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Abstract. A set of discrete individual points located in an embedding continuum
space can be seen as percolating or non-percolating, depending on the radius of the
discs/spheres associated with each of them. This problem is relevant in theoretical
ecology to analyze, e.g., the spatial percolation of a tree species in a tropical
forest or a savanna. Here, we revisit the problem of aggregating random points
in continuum systems (from 2 to 6−dimensional Euclidean spaces) to analyze the
nature of the corresponding percolation transition in spatial point processes. This
problem finds a natural description in terms of the canonical ensemble but not
in the usual grand-canonical one, customarily employed to describe percolation
transitions. This leads us to analyze the question of ensemble equivalence and study
whether the resulting canonical continuum percolation transition shares its universal
properties with standard percolation transitions, analyzing diverse homogeneous and
heterogeneous spatial point processes. We, therefore, provide a powerful tool to
characterize and classify a vast class of natural point patterns, revealing their
fundamental properties based on percolation phase transitions.
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Percolation theory, notwithstanding its conceptual simplicity, has proved extremely
successful in the description of emergent features in many physical, biological, ecological,
and epidemiological problems [1, 2, 3, 4]. Some recent examples of percolation
phenomena in diverse fields include epizootics of sylvatic plagues [5], viral spread
[6, 7], spatial organization of ecological patterns [8, 9], and long-range coordination
in signal transmission among cells [10], to name but a few. Advances in percolation
theory, both theoretical and computational, have been achieved in discrete lattices and
networks [3, 4, 11, 12, 13]. In the simplest case of site percolation, one considers
the probability p of occupation for each site in a given lattice/network, and once p
overcomes its critical percolation threshold, pc, a giant (percolating) cluster, spanning
the whole system emerges. The phase transition, separating percolating and non-
percolating phases, is typically continuous and universal, defining the so-called standard
(or isotropic) percolation universality class (IP) [1, 2, 3, 4], which is characterized by
a set of well-established critical exponents [14, 4, 15]. In some cases, discontinuous
or extremely abrupt (“explosive”) percolation transitions have been found [16, 17].
Similarly, dynamical percolation models, including the stochastic dynamics of “active”
nodes in networks, have proven crucial to understand the propagation of forest fires,
epidemics spreading and the dynamics of opinions on networks [18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29].

Despite the success of discrete percolation theory in describing a wide variety of
natural phenomena, some others (as various of the examples mentioned above) are more
appropriately described in an embedding continuous space. Diverse studies considered
“continuum percolation” models, in which a variable number of non-interacting and
overlapping arbitrarily-shaped objects are randomly placed on, e.g., a two-dimensional
space; the percolation threshold has been shown to depend on the shape of the objects
[30, 31, 32] as well as on their possible heterogeneity [33]. In the particular case of discs in
a two-dimensional space, the phase transition has been shown to belong to the standard
isotropic percolation universality class [34, 35, 36], a conclusion that is expected from
the perspective of the renormalization group and the universality principle of phase
transitions, where microscopic details such as the existence of a discrete lattice spacing
are expected to be irrelevant [14].

Let us underline that the analysis of the percolation phase transition in such
continuum problems usually relies on a variable number of objects, i.e., it is formulated
in the grand-canonical ensemble, and the phase transition emerges upon increasing
the number of single units or agents. Studies of fixed-occupancy samples in discrete
lattices, i.e., in the canonical ensemble, have been performed in, e.g., [11, 12] to compute
percolation thresholds and exponents with high precision. However, thorough studies
fixing the total number of units in the system, but considering a continuum spatial
embedding are, to the best of our knowledge, still missing. Such problems arise naturally
in the context of theoretical ecology as we discuss in what follows.

For example, continuum percolation setups are of utmost relevance to, e.g.,
characterize desertification processes, loss of biodiversity, as well as in analyses of
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complex spatial (vegetation) patterns [9, 37, 38, 39, 40, 41, 42]. In particular, there have
been modeling approaches to analyze the spatial distribution of specific tree species in
Barro Colorado and Sri Lankan rainforests for which excellent datasets exist [43, 44, 45].
For such percolation-type of problems, e.g., to know if a given tree species percolates or
not in a tropical forest, it is not a priori known what the shape of the objects should be.
For instance, in the case of trees in a tropical forest, modeled as percolation problem of
disks on a continuous two-dimensional space, should one consider the trunk’s diameter,
the area covered by roots, or the typical radius of seed dispersal?

