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ABSTRACT
Blockchain technology has been successfully exploited for deploy-
ing new economic applications. However, it has started arousing
the interest of malicious actors who deliver scams to deceive honest
users and to gain economic advantages. Ponzi schemes are one of
the most common scams. Here, we present a classifier for detect-
ing smart Ponzi contracts on Ethereum, which can be used as the
backbone for developing detection tools. First, we release a labelled
data set with 4422 unique real-world smart contracts to address the
problem of the unavailability of labelled data. Then, we show that
our classifier outperforms the ones proposed in the literature when
considering the AUC as a metric. Finally, we identify a small and
effective set of features that ensures a good classification quality
and investigate their impacts on the classification using eXplainable
AI techniques.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Security and privacy → Security services.
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1 INTRODUCTION
Blockchain is revolutionizing how individuals and companies ex-
change digital assets without the control of a central authority.
This technology has been successfully exploited for deploying new
economic applications, e.g., cryptocurrencies [14] and DeFi [15].
However, soon after this technology became widespread and its eco-
nomic value increased, it has started arousing the interest of mali-
cious actorswho are eager to take advantage due to the pseudonymity
of these platforms and the lack of regulation [13]: on the one hand,
they exploit cryptocurrencies to transfer currency without being
tracked by authorities; on the other hand, they deliver scams to
deceive honest users willing to make revenues through cryptocur-
rencies. Nowadays, many types of scams can be found on blockchain
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platforms, such as exploits, hacks, and phishing [2]: estimates say
that scams in Bitcoin [20] gathered more than 7 million USD.

Among the various scams, Ponzi schemes have approached
the blockchain world, first on Bitcoin [20] and more recently on
Ethereum [1]. These are fraudulent investment operations where
older investors obtain returns from new investors’ money rather
than legitimate business activities. Although the actual conditions
to gainmoney depend on the specific rules of the scheme, a common
feature is that participants who want to redeem their investments
have to make new participants join the scheme. Participants who
join later are the most likely to lose their money. Thus, the devel-
opment of automatic techniques to counter these scams is required
to protect average users and to allow them to participate safely in
the blockchain economy.

This paper focuses on Ethereum and smart contracts to deliver
Ponzi schemes, called smart Ponzi contracts. We implement an
automatic technique for classifying smart contracts, which can be
used as the backbone for developing new detection tools. More pre-
cisely, we provide the following contributions. First, we address the
problem of the unavailability of public data sets to train effective
automatic classifiers. Thus, we release a reusable data set that col-
lects 4422 unique real-world smart contracts, where 3749 (84.78%)
are not-Ponzi, and 673 (15.22%) are Ponzi. Our data set contains
both information about the transaction history of the contracts as
well as their bytecode. Then, we implement a binary classification
model to detect smart Ponzi contracts. Our experiments show that
the proposed model performs better than the models proposed in
the literature when considering the AUC as a metric and achieves
high accuracy for practical use. Finally, we address the issue of
identifying a small and effective set of features that ensures a good
quality of the classification process. To find this set, we proceed
as follows: first, we introduce new features and show through ex-
periments that they improve the classification. Then, we consider
the union of our features and those from the literature and identify
which ones can be safely removed because they do not contribute
to classification. We adopt eXplainable AI (XAI) techniques to in-
vestigate the contribution of each feature, which, to the best of our
knowledge, has never been done so far in this context.

In summary, the main contributions of this paper are:

• a reusable and publicly available data set that collects 4422
real-world smart contracts where 3749 are not Ponzi, and
673 are Ponzi;

• a binary classifier to detect smart Ponzi contracts that out-
perform classifiers in the literature when considering the
AUC as a metric;

• a small and effective set of features that ensures a good
classification quality;

• the study of the impact of such features on the classification
using eXplainable AI techniques.
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Structure of the paper. We proceed as follows. First, we introduce
Ponzi schemes and smart Ponzi contracts (Section 2) and discuss the
connection between our work and the literature (Section 3). Then,
we describe our data set and the features we use (Section 4). In Sec-
tion 5, we build our binary classifier and perform an experimental
evaluation to study its quality and the impact and importance of
the features. Finally, we draw some conclusions and discuss future
work in Section 6.

