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Abstract
Purpose of Review  This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental 
health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific 
perspectives to understand how the gut-brain axis influences mood and cognitive function.
Recent Findings  Recent studies underscore the central role of gut microbiota in modulating neurological and psychological 
health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiot-
ics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a 
profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health 
support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs 
are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating 
depressive symptoms.
Summary  This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depres-
sion and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising 
therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treat-
ment strategies.
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Introduction

A link between diet and mental health has been long sug-
gested [1, 2]. This is quite logical, considering that the 
brain’s composition, structure, and function depend on the 
availability of appropriate nutrients [3, 4]. The intake and 
quality of food have an impact on brain function, indicating 
diet as a powerful tool for improving mental health, mood, 
and cognitive performance [5, 6]. A further puzzle piece 
is the link between what we eat and the gut microbiota, 
as understanding the mechanisms beyond that complex 

interplay would add knowledge on its impact on mental 
health or disorders such as depression [7]. Recent studies 
have explored how dietary patterns and microbiota composi-
tion influence brain function, mood, and the risk of develop-
ing mental health disorders such as depression [8–11]. This 
article delves into the intricate communication pathways 
between the gut and brain, emphasizing microbiological, 
nutritional, and neuroscientific aspects.

The Human Microbiota

The human microbiota is defined as the set of microorgan-
isms which live in symbiosis with the human body [12] 
including fungi, protozoa, viruses and bacteria; it is not 
exclusive of the intestine but spread in several parts of the 
body [13]. The intestinal microbiota is the most densely 
populated, consisting of microorganisms interacting with 
each other through different relationships and the outcome 
of the interaction is also influenced by the host’s physiology 
[14]. The definition of microbiota should be completed by 
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the concept of microbiome, defined as the genetic heritage 
of microbiota, that means the totality of the genes expressed 
by the microorganism, including all the environment [14]. 
Microbiota is composed of microorganisms estimated to out-
number human body cells by a factor of 1.5 [15]; the number 
of different genes present at the level of the ecosystem is 
responsible for the biodiversity of the microbiome and is 
related to richness [16]. This is also linked to the resilience 
of microbiota, i.e. the ability to respond and react to changes, 
reorganizing itself in such a way as to keep unchanged the 
functions, composition, and initial structure, guaranteeing 
functional stability and homeostasis [17].

The functions of the microbiota are numerous and can 
be directly and indirectly related to the health and well-
being of the individual; they can be classified as: i) Pro-
tective functions: resistance to colonization by pathogens 
[18], activation of innate and adaptive immunity; regulation 
of inflammatory cytokines; promotion of immune system 
development [19]; barrier through the production of antimi-
crobial proteins including bacteriocins mostly lead by lactic 
bacteria  that are able to eliminate entero-invasive pathogens 
that could alter eubiosis [20]; ii) Metabolic functions: fer-
mentation of non-digestible substrates; production of short 
chain fatty acids (SCFA), which modulate intestinal inflam-
mation and protect mucosa integrity [21, 22]; influence on 
energy metabolism and body weight; production of B and 
K vitamins [23]; biosynthesis of amino acids; biotransfor-
mation of bile acids [24]; iii) Structural functions: growth, 
differentiation, and regulation of intestinal epithelial cells; 
development of intestinal villi and crypts; support of integ-
rity and modulation of intestinal barrier permeability [25].

The gut microbiota is composed in adults mainly by 
anaerobic bacteria from the major phyla of Firmicutes (pre-
dominantly Lachnospiraceae and Ruminococcaceae), Bacte-
roidetes, Actinobacteria, Proteobacteria, and Verrucomicro-
bia (Akkermansia) [26]. The main metabolic pathway used 
by bacteria is fermentation, although some of them can use 
acetogenesis, and others are endowed with sulphate-reduc-
ing enzymes, while methanogenesis is exclusive to Archaea 
[27]. We can describe some species as saccharolytic or pro-
teolytic depending on their ability to use substrates such 
as carbohydrates, producing SCFA, or proteins, producing 
branched chain fatty acid (BCFA), SCFA to a lesser extent, 
and phenolic compounds [21, 22, 28, 29].