Thus, studying the abstract percolation problem with a fixed number of units
seems natural, assuming they all are circular disc/spheres that have a typical radius,
r. Moreover, it is a natural question to ask, what are the critical properties at the
percolation transition occurring at some value rc, encountered as r is increased. First,
let us emphasize that ensemble equivalence is a well-known property of equilibrium
systems [46], but there exist sound non-equilibrium cases where the ensemble equivalence
is broken. For example, ensemble non-equivalence has been recently reported in complex
networks [47, 48] and can be of crucial importance to understand non-ergodic systems
or systems with emergent ergodicity breaking [49, 50]. In particular, different quantities
as, e.g. fluctuations and the excess cluster number, exhibit ensemble non-equivalence in
continuum percolation problems [51]. Nonetheless, a delicate and cumbersome relation
maps the percolation problem onto a q → 1 Potts model [52], so it is foreseen that
continuum percolation in the canonical ensemble is in the same universality class of
standard isotropic percolation. From an even more general perspective, a unified
framework addressing aggregation of point patterns and linking the nature of the
percolation phase transition they exhibit to the generative process for the points still
has yet to be constructed.

The paper is organized as follows. In Section 1 the basic concepts of percolation
phase transitions needed to analyze the clustering of spatial point processes are briefly
presented. In Section 2.1, we analyze the aggregation process of randomly generated
spatial point patterns in the continuum, from dimension d = 2 to 6. We provide
an estimation of the needed critical radius r to generate a percolating cluster, derive
its relation with the filling factor usually given in grand-canonical approaches, and
present a unified and straightforward perspective of the scaling relationships illustrating
the ensemble equivalence and that, as expected, the emergent phase transition in
the canonical ensemble in continuum percolation, belongs to the isotropic percolation
universality class. We therefore analyze in Section 2.2 the special case of empty areas.
After that, we consider the different emergent universality classes characterizing the
most relevant cases of inhomogeneous spatial processes in Section 2.3 and the special
case of clustered point patterns in Section 2.4.
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1. Aggregation of spatial point processes

Our goal is to characterize the aggregation properties of a fixed number of points, N ,
distributed in a continuum space (from 2 to 6 dimensional Euclidean spaces). For
this purpose, we revisit the clustering process proposed in usual continuum percolation
problems [34, 8], which relies on some predefined distance r. In particular, one identifies
two individual points as belonging to the same cluster if their Euclidean distance is less
than or equal to r [53, 54]. Thus, a percolating cluster of points exists if a path connects
all the points satisfying the previous condition. Figure 1 shows the schematic procedure
(each color stands for a different cluster) for small values of the distance parameter
r, medium distances (where a complex aggregate emerge), and large distances (all the
system belongs to a unique cluster). This simple definition allows us to interpret cluster
analysis in the language of statistical mechanics and percolation phase transitions [8].

Figure 1. Sketch representing the clustering process for different circles of radius r,
relative to the mean nearest-neighbor distance, MNN, of a Poisson point process. The
system features a different aggregation of points from (a) isolated clusters to (c) a giant
and unique cluster via a critical point (b). Each color represents a different cluster.

Nearest-neighbor statistics characterize the small-scale structure of such point
patterns, determining the typical properties of the distance between any point and
its kth nearest neighbor [41]. In particular, the mean nearest-neighbor distance (MNN),
defined as the nearest neighbor mean center-to-center distance between points, makes
it possible to assume our processes independent of the considered area while allowing
increasing system sizes [8]. Thus, we normalize the control parameter by the mean
nearest-neighbor distance of the point process [55], i.e., defining r̂ = r/MNN, and
producing a non-dimensional version of the distance parameter.