Availability. The data set and the source code used for the exper-
iments presented in this paper are available online.1

2 BACKGROUND: SMART PONZI CONTRACTS
Ponzi schemes are classic frauds concealed as “high-yield” invest-
ment programs. The initiator of the scheme generates returns for ex-
isting investors through revenue paid by new investors rather than
from legitimate business activities or profits of financial trading.
More in general, the U.S. Securities and Exchange Commission [17]
defines Ponzi schemes as “an investment fraud that involves the
payment of purported returns to existing investors from funds con-
tributed by new investors. Ponzi scheme organizers often solicit
new investors by promising to invest funds in opportunities that
generate high returns with little or no risk. With little or no legit-
imate earnings, Ponzi schemes require a constant flow of money
from new investors to continue. Ponzi schemes inevitably collapse,
most often when it becomes difficult to recruit new investors or
when a large number of investors ask for their funds to be returned.”

Although the actual conditions to gain money depend on the
specific rules of the scheme, a user who wants to redeem her in-
vestment has to make new users join the scheme. In this way, the
schemes create a pyramid of investors, where the initiator is at the
top, and the investors at level 𝑙 + 1 compensate for the investment
of those at level 𝑙 . Once a scheme collapses, investors at the top of
the pyramid gain money, while those at the bottom lose it.

The spread of cryptocurrency and smart contracts has created
new opportunities to deploy this kind of fraud. Indeed, it is possible
to find samples of smart contracts implementing Ponzi schemes,
called smart Ponzi contracts, deployed on the main blockchain
platforms like Ethereum and Bitcoin. This paper focuses on the
Ethereum platform. According to the literature [3] smart Ponzi
contracts have several attractive features to be used for scams:

(1) The initiator of a smart Ponzi could stay anonymous, since
deploying the contract on the blockchain and withdrawing
money from it only requires an Ethereum account that does
not reveal her real identity.

(2) Once deployed on the blockchain, smart contracts are “un-
modifiable” and “unstoppable”. Thus, no central authority
could terminate the execution of the scheme, seize themoney,
and refund the victims.

(3) Since the code of smart contracts is public, immutable, and
its execution is automatically enforced by the blockchain
platform, investors may believe that no one can take advan-
tage of their money and that they could eventually gain the
declared interests.

1https://github.com/fpinell/ponzi_ml

The most significant feature of a smart Ponzi is the policy used
to redistribute new investments among participants, i.e., how the
money flows. This requires a smart Ponzi to maintain a data struc-
ture storing participants’ information and implement a strategy for
redistributing dividends.

Identifying redistribution behaviour is crucial to classify a con-
tract as a smart Ponzi. Also, it is challenging because many other
kinds of contracts, e.g., gambling games, may have similar be-
haviour, which may induce many false positives. Bartoletti et al. [1]
proposed the following four requirements to classify a smart con-
tract as a Ponzi scheme:

R1 the contract redistributes money to the investors according
to a given logic;

R2 the contract receives money only from the investors;
R3 each investor makes a profit if a certain number of investors

join subsequently the contract investing some money;
R4 the later an investor joins the contract, the higher the risk

of losing her money.
A smart contract is classified as a smart Ponzi when it satisfies all
four requirements. Note that requirement R1 rules out contracts
that provide users with some assets but do not implement a distri-
bution logic to participants, e.g., tokens; requirement R2 ensures
that a participant invests a certain amount in joining the contract;
requirement R3 demands a constant flow of new investments for
investors to make a profit; requirement R4 characterizes the fraud-
ulent nature of smart Ponzi contracts because it reflects the fact
that making a profit for investors is likely impossible after a certain
point in time: too many victims must join the scheme for the con-
tract to have enough money to reward all the participants. Thus, the
scheme collapses when this happens. Note that the requirements
above impose no condition on the money received or not by the
initiator of the scheme. We will study the need for such a condition
in our experimental evaluation.

3 RELATEDWORK
Since the inception of Bitcoin, cryptocurrencies and blockchain
systems have attracted the attention of cybercriminals, who ex-
ploit them to carry out potentially untraceable scams. Since the
entire transaction history is publicly available and provides accurate
records of user behaviours, several papers [2, 10, 19] have proposed
machine learning techniques to detect possible frauds and scams.
Below, we discuss the proposals that are the most similar to ours.

Bartoletti et al. [3] study the problem of identifying Ponzi schemes
in Bitcoin through data mining. They released a public data set of
Bitcoin addresses and an open-source tool to build such a data set;
then, they apply different classification algorithms and systemati-
cally evaluate them to identify the best discriminating features for
detecting Ponzi schemes in Bitcoin. Our work shares their goal of
providing a public data set of smart Ponzi contracts and a good clas-
sifier and of identifying the most discriminating features. However,
we target Ethereum smart contracts and consider different classi-
fiers. Moreover, we use XAI techniques to study the contributions
of the features.

