeys.
Training of the monkeys. All procedures complied with the NIH Guide for 
Care and Use of Laboratory Animals and were approved by the institutional 
animal care and use committee of the Royal Netherlands Academy of Arts and 

Sciences. Two macaque monkeys (males, 7 and 13 y old) participated in the 
electrophysiological experiments. They were socially housed in stable pairs in 
a specialized primate facility with natural daylight, controlled humidity, and 
temperature. The home cage was a large floor-to-ceiling cage which allowed 
natural climbing and swinging behavior. The cage had a solid floor, covered 
with sawdust, and was enriched with toys and foraging items. Their diet con-
sisted of monkey chow supplemented with fresh fruit. Their access to fluid was 
controlled, according to a carefully designed regime for fluid uptake. During 
weekdays the animals received water or diluted fruit juice in the experimental 
set-up upon correctly performed trials. We ensured that the animals drank 
sufficient fluid in the set-up and supplemented extra fluid after the recording 
session if they did not drink enough. On days of the weekend, they received 
at least 700 mL water in the home cage in a drinking bottle. The animals were 
regularly checked by veterinary staff and animal caretakers and their weight 
and general appearance were recorded daily in an electronic logbook during 
fluid-control periods.
Surgical details. We implanted both monkeys with a titanium headpost (Crist 
instruments) under aseptic conditions and general anesthesia as reported pre-
viously (44). The monkeys were trained to direct their gaze to a 0.5° diameter 
fixation dot and hold their eyes within a fixation window (1.1° diameter). They 
then underwent a second operation to implant 5 × 5 arrays of microelectrodes 
(Utah-probes, Blackrock Microsystems) over opercular V1. The interelectrode 
spacing of the arrays was 400 μm. We obtained good signals from 4 V1 arrays 
in each monkey (13).
Electrophysiology in awake monkeys. We recorded neuronal activity of 192 
recording sites in V1 (96 in Monkey M and 96 in Monkey B). We recorded 
the envelope of multiunit activity by digitizing the signal referenced to 
a subdural electrode at 24.4 kHz. The signal was band-pass filtered (2nd 
order Butterworth filter, 500 Hz to 5 KHz) to isolate high-frequency (spiking) 
activity. This signal was rectified (negative becomes positive) and low-pass 
filtered (corner frequency = 200 Hz) to produce the envelope of the high-
frequency activity, which we refer to as MUA (45). The MUA signal reflects 
the population spiking of neurons within 100 to 150 μm of the electrode 
and the population responses are very similar to those obtained by pooling 
across single units (45–48).
Selection of recording sites and inclusion of data. To normalize MUA, we 
first subtracted the mean activity in the pretrial period in which the animal was 
fixating (200 to 0 ms relative to stimulus onset) and divided by the maximum 
smoothed (26 ms Gaussian kernel) peak response (0 to 150 ms after stimu-
lus onset). Neuronal activity was normalized to the peak response elicited by 
stimulus onset. The data are therefore in normalized units, where, e.g., a value 
of 0.1 indicates 10% of the maximal MUA onset response. We only included 
recording sites on days with a sufficient signal-to-noise ratio (SNRDAY). SNRDAY 
was estimated by dividing the maximum of the initial peak response by the SD 
of the baseline activity across trials. When the SNRDAY of a recording site was 
smaller than 2 on a particular day, we removed that session from the analysis 
of that recording site. Approximately, 80% of recording sites in monkey B and 
77% in monkey M were included. To test for statistical differences between 
conditions and to compute the CRFs, MUA was averaged in a time window 
25 to 75 ms after stimulus onset.
Stimulus presentation. In the experiments with awake monkeys, stimuli were 
presented on a CRT monitor at a refresh rate of 60 Hz and resolution of 1,024 × 
768 pixels viewed from a distance of 46 cm. The monitor had a width of 40 cm, 
yielding a field-of-view of 41.6 × 31.2°. All stimuli were generated in Matlab 
using the COGENT graphics toolbox (developed by John Romaya at the LON at the 
Wellcome Department of Imaging Neuroscience). The eye position was recorded 
using a digital camera (Thomas recordings, 250 Hz frame rate).
Receptive field mapping. We mapped the RF of each MUA recording site in V1 
of the awake monkeys using a drifting luminance-defined bar that moved in 
one of four directions. The response to each direction was fitted with a Gaussian 
function. The borders of the RF were then calculated as described previously (45). 
The signal-to-noise ratio (SNRRF) of the response was taken as the peak of the 
Gaussian divided by the SD of the pretrial baseline response. We only included 
recording sites in the analyses with a reliable visual response (i.e., the responses 
to all four bar directions had an SNRRF of at least 1). The median V1 RF size, taken 
as the square root of the area, was 1.8° (range 0.4° to 8.2°) and the median 
eccentricity of the RFs was 2.4° (range 0.6° to 12.9°) (49).