Here, we examine the two main variables of percolative systems, i.e., the cluster
strength, P∞ and the mean cluster size, χ. The infinite cluster (i.e., the maximum
cluster) divided by the total number of points, i.e., P∞/N , acts as the order parameter
of the system. The distance r̂ acts as the control parameter, showing a percolation
phase transition at some critical value r̂c. Alternatively, in usual percolation problems
in the grand canonical ensemble, the critical filling factor, ηc, indicates the percolation
transition in the system. This dimensionless quantity is related to the total fraction φ of
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the space covered by the objects by φ = 1− e−η [30]. As a matter of fact –as illustrated
in more detail in Appendix A– it is easy to derive a common relation for hyperspheres
in any dimension d, between the critical distance r̂c, and the critical filling factor, ηc, as

r̂c = d2 Γ
(
d
2

)
Γ
(

1
d

)
Γ
(
1 + d

2

)η1/d
c (1)

which reduces to r̂c = 4
√

ηc/π for d = 2.
Turning back to the general discussion, the susceptibility of the system reads,

χ =

S∑
i=1

s2n (s, p)

S∑
i=1

sn (s, p)

(2)

where, as usual, the sum runs over the distribution of clusters of a given size s, n(s, p),
discarding P∞ if it exists.

At criticality, a set of critical exponents describes the physical behavior near a
(continuous) second-order phase transition [14]. In particular, we are interested in the
relevant quantities,

P∞ ∝ (r̂ − r̂c)β (3)

χ ∝ (r̂ − r̂c)γ (4)

where β and γ are the associated critical exponents. Additionally, D represents the
fractal dimension of the incipient infinite cluster, and ν characterizes the divergence of
the correlation length, ξ.

Similarly, close to the critical point, the cluster size distribution assumes the scaling
form,

P (S) = S−τF(S/Sc) (5)

where Sc is the cutoff due to the finite size of the system, and τ corresponds to the
so-called Fisher-exponent.

In particular, the finite-size scaling (FSS) ansatz ensures that all the different
observables of the system depend on the system size and, in particular, taking into
consideration the relation N = Ld, the order parameter and the susceptibility follow the
FSS relation,

P∞(d̂c;N) = N
−β/νdF(N

1/νd̂) (6)

χ∞(d̂c;N) = N
γ/νdF(N

1/νd̂) (7)

where F is a scaling function, and d is the physical dimension of the system.
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Let us remark that the hyperscaling relation, in terms of the system size N , must
be fulfilled,

γ

ν
+

2β

ν
= d (8)

and it holds for any critical system below the upper critical dimension [14, 3]. For
example, in network’ percolation, a similar relationship –that does not account for the
physical dimension of the space– has been reported in terms of the rescaled exponent
ν ′ = νd [56].

2. Results

2.1. Spatial Poisson point processes

2.1.1. Two dimensional case The Poisson point process, consisting of N points
randomly located in space, constitutes the simplest null model exhibiting statistical
independence between individuals. This process is characterized by a homogeneous
density ρ = N/A, where A is the total area of the system. Due to computational
limitations, we perform the simulations without employing periodic boundary
conditions. We highlight that our particular election does not change our main results,
identical in both cases for large system sizes (see further details in Appendix B).
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Figure 2. (a) P∞ as a function of the distance parameter, r̂, in terms of the mean
nearest-neighbor distance for different number of points (i.e. system size, see legend).
It is possible to observe a clear phase transition at a critical value r̂c ∼ 2.39(1) scaling
with N . Inset: Susceptibility for different system sizes. (b) Cluster size distribution,
P (S), versus size, S, for different system sizes at the critical value, r̂c. Dashed line
shows the exponent τ = 2.05. Inset: P (S) versus S for a system size of N = 104

points for a subcritical case (r̂ = 1.5), critical case (r̂c = 2.385) and supercritical case
(r̂ = 3.0). Observe that, for the last case, the probability distribution shows a well-
defined bump characteristic of a spanning cluster invading all the system. Curves have
been averaged over 103 − 104 point patterns.

Figure 2a shows the probability that a given site belongs to the infinite (or largest)
cluster, P∞, versus the normalized distance r̂ (making thus P∞ independent of the
area). It exhibits a phase transition at a critical value r̂c ∼ 2.39(1), as we expected
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from previous works [8]. Analogous experiments with a variable number of points
(see Appendix C), but fixing the radius around them, allowed us to prove that both
ensembles, the canonical and the grand-canonical produce identical results.