Bartoletti et al. [1] consider smart Ponzi contracts in Ethereum.
First, they define four criteria based on behavioural aspects to iden-
tify a contract as a smart Ponzi and produce a data set with several
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contracts satisfying such criteria. Then, they perform several man-
ual analyses on some contracts, including the security of their code
and the fairness of the distribution policy. In our work, we adopted
their criteria, enriched their data set by considering new features,
and added new contracts. Moreover, we trained and experimented
with different classifiers to automatically determine if a smart con-
tract is a Ponzi scheme.

Chen et al. [6] provide a reusable data set with real-world samples
and evaluate different classifiers. They use two classes of features:
the account features taken from the transaction history and code
features extracted from the contract’s bytecode. We follow the
same approach for building and evaluating different classifiers.
Moreover, we reused and extended their data set with new features
and contracts. In contrast, we provide a more accurate analysis and
an explanation of how the different features impact the classification
process, and we show that our best classifier outperforms theirs.

Chen et al. [5] propose SADPonzi, a detection tool based on
symbolic execution. The tool analyzes the bytecode of contracts
to extract semantic information and to identify investor-related
transfer behaviours and the distribution strategies adopted by the
scheme. SADPonzi performs the classification only by looking at
the code, not the transactions’ history. We include in our dataset
some contracts identified by this tool. The main differences with our
work are that we resort to machine learning techniques to classify
contracts and do not consider bytecode but only the information
about the transaction history.

Wang et al. [21] propose an approach based on Long-short Term
Memory Network to detect smart Ponzi. In contrast, our classifier
is not based on neural networks, and it is obtained after an experi-
mental evaluation that tests different models and hyper-parameters.
Moreover, we provide a precise account of how the various features
impact the classification, and our data set is publicly available.

Fan et al. [7] propose PonziTect, a detection method based on
ordered boosting that classifies contracts considering only their
bytecode. They adopt data augmentation to solve the problem of
imbalanced data by increasing the proportion of smart Ponzi at
the boundary. Here, we do not consider the problem of imbalanced
data because the algorithms we use are not affected too much by
this issue. Another difference is that we focus only on transaction
history instead of bytecode and that we release the data set and
code we used to train and test our models.

Lou et al. [11] use convolutional neural networks and focus
mainly on bytecode features. The pipeline they propose is standard:
first, they transform smart contracts into single-channel images and
then adopt the spatial pyramid pooling method to ensure that the
generated images have the same size. In contrast, our classifier is
not based on neural networks and considers only account features.
Moreover, here we adopt XAI techniques to understand how the
various features impact the classification process. In addition, our
data set is public.

Ibba et al. [8] build a machine learning model that uses trans-
action features, the bytecode, and the Solidity source code. They
tested their approach with decision trees, support vector machines,
and naive Bayes. In contrast, our classifier considers only transac-
tion features, and we study how the various features impact the
classification process. Moreover, our data set is publicly available.

As a last observation, none of the papers above uses XAI tech-
niques to study the contribution of the features.

4 DATA SET CONSTRUCTION
This section describes the data and features we use to detect smart
Ponzi. We build two data sets from the same sources but based on
different features. Below, after describing our data and features,
we present a qualitative analysis of some features to understand
how they distribute across the two classes and how much they may
discriminate during the classification.

4.1 Feature description
We built our data set based on others from the literature [1, 5, 6].
Specifically, we adopted their labelling results, which involved the
manual inspection of each contract code in verifying their com-
pliance with the requirements R1-R4 outlined in Section 2. The
resulting data set contains 4422 smart contracts, with 3749 (85.23%)
labelled as not-Ponzi and 673 (14.77%) as Ponzi. Nonetheless, we
have introduced additional features designed to capture novel char-
acteristics, which, in turn, enhance the performance of our classifier.
For more details, please refer to Section 5.