Overview of the GUT‑Brain Axis

The gastrointestinal tract (GIT) and the brain are intricately 
connected through the gut-brain axis [30], a bidirectional 
homeostatic communication network involving neural, hor-
monal, and immunological pathways (Fig. 1). Dysfunction 
of this axis has been linked to several pathologies, offer-
ing insights into potential therapeutic strategies [10]. The 

gut-brain axis integrates signals from various systems, 
including the neuroendocrine, autonomic nervous system 
(ANS), and enteric nervous system (ENS) [30, 31]. The 
ENS, located in the GIT, comprises approximately 500 
million nerve endings and represents the largest concentra-
tion of immune cells in the body, facilitating communica-
tion with the brain via the vagus nerve [32, 33]. Immune 
cells in the gut release cytokines, essential for inflammatory 
responses, while neuroendocrine hormones like cortisol alter 
intestinal permeability and influence cytokine secretion [10]. 
This two-way communication enables brain signals to regu-
late intestinal motor, sensory, and secretory functions, while 
gut signals influence brain activity [34].

The Role of the Intestinal Microbiome 
in Neurological Processes

The intestinal microbiome has emerged as a critical regula-
tor of host physiology [34, 35] and central nervous system 
(CNS) function [10, 36, 37], highlighting the concept of 
the microbiome-intestine-brain axis [38]. Disruptions in 
the delicate balance of the microbiome have been linked to 
psychopathologies, which is particularly significant given 
the microbiome's susceptibility to external factors, including 
diet [39]. The main communication routes of the gut-brain 
axis include: i) the vagus nerve; ii) microbial metabolites; 
iii) tryptophan metabolism; iv) the hypothalamic–pitui-
tary–adrenal axis (HPA); and v) neurotransmitters.

Key Communication Pathways 
of the Gut‑Brain Axis

Vagus Nerve

The vagus nerve serves as a primary communication channel 
between the gut and brain, transmitting sensory and motor 
information [40]. It responds to mechanical, chemical, and 
hormonal signals through its diverse receptors [41]. The 
vagus nerve also modulates pro-inflammatory cytokine 
levels via the vaso-vagal anti-inflammatory reflex [42], a 
mechanism implicated in conditions such as inflammatory 
bowel disease [43]. Strengthening these observations, the 
link between the modulation of vagus nerve activity and 
communication between the gut and the brain, such as appe-
tite regulation, intestinal inflammation, and mood, has also 
been repeatedly investigated (see [44] for a review). Inter-
estingly, in recent years, devices that allow the stimulation 
of the vagal nerve (VNS) [45] via transcutaneous stimu-
lation were developed, allowing for a causal alteration of 
gut-brain interplay. Transcutaneous VNS (tVNS) electrically 
modulates the auricular branch of the vagus nerve. It is a 
simple, non-invasive technique leading to the stimulation of 
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subcortical nuclei like the locus coeruleus and the nucleus 
of the solitary tract, ultimately resulting in cortical activa-
tion. tVNS, has been reported to increase neurotransmit-
ter levels such as norepinephrine and gamma-aminobutyric 
acid (GABA), favoring improvements in related cognitive 
performance [46]. tVNS has been recently employed to fos-
ter brain plasticity, alter functioning, and reduce diseases 
such as depression [47, 48]. Elger and colleagues employed 
VNS in epilepsy patients, monitoring their mood for six 
months. Results highlighted positive effects on mood after 
tVNS treatment, which were sustained up to the following 
6-month [48].

Microbial Metabolites

Short-chain fatty acids (SCFAs)—including propionate, 
butyrate, and acetate—are key microbial metabolites 
produced in the gut. They are derived from the metabo-
lism of certain microbial genera, including Eubacterium, 