Figure 2b shows the power-law scaling for a two dimensional system, with a
characteristic exponent τ ∼ 2.0 (1). It is important to mention that converging to
the expected τ value for isotropic percolation (τ = 2.05) requires huge sizes (around
108 points, see Fig. 2b), and thus may lead to interpretation errors. In particular, we
observe for d = 2 that, the smaller the size the smaller the fitted exponent (see Fig. 2b,
where it converges from τ ∼ 1.75 for N = 103 to τ ∼ 1.95 for N = 108). In particular,
such convergence does not depend on whether periodic boundary conditions are or not
used and it is purely a finite-size effect (see Appendix B). For example, similar behavior
has been found in the BTW model for P (S), where the obtained values of the exponents
are affected by the finite size of the system [57].
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β
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Figure 3. (a) Scaling of the order parameter at r̂ = r̂c, P∞(r̂c;N), versus the
system size, N . Dashed line represents the best fit to our data to the power law
decay P∞(r̂c;N) ∝ N−β/νd. (b) Scaling of the susceptibility at r̂ = r̂c, χ(r̂c;N),
versus the system size, N . Dashed line represents the best fit to our data to the
power law behavior χ(r̂c;N) ∝ Nγ/νd. (c) Data collapse analysis of the avalanche size
distribution for different system sizes (N = 103 to N = 108). (D) Specific aggregation
of a Poisson point pattern of size N = 104 at criticality. Each color stands for a
different cluster.

We computed the finite-size scaling of the different quantities, depending on the
system size N . In particular, the cluster strength fulfills the relation, P∞(r̂c;N) ∝
N−β/νd, while the average cluster size scales as χ(r̂c;N) ∝ Nγ/νd [4, 58]. We can
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estimate the fractal dimension of the incipient giant cluster through the relation
S∞(r̂c;N) ∝ ND/d [3]. To provide another estimation of the exponent τ and D, we
also perform further analyses assuming that the curve P (S,N) can be collapsed into a
single one when they are properly rescaled [59]. That is, PN = F(S) is an universal
function under the transformations PN = N τD/dP (S), and S ′ = N−D/dS [59].

Figure 3a shows the FSS of the cluster strength, giving rise to a value β/νd = 0.07(1),
while Figure 3b shows the system size dependence of the maximum value of the
susceptibility, giving the fitted exponent γ/νd = 0.873(3). In addition, Figure 3c exhibits
the scaling collapse for the cluster size distribution for many system sizes (from N = 103

up to N = 108), which is in agreement with the analysis of S∞(r̂c;N), and confirms
the fitted fractal dimensions D = 1.84(2). Fig. 3d shows a typical snapshot of different
clusters at criticality. The particular set of values lead us to an exponent correction
that deserves particular attention; multiplying by the spatial dimension, we obtain
the exponents, β/ν = 0.14(2) and γ/ν = 1.75(1), belonging to the isotropic percolation
universality class.

2.1.2. Three dimensions and beyond The definition of distances between centers
(the euclidean distance between them) allows us to generalize our analysis to further
dimensions. We computed the same analysis we have done for d = 2 for dimensions
d = 3, 4, 6 and 7. The whole set of critical exponents have been computed using similar
finite-size techniques than for the two-dimensional case (see fits, simulations, and scaling
collapses for all dimensions in Appendix D).

Figures 4(a)-(c) show the probability that a site belongs to the infinite cluster of
occupied sites, P∞, versus the normalized distance r̂ for different spatial dimensions.
Observe that the higher the spatial dimension, the smaller the value of rc (in terms
of the mean nearest-neighbor distance). Figures 4(d)-(e) show the power-law scaling,
together with the characteristic exponent τ for each spatial dimension. Note that, for
d ≥ 3, the obtained exponent present an excellent convergence, for all system sizes, to
the expected τ value for isotropic percolation depending on the spatial dimension, d.

The summary of critical exponents relations and exponents analyzed along the
manuscript is shown in Table 1, where we have added, for the sake of comparison,
some theoretical values in mean-field and two dimensions, and the critical distance
from well-known ηc values [60] using Eq. 1. Furthermore, as expected at criticality, the
hyperscaling relation of Eq. 8 holds for any dimension lower than the critical dimension.
In the same way, the scaling relation γ

ν
+ β

ν
= D holds for all dimensions up to the critical

one. From numerical simulations, we observe a critical dimension dc = 6, from which the
set of critical exponents remains invariant. Observe also that, if the physical dimension
of the system is not considered into the scaling forms of Eq.7 (i.e., simply dividing
the exponents of Table 1 by the dimension, d), Eq. 8 is fulfilled in terms of the ν ′

exponent, thus giving place to apparent exponents –including the fractal dimension–
with abnormally small values [56].
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Figure 4. (a)-(c) P∞ as a function of the distance parameter, r̂, in terms of the
mean nearest-neighbor distance for different number of points (i.e. system size, see
legend) and different spatial dimensions (see title). It is possible to observe a clear
phase transition at a critical value r̂c scaling with N , which depends on the spatial
dimension of the system. Inset: Susceptibility for different system sizes. (d)-(f)
Cluster size distribution, P (S), versus size, S, for different system sizes at the critical
value, r̂c. Dashed line shows the best fitted exponent τ for each spatial dimension.
Curves have been averaged over 103 − 104 point patterns.

