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Laplacian paths in complex networks: Information core emerges from entropic transitions
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Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information
pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses
of the network topology. Moreover, small-world effects correlate with the different network hierarchies compli-
cating the identification of coexisting mesoscopic structures and functional cores. We present a communicability
analysis of effective information pathways throughout complex networks based on information diffusion to shed
further light on these issues. We employ a variety of brand-new theoretical techniques allowing for: (i) bring
the theoretical framework to quantify the probability of information diffusion among nodes, (ii) identify critical
scales and structures of complex networks regardless of their intrinsic properties, and (iii) demonstrate their
dynamical relevance in synchronization phenomena. By combining these ideas, we evidence how the information
flow on complex networks unravels different resolution scales. Using computational techniques, we focus on
entropic transitions, uncovering a generic mesoscale object, the information core, and controlling information
processing in complex networks. Altogether, this study sheds much light on allowing new theoretical techniques
paving the way to introduce future renormalization group approaches based on diffusion distances.
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Transmission and processing of information in complex
networks are functions of the underlying spatial graph struc-
ture determining the paths along which the information flows.
Such paths strongly depend on the spatial resolution at which
the dynamical processes operate [1,2]. We can even say that
a particular flow—strongly conditioned by the underlying
topology—is directly linked to the network scales through the
network “communicability,” i.e., how a perturbation on one
node of the network is “felt” by the rest of the nodes with
different intensities [3]. We need, therefore, to consider three
powerful concepts to shed light on the interaction between
information flow and graph structure.

The first one is Shannon’s entropy [4] that is related to
the “amount of information” contained in a probability dis-
tribution allowing us, for example, to find the probability of
the available microstates of the classical statistical ensembles
[5,6]. In the network community, it has proven to be essential
to reveal the timescale dependencies in neural systems [7,8],
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to characterize network ensembles [9], or to unravel different
mesoscopic structures through random-walk diffusion tech-
niques [10–12]. In particular, recent pioneering works have
proposed a set of information-theoretic tools formalizing an
entropy measure for complex networks both in simple graphs
and multilayer networks [13–15]. It is not, however, the in-
tention of this paper to shed light on the profound debate of
what information is [16], but on how information is stored in
a network and what mesoscopic units play an essential role in
its processing and transmission. Hence, its profound meaning
and implications remain a crucial question to be answered.

Heterogeneous scale-dependent structures have been pro-
posed to emerge as an optimal solution when resources are
scarce, and there is some cost involved in forming connec-
tions between nodes [17]. In particular, core structures are
expected to play a crucial role in supporting integrated net-
work function in the brain and genetic networks [18,19].
Also, rich-club structures enrich the functional repertoire over
and above the effects produced by scale-free type topology
[20]. In contrast, core-periphery structures foster the exis-
tence of a central integrative functional core [21,22] (see [19]
for a comprehensive review). A fundamental open challenge
involves characterizing mesoscale objects such as giant com-
ponents and functional cores in terms of diffusion geometry
[23]. This leads us to consider the second ingredient for our
analysis: a mechanism of diffusion in the system, able to cap-
ture the network properties such as small worldness, degree
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heterogeneity, or clustering. The usual mechanism of diffu-
sion in the case of graphs takes the form of the Laplacian
matrix [1,24], which encodes the heterogeneity properties of
the network through its spectrum of eigenvalues and corre-
sponding eigenvectors. Note that diffusion is a fundamental
ingredient of most of the studied dynamical processes on, for
instance, networks synchronization [25].

The third and final ingredient we need is a theoretical tool
to characterize the information diffusion and related dynamics
in any heterogeneous network at different scales, i.e., a field
theory of information dynamics in heterogeneous structures.
In regular structures (i.e., regular lattices), the renormaliza-
tion group (RG) is the fundamental theory that permits the
accurate analysis of static and dynamical statistical physics
models at different scales providing an elegant and precise
theory of criticality. It allows us to connect—via the scal-
ing hypothesis—extremely varied spatiotemporal scales and
to understand the fundamental issues of scale invariance
[26–28]. Unfortunately, due to the strong topological hetero-
geneity, its complex network counterpart still presents serious
issues. All the current approaches suffer from several limita-
tions [29] (e.g., assumption of specific topological properties
[30], limited iterability in networks with small-world effects,
or irreducibility to the ordinary scheme for regular lattices).
Still, Zheng et al. [31] performed an RG-inspired approach
for the Human Connectome by studying zoomed-out layers
showing that they remain self-similar under specific coarse-
graining transformations of nodes and connectivity [30,31].
To develop an RG scheme in heterogeneous networks, it is,
therefore, crucial to making progress in this direction: to
extend recent approaches which have provided the basis to
develop a statistical field theory of information dynamics on
complex networks [13,15], on the grounds of information
fluxes between nodes [32].

The heterogeneous topology of a network, characterized
by peculiar structures, determines how the information flows
at different scales on top of the network [18]. Hence, in-depth
knowledge of the dependence on structural network properties
of the information diffusion is essential to interpret collec-
tive network phenomena from a dynamical point of view.
For instance, the interspersed nature of multiple pronounced
resolution scales suggested the existence of stretched criti-
cality regions [33] both in the activity spreading dynamics
[33–35] and in the appearance of broad frustrated synchro-
nization regimes [36,37]. Moreover, genuine scale-invariant
networks, such as the Barabási-Albert one [38], show no
sign of epidemic threshold [39] even though they still present
an unforeseen nonvanishing synchronization transition point
[40,41] with no reasonable explanation up to now.