Roseburia, Faecalibacterium, Bifidobacterium, Lacto-
bacillus and Enterobacter [49]. SCFAs activate several 
G-protein coupled receptors (GPCRs), of which free 
fatty acid receptor 2 (FFAR2, designated GPR43) and 3 
(FFAR3, designated GPR41) are the most investigated 
[50–52]. Expression of both receptors has been reported 
in the colon, various immune cells, and the heart. Only 
FFAR2 is expressed in adipocytes and skeletal muscle, 
while FFAR3 is expressed in the peripheral nervous sys-
tem and blood–brain barrier (BBB) [53, 54]. No expres-
sion of FFAR2 has been reported in the brain [55]. SCFAs 
exert multiple beneficial effects. Several studies showed 
that SCFAs stimulate the assembly of tight junctions [56, 
57], modulate immune cells [58], regulate chemotaxis, the 
inflammatory process by neutrophils [59, 60], suppress 
cytokine production by myeloid cells [61], regulate T 
helper 1 lymphocyte activity, and T helper 17 cell differ-
entiation [62, 63]. Overall, SCFAs influence the immune 
response by acting with regulatory action and activating 

Fig. 1   Bidirectional homeostatic communication pathway along intestinal-brain axis uses neural, hormonal, and immunological pathways. Fig-
ure created with Canva
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anti-inflammatory pathways. SCFAs are part of the first 
line of defense between the microbiota and the permeabil-
ity of the host intestinal barrier by enhancing the mucosal 
barrier by stimulating mucus production, which is prob-
ably mediated by FFAR3 [64]. In addition, SCFAs play a 
role in enteroendocrine signaling by binding to a related 
receptor (e.g., GPR43 or GPR41) to stimulate the release 
of neuropeptides, such as YY peptide (PYY) and gluca-
gon-like peptide (GLP-1), which influence the regulation 
of energetic homeostasis through activation of both enteric 
and primary afferent vagal pathways [65]. Finally, they 
can stimulate the secretion of the neurotransmitter 5-HT 
(5-hydroxytryptamine) in the intestinal lumen as well as in 
the vascular system [66], which is an extremely important 
factor in the regulation of intestinal-brain communication 
regulating human behaviour; about 90% of serotonin is 
produced in enterochromaffin cells in the gastrointestinal 
tract and by some microbiota genera such as Escherichia 
spp and Enterococcus spp [67].

Tryptophan Metabolism

Tryptophan is an essential amino acid and a precursor of 
many biologically active agents, including serotonin, which 
has been traditionally associated in depressive disorders as 
it is involved in the regulation of mood, sleep/wake rhythm, 
sexual functions, and appetite [68–70]. Serotonin  is pre-
dominantly found in the intestine, where it is synthesized 
by tryptophan in enterochromaffin cells of the GIT [71]. 
Serotonin synthesis is highly dependent on the availabil-
ity of tryptophan and the tryptophan hydroxylase enzyme 
(TPH), that is a rate-limiting enzyme in the biosynthesis of 
the neurotransmitter. Low plasma tryptophan levels were 
associated with impaired immune function [72, 73]. The 
dominant physiological pathway for tryptophan metabolism 
is the kynurenine pathway, which accounts for over 95% of 
the peripheral tryptophan available in mammals [74], and 
its alteration has been implicated in many brain and gastro-
intestinal disorders. Kynurenine can be further metabolized 
in two different products, quinolinic acid which produces 
several neurotoxic metabolites and kynurenic acid which has 
a neuroprotective role. Indeed, the increased conversion of 
plasma kynurenine to kynurenic acid has been proposed as 
neuroprotective and attenuating stress-induced depression 
[75]; there is some evidence suggesting that probiotics such 
as Bifidobacterium infantis [76] may lead this conversion 
[76]. Certain mediators of inflammation and corticosteroids 
may induce the action of certain enzymes, such as indoleam-
ine-2, 3-dioxigenase or tryptophan 2, 3-dioxigenase which 
limit the rate of the hepatic kynurenine metabolic cascade 
with neurological consequences [77].