2.2. Considerations on the effects of voids

One of the main concerns to study the macroscopic properties of spatial point process
requires to deal adequately with borders [62, 63]. This issue usually involves two
particular problems: knowing the boundaries, how to reduce the biases, and, more
subtle, how to correctly identify the not convex borders of a set of points [42, 64]. For
instance, establishing proper boundaries is essential to avoid spurious behaviors from
the pair correlation function and different spatial density-based measures [42].

Here, we take into consideration the case of a randomly distributed set of points
with several excluded areas, as exemplified in the inset of Fig.5b, for comparison with the
simple case of a homogeneous Poisson point process filling all the two-dimensional space.
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Dimension r̂c β/ν γ/ν 1/ν D τ r̂c(ηc)

2 2.39(1) 0.14(2) 1.75(1) 0.76(5) 1.84(2) 2.0(1) 2.396906(11)
3 1.56(1) 0.48(3) 1.97(1) 1.2(1) 2.52(3) 2.11(5) 1.566161(9)
4 1.31(1) 1.0(1) 1.98(1) 1.5(1) 3.0(1) 2.25(5) 1.3260(8)
6+ 1.13(1) 1.86(6) 1.97(3) 2.2(2) 4.1(1) 2.50(5) 1.15288(21)

2D IP – 0.104 1.79 0.75 1.896 2.05 –
MF IP – 2 2 2 4 2.5 –

Table 1. Summary of the obtained critical exponents relations (β/ν and γ/ν) and
exponents (ν, D and τ) for different spatial dimensions. The value r̂c represents the
critical radius (in terms of the mean nearest-neighbor distance) where the percolation
transition occurs. We also use the well-known values of filling factors [61, 60], following
Eq.(1), to validate our estimated values of r̂c. Finally, the set of mean-field and 2D
theoretical relationships and exponents is shown at the end of the table for comparison.

In particular, to analyze the case of the empty areas, we extract for every realization
twenty random circles with random radius, R ∈ (0.05, 0.1), distributing all the random
points out of them. Figure 5a shows the comparison for the percolation phase transition
for a set of points distributed with and without voids, which takes place for identical
r̂c values. Likewise, just at the critical point, the Fisher exponent, τ , features similar
properties to the one previously analyzed in 2D. One can conclude that the set of
exponents of a particular distribution of points is free of border effects (i.e., voids, a
factor of particular importance in the quantification of the pair correlation function
[42]), and only depend on the underlying intrinsic properties of the point process.
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Figure 5. (A) P∞ as a function of the distance parameter, r̂, in terms of the mean
nearest-neighbor distance for 105 random points with and without empty areas (see
legend). There exists a phase transition at a critical value r̂c ∼ 2.39(1) with identical
qualitative features for both systems. Inset: Susceptibility for the two different cases.
(B) Cluster size distribution, P (S), versus size, S, with and without empty areas at
the critical value, r̂c. Dashed line shows the expected theoretical exponent τ = 2.05.
Inset: Cluster distribution ofN = 104 points in a system with empty areas at criticality.
Curves have been averaged over 103 − 104 point patterns.
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2.3. Inhomogeneous spatial point processes