[4]

[5]

[6]
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Analysis of latency. To compute the latency of the difference between the 
response to object borders and nonsegmented borders, a function was fitted to 
the time course of the difference response (12, 13, 24). The function was derived 
from the assumptions that the onset of the response difference has a Gaussian 
distribution and that a fraction of the response dissipates exponentially which 
yields the following equation:

f (t) = d ⋅ exp(�� + 0.5�2�2 − αt) ⋅ (G
(

t, μ+�2α, σ
)

+ c ⋅ G(t, μ, σ),

where G(t,�, �) is a cumulative Gaussian density with mean � and SD� , �−1 is 
the time constant of the dissipation, and c  and d represent the contribution the 
nondissipating and dissipating components, respectively. The latency was defined 
as the point at which the fitted function reached 33% of its maximum.
Natural images presented in the awake electrophysiological experiments. 
Four BSD images were used in the electrophysiological experiments (11.6° 
radius visual angle; SI Appendix, Fig. S2). At the start of the trial, the screen was 
gray (26.8 cd m−2) with a red fixation point with a position that was randomly 
selected from uniformly spaced grid (with ~500 positions) covering the circular 
aperture of the image. The image appeared once the monkey had maintained 
fixation for 300 ms (fixation 1). After an additional 400 ms, the first fixation point 
disappeared and the next fixation points appeared, and these shifts of the fixa-
tion point occurred five times per trial. Reward was delivered after every correct 
fixation, with an extra amount at the end of the trial. Here, we mainly focused on 
the data during the first fixation to facilitate the comparison with the data from 
anesthetized monkeys and human fMRI. We collected a total of 11,783 correct 
trials for monkey M and 13,373 for monkey B.
Statistics. We compared differences between the CRFs or model output between 
object borders and nonborder patches using a bootstrapping procedure (1,000 
iterations), as described above.

Electrophysiological Experiments in Anesthetized Monkeys. We analyzed 
neural responses from a public dataset (22, 23) that was collected in three anes-
thetized and paralyzed macaque monkeys. We included the responses to 431 
spike-sorted neurons with a reliable RF estimation (R2 > 0.5) from monkeys 
1 and 2. We excluded the data of monkey 3, for which a smaller version of the 
stimuli was used. Details on surgery, spike sorting, and stimulus presentation 
are described in full in the original publication (23). In brief, the authors used 
956 stimuli, which were shown for 100 ms each (20 repetitions). The stimulus set 
included 270 full natural images (diameter, 6.7 dva), 270 patches of the images 
(circular crops with a diameter of 1.04 dva), and 416 circular Gabor patches (diam-
eter, 1.04 dva), which were used to estimate tuning to orientation and spatial 
frequency. Of the 270 full natural images, we selected the 53 images that came 
from the BSD and had been shown in their original orientation. We summed their 
responses in the 25 to 75 ms time window and then averaged across repetitions. 
For the isolated patch analysis, we used the patches that came from the same 53 
stimuli. The Gabor patches and the patches of the natural images fell into the RF 
of 139 of the 431 neurons. Hence, for these cells, we could compute complex 
cell energy and we could also include them in the isolated patch experiment.