In this work we develop a statistical physics framework
that, grounding on the concept of Shannon entropy, permits
us to study the fundamental paths along which information
is transmitted throughout complex networks. In particular,
we first introduce the Laplacian network propagator at dif-
ferent times and the spectral entropy through the measure
defined by its spectrum. We then study the variations of this
entropy as a function of the diffusion time, revealing essen-
tial substructures and modules at different resolution scales.
More precisely, we show that such entropy acts as an order
parameter for structural phase transitions, and its derivative

plays the role of specific heat. Indeed in networks character-
ized by a complex hierarchical organization of scales (e.g.,
the Human Connectome), the different resolution scales at
which such specific heat shows pronounced peaks identify
the characteristic intrinsic network scales. Moreover, as we
explicitly demonstrate, these are precisely the fundamental
scales uncovering different functional cores playing a crucial
role in network dynamical processes such as, for instance,
synchronization.

I. RESULTS

A. Canonical formulation

Information diffusion in complex networks rules as set
out by the Laplacian matrix L̂ [1,42], defined for undirected
networks as Li j = δi j

∑
kAik − Ai j , where A stands for the

network’s adjacency matrix [43], and δ is the Kronecker delta
function. The Laplacian thus regulates the evolution of infor-
mation of a given initial specific state of the network s(0),
which will evolve with time as s(τ ) = e−τ L̂s(0). The network
propagator K̂ = e−τ L̂ represents the discrete counterpart of
the path-integral formulation of general diffusion processes
[44], and each matrix element Ki j substantially accounts for
the sum of diffusion trajectories along all possible paths con-
necting nodes i and j up to a temporal scale τ [1,45].

In terms of the network propagator K̂ let us now define the
operator [13]

ρ(τ ) = K̂

Tr(K̂ )
= e−τ L̂

Tr(e−τ L̂ )
, (1)

whose eigenvalues μi(τ ) with i = 1, 2, . . . , N are simply re-
lated to the eigenvalues λi of L̂ by

μi(τ ) = e−λiτ∑
j e−λ jτ

. (2)

Note that the generic eigenvalue 0 < μi(τ ) � 1 gives the rel-
ative weight of the corresponding Laplacian eigenvector in
the eigenvector decomposition of the network state s(t ). By
the properties of the Laplacian for a simple connected graph,
we have that all eigenvalues of L̂ are positive with the only
exception of the minimal one λmin = 0 whose corresponding
eigenvector is uniform. Consequently, through the measure
given by Eq. (2) we can define the Shannon entropy—at time
τ > 0—(as recently proposed in [13,32])

S[ρ(τ )] = − 1

log(N )

N∑
i=1

μi(τ ) log μi(τ ), (3)

where the normalization coefficient 1/ log(N ) makes the en-
tropy S[ρ(τ )] ∈ [0, 1]. Indeed, its maximum value is obtained
in the case of N identical eigenvalues μi(τ ) = 1/N (for τ =
0), which describes the most trivially heterogeneous network
composed by N isolated (i.e., independent) nodes. As shown
below, this will allow us to consider it as a potential or-
der parameter for the study of entropic phase transitions
(or information propagation transitions, i.e., diffusion) over
the network. We state here a heuristic explanation of such
quantity: let us assume to start the dynamics with a generic
heterogeneous state s(0) having non-null components along
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FIG. 1. Network average of the entropy S[ρ(τ )] versus the in-
verse of time evolution 1/τ for an Erdös-Renyi network of 〈k〉 = 30
and different system sizes (see legend). A critical point (τC) sep-
arates the segregated phase from the integrated one. The specific
heat C presents a peak just at this critical value. Inset: Variance of
the entropy, averaged in the graph ensemble, and multiplied by N ;
� = σ 2

S N . The point of maximal variability coincides with the point
of maximal slope in S[ρ(τ )] for all network sizes N (dashed lines in
the main figure). All curves have been averaged over 102 realizations.

all eigenvectors of L̂. The more heterogeneous s(0) is in terms
of its decomposition along the eigenvectors of L̂, the larger the
information encoded in the network. In this sense, S[ρ(τ )] can
be seen as a measure of the residual information still encoded
in the evolved state s(τ ). Note that this formulation does not
consider any information about the initial state of the nodes
and only draws on the properties of the network’s propagator,
that encodes the information streams or information flow be-
tween nodes i and j [32]. We stress the specific application
considering τ = −1, the so-called Laplacian Estrada index of
a network, initially proposed to quantify the degree of folding
of long-chain molecules [46], which also provides a centrality
measure of the network [3,47].