A heterogeneous Poisson process is defined by a set of non-interacting points, with
intensity altered by external factors at different locations. Thus, the process is described
through some predefined intensity function, λ(x), which depends on its spatial location
x. In the particular case of tree species in tropical forests, inhomogeneous processes with
density gradients are often influenced by topography or soil nutrients availability [41].
We illustrate here two of the simplest non-homogeneous processes in 2D: (i) a Gaussian

kernel around a “central tree”, that is, λ(r) =
1√

2πσ2
e−

r2

2σ2 and, (ii) an exponential

gradient along some predefined spatial direction, λ(x) = le−lx.
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Figure 6. P∞ as a function of the distance parameter, r̂, in terms of the mean nearest-
neighbor distance for different number of points (i.e. system size, see legend) in the
case of: (a) a Gaussian intensity function with σ = 20 and (b) an exponential density
function with l = 1. In both cases there exists a bonafide phase transition at a critical
value r̂c ∼ 1.2 scaling with N . Inset: Susceptibility for different system sizes. (c)
and (d) Cluster size distribution, P (S), versus size, S, for different system sizes at
the critical value, r̂c for both cases, Gaussian and exponential, respectively. Dashed
line shows the exponent τ = 2.5(1). Insets: (c) P (S) versus S for the Gaussian case
with N = 104 points for a subcritical case (r̂ = 0.8), critical case (r̂c = 1.26) and
supercritical case (r̂ = 2.0). Observe that, for the supercritical case, the probability
distribution shows a well-defined bump characteristic of a spanning cluster invading
all the system. (d) Cluster distribution of N = 104 points in the exponenital case at
criticality. Curves have been averaged over 103 − 104 point patterns.

Figures 6(a) and (b) show the probability that a site belongs to the infinite cluster,
P∞, versus the normalized distance r̂ for both cases. Observe that in both situations,



Characterizing spatial point processes by percolation transitions 12

there exists a bonafide phase transition at r̂c ∼ 1.2. Figure 6(c) and (d) show the
power-law scaling, together with the characteristic exponent τ . In such a case, the
exponent presents an excellent convergence to the value τ = 2.5(1). Interestingly, the
present approach suggests an analogy between our percolation transition and a static
percolation model known as gradient percolation (GP) [65, 66]. In particular, Figure 6
evidence the existence of an external frontier of the connected occupied cluster, which
is often called the gradient percolation front. Also, our results are in full agreement
with recent simulations evidencing a size-distribution exponent for gradient percolation
τ ∼ 2.45 [67], which might be indeed different from the mean-field expected one.

2.4. Poisson cluster processes

Point processes with clustering are of utmost relevance for practical applications in
ecology. They contrast areas of elevated density (i.e., clusters) with areas of low (or
even vanishing) point density. For example, they have allowed to analyze the spatial
distribution of the seedling process of the orchid Orchis purpurea [68] or reproduce
empirical data for diverse species in Barro Colorado island [43].

We consider the simplest point process that generates clustered patterns with one
critical scale of clustering: the Thomas process. It is defined by the following rules
[41]: (i) Consider np ’parent’ events following an homogeneous Poisson process. (ii)
Each parent produces a fixed number of ’offspring,’ S, thus being N = npS the total
system size. (iii) The offspring is seeded from the parent independently and identically
distributed according to a radially symmetric normal distribution with variance σ2.

We propose a brief heuristic argument for arguing the emergent phenomenology in
this specific case. For the case of a small number of parents, we return to the case of
the Gaussian intensity function presented above (thus expecting a single critical point
scaling up to S with exponent τ = 2.5). Otherwise, it will reduce to the usual two-
dimensional case limit (i.e., τ = 2.05) when considering an infinite number of parents
with almost any offspring. Nevertheless, there is, perhaps, an intermediate behavior.
Let us consider that each center exhibits a characteristic dispersal radius, 2σ, which
will enclose 95% of the total number of children points. Thus, the percolation threshold
of a 2D set of offspring disks of radius α, for fully penetrable discs [32], should mark
the beginning of fully covering the available space. Therefore, we can expect some
anomalous emergent behavior around this critical number of parents,

ncp =
ηcLxLy
π(ασ)2

, (9)

where ηc ∼ 1.128 represents the critical filling factor for fully penetrable discs [32], Lx
and Ly are the dimensions of the filled area, σ is the variance of the dispersal distance
of the points and, as we have already said, we consider α ∼ 2. Let us remark that it
stresses the ’critical’ condition for having a saturated environment as usually proposed:
’large landscapes are essentially always biotically saturated with individuals’ [69].