Hypothalamic–Pituitary–Adrenal Axis

The Hypothalamic–Pituitary–Adrenal Axis (HPA) is one 
of the main neuroendocrine systems within the human 
body, better known as the main neuroendocrine coordi-
nator in response to stress [78] and one of the main non-
neuronal pathways of communication on the microbiota-
intestinal-brain axis. When altered homeostasis occurs, 
corticotrophin releasing factor (CRF) is produced from 
the paraventricular nucleus of the hypothalamus (PVN), 
stimulating the release of adrenocorticotropic hormone 
(ACTH) from the anterior pituitary gland. This hormone 
is released into the systemic circulation and targets the 
adrenal cortex, resulting in the release of glucocorticoids 
[79], which in the brain interact with high-affinity min-
eralocorticoid receptors and low affinity glucocorticoid 
receptors [80, 81]. The main function of the activation 
of the HPA axis is precisely to prepare the body for the 
"fight-or-flight" response [82]: one of the main outputs 
is the negative feedback in which glucocorticoids act on 
the hypothalamus and pituitary gland inhibiting adrenal 
secretion. At the same time, PVN activity is regulated 
by multiple afferent circuits: sympathetic, parasympa-
thetic, and limbic [83]. The HPA axis also interacts with 
other non-neural pathways connecting the gut and brain, 
including the vagus nerve: in rodents, vagal stimulation 
increased CRF mRNA expression in the hypothalamus 
[83], and plasma levels of ACTH and corticosterone were 
surprisingly high after vagal stimulation. The interactions 
of the immune system-HPA axis are implicated in several 
stress-related and inflammatory disorders: it has been seen 
in animal models how psychological stress can increase 
intestinal permeability, inducing bacterial translocation in 
the host [84]. The activation of the immune response of the 
mucosa through exposure to bacteria and antigens induces 
the secretion of pro-inflammatory cytokines, which, in 
turn, activate the HPA axis, highlighting once again how 
the microbiota plays a key role in this relationship as well.

Neurotransmitters

Several bacterial genera (Lactobacillus spp, Bifidobacte-
rium spp, Escherichia spp, Enterococcus spp) were shown 
to produce neurotransmitters and neuropeptides including 
GABA, serotonin, catecholamines, and histamine [85, 86]. 
Neurotransmitters are chemical messengers that transmit 
signals through a chemical synapse from one neuron to 
another target neuron, muscle cell, or glandular cell. Neu-
ropeptides are small proteins that can be released in the 
brain to activate different receptors, allowing neurons to 
communicate with each other [87].
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Gut Microbiota and Depression

Depression is a leading cause of disability in the world, 
affecting 4.4% of the world's population [88]. Major 
Depressive Disorder (MDD) is the most prevalent mani-
festation of depression, including a reduction of Brain-
Derived Neutrophic Factor (BDNF),  which rules neurons 
survival [89]; an increase in pro-inflammatory cytokines 
[90], and elevated levels of stress-related hormones [91]. 
These hormonal changes activate the HPA axis, leading 
to its hyperactivation, which is further associated with 
depression [92]. Effective therapies for depression reduce 
or cancel the increase in the inflammatory response and 
limit the activation of the HPA axis [92, 93]. In rodent, 
stress has been indicated as a factor that can alter the func-
tion of the intestinal barrier, allowing lipopolysaccharides 
and other molecules to enter the bloodstream, stimulat-
ing TLR4 and other TLR receptors resulting in the pro-
duction of inflammatory cytokines [94]. It remains to be 
proven whether this phenomenon also occurs in humans 
with depression, which could help explain the observed 
pro-inflammatory profile. However, systematic reviews in 
humans suggest that the overall composition of bacterial 
communities is altered, with certain bacterial taxa being 
commonly associated with MDD [95–98]. 

It is crucial to understand whether it is possible that 
commensal bacteria can have an inverse action by allevi-
ating depressive symptoms to open new therapeutic ave-
nues in the treatment of this psychiatric disease. Evidence 
suggests that peripheral immune activation may lead to 
changes in central neurotransmitters. Lyte et al. [99] dem-
onstrated that oral administration of the pathogen Campy-
lobacter jejuni, at subclinical doses too low to elicit overt 
immune activation induced anxious behavior in mice. 
They also reported that the brain stem activation areas, 
participate in the processing of neural information, leading 
to autonomic, neuroendocrine, and behavioral responses. 
It is not clear whether peripherally produced inflamma-
tory cytokines can directly affect the brain, but they were 
shown to increase the permeability of the blood–brain 
barrier [100]. Kopp et al. [101] showed that administer-
ing Lacticaseibacillus rhamnosus GG demonstrated over-
regular IL-10 in the plasma of patients. Although IL-10 
has potent anti-inflammatory properties, it is thought to 
act directly as an antinociceptive agent, indicating broad 
neuroimmune effects, although no impact on behavior 
has been reported to date. Intestinal microbial balance 
may thus alter the regulation of inflammatory responses 
and be involved in the modulation of mood and behavior 
[102, 103]. Several human studies investigated these issues 
and found differences in the fecal microbiota of patients 
with MDD compared to healthy controls [104, 105]. A 