B. Entropic phase transitions

We perform an extensive computational study of the en-
tropy S[ρ(τ )] of different network structures. Our results
reveal the existence of entropic second-order phase transi-
tions accounting for the information diffusion and processing
throughout the network (see, e.g., Fig. 1 for the case of
an Erdös-Renyi network). By increasing the diffusion time
τ from 0 to ∞, S[ρ(τ )] decreases from 1 (segregated and
heterogeneous phase—the information diffuses from single
nodes only to the local neighborhood) to 0 (integrated and
homogeneous phase—the information has spread all over the
network) in all connected simple graphs. The derivative of the
entropy concerning the (logarithm of the) diffusion time τ ,

C = − dS

d (log τ )
, (4)

is a detector of transition points corresponding to the intrin-
sic characteristic diffusion scales of the network. Indeed, a
pronounced peak of C defines τ = τC and reveals a strong de-
celeration of the information diffusion, separating regions of
the network with strong diffusion from the rest of the network
where the diffusion slows down. To clarify this point, we can
use the analogy with thermodynamic systems. More precisely,

since for a simple graph L̂ is a Hermitian matrix, we can see
Eq. (1) as a canonical density operator of statistical physics in
which L̂ plays the role of the Hamiltonian operator and τ plays
the role of the inverse temperature [6,26,48]. In this sense,
S[ρ(τ )] corresponds to the canonical Von Neumann entropy
[13] and its derivative concerning log τ is the specific heat of
the system. A sharp maximum of this quantity, which diverges
in the thermodynamic limit, is a fingerprint of a second-order
phase transition in statistical physics. Moreover, thanks to
this analogy, we can use the thermal fluctuation-dissipation
theorem [49,50] connecting the specific heat to the entropy
fluctuations saying that C is proportional to σ 2

S = 〈S2〉 − 〈S〉2,
where 〈·〉 indicates fluctuations over the graph ensemble. In
particular, we expect that σ 2

S , over many independent network
realizations, scales as 1/N where N is the number of nodes of
the network (as a direct application of the central limit theo-
rem [51]). The inset of Fig. 1 shows the scaled variance of the
entropy � = Nσ 2

S , which exhibits a pronounced peak at the
transition point, revealing anomalous scaling as expected at
true criticality. The combination of these quantities (S[ρ(τ )],
C, and �) allows us to affirm the existence of a bonafide
second-order phase transition.

Once we have described the expected system phases, we
now discuss different underlying network structures and their
emergent effects. For all connected networks, the averaged
entropy S shifts from a distinctively zero value (i.e., full in-
tegration of information) to a completely isolated set of nodes
but featuring an entirely different transient phenomenology. In
particular, homogeneous networks, as the paradigmatic exam-
ple of the Erdös-Renyi network, show a second-order phase
transition depending on τ values (as shown in Fig. 1), captur-
ing the information flowing from small subsets of nodes at the
very beginning, to an effective network acting as a whole for
considerable times. A completely different phenomenology
emerges when analyzing networks with further complex-
ity and interspersed scales as, e.g., stochastic block models
(SBMs, see Appendix C). SBMs are composed of N nodes
organized into Cr subsets or communities, with different in-
tracommunity and intercommunity connection probabilities
p and q, respectively. Due to their particular community
structure, SBMs present a representative two-peaked behav-
ior when examining C [see Fig. 2(a)]. This double-peaked
structure reflects the probability of successfully integrating
information within the modules and throughout the entire
network, thus capturing the characteristic network scales. It is
essential to point out that this kind of network—even if it says
nothing new—constitutes the most straightforward example
that allows for an emergent complex dynamical compromise
between segregation and integration for intermediate diffusion
times.

We now consider more sophisticated multiscale networks,
hierarchical-modular random networks (HM-R), including
different hierarchical levels (a sort of network of networks
built employing the algorithms proposed in [52], see also
Appendix A). In particular, networks are created based on
a nested stochastic block model in which modules are sub-
divided into further modules. Connections are made by
selecting two nodes randomly and connecting them with a
fixed probability that depends on the hierarchical scale. This
type of network can be enriched by considering a more
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FIG. 2. Network average of the entropy parameter S versus the inverse of time evolution 1/τ for: (a) Stochastic block model (SBM) for
different network sizes (see legend) constituted by four equal interconnected modules p = 128/N and interconnectivity probability q = 1/N
(i.e., with 〈k〉 = 32). Two peaks in the derivative of the order parameter C indicate diverse critical points, and a broad region separates the
segregated phase from the integrated one. The peak at short times happens for similar diffusion times to the ER network, because of the
similarity between both networks at a local scale. (b) Hierarchic modular network with core-periphery structure (HC-CP). We consider a set of
basal nodes with Nb = 25 units and connectivity per node k0 = 12 (the mean connectivity ranges from 〈k〉 � 37 for N = 256 to 〈k〉 � 52 for
N = 2048). (c) Human Connectome network (〈k〉 � 38 for the binarized case). All curves for the SBM and the HM-CP have been averaged
over 102 realizations.

sophisticated building algorithm, i.e., replacing the random
connectivity probability between modules with a preferen-
tial attachment rule that produces a core-periphery (HM-CP)
structure involving central connector hubs having local and
global rich clubs (so that the degree distribution is scale-free
[52]).