fMRI Experiment with Human Participants.
Participants. Four participants (all male; ages 29 to 41 y) participated in the 
fMRI experiment. All participants had normal or corrected-to-normal visual acuity. 
We obtained informed written consent of the participants and the protocol was 
approved by the Human Ethics Committee of University Medical Center Utrecht.
Stimulus presentation. The visual stimuli were generated in Matlab (Mathworks 
Inc.) using the PsychToolbox (39, 50) on a Macintosh MacBook Pro. The stimuli 
were backprojected on a display inside the MRI bore. The subject viewed the dis-
play through mirrors inside the scanner. The size of the display was 15.0 × 7.9 cm 
with a resolution of 1,024 × 538 pixels. The total distance from the subject’s eyes 
to the display was 41 cm. The stimuli were constrained to a circular area (radius, 
5.5°) with the size of the vertical dimension of the screen. The area outside this 
circle was maintained at a constant mean luminance.
Functional imaging and processing. The MRI data were acquired with a Philips 
7T scanner using a 32-channel head coil (18). We scanned the participants with 
a 2d-echo-planar-imaging sequence with 25 slices oriented perpendicular to the 
calcarine sulcus with no gap. The following parameters were used: repetition time 

(TR) = 1,500 ms, echo time (TE) = 25 ms, and a flip angle of 80°. The functional 
resolution was 2 × 2 × 2 mm and the field of view (FOV) was 190 × 190 × 
50 mm. We used foam padding to minimize head movement. The functional 
images were corrected for head movement between and within the scans. For 
computation of the head movement between scans, the first functional volumes 
for each scan were aligned. Within-scan motion correction was then computed by 
aligning the frames of a scan to the first frame. The duration of the pRF mapping 
scans was 372 s (248 time frames), of which the first 12 s (8 time frames) were 
discarded to eliminate start-up magnetization transients. During the three ses-
sions, we acquired 6 to 8 pRF mapping scans in total per subject. To increase the 
signal-to-noise ratio, we averaged across the repeated scans. During the three 
sessions in which we presented the natural images, we acquired 6 to 7 scans for 
each of the three stimulus sets. The duration of the scans with the natural images 
was 432 s (288 time frames). The first 12 s (8 time frames) were discarded to elim-
inate start-up magnetization transients. The images were presented in a block 
design. Each image was presented during a 9-s block. Within this block, the same 
image was shown 18 times for a duration of 300 ms followed by 200 ms mean 
luminance. The full-field stimuli were presented with three alternating different 
high-contrast patterns, to obtain a full high-contrast response that is not based 
upon one specific high-contrast pattern (SI Appendix, Fig. S3B). Specifically, the 
phase of the full-field pattern was randomized on different presentations in order 
to obtain a response that is not influenced by one specific dartboard pattern. 
The block in which the stimulus was presented was followed by a 12-s mean 
luminance presentation. Four longer blank periods of 33 s were also included 
during the scan.
Anatomical imaging and processing. The T1-weighted MRI images were 
acquired in a separate session using an 8-channel SENSE head coil. The following 
parameters were used: TR/TE/flip angle = 9.88/4.59/8. The scans were acquired 
at a resolution of 0.79 × 0.80 × 0.80 mm and were resampled to a resolution 
of 1mm3 isotropic. The functional MRI scans were aligned with the anatomical 
MRI using an automatic alignment technique (51). From the anatomical MRI, 
white matter was automatically segmented using the FMRIB’s Software Library 
(FSL) (52). After the automatic segmentation, it was hand-edited to minimize 
segmentation errors (53). The gray matter was grown from the white matter to 
form a 4 mm layer surrounding the white matter. A smoothed 3D cortical surface 
can be rendered by reconstruction of the cortical surface at the border of the white 
and gray matter (54).
pRF mapping stimulus. We used bar apertures filled with natural images (18, 
21) (SI Appendix, Fig. S3A) to train the pRF model of participants in the fMRI 
experiment. The width of the bar subtended 1/4th of the stimulus radius (1.375°). 
Four bar orientations (0°, 45°, 90°, and 135°) and two different step directions 
for each bar were used, giving a total of 8 bar directions within a given scan. The 
bar stepped across the stimulus aperture in 20 steps (with a distance of 0.55° 
and a duration of 1.5 s per bar position) so that each pass took 30 s. A period of 
30 s mean luminance (0% contrast) was presented after every pass. In total, there 
were 4 blocks of mean luminance during each scan, presented at evenly spaced 
intervals. The participants performed a fixation dot task to make sure they fixated 
at the center of the display. A small fixation dot (0.11° radius) was presented in 
the middle of the stimulus. The fixation dot changed its color from red to green at 
random time intervals and subjects were instructed to respond to color changes 
using a button press.
Natural images. The natural images came from the BSD (1, 19). The original res-
olution of the images was 321 × 481 pixels (both landscape and portrait). In the 
fMRI experiments (18), we selected a square region of 321 × 321 pixels from the 
images and upsampled it to a resolution of 516 × 516 pixels, which corresponds 
to a stimulus of 11 × 11° diameter of visual angle. The images were masked by a 
circle with a raised cosine faded edge (width of 0.9°), and the areas outside this 
circle were set to the mean luminance. The images were gamma-linearized and 
the mean contrast was set to 50%. We used 3 image sets in different scanning 
runs, each containing 15 different natural images (45 in total) and one full-field 
binarized bandpass-filtered noise stimulus. SI Appendix, Fig. S2 shows the image 
set. A fixation dot was presented at the center of the stimulus. We used the same 
fixation dot task as for the pRF mapping runs.
pRF model–based analysis. The pRF model was estimated for every cortical 
location from the measured fMRI signal that was elicited by the pRF mapping 
bar stimuli (SI Appendix, Fig. S3A) (18, 21). In short, the method estimates the 