Figure 7a shows the probability that a site belongs to the infinite cluster, P∞, versus
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Figure 7. (a) P∞ as a function of the distance parameter r̂ in terms of the mean
nearest-neighbor distance for different number of parents points and different dispersal
distances (see legend). The offspring is fixed to S = 10 in the two first cases and to
S = 40 in the last one. It is possible to observe a clear phase transition at a critical
value r̂c ∼ 3.2 scaling with N . Inset: Susceptibility for the three different considered
cases. (b) Cluster size distribution, P (S) versus size, S, for the three selected cases
at the critical value, r̂c. Dashed line shows the exponent τ = 1.6(1). Inset: Cluster
distribution of np = 103 parent points and S = 10 children points with dispersal radius
σ = 9. Curves have been averaged over 103 − 104 point patterns.

the normalized distance r̂ for different realizations of the Thomas process with a variable
number of parents points in a squared area of size L = 103, and scaling σ and np as
suggested by Eq. 9. Figure 7(b) shows the cluster size distribution scaling, together
with the characteristic exponent τ . In this case, we observe a suitable convergence
to the exponent τ = 1.6(1), much smaller than expected for the isotropic percolation
universality class. We highlight that it is compatible whether with mean-field directed
percolation critical exponents [27], invasion percolation ones [70] or the emergence of
holes in backbone percolation [71]. To avoid confusion, let us underline that in this
specific case, τ is smaller than the conventional lower bound value 2 and that power
laws with exponents smaller than 2 can appear but do not have a well-defined averaged
cluster size when integrated to arbitrarily large values of S. Therefore, the fits are just
approximated ones and cannot possibly extend to arbitrarily large cluster sizes (we refer
to [67, 39] for recent percolation numerical studies showing emergent exponents τ < 2

and to [72] for an extended discussion on the issue). The phase transition reflects a
characteristic system scale that somehow reflects the underlying clustering processes
that give rise to the specific spatial landscape.

3. Conclusions

In summary, we have confirmed that the aggregation of random point patterns in
the continuum belongs to the isotropic percolation universality class [34, 35, 73, 30]
and can be extensively computed by carefully analyzing the scaling properties of the
system as a function of the total number of points. Also, the particular consideration
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of density gradient automatically leads to the emergence of the gradient percolation
universality class [66, 65], reflecting the intrinsic heterogeneity of the point pattern
structure. Our approach, as expected for all local correlation functions that deal with
the local random geometry of clusters, allows us to confirm the ensemble equivalence in
continuum percolation problems.

An interesting corollary is that some critical exponents (e.g., β) change –as a
function of r̂, in the spatial point aggregation problem– if the spatial dimension is not
explicitly included in the FSS analysis, and might lead to a misleading interpretation of
the system’s universality class. In particular, we have also shown that, in these specific
circumstances (i.e., not considering the physical dimension of the system), analogous
scaling relationship to those of complex networks apply [56]. In particular, it is of
potential interest to analyze further extensions in random geometric graphs [74] and
classify universality classes in random networks growth, where the spectral dimension
can be easily controlled. In our opinion, our present work provides a new perspective
to understand scaling dependences and universality classes on systems lacking a well-
known spatial embedding by considering the spectral dimension of complex network
structures, which can crucially constrain the emergent scaling properties of the system.

Typically, point-process models are built to represent a hypothesized process that
mimics natural spatial patterns, depending on pre-assigned statistical features based
on the density field ρ(x), the pair correlation function and its variations, or nearest-
neighbors statistics [41, 75]. We demonstrate here that clustering of point-patterns
reveals diverse percolative transitions that only depend on their intrinsic correlations
and spatial properties, e.g., reflecting homogeneity or heterogenity, together with density
gradients and clustering properties. More importantly, here we show that this specific
method is free of boundary and edge effects, which are essential for avoiding spurious
behaviors in the analysis of density fields and pair correlation functions [63, 42, 64, 41].
Consequently, this allows it to be used to extract fundamental information about real
point patterns and their generative processes. Additionally, we provide different values
for the critical radius at which the percolation transition occurs –in complete agreement
with the corresponding filling factors [60]– that can be relevant, for instance, in ecological
aggregation processes [37, 38, 9], wireless mobile ad hoc communication networks [76],
or avalanche in bursty dynamics [77]. Let us finally mention that detailed analyses of
the particular aggregation of ecological landscapes are in progress and will be reported
elsewhere. In our opinion, this contribution will help to clarify the study of continuum
percolation processes allowing to extract information about empirical observations in
natural systems such as tropical forests.
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Appendix A. Relation between ηc and r̂c