Below, we report the list of the features for each contract:

(1) Address: the address of the smart contract (not used for clas-
sification);

(2) Balance: the amount of currency in Ether (ETH) deposited
in the contract;

(3) Lifetime: the difference between the time of the first and the
last transaction made or received;

(4) Tx_in: the number of input transactions;
(5) Tx_out: the number of output transactions;
(6) Investment_in: the number of input transactions that deposit

an amount of ETH in the contract;
(7) Payment_out: the number of output transactions paying an

amount of ETH;
(8) #addresses_paying_contract: the number of distinct addresses

(an address identifies a user) that paid the contract;
(9) #addresses_paid_by_contract: the number of distinct addresses

paid by the contract;
(10) Mean_v1: the average of the differences of the number of

input/output transactions from/to the same address;
(11) Mean_v2: the average of the differences of the amount of

ETH received and paid by the contract involving the same
address;

(12) Sdev_v1: the standard deviation of the differences in the
number of input and output transactions involving the same
address;

(13) Sdev_v2: the standard deviation of the differences between
the amount of ETH in and out involving the same address;

(14) Paid_rate: the ratio between Tx_in and Tx_out;
(15) Paid_one: the ratio between the number of investors paid

many times and the number of total investors;
(16) Know_rate: the proportion of receivers who have invested

before payment;
(17) N_maxpayment: the max number of payments to all partici-

pants;
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(18) Skew_v1: the skewness of the differences of the number of
input and output transactions involving the same address;

(19) Skew_v2: the skewness of the differences of the amount of
ETH in and out involving the same address;

(20) Investment_in/Tx_in: the ratio between Investment_in and
Tx_in;

(21) Payment_out/Tx_out: the ratio between Payment_out and
Tx_out;

(22) Percentage_some_tx_in: the percentage of active days with
at least one input transaction during the contract lifetime;

(23) Sdev_tx_in: the standard deviation of the number of transac-
tions per day;

(24) Percentage_some_tx_out: the percentage of active days with
at least one output transaction during the contract lifetime;

(25) Sdev_tx_out: the standard deviation of the number of trans-
actions in output per day;

(26) Initiator_get_eth_wo_investing: this feature is 1 if the con-
tract initiator has earned ETH without any investment, 0
otherwise;

(27) Initiator_get_eth_investing: this feature is 1 if the initiator
has earned ETH investing in the contract, 0 otherwise;

(28) Initiator_no_eth: this feature is 1 if the Initiator has obtained
no ETH investing in the contract, 0 otherwise.

The first 19 features are inherited from previous works, while
the last nine are the new ones we introduced. For example, Feature
15 estimates how often a contract interacts with users it already
knows. A high value of this feature means more interactions (we
expect it to happen often for smart Ponzi). We now briefly comment
on the new features.

Features 20 and 21 aim to capture requirement R1 of Section 2 by
measuring the percentage of transactions distributing Ether among
investors. Since we expect that not-Ponzi contracts present a lower
percentage than Ponzi ones, these features are uniquely based on
currency exchanges. Features 22 and 24 monitor the number of
input and output transactions per day over time. A small value of
Feature 22 (respectively 24) indicates that the contract was active
for a few days considering input transactions (output, respectively,
for Feature 24). On the contrary, a high value means the contract
presented a more regular activity. We also consider the standard
deviation of daily transactions (Features 23 and 25) to capture the
variability during the contract life. In particular, we expect that
Ponzi contracts have a short lifetime in which they receive several
user investments. Indeed, since making a profit for investors is
likely impossible after a certain time, the scheme collapses, and the
contract will no longer receive new investments. These features
try to capture this behaviour, also considering what is specified by
requirements R2, R3, and R4 of Section 2. The last three features,
26, 27, and 28, verify whether the initiator received money from
the contract. Indeed, in smart Ponzi contracts, the initiator usually
receives a certain amount of money, even without an initial invest-
ment. We add these features to study whether receiving a certain
amount of money is peculiar to this kind of fraud. We expect most
contracts labelled Ponzi to have Feature 26 and Feature 27 equal
to 1. On the contrary, Feature 28 equals 1 for non-Ponzi contracts
since finding the initiator of a Ponzi that receives no Ether is quite
unusual.

Table 1: A summary of the features included in the various
data sets. The new features are in bold.