[7]
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pRF by combining the measured fMRI time series with the position time course 
of the visual stimulus. A prediction of the time series is made by calculating the 
overlap of the pRF and the stimulus energy (RMS contrast, see below) convolved 
with the hemodynamic response function (HRF). We estimated the parameters 
of the HRF that best describes the data of the whole acquired fMRI volume (55). 
The optimal parameters of the pRF model are chosen by minimizing the residual 
sum of squares between the predicted and the measured time series. We used 
the conventional pRF model, which consists of a circular symmetric Gaussian. 
This model has four parameters: position (x, y), size (σ), and amplitude (β). For 
further technical and implementation details, see ref. 21.

This approach works best in areas with small (p)RFs, such as V1. In higher areas, 
the probability that pRFs contain a border is higher, because they are larger. Some 
of the pRFs in higher visual areas contain, for example, a short piece of object border, 
whereas the remainder was without any border, weakening the contrast. In other 
words, the distribution of object borders has a lower variance in higher areas, and 
this reduces the contrast between pRFs with and without object borders.
Regions of interest. We used the pRF method to estimate position parameters 
x and y of the pRF of every voxel. From these values, we derived the polar angle 
[atan(y0/x0)] and eccentricity [√(x0

2 + y0
2)] values. We drew the borders between 

visual field maps on the basis of polar angle and eccentricity maps on the inflated 
cortical surface (56). We defined visual areas V1, V2, V3, hV4, LO-1/2, and V3-a/b 
as our regions of interest (ROIs) (57–60).
Analysis of fMRI responses to the natural images. We measured fMRI responses 
to 45 natural images (SI Appendix, Fig. S2) and 3 full-field high-contrast stim-
uli (100% contrast; SI Appendix, Fig. S3B) (18). We first determined the voxel 
response amplitudes in %BOLD signal change elicited by each of these images. 
The voxel responses were calculated using a general linear model (GLM) (61, 62). 
To correct for differences in response amplitudes between voxels, we normalized 
the responses to the voxel’s response to the full-field (100% contrast) stimulus.