Figure 2(b) shows the results for an HM-CP network with
a different number of hierarchical levels. Even if the peak at
short times does not qualitatively change regarding the SBM,
we realized that the peak at large times displays a continuum
nonmonotonic decay, a sign of smooth information processing
in ascending the nested hierarchical structure [see Fig. 2(b)].
In turn, the comparison of simple HM-R networks and HM-
CP networks reveals that a core-periphery structure allows
for earlier processing of information on the networks together
with a more extensive information containment for long dif-
fusion times (see further details in Appendix C). This is
compliant with recent results indicating that a core-periphery
structure fosters the emergence of broad synchronization re-
gions with high dynamical variability [53].

It is appropriate to mention the particular case of scale-free
networks (SF) separately. They present a power-law scaling of
the variance maximum as a function of the system size going
to � → 0 in the thermodynamic limit (see Appendix B).
We must emphasize that it is driven by the maximum sys-
tem’s eigenvalue of the network Laplacian matrix, which is
proportional to the cutoff of the degree distribution kmax,
thus scaling with the system size [41]. This leads, among
other consequences, to justify the null epidemic threshold in
unstructured networks [54] (but yet allowing a finite set of
synchronization [40], as discussed below). For our purposes,
it is a symptom of inefficient network thorough information
processing, as the accurate analysis of C shows, unveiling a
constant value among different scales, strongly related to the
spectral properties of the network (see Appendix B).

Finally, we perform an accurate analysis of the exist-
ing Human Connectome network (HC, the reconstruction
of structural human brain networks—through neuro-imaging
techniques—which are composed of hundreds of neural re-
gions and thousands of white-matter fiber interconnections

[55,56]). Figure 2(c) shows (for the binarized and weighted
HC) the existence of a robust multiscale double-peaked tran-
sition indicative of two pronounced hierarchical singular
scales finding evidence of scale-dependent structures (more
specifically, by the emergence of well-connected modules,
as discussed afterwards). We realize that the precise design
of weights in the HC allows for a richer structure between
the two critical network scales (i.e., enrich the complexity
of the network), as the derivative of S reveals, thus allowing
for greater flexibility in the integration/segregation balance of
information across the network.

The reader can gain insight into the emergent phenomenol-
ogy in the Supplemental Material 1 [57], which contains
videos showing the phase transitions for different network
structures.

C. Zooming-out networks: Information core
and characteristic scales

The underlying connected substructure of information
paths between the two prominent entropy peaks has profound
physical implications that we discuss here. To identify it, we
propose a method coming from the information propagator of
the network [see Eq. (1)] to shed light on the most prominent
network substructures.

At the very initial time, τ = 0, only isolated nodes are
considered. Instead, when time is going on, the first peak
of C reflects the existence of a characteristic scale below
which the information diffuses rapidly and then slows down.
In other words, this peak detects the first highly connected
network structures (information reservoirs) where information
rapidly homogenizes. We call the giant component of this
set of nodes the information core of the network. The last
peak, which happens at long evolution times, takes account
of full information integration all over the network (i.e., it
represents the set of fully interconnected nodes). As a direct
consequence, the distance between peaks is tightly interlinked
with both the spectral dimension of the network and the nested
hierarchical-modular structure. It takes account of the differ-
ent local structures and scales of the system.
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FIG. 3. Information integration substructures. (a) Probability distribution of processed information P(ρ ′) for different values of the time
evolution in the weighted Human Connectome network (see legend). At short times no nodes can integrate and process information (red
line), generating an emergent processing information structure at intermediate times that finally converges to a delta function for large enough
times (dark blue line). (b) Rank index i versus the normalized inverse of the corresponding nonzero eigenvalues of the ζ Laplacian matrix
for the weighted HC, at different evolution times (see legend). The decay time, associated with the different eigenvalues, reflects the different
hierarchical organizations at different resolution scales. Inset: Fraction of nodes which are in the giant component (GC) versus 1/τ for the
weighted HC. The gray dashed line indicates the position of the C peak at short times [see purple line in Fig. 2(c)]. (c) Emergent structures in the
weighted HC. The time evolution τ increases from up to down highlighting different meaningful mesoscopic scales, namely: τ = 2 (segregated
phase), τ = 2 × 101, 2 × 102, 2 × 103 (intermediate phase), and τ = 2 × 104 (integrated phase). Left column: The giant component of network
substructures, obtained through the ρ ′ binarized version ζ (as explained in the main text). Right column: Snapshots of typical ζ information
integration matrices; the color code represents the information integration for pair nodes as shown in the scale. The segregated phase is
characterized by no information invading the system, being it confined on each node (i.e., along the diagonal, displaying the basal system
scale). On the other hand, for intermediate values of τ different substructures coexist, depending on the structural complexity of the underlying
network. In the segregated phase, substructures are no longer observed, and a homogeneous “all to all,” information integration network is
observed (i.e., the network can be considered as a unique node, see also the videos in the Supplemental Material [57]). (d)–(g) Information
core for different networks: (d) Stochastic block model (SBM) with N = 1024 nodes. Inset: Giant component corresponding to the particular
decomposition of an individual module. (e) Giant component of a hierarchic modular network with core-periphery (HM-CP) with N = 1024
nodes and six hierarchical levels, and the Human Connectome network, whether (f) binarized or (g) weighted.