D1 D2 D3
Address ✓ ✓ ✓
Balance ✓ ✓ ✓
Lifetime ✓ ✗ ✓
Tx_in ✓ ✗ ✓
Tx_out ✓ ✗ ✓
Investment_in ✓ ✓ ✓
Payment_out ✓ ✓ ✗
#addresses_paying_contract ✓ ✗ ✓
#addresses_paid_by_contract ✓ ✗ ✓
Mean_v1 ✓ ✓ ✓
Mean_v2 ✓ ✓ ✓
Sdev_v1 ✓ ✓ ✓
Sdev_v2 ✓ ✓ ✓
Paid_rate ✓ ✓ ✓
Paid_one ✓ ✓ ✓
Known_rate ✓ ✓ ✓
N_maxpayment ✓ ✓ ✓
Skew_v1 ✓ ✓ ✓
Skew_v2 ✓ ✓ ✓
Investment_in/tx_in ✓ ✗ ✓
Payment_out/tx_out ✓ ✗ ✓
Percentage_some_tx_in ✓ ✗ ✓
Sdev_tx_in ✓ ✗ ✓
Percentage_some_tx_out ✓ ✗ ✓
Sdev_tx_out ✓ ✗ ✓
Initiator_gets_eth_Wo_investing ✓ ✗ ✓
Initiator_gets_eth_investing ✓ ✗ ✗
Initiator_no_eth ✓ ✗ ✗

We build two data sets D1 and D2 to evaluate how the different
features impact the classification quality. The dataset labelled as D1
incorporates all the previously mentioned features, while the D2
dataset exclusively includes the features employed by Chen et al. [6].
We adopt their classifier as a baseline in our experiments to gauge
the enhancements in classification performance. Table 1 summa-
rizes which features are present in the various data sets: symbol ✓

means that the feature is included, whereas ✗means that the feature
does not appear. Note that the way we generate the data set D3 will
be discussed in Section 5, and that features lifetime, tx_in, tx_out,
#addresses_paying_contract, and #addresses_paid_by_contract are
not present in Chen et al. but are in other papers.

4.2 Qualitative analysis of the features
We report below a qualitative analysis of how the new features
are distributed across the two classes and which seems to be the
most characteristic for each class. We also consider Features 4 and
7 that will play a role during our experiments in Section 5. Figure 1
shows the cumulative distributions for the new continuous features
(Features 20-25 above): the blue line represents the Ponzi behaviour,
while the orange line represents the not-Ponzi. For visualization
purposes, we discard the 1st and the 99th percentile in the plots;
however, the shape of the cumulative distributions is preserved.

The two populations present a different behaviour concerning
the input transactions (Tx_in): the cumulative distribution plot
presents a very different shape. Typically, smart Ponzi presents a
small number of input transactions with few exceptions with many
transactions. The same happens for features Investment_in/TX_in,
Payment_out/TX_out where smart Ponzi generally present larger
values than the other class. We expect that these features provide
the classifier with a relevant contribution to discriminate between
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Figure 1: The cumulative distributions of some continuous features: the distributions of the smart Ponzi are in blue, in orange
for the not Ponzi ones.
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Figure 2: The percentage of Ponzi and not Ponzi smart con-
tracts for Features 26-28.

the two classes. These differences are smoothed when we con-
sider the features Payment_out, Percentage_some_tx_in, Percent-
age_some_tx_out, Sdev_tx_in, and Sdev_tx_out where the cumu-
lative distributions are very similar. Therefore, we expect these
features to contribute marginally to discriminating between the
two classes.

Figure 2 shows the distributions across the two classes in the per-
centage of the new binary features Initiator_gets_eth_Wo_investing,
Initiator_gets_eth_investing, Initiator_no_eth. From the plot, we can
see that the number of Ponzi contracts having this feature Initia-
tor_no_eth equal to 0 and 1 is similar. In contrast, most not-Ponzi
contracts have this feature set to 1. We expect this can cause the
classifier to make mistakes when discriminating between the two
classes. Also, the feature Initiator_gets_eth_investing may not help
the classifier since most contracts of the two classes have this fea-
ture equal to 0. The feature Initiator_gets_eth_Wo_investing could
positively impact the classification because the number of not-Ponzi
contracts with a value of 0 is low.

5 EXPERIMENTS
In this section, we build binary classifiers for detecting smart Ponzi
contracts. We perform an experimental evaluation to study how
the new features of Section 4 impact classification and the quality
of the obtained classifiers. In particular, we answer the following
three research questions:

RQ1: Do the new features 15-22 improve the classifier’s qual-
ity?

RQ2: Which are the most relevant features? Can we find the
best set of features?

RQ3: Which are the characteristics of the best classifier?
Below, we report the experiments we performed to answer each
question and their results. We carried out our experiments with
Python, Scikit-learn, and the library SHAP [18] for using XAI tech-
niques.