To determine the CRF in the fMRI experiment, we only used the voxels with 
an overall significant response (t-values > 4.0), a pRF eccentricity between  
0.5 and 4° and for which the pRF model explained more than 40% of the variance. 
Based on previous work, for every area we used a threshold for the pRF sizes (21, 
55, 63, 64). In V1, we included pRFs with a value of σ (which determines pRF size) 
between 0.25° and 0.8°, for V2 between 0.25° and 1.1°, for V3 between 0.25° 
and 1.75°, for hV4 between 0.45° and 3°, for V3-a/b between 0.45° and 3.75° 
and for and LO-1/2 between 0.9° and 5°.

Isolated Patch Experiment. To test whether isolated image patches from the 
BSD that either contained object borders or not, elicited a different level of V1 
activity, we carried out an additional experiment in monkey B (50 recording 
sites, Fig. 4 A–C) and a further analysis on data from two anesthetized monkeys 
(139 neurons, Fig. 4D).

In the awake monkey, we chose three V1 recording arrays and centered 100 
patches of the image from the BSD that contained object borders and 100 patches 
that did not on the RFs. These patches were selected so that the RMS contrast was the 
same (70 ± 1%) and the size matched the median RF of the recording sites of the 
array (0.9° to 2.0°). The patches were presented on a gray background (26.8 cd m−2) 
while the monkey maintained gaze on a red fixation point for 300 ms. We repeated 
each stimulus five times and collected a total of 3,000 trials (1,000 trials per array).

In the published dataset from anesthetized monkeys, we included neurons for 
which isolated patches (1.04 dva) were well centered inside the RF (N = 139). The 
presentation duration was 100 ms. For each neuron, we selected pairs of patches 
with the same RMS contrast (±1%) with and without object borders in the RF and 
computed the average response. We then averaged responses across all neurons 
that had been included.

In both datasets, we tested the significance of the difference in the activity 
elicited by isolated object and nonsegmented border patches during the peak 
of the response (25 to 75 ms) with a Wilcoxon signed rank test across recording 
sites and neurons.

Contextual BoM Experiment. To examine differences in activity elicited by object 
borders and nonborder patches in V1 of awake monkeys when the stimulus in the 
RF was held constant (Fig. 5), we selected twelve images from the BSD, which were 
cropped and upsampled to 512 × 512 pixels (23.2° × 23.2°). We ensured that the 
portion of the image covered by the RF of each recording site and its surround were 
exactly the same across conditions (same size and content, Fig. 5), so that border 
salience only depended on information outside the neurons’ RF. We used a 2 × 2 
design. The first factor was whether the image element in the RF fell on an object 
border (Fig. 5A). The second factor was whether we presented the original image or 
a scrambled version (also known as metamer). To this aim, we created three further 
stimuli from each image. First, we copied a circular patch (80 pixels in diameter, 
3.7°) from an object contour location onto a nonobject contour location using Adobe 
Photoshop (blue circle in Fig. 5A, see SI Appendix, Fig. S5 for other example images). 
The border of this circular patch was smoothed to blend it in at the new location. We 
created two metamers using the algorithm of ref. 65, with Matlab code provided by 
the authors (https://github.com/freeman-lab/metamers). The two metamers were 
constructed so that either the object- or nonobject patch was kept intact, with a 
smooth transition to the surround.

Trials started with a red fixation point and the stimulus appeared after 300 ms 
of fixation. The monkeys maintained fixation for an additional 400 ms after stim-
ulus onset. We ensured that the RFs of V1 recording sites were centered on the 
image patch, which was identical in the four conditions. The order of the condi-
tions was randomized across trials and aborted trials (when the monkeys broke 
fixation) were repeated at the end. We collected a total of 8,094 trials in monkey 
M and 9,111 in monkey B.

We tested the significance of the BoM in a window from 0 to 300 ms after 
stimulus onset (subtracting spontaneous activity, −100 to 0 ms) with a Wilcoxon 
signed rank test across recording sites. We also used a repeated-measures two-
way ANOVA across recording sites, with object/nonobject contour and scrambled/
not scrambled as factors.

Data, Materials, and Software Availability. Multiunit activity data and code 
have been deposited in OSF (DOI: 10.17605/OSF.IO/QPC2D) (66). Previously 
published data were used for this work (22).
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