To better illustrate this effect, we analyze the evolution of
the ρ matrix, which encodes the effective integrated infor-
mation between each pair of nodes in the network. Observe
that this matrix is originally diagonal, with all terms equal to
ρi j = δi j/N at the very initial time τ = 0. From then on, the
resulting matrix will depend on the structure of the network
Laplacian (and consequently of the adjacency matrix), ruling
the current information flow between nodes. To characterize
the underlying network substructures, we set out a criterion
to scrutinize ρ: two nodes can reciprocally process infor-
mation when they reach a greater than or equal value than
the information contained on one of the two nodes, thereby
naturally introducing ρ ′

i j = ρi j

min(ρii,ρ j j )
. Thus, if two nodes can

integrate information depending on their particular ρi j matrix
element at time τ , it is possible to define a new “information
integration” matrix ζi j = H(ρ ′

i j − 1), where H stands for the

Heaviside step function H(x) = {1 if x � 0
0 if x < 0 . Observe that, for

τ → ∞, the ρ matrix converges to ρi j = 1/N , and ζ is the
all-ones matrix, as might be expected.

We have considered the binarized counterpart of the infor-
mation probability flow ζ in terms of the canonical density
operator, in analogy to the steepest descent method in the path
integral formulation of general diffusion processes [58]. In

particular, following our choice, we are numerically select-
ing first the most probable paths from Eq. (1), which give
information about the prominent information flow paths of the
network in the interval 0 < t < τ .

Figure 3(a) shows the P(ρ ′) distribution as a function of ρ ′
for the weighted HC and different values of τ . By examining
P(ρ ′) for different resolution times of the network, we can
conclude that: (i) at short times, no paths are connecting any
couple of nodes (i.e., ρ ′

i j < 1, ∀i 
= j) and (ii) for large times
all values converge to ρ ′ = 1, i.e., all the possible paths allow
us to integrate information between any couple of nodes. In
turn, setting neither too big nor too small times enable us to
explore the most likely paths of information flow pervading
the network structure (i.e., those with ρ ′ � 1). Figure 3(b)
summarizes the Laplacian spectrum of the ζ matrix, for dif-
ferent values of τ . It evolves from a Dirac delta probability
distribution P(λ) = δ(1/N ), at time τ = 0 [from direct ap-
plication of Eq. (1)] to a progressive convergence to λ1 = 1
and λi = 0 for i = 2, . . . , N , at time τ → ∞, where λ1 corre-
sponds to the maximum system’s eigenvalue. We also measure
the fraction of nodes which are in the giant component, i.e.,
GC = NGC/N . As shown in Fig. 3(b) the C peak at short
times signs the emergence of a nonvanishing giant component
percolating throughout the network. Finally, Fig. 3(c) shows
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the information integration matrix for different diffusion times
(evidencing the diffusion mechanism on the different network
scales) together with the network giant connected component
(for further examples see also the Supplemental Videos [57]).
Also, the singular set of connected nodes emerging from the
sharp C criteria, i.e., the information core of the network, is
shown in Figs. 3(d)–3(g) for different network structures.

D. Synchronizability of the information core

Synchronization phenomena constitute one of the most
glaring examples of dynamical processes where a system
needs to properly integrate information among nodes to show
an emergent collective state. On the one hand, our results state
the existence of the network information core, which stresses
the importance of a small group of nodes in integrating infor-
mation across the network. On the other hand, it is essential to
check that, from a dynamical perspective, these nodes play a
crucial role in the information processing across the network.
This leads us to the critical question: Does the information
core generally synchronize for lower values of the coupling
strength of the network nodes? Do these nodes dictate the
collective behavior of the network?

The Kuramoto dynamics [59] on a generic network [41] is
defined by the equation

θ̇i = ωi + K
N∑

j=1

Ai j sin[θ j (t ) − θi(t )] + σηi(t ), (5)

where θi(t ) represents the phase of the node i at time t , K is the
coupling strength with all the neighbors, Ai j is the adjacency
matrix of the network, ηi(t ) is Gaussian white noise with
amplitude σ , and ωi accounts for the intrinsic frequency of
each node, being extracted from some arbitrary distribution
g(ω). The Kuramoto order parameter R(t ) = 1

N 〈| ∑ j eiθ j (t )|〉
quantifies the total level of coherence of the system, ranging
from 0 to 1, where i is the imaginary unit, | · | is the modulus of
a complex number, and 〈·〉 here indicates averages over inde-
pendent realizations. Frequency dispersion leads to a critical
point at some critical value of Kc, separating the synchronous
phase from the asynchronous one [60,61].

To check our hypothesis, we run computational simulations
employing the Kuramoto model with a Gaussian frequency
distribution to test the synchronization efficiency of the in-
formation core concerning the whole system. To study in
parallel both the global system and the information core of the
network, we define two different Kuramoto order parameters
capturing the synchronization level either of the global system
R or the giant component of the information core [62] Rcore.