RQ1: Impact of the new features
We take the data sets D1 and D2 and study the performances of
classifiers trained with them. (Recall that D2 uses the same features
of Chen et al. [6].) In particular, we consider Decision Tree [16],
Random Forest [4], and Light Gradient Boosting Machine Classifier
(LGBMC)[9] as classifiers and perform a grid search procedure

with cross-validation to fine-tune the hyper-parameters of each
classifier. We consider the Area Under the Curve (AUC) as the
metric to be optimized. We split the data sets into an 80% training
set (3537 samples) and a 20% test set (885 samples) stratified on
the target variable. Thus, given a training set, a classifier, and a
combination of hyper-parameters, the cross-validation splits the
training data into 5 folds. Then, the model (i.e., classifier and relative
hyper-parameters) is trained and tested 5 times, varying the fold
used as a validation set. An average of the metric to be optimized
over the 5 tests is performed. The optimal classifier is the one with
the highest mean score. In our case, the selected classifier has the
highest mean AUC. Once we have selected the best values for the
hyper-parameters for each combination of data set and classifier,
we compute the standard metrics Accuracy, AUC, F1, Precision, and
Recall on the test set. Table 2 reports a summary of the performances
of the various classifiers on the two data sets. According to the
AUC metric, the best model for both data sets is LGBM but with
different values for the hyper-parameters obtained through the
grid-search procedure described above. For D1, the classifier has
the following hyper-parameters: 80 estimators, max depth equal to
20, learning rate 0.1, 0.8 the subsample of columns, regulation alpha
equal to 0.2 (L1 regularization term), and regulation lambda set to
1 (L2 regularization term). For the data set D2, the selected hyper-
parameters are: 100 estimators, max depth equal to 15, learning
rate 0.1, 0.5 the subsample of columns, regulation alpha equal to 0.1,
and regulation lambda set to 10. Moreover, the table shows that the
model trained with D1 presents a better AUC than the one trained
with D2. Therefore, we can answer positively to RQ1:

Answer to RQ1:

The new features do improve the classifier’s quality.

Notice that for both data sets, we perform the grid search with the
same values for the hyper-parameters, applying, thus, the same
procedure to select the best-performing classifier.

Below, we analyze the results obtained by the LGBM classifier
on D1 and D2. Figure 3 shows the ROC curve that describes the
diagnostic ability of a classifier by comparing the true positive and
the false positive rate. In Figure 3, the curve of D1 presents higher
values than the one of D2, meaning that it exhibits a better classifier
performance, as summarized in the fourth column of Table 2.

We also study the confusion matrices of the two models (see
Figure 4). From the matrices, we observe that the classifier trained
with D1 presents a higher number of TP and TN, i.e. of smart
contracts that are correctly classified, and a lower number of FP
and FN, i.e., of smart contracts that are incorrectly classified. Thus,
D1 performs better than D2.

Finally, we consolidate our results through theMcNemar test [12],
a well-known approach to analyzing the statistical significance of
the differences in classifier performances. Our null hypothesis is
that none of the two classifiers performs better than the other,
whereas the alternative hypothesis is that the classifiers’ perfor-
mances are unequal. We set the significance threshold to 0.05 and
compute the p-value, i.e., the probability of the observations where
the null hypothesis is true. The test results in a p-value equal to
0.0007, thus lower than our significance threshold of 0.05. Hence,
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Table 2: Results of the grid search comparing three classifiers
on data sets D1 and D2(top). The performances on the best
classifier on D3 (bottom).

Metric Accuracy AUC F1 Precision Recall
Data set Classifier

D1 Decision Tree 0.855 0.733 0.496 0.529 0.467
LGBM 0.904 0.883 0.608 0.805 0.489
Random Forest 0.896 0.875 0.562 0.787 0.437

D2 Decision Tree 0.861 0.674 0.481 0.559 0.422
LGBM 0.876 0.788 0.444 0.698 0.326
Random Forest 0.873 0.770 0.462 0.658 0.356

D3 LGBM 0.908 0.884 0.620 0.846 0.489

Figure 3: The ROC curve on the test set for the three best
classifiers, one for each dataset.

Predicted class
N P

N 734 16
P 69 66

Data set D1

Predicted class
N P

N 731 19
P 91 44

Data set D2

Predicted class
N P

N 738 12
P 69 66

Data set D3

Figure 4: Confusionmatrices of the best classifier on our data
sets, where we indicate with N and P the not Ponzi and Ponzi
class respectively.

the null hypothesis is rejected: the classifier trained on D1 outper-
forms the one trained on D2. This strengthens our answer to RQ1:
the new features improve the classifier’s quality, which is statistically
significant and not due to some randomness in the data.