reduction of Bifidobacterium spp. and Lactobacillus 
spp. was observed in 43 depressed individuals [104]. An 
increase in fecal bacterial diversity was found in a cohort 
of 46 depressed patients, contrarily to patients who had 
responded to treatment [105]. In fact, there was an increase 
in Bacteroidetes, Proteobacteria, and Actinobacteria and 
a decrease in Firmicutes, all negatively correlated with 
the severity of depressive symptoms [105]: while inter-
individual variability was evident, significant differences 
were found at the level of genus compared to controls. 
The administration of a probiotic strain of Lacticaseiba-
cillus casei described improvements in mood scores in 
healthy elderly after treatment, with the greatest benefit 
for those with a lower baseline mood [106]. Using a multi-
strain probiotic (Lactobacillus acidophilus, Lcb. casei and 
Bifidobacterium bifidum) on a cohort of MDD patients, 
improvements in depression scores were observed, as well 
as beneficial metabolic effects [107]. Another recent open-
label study in patients with treatment-resistant depression 
showed promising results for the probiotic Clostridium 
butyrricum as an adjunct to antidepressant therapy; cog-
nitive performance was further improved by treating 
patients with MDD with the probiotic Lactiplantibacil-
lus plantarum 299v [108]. Overall, systematic reviews of 
probiotics used as adjunctive therapy in MDD are encour-
aging and indicate that probiotics are effective in improv-
ing mood in humans [109–112], although further clinical 
studies are needed to strengthen the observed correlations.

Potential Role of Probiotic, Prebiotic, 
and Psychobiotic in Reducing the Risk of Depression

As probiotic and prebiotic are capable of modulating and 
restoring the gut microbiota, their potential role in reducing 
the risk of depression has been reported [110–112]. Probi-
otics are living microorganisms that, when administered in 
adequate amounts, confer a health benefit to the host [113]. 
In 2017 Markowiak [114] stated that intestinal bacteria are 
not only commensal but are also subjected to a symbiotic 
co-evolution together with their host, for which they play a 
role in modulating the composition of the microbiota, with 
effects on the epithelial barrier, competing for receptor sites 
by modulating the expression of tight junctions, produc-
ing bacteriocins that inhibit the growth of pathogens, and 
through the production of SCFA, exerting a trophic anti-
inflammatory and protective action of the mucosal barrier. 
Probiotics colonizing human gut mainly belong to Lactoba-
cillus, Bifidobacterium, Lactococcus, Sreptococcus, Ente-
rococcus, Bacillus and some yeast strains belonging to the 
genus Saccaromyces [114]. Prebiotics are substrates selec-
tively utilized by host microorganisms conferring a health 
benefit [115]. They belong mainly to three different macro-
groups, namely resistant starch, non-starch polysaccharides, 
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resistant oligosaccharides including galatto-oligosaccharides 
(GOS), fructoligosaccharides (FOS) and xylo-oligosaccha-
rides, which are indigestible to humans but essential for the 
nourishment of bacteria colonizing our intestines. A further 
step into the link between probiotics and mental health could 
be made after the introduction of the term psychobiotic. It 
was first used by Dinan et al., in 2013 [116] indicating a new 
class of probiotics with great application potential in the 
treatment of psychiatric disorders. The species that seemed 
to be most effective are: i) Lpb. plantarum (PS128), which 
reduced anxiety and depression in mice [117, 118]; Lactoba-
cillus helveticus (NS8) which reduced cognitive dysfunctions 
linked to anxiety and depression [119]; Lcb. rhamnosus (JB-
1) which affected anxiety and depression [119].

Dietary Patterns and Gut Microbiota

The gut microbial community is likely influenced by diet, 
which has been reported to play a crucial role in its effects 
on behavior [120]. The interrelationship between four main 

dietary patterns and the gut microbiota, possibly impacting 
on mental health are briefly presented below (Fig. 2).