Figure 4 shows the Kuramoto order parameters R and Rcore

for the relevant cases of different network structures: an SBM,
an HM-CP network, an SF network, and the weighted HC.
Remarkably, the Kuramoto order parameter and its corre-
sponding temporal variance show that the particular set of
nodes conforming to the information core of the network
usually exhibits an earlier synchronization phase transition
than the entire network (as previously demonstrated, e.g.,
for trivial SBMs [36]), even in usual SF networks without a
specific hierarchical organization. Thus, we can safely say that
the information core generically exhibits coherent behavior at
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FIG. 4. Information core synchronizability. Kuramoto order pa-
rameter of the full network and the information core R and Rcore

versus coupling strength K for: (a) A SBM of size N = 1024, with
p = 128/N and q = 1/N , (b) a HM-CP network with Nb = 25, k0 =
12, and l = 6, (c) a SF network of size N = 1024 and m = 1, and
(d) the weighted HC. Right y axis shows the temporal variance of
R over network realizations (dashed lines). The point of maximal
temporal fluctuations indicates the critical point for the full network
and the information core. Observe that the information core gener-
ically synchronizes first for all network structures. All curves have
been averaged over 102 intrinsic frequency realizations. Parameters:
σ = 0.1, g(ω) = N (0, 0.1), dt = 5 × 10−3.

subcritical collective coupling strength values, managing the
integration/segregation of information across the network.

II. DISCUSSION

A. Relevant substructures in complex networks

Within our framework, it is possible to define a protocol
to identify and analyze the fundamental modules and struc-
tures at every appropriate spatiotemporal scale in a complex
network, ensuring a sound flux that provides the network
connectivity at every scale, indirectly solving thus correlation
problems. In particular, the information flow process from the
basal units of the network sheds light on the existence of a
deep-meaning substructure, the information core of the net-
work. From the statistical physics perspective, the information
core comprises a delicate balance between the internal en-
ergy and the intrinsic disorder of the network, shedding light
on the key set of nodes controlling the system’s dynamical
properties. Hence, this “backbone” in the network defines an
objective and clear criterion to manage the complex networks’
controllability by altering the dynamical properties of these
specific nodes. We have analyzed the information core for
different canonical case studies in the field, confirming the
expected results for the stochastic block model [36], where
the information core consists of the basal modules of the net-
work and extracting new essential substructures in scale-free
and core-periphery networks. The application to the Human
Connectome network allows us to identify relevant nodes that
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can be of particular importance in neural functioning and will
be analyzed in future works.

Our results confirm previous analyses that showed the
importance of core-periphery structures in information pro-
cessing, i.e., that a central integrative core facilitates the
segregation-integration balance optimization [21,22]. In ad-
dition, we have verified the existence of multiple and
differentiated scales in the Human Connectome—particularly
enhanced by the network weights—enriching the available
dynamical repertoire and the adequate integration/segregation
of information of neural networks. This particular struc-
ture allows developing submodules operating as “information
attractors”—essential for neural functioning [63]—while
other structures can manage and distribute information
effectively.

B. Dynamical implications and integration-information balance

In a pioneering work, Tononi and co-workers conjectured
the need for an optimal balance between segregation (e.g.,
several sensory inputs) and integration (allowing for a unified
representation, advanced cognitive processing, and response)
in the brain for processing high-level cognitive tasks [64].
From a structural viewpoint, we confirm the well-known
fact that a hierarchical-modular organization allows for the
emergence of an excellent integration/segregation trade-off:
segregated information remains trapped in local modules but
can travel across the entire network enabling the integration
of information between the different modules [65–67].

Hence, we hypothesize that the existence of scale-
dependent specific structures facilitates information pro-
cessing across the network. As a direct consequence of
this, intrinsically disordered hierarchic-modular networks do
indeed generically optimize transmission and storage of in-
formation, improving computational capabilities [68] and
strengthening the network stability [69]. Their particular
nested structure has been elucidated to generate, e.g., broad
dynamical regions of dynamical criticality, the so-called Grif-
fiths phases, without the need to invoke precise criticality [33].
At the same time, this very structure promoting Griffiths-
like phases supports the striking functional variability of
synchronization patterns in actual brain dynamics [70,71],
also facilitating—from a dynamical perspective—a flexible
balance between segregation and integration at different func-
tional scales [33,36,37].

A very backbone structure controlling the
integration/segregation balance over the networks ensures
information processing capabilities. For example, the
particular application of our method to canonical case studies
in the field as, e.g., scale-free networks illustrates the very
existence of the short-time peak in C, reflecting the presence
of a complex core structure, and justifies previous results
indicating the existence of a nonvanishing synchronization
phase transition [40]. Still, the entire information transmission
throughout the network diverges according to the system size.
For example, our approach opens the door to new applications
in network synchronizability, which depends on how difficult
it is to transmit information across the network [72], by only
manipulating the dynamical properties of the information

core (see [41] for a comprehensive review on the topic with
further possibilities).

III. CONCLUSIONS

Understanding the interrelation of the interspersed struc-
ture of physical systems and the scaling laws governing it
(i.e., the problem of pattern and scale) represents a funda-
mental problem in modern physics [73,74]. To this aim, the
statistical physics of phase transitions and, in particular, the
RG have been one of the significant developments in con-
temporary statistical mechanics [26–28]. Their application to
diverse dynamical processes operating on top of regular spa-
tial structures (i.e., lattices) allows the introduction of the idea
of universality and the classification of models (otherwise pre-
sumed faraway) within a small number of universality classes.