RQ2: Detect most relevant features
We take our best model on D1 and investigate which features con-
tribute most to classification and which mislead the classifiers. First,
we compare the new features to determine their importance. Each
classifier adopts different metrics to determine the importance of
features. The LGBM classifier considers the number of times a fea-
ture is used to split the data across all ensemble trees: the more a
feature is used, the more important it is. Figure 5 shows the new

Figure 5: The importance of the new set of features included
in dataset D1.

features sorted by importance, where the x-axis represents the num-
ber of splits. We see that Sdev_tx_in is the most important, whereas
Initiator_no_eth and Initiator_gets_eth_investing are less important.

Then, we consider the problem of determining if there exists a
subset of the features of D1 that improves the quality of the clas-
sifier. Our idea is to consider the number of features as a further
hyper-parameter to be optimized. To do that, we proceed as fol-
lows. We perform a grid search procedure with cross-validation
to optimise the AUC and the number of features. To tune this
last hyper-parameter, we start considering all the features in D1,
perform a grid search and 5-fold cross-validation procedure with
the other hyper-parameters and obtain the best-performing clas-
sifier. Then, we adopt the Recursive Feature Elimination algorithm
to remove the less important feature. Given the new reduced data
set, the procedure is repeated until the number of features to be
evaluated equals the number of features of D2. As for the previ-
ous experiments, we split the data set into an 80% training set
(3537 samples) and a 20% test set (885 samples). As a result, we
obtain the highest mean AUC with the data set D3 which includes
25 features (see Table 1). The LGBM classifier trained on D3 per-
forms better and improves the best classifier on D1 as shown in
Table 2. The other hyper-parameters are the following: 120 estima-
tors, max depth equal to 15, learning rate 0.1, 0.5 the subsample
of columns, regulation alpha equal to 0.1, and regulation lambda
set to 10. In D3 the following features are removed in order Ini-
tiator_no_eth, Initiator_gets_eth_investing, and Payment_out. This
confirms what was anticipated in Section 4: Initiator_no_eth and
Initiator_gets_eth_investing do not contribute to discriminating be-
tween the two classes because creators of legit smart contracts may
receive or not an amount of money from contracts they created.
This is in line with requirements R1-R4 of Section 2 that do not con-
sider the money received by the initiator as a discriminating factor
to be a Smart Ponzi. Finally, Payment_out does not contribute to
classification because every smart contract transfers money during
its lifecycle. Thus, the number of output transactions on its own
seems not to capture requirement R1 of Section 2, so it is not a good
estimator to detect Ponzi schemes. In summary:
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Figure 6: Distribution of the probability to be a Ponzi scheme
estimated using the best-performing classifier on D3. We
report the distribution of both classes.

Figure 7: The feature importance of the top 10 features in
terms of SHAP values.

Answer to RQ2:

The best and relevant features are those used by dataset D3.

RQ3: Characteristics of the best classifier
As described above, the best classifier is LGBM, considering the 25
features of D3. Figure 4 (right) shows the corresponding confusion
matrix: 4 false positive contracts are now classified correctly. Fig-
ure 6 displays histograms of the probability of being in one of the
two classes. Considering a threshold of 0.5, the classifier may assign
a lower probability to some smart Ponzi contracts. To understand
how the classifier works on D3, we use the XAI library SHAP to in-
vestigate how the most important features impact the classification.
Figure 7 shows the beeswarn plot of the feature importance based
on SHAP values for the test set. The plot displays an information-
dense summary of how the top features impact the model output.

Each instance is represented by a single dot whose position on the
𝑥-axis is determined by the SHAP value of the feature; the dots
are “pile up” along each feature row to show the density. Colour is
used to display the original value of a feature: blue corresponds to
a lower value, while red corresponds to a higher value. Below, we
comment on the top three features. We can easily understand each
feature’s positive or negative effect on the prediction outcome from
the plot. We observe that the number of transactions in input (fea-
ture Tx_in) negatively impacts when it presents a high value. This
means a small number of input transactions probably characterizes
smart Ponzi contracts. We cannot explain why this happens only
by observing this feature in isolation but by considering its relation
with others (see the discussion below). On the contrary, a higher
value of feature Investment_in/tx_in indicates a positive effect on
the classifier to label an instance as a smart Ponzi. This could be
because typical smart Ponzi contracts do not provide users with
many services besides investing some money. Thus, most input
transactions the contract receives carry a certain amount of cur-
rency. The Lifetime feature helps to discriminate between the two
classes because the time smart Ponzi contracts are active is typically
short. Indeed, they may quickly reach the point where it becomes
difficult for users to have revenue, so they collapse. This behaviour
is evident from the plot of Figure 7 where contracts with smaller
values of the Lifetime feature tend to be classified as smart Ponzi
ones. The importance of the rest of the features could be explained
similarly. A last comment on the results of Figure 7 is that three
of the features introduced in Section 4 belong to the top 10. This
confirms our choice of adding them to improve the classification.