Western Diet

Individuals following a Western diet show a gut microbial 
profile like the one observed in obese individuals [121]. 
The intake of high fat (HF), high sugars foods (HS), which 
characterize these types of diets, produces changes in the 
gut microbial community, a reduced overall microbiota 
count, a shift in bacteria species abundance, and an overall 
increase in gut inflammation and permeability [122]. The 
HFD-driven microbiota composition changes in animal and 
human models primarily include an increase in the Firmi-
cutes/Bacteroidetes ratio, but specific changes are also due 
to the considered type of fats and amount of fiber included in 
the diet [123]. In an animal model study, a HFHS diet caused 
a significant change in the composition of the intestinal 
microbiota showing a reduction in Bacteroidetes levels and 
an increase in Proteobacteria and Firmicutes levels [124]. 
This was also reported in a similar study in which animals 
were fed with a high saturated animal fats diet: they showed 
a significant increase in the abundance of Proteobacteria 

Fig. 2   Impact of different dietary patterns on gut microbial composition and main mechanisms possible inferring on mental health. Figure cre-
ated with Canva
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(Bilophila wadsworthia) [125]. B. wadsworthia is a member 
of the human intestine able to use the amino acid taurine in 
the production of hydrogen sulfide with a demonstrated role 
in inducing systemic inflammation [126]. Clearly, all these 
changes at the microbiota level could be able to influence 
some brain functions and human behavior through patterns 
described before.

Mediterranean Diet

The Mediterranean diet consists mainly of cereals (whole 
grains), nuts, legumes, vegetables and fruits, moderate con-
sumption of poultry and fish [127], and results in some iden-
tifiable distinctive traits of the intestinal microbiota [128]. 
Intervention studies in humans have shown that adherence 
to a Mediterranean diet can drastically reduce the incidence 
of neurodegenerative diseases [129–131], psychiatric condi-
tions, cancer [132], cardiovascular disease (CVD) [133–135] 
and risk of depression [133, 136–138]. The positive impacts 
of a Mediterranean diet are mediated by its anti-inflamma-
tory potential but are also associated with marked changes 
in intestinal microbiota, resulting in increased abundance 
of Bacteroides and Clostridia, a reduction in Proteobacte-
ria and Firmicutes [139] and the related metabolome [140]. 
A randomized controlled study of dietary intervention to 
major depressive disorder (SMILES) showed that interven-
tion on the Mediterranean diet (ModiMedDiet) improved 
scores related to depression [141], demonstrating how the 
modulation of the microbiota induced by this type of food 
can also impact on psychiatric diseases. However, further 
studies are needed to better correlate a Mediterranean diet 
with its effect on the microbiota-gut-brain axis.

MIND Diet

The MIND (Mediterranean-Dietary Approaches to 
Stop Hypertension (DASH) Intervention for Neurode-
generative Delay) diet is a hybrid of the Mediterranean 
and DASH diets, developed to act specifically on cogni-
tive health in old age [142]. Both the Mediterranean diet 
and the MIND diet reported positive cognitive outcomes, 
including prevention of cognitive decline or deterioration 
and improvement of cognitive performance [143–145]. 
The MIND diet focuses on increasing the intake of fresh 
fruits and vegetables and emphasizes the importance of 
eating foods that are functional for brain function and 
able to modulate the microbiota-gut-brain axis, such as 
green leafy vegetables, walnuts, berries, beans, whole 
grains, fish, poultry, olive oil and wine [142, 146]. On 
the other hand, foods such as red meats, butter/margarine, 
cheese, pastries, cakes, and fried or fast foods should be 
limited [142]. Two high-quality cohort studies reported 

associations between adherence to the MIND diet and a 
53% lower risk of developing Alzheimer’s disease [146] 
and a slower decline in cognitive function both in general 
and within specific cognitive domains such as episodic 
memory, semantics, cognitive velocity and perceptual 
organization [142]. Interestingly, even modest adherence 
to the MIND diet was associated with a 35% risk reduc-
tion for Alzheimer's disease compared to the lower adher-
ence group. Despite the lack of specific studies on the 
mechanisms how this diet may impact on the microbiota, 
outcomes very similar to those derived from the Mediter-
ranean diet are to be expected, considered the common 
traits of these dietary patterns.