So far, there is no apparent equivalence to analyzing RG
processes in complex spatial structures, even if some pio-
neering approaches have recently proposed clever procedures
to state tantamount general RG transformations to those of
statistical physics. However, they have always been based
on hidden metric assumptions, spatially mapping nodes in
some abstract topological space, which needs to be considered
as an a priori hypothesis [30,31]. To further advance the
issue, it is crucial to develop a field-theoretical framework
of complex information dynamics [15,32], based on statisti-
cal physics principles, to better understand the mesoscopic
interrelationships of complex structures. Hence, exploiting
simple diffusion allows us to extract information about the
network topological space, identify and characterize, e.g.,
building blocks in terms of information diffusion [23], or de-
termine communicability between nodes in the network space.
Here we have taken advantage of the equivalent definition of
the canonical density operator [6,48], which only depends on
the Laplacian matrix, governing information diffusion pro-
cesses in complex networks [1]. As a result, it follows the
so-called network propagator at time τ , K̂ (τ ), containing
all the probabilities (i.e., paths) of broadcast information to
neighbor nodes [75]. Thus, we can explore the resolution of
the network at multiple scales (making use of the information
probability pathways all across the network structure that
depend on the diffusion time τ ), in an analogous way to
the different spatial resolutions as usually done to perform
calculations with the RG machinery [27]. In particular, we
analyze the evolution of information fields through the net-
work’s entropy and propose the tantamount of the specific
heat C that reveals “entropic” phase transitions, a detector
of the relevant scales of the system. The specific heat allows
us to identify the information core of the network, i.e., the
information reservoirs where information is first stored to be
used in other parts of the system.

We stress that the density matrix [13] ρ(τ ) encodes the
time evolution of the information diffusion due to all the
elementary paths on the network in a time window 0 < t < τ .
Analogously, the first-passage times of a random walk on top
of a complex network may be regarded as a messenger deliv-
ering information to each node it visits [76] (see also [1] for
further details). Therefore, it also characterizes the probability
of remaining trapped in different mesoscale structures of the
network and is a proxy to the dynamical trapping previously
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proposed in widely used algorithms as InfoMap [11,77] or
Markov stability [78,79]. In particular, these two algorithms
use specific dynamics strictly related to our approach: the
diffusion of a single random walker in the network starting
from an arbitrary node to capture specific mesoscopic struc-
tures and their hierarchical organizations. Hence, for instance,
the length of the trajectories up to trapping can be used to
estimate the organization of the network in structures with
a fast internal communication but poorly connected among
them, thus proposing partitions in modules that require the
minimum of bits to be described [11]. It is important to point
out that, given the dynamical nature of these algorithms, they
use several iterations to neglect fluctuations and, therefore,
identify robust communities. The profound relationship with
those algorithms will be explored in future works.

Once the different mesoscale characteristic network struc-
tures have been investigated, we also can interrelate them
with different emergent dynamical properties. For example,
we show that generically the information core (that can be
seen as a sort of Matryoshka doll within the network) is the
first substructure to synchronize in the system. In particular,
its existence in scale-free networks justifies the nonvanishing
synchronization phase transition in these systems. We want to
pinpoint the well-known relationship between the topological
scales and dynamic timescales in complex networks [80],
where transient dynamics towards synchronization strongly
depend on the network Laplacian (see [36,80] and Ap-
pendix D). Nonetheless, while studying such transients can
reveal modules in complex networks, they profoundly depend
on Taylor series expansions, where nonlinear interactions are
not considered, and they are always subject to some form of
numerical approximation.

Summing up, our information-based approach constitutes
a sound technique for analyzing structures with nontrivial
topological features by only considering the diffusion of in-
formation centered on the network edges [1]. In particular, it
can extract the “topological landscape” of the network at dif-
ferent resolution scales, making fundamental structural blocks
emerge and creating a basis for defining crucial blocks in
the decimation process of complex networks. Let us finally
mention that detailed analyses of the rules allowing for the
generation of new supernodes, in the spirit of Kadanoff’s
blocks, are in progress and will be reported elsewhere. Also,
further systematic analyses characterizing possible metrics
(e.g., the pioneering work of [30]) are still missing, either
universal or dependent on general network properties. They
can be very illuminating in investigating the spatial projection
of complex networks.

Even if further computational and analytical studies would
be required to establish a general field-theoretical theory of
complex networks definitely, we believe that our approach can
open the door to ground breaking applications for the study
of the information flow in the context of gene-regulatory net-
works [81,82], software networks [83,84], or protein-protein
interaction networks [85,86]. Likewise, it represents a signif-
icant step forward in developing RG theoretical techniques
induced by diffusion distances [23], fostering the definition
of supernodes in structures lacking of embedding topological
spaces and illuminating scaling laws and multiscale relation-
ships of complex heterogeneous networks.
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APPENDIX A: SYNTHETIC HIERARCHICAL NETWORKS

SBM: The stochastic block model (SBM) is constructed
as follows: we define Cr groups of nodes with n = N/Cr

nodes on each group, where N is the total number of nodes
in the network. Then, they are randomly linked with differ-
ent intracommunity and intercommunity connection p and
q, respectively. To ensure the proper scaling, i.e., graphs of
constant average degree, of the network with the system size,
we set p = p̃/N and q = q̃/N .