As we already anticipated, a single feature in isolation cannot
capture requirements R1-R4, but a group of features is required. So,
the interaction among features plays an important role in classify-
ing a contract as a smart Ponzi or not. To study and explain these
interactions, we report in Figure 8 the dependence plots generated
through the SHAP library for the five most important features of
Figure 7: Tx_in, Investiment-in/Tx-in, Lifetime, Known-rate and
Paid one. Intuitively, a dependence plot is a scatter plot that shows
the effect of a single feature on the predictions made by the model.
In the plot, each dot represents a sample (a smart contract in our
case), the 𝑥-axis represents the feature values, the 𝑦-axis is the
SHAP value for that sample, and the colour intensity indicates the
values of a second feature on which we want to study the depen-
dency. A distinct vertical pattern of colouring suggests a certain
level of interaction or dependency between the considered features.
In our case, the second feature is always taken from the most impor-
tant ones. The first plot on the left of Figure 8 highlights a certain
interaction between Tx_in and Lifetime to predict the probability
of being a Ponzi scheme. More precisely, we observe that when
the value of Tx_in is small, the contract’s lifetime can be small
too, and the corresponding SHAP value can span in a wide range,
showing the vertical colouring pattern that indicates the interac-
tion between features. This dependency between the number of
input transactions and the lifetime is clear when considering what
we already anticipated above. Indeed, smart Ponzi contracts are
typically characterized by a small number of input transactions
and by a short lifetime because it is probable that they collapse
quite soon. A similar pattern emerges when we consider Lifetime
with the other features such as Investment-in/Tx-in, Know-rate and
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Figure 8: The dependence plots for the five most important features: Tx_in, Investiment-in/Tx-in, Lifetime, Known rate and
Paid one.
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Paid-one. When the Lifetime value is low, the values of the second
feature present a certain density of the same colour, whereas when
the value of the Lifetime is low, the other features present different
colours. Moreover, from the plots, we observe the interaction be-
tween Lifetime and Investment-in/Tx-in ratio is similar to the one
between Lifetime and Paid-one. This may be because the number
of transactions is a function of the number of investors. The plots
show another clear interaction between the features Investiment-
in/Tx-in and Know-rate and Paid-one. In particular, when the value
of the Investiment-in/Tx-in ratio is high, a vertical colour pattern
emerges for high/low values of Know-rate/Paid-one. The interac-
tions are less evident for the other combinations of features, and
we do not show them.

In summary:

Answer to RQ3:

The analysis of the best classifier reveals that smart Ponzi con-
tracts are characterized by a short lifetime, by a small number
of input transactions that provide a high income of money, and
by a number of transactions that pay a small subset of investors.
Therefore, our results are in line with the requirements R1-R4.

6 CONCLUSION
This paper presented an automatic technique for detecting smart
Ponzi contracts on Ethereum. We released a reusable data set with
4422 unique real-world smart contracts that can be used for future
research. Then, we introduced a new set of features that allowed
us to improve the classification and outperform previous efforts in
the literature [6]. Finally, we identified a small and effective set of
features that ensures a good classification quality, and we applied
XAI techniques to explain how the most important features impact
classification.

In future work, we plan to extend our model in different direc-
tions. We intend to improve the procedure to optimize the best set
of features, we would like to take into account also the bytecode of
contracts present in our dataset but not used by our current classi-
fier and possibly apply deep learning techniques to minimize the
feature engineering effort. Moreover, we plan to further investigate
the relationship among the most important features and to refine
the requirements of being a smart Ponzi proposed by Bartoletti et
al. as well the temporal dimension of such a set of features. Analo-
gously, our approach can be applied to detect other forms of scams
on Ethereum, and phishing is one of the most promising.
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