Ketogenic Diet

The ketogenic diet is a high-fat, low-carbohydrate diet 
that mimics the metabolic effects of hunger by forcing 
the body to use primary fat reserves; administration of 
the ketogenic diet results in increased levels of the ketone 
bodies hydroxybutyrate, acetoacetate and acetone in 
peripheral blood and urine [147]. It was designed based 
on observations on fasting which have been shown to 
have anti-epileptic properties: the increase of number of 
ketones in serum has been shown to inhibit apoptotic pro-
teins, improving mitochondrial activity and thus reducing 
apoptosis in neurodegenerative diseases [148]. This diet 
mediates the neuroprotective function through the attenu-
ation of oxidative stress and induction of antioxidant pro-
tein expression (149), as well as the modulation of the 
levels of neurotransmitters such as GABA, monoamine 
and glutamate [150, 151]. Therefore, a ketogenic diet can 
provide beneficial health effects, improving the symp-
toms of some neurological conditions, including autism, 
depression, epilepsy, cancer, as well as Alzheimer's and 
Parkinson's disease [152–154]. However, the role of the 
microbiome has recently emerged, considering that the 
ketogenic diet increases the abundance of Akkermansia 
spp, Parabacteroides spp, Sutterella spp, and levels of 
Erysipelotrichaceae spp. in the intestinal microbiota in 
mice compared to the control group [154]. Moreover, 
colonizing germ-free (GF) mice with strains linked to the 
ketogenic diet, such as Akkermansia spp. and Parabac-
teroides spp., has shown a protective effect against sei-
zures. This is achieved by altering the metabolomic pro-
files of the colonic lumen, serum, and hippocampus, which 
are associated with seizure protection [154]. Although 
ketogenic diet could be considered useful in some specific 
psychiatric conditions, it cannot be proposed as a large-
scale extensible diet due to the low intake of some macro-
nutrients (carbohydrates) and micronutrients that could 
induce imbalances and metabolic damage in the long run.
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Mechanisms Linking the Gut Microbiota, 
Diet, and Depression

The mechanisms by which the intestinal microbiome could 
impact in the pathophysiology of depression [155] through 
diet, are mainly related to tryptophan metabolism [156, 
157], HPA axis [158] and brain-derived neutrophic fac-
tor (BDNF) [159]. As stated before, the dominant physi-
ological catabolic pathway for tryptophan is the kynure-
nine way, where vital neurobiological mediators in a range 
of neurological and psychiatric disorders [160], including 
depression [161] and schizophrenia [162] are produced. 
The onset of this metabolic cascade may be triggered by 
stress   [163] or by the activation of the immune system 
and inflammatory pathways  [164], making tryptophan 
availability a crucial factor in mental health management.  
A variety of foods, including chicken, tuna, oats, peanuts, 
bananas, milk, cheese, and chocolate contain tryptophan 
[165]. It is generally absorbed in the small intestine, but 
significant amounts can also reach the colon, where the 
intestinal microbiota plays a key role in determining its 
fate and activity [166, 167]. Direct supplementation of 
tryptophan has been tested in depressed individuals to 
improve serotonergic signaling: a review of this studies 
[168] provided contrasting results. It has been observed 
that when an activated metabolism of tryptophan is pre-
sent along the kynurenine pathway, there is an increase 
in the production of neurotoxic quinolinic acid, leading 
to opposite effect. The role in the modulation of kynure-
nine metabolism by dietary interventions other than tryp-
tophan metabolism was also investigated. In vitro and ani-
mal models reported individual dietary components such 
as curcumin [169] and green tea [170], as well as dietary 
regimens including ketogenic diet [170] and fasting [171], 
to modulate the activity of the kynurenine pathway. Pre-
liminary intervention studies also suggest that dietary 
regimens such as calories restriction [172] and individual 
dietary components such as probiotics, resveratrol, and 
black tea may also modulate kynurenine metabolism [173, 
174].