HM-R: We randomly select two pairs of nodes, connecting
them if they were not previously linked, with a depen-
dent probability on their preassigned hierarchical level l =
1, 2, . . . , s (as previously proposed in Refs. [33,52]).

HM-CP: In this specific case, connection between modules
are not left at random, but with a scale-dependent probability
promoting centralized structures between hubs, following the
algorithm proposed in [52]. We start by creating 2s blocks
of Ns = 16 nodes with mean degree κ0 = 12 at the deepest
level. Once this has taken place, we give a weight p(i) =
i−α/

∑
j j−α , to the ith node of each block, i = 1, 2, . . . , Ns.

Thus, nodes are now taken with probability p(i) and p( j), and
connected if they were not already linked. All the hierarchical
levels share the same scale-free exponent α = 2 except for the
basal one, with α = 1.7. It allows us to mimic the empirically
supported core-periphery organization with connector hubs in
brain structural networks [87–89].

APPENDIX B: ENTROPIC PHASE TRANSITIONS
IN SF NETWORKS

For the sake of completeness, we checked the accuracy of
the entropic analysis for scale-free networks created using the
Barabási-Albert model.

Here we investigate whether scale-free networks present
some of the above described characteristic structures at some
network scale. Results of our computational analyses are re-
ported in Fig. 5, which displays the entropic order parameter
S at different temporal resolution scales τ for multiple system
sizes (see legend). The SF networks present a vanishing phase
transition for large evolution times (see the entropic scaled
variance � in the inset of Fig. 5), even if a local peak of C
for short evolution times, whose position does not depend on
the system size, justifies the existence of the core structure
controlling the information processing all across the network,
as previously demonstrated.
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FIG. 5. Network average of the entropy parameter S[ρ(τ )] ver-
sus the inverse of diffusion time 1/τ , for a Barabasi-Albert network
with m = 1, 〈k〉 = 2, and different sizes (see legend). The critical
point (τC) separates the segregated phase from the integrated one.
The specific heat C scales depending on the system size at this
critical value, even if it presents a local peak at short diffusion times.
Inset: Variance of the entropy averaged over network realizations
multiplied by N ; � = σSN . The point of maximal variability marks
the full integration of information throughout the network for all
network sizes N (dashed lines in main figure). All curves have been
averaged over 102 realizations.

APPENDIX C: CORE-PERIPHERY
STRUCTURAL EFFECTS

To gain analytical insight into the effects of sound topo-
logical structures as core periphery, here we analyze two
analogous hierarchical networks (with an equal number of
nodes, basal modules, and the total number of hierarchical
levels) but including core-periphery effects in one of the net-
works [52].

Figure 6(a) shows the entropic phase transition for an
HM-R network, increasing its total number of hierarchical
scales. A broad region emerges where the different spatial
scales aggregate when the zooming-out process is consid-
ered. However, as shown in Fig. 6(b), the very existence of
a core-periphery structure allows a more efficient informa-
tion processing (at shorter times, i.e., resolution scales) and
to broaden the different characteristic scales of the network,
facilitating information to remain trapped into characteristic
scales or modules. In conclusion, core-periphery structures
enable broader information processing possibilities than reg-
ular hierarchic modular networks.

APPENDIX D: STRUCTURAL EFFECTS ON
KURAMOTO DYNAMICS

The particular case of the Kuramoto model with no noise
(σ = 0) and all identical frequencies (e.g., ωi = 0) allow us
to focus specifically on structural effects [36,41]. Due to the
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FIG. 6. Network average of the entropy parameter S[ρ(τ )] ver-
sus the inverse of diffusion time 1/τ for: (a) HM-R network for
different network sizes, N = 2s (see legend), where s is the total
number of hierarchical levels. The slow decay in the derivative of
the order parameter C confirms the existence of a broad region
separating the segregated phase from the integrated one. (b) Com-
parison between a hierarchic modular network with core-periphery
structure (HM-CP, 〈k〉 � 47) and a simple hierarchic modular net-
work (HM-R, 〈k〉 � 28) with six hierarchical levels. The HM-CP
network exhibits shorter integration times and a broader regime of
information processing in the zooming-out process. All curves for
the HM-R and the HM-CP have been averaged over 102 realizations.

absence of noise, large populations with no frequency disper-
sion always reach the overall synchronized state (R = 1). In
particular, assuming that, at some significant time t , the phases
will be sufficiently small, it is possible to consider the Taylor
series expansion of Eq. (5), which reads

θ̇i = K

[∑
j

Ai jθ j −
∑

j

δi j

(∑
l

A jl

)
θ j

]
= −K

∑
j

Li jθ j,

(D1)
where L represents the Laplacian matrix of the network. It
allows, for example, modular identification techniques based
on routes towards synchronization, like the one proposed by
Arenas et al. [80]. Nevertheless, as discussed above, we stress
that these approaches always depend on numerical methods
and rest upon a Taylor series expansion.
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