Diet appears to have an impact also on the HPA axis and 
clinical intervention studies in healthy adults administered 
with vitamin C and omega-3 reported reduced cortisol 
reactivity in response to acute stress [175–177]. Simi-
larly, intervention studies using foods rich in polyphenols, 
such as pomegranate juice and dark chocolate, reported a 
reduction in cortisol levels in healthy subjects [178, 179]. 
Although the mechanisms by which these dietary fac-
tors influence cortisol and other measures related to the 
HPA axis are unclear, this influence may be mediated by 
modulation of pro-inflammatory response and hypotha-
lamic activation following psychological stress [180]. The 

hippocampus is a critical component of the limbic system 
and plays a central role in learning, memory formation, 
and mood [181, 182]. In mice, increased neurogenesis in 
the hippocampus is associated with improved learning and 
memory abilities, while decreased neurogenesis is often 
associated with depressive behaviors [183]. As already 
stated, reduced levels of serum BDNF were described in 
patients with major depression, so much so that protec-
tive functions are attributed to BDNF in relation to the 
pathogenesis of depressive disorders [184, 185]. There is 
evidence that diet can modulate BDNF and the regulation 
of hippocampal neurogenesis in adults [186]. Animal mod-
els demonstrated that Western-style diets high in fat and 
sucrose can impair neurogenesis and lower levels of BDNF 
within the hippocampus negatively impacting cognitive 
performance [187]. Conversely, research in animal models 
suggests a beneficial effect of some dietary components, 
including omega-3 fatty acids, probiotics, and vitamins 
[188, 189]. It was also shown that single polyphenolic 
compounds would be able to reverse any adverse events 
while preserving the integrity of adult hippocampal neu-
rogenesis under conditions of psychopathology, aging, and 
disease [159]. In the PREDIMED (Prevención con Dieta 
Mediterránea) study, in a subgroup analysis of participants 
with depression, participants randomized to a nut-supple-
mented Mediterranean diet had a higher level of plasma 
BDNF after 3 years than the control group [190]. However, 
establishing the relationship between systemic and central 
BDNF levels is not straightforward, and circulating levels 
can be affected by different sample processing methods 
and storage conditions, as well as other peripheral sources 
of BDNF (e.g., blood platelets) [191]; further clinical stud-
ies would therefore be needed to confirm these observa-
tions by eliminating any confounding factors.

Limitations

Despite the comprehensive synthesis of microbiological, nutri-
tional, and neuroscientific evidence, this review has several 
limitations. First, much of the existing research is based on 
preclinical or animal studies, which may not fully translate to 
human populations. The heterogeneity of human microbiota 
profiles, influenced by genetics, environment, and lifestyle 
factors, complicates the generalization of findings. Addition-
ally, while the potential of dietary patterns and probiotics in 
managing depression is highlighted, many studies lack stand-
ardized methodologies, such as consistent dosing, duration of 
interventions, and robust control groups. The complex bidi-
rectional nature of the gut-brain axis also makes it challenging 
to establish causality in observed associations. Lastly, more 
longitudinal and large-scale human clinical trials are needed to 
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confirm the therapeutic relevance of microbiota-targeted inter-
ventions for depression and to refine dietary recommendations.

Conclusion

The purpose of this work was to enhance our understand-
ing of the role of microbiota and nutrition in the communi-
cation between the intestine and the brain. The vast array 
of microbes residing in and on the human body appears to 
influence mental health and disease by affecting this commu-
nication pathway. Clinical studies suggest that the diversity 
and richness of microbiota contribute to resilience, help-
ing to maintain a balanced microbial composition that may 
facilitate effective interactions between the gut and the brain. 
Additionally, the potential benefits of probiotics, prebiotics, 
and psychobiotics in influencing brain function are indicated 
by both preclinical and clinical research. Nutrition may play 
a role in supporting microbial balance and influencing the 
gut-brain axis as it relates to mood and cognition. However, 
establishing direct correlations between these observations 
remains challenging due to the complex nature of psychi-
atric disorders and the variability of individual microbial 
profiles. Future extensive clinical trials in humans could pro-
vide valuable insights into the potential for microbiota-based 
approaches in the treatment and prevention of psychiatric 
disorders, possibly offering alternatives to traditional phar-
macological methods.
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