Let us consider the mean nearest neighbor distance of a random set of N points
distributed in a d−dimensional space. In the hypothesis of a d−dimensional
homogeneous Poisson point process [55], the PDF of the nearest-neighbor distances
in a set of N random points is given by the following expression:

Pd (r) dr =
2π

d
2

Γ
(
d
2

)rd−1dr
N

V

(
1− π

d
2

Γ
(
d
2

+ 1
)rd/V)N−1

(A.1)

Then, the mean nearest neighbor distance is
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which, under in the limit N, V →∞ with fixed N/V = ρ, becomes

MNN ≡ 〈r〉 =
2π
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which can be inverted to give
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The percolation threshold is characterized by the formation of a giant component which
marks the phase transition. At this point the filling factor is defined by

ηc =
π
d
2

Γ
(
d
2

+ 1
)rdcρ , (A.5)

where rc is the critical disk radius. Replacing Eq.(A.4) into Eq.(A.5), we can get a
direct relation between ηc and the critical radius –in terms of the MNN– in the simple
case of random points,

r̂c ≡
2rc

MNN
= d2 Γ

(
d
2

)
Γ
(

1
d

)
Γ
(
1 + d

2

)η1/d
c , (A.6)

where d is the dimension of the system and factor two is considered on the left-hand
side to reflect the fact that two disks will overlap if their center-to-center distance is less
than twice the radius of the disks. Note that it reduces to r̂c = 4

√
ηc/π for d = 2.
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Appendix B. Periodic boundary conditions

We have extended the clustering algorithm proposed in the main text considering also
periodic boundary conditions in two dimensions. Figure B1 shows the comparison of
the order parameter for both cases, with (dashed line) and without PBC (solid line).
Observe that there is no substantial difference between cases, for large enough system
sizes (N > 103), thus confirming that we are in the limit of infinite lattice size where
this effect becomes negligible. We choose not to implement PBC for general simulations
just for computational convenience.
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Figure B1. (a) P∞ as a function of the distance parameter r̂ in terms of the
mean nearest-neighbor distance for different number of points (i.e. system size,
see legend) with periodic boundary conditions (dashed line) and without periodic
boundary conditions (solid line). Inset: Susceptibility for different system sizes in
both situations. (b) Cluster size distribution, P (S) versus size, S, for different system
sizes at the critical value, r̂c. Dashed line shows the case considering periodic boundary
conditions. Curves have been averaged over 103 − 104 point patterns.

Appendix C. Statistical ensembles

Our approach assumes two points belonging to the same cluster if their euclidean
distance is less than or equal to r. In particular, we have considered a fixed number
of points in space, i.e. system size N , which corresponds to a canonical statistical
ensemble. There exists another different approach, which consists of considering an
increasing number of discs, until some critical density N/L2 is reached, generating a
giant cluster in the system. Pay close attention to the fact that the last approach
belongs to the grand-canonical ensemble.

Figure C1 shows the results for the cluster strength, P∞, versus the distance to the
critical point, ε ∝ |r̂ − r̂c| in two different cases: (i) the canonical ensemble with 104

points as done in the main text (RC, blue line in Fig.C1) and, (ii) the grand-canonical
ensemble considering a square rectangle of size L = 50 and adding an increasing number
of discs with radius r = 1. In this last case, it is possible to observe the phase transition
using the density of discs as control parameter, ρ = N/L2, where ε ∝ |ρ − ρc| (D-GC,
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Figure C1. P∞ as a function of the distance to criticality ε for different ensembles
(see legend). Inset: Susceptibility for different statistical ensembles. Curves have been
averaged over 5 · 103 point patterns.

violet line in Fig.C1) or to calculate the mean nearest-neighbor distance, MNN using
the ratio between the radius of the discs and the mean nearest-neighbor distances as
a control parameter, r̂ ∝ r/MNN, where ε ∝ |r̂ − r̂c| (R-GC, orange line in Fig.C1).
Observe that, in all cases our results confirm the ensemble equivalence for large systems
sizes, even if further analyses will be needed in the future to check, e.g., fluctuations for
small systems [51].

Appendix D. Beyond two dimensions

Appendix D.1. Finite Size Scaling analysis

We have computed the exponents β/νd, γ/νd, and D for the different spatial dimensions.
Figures D1 and D2 show the different fits we have computed to obtain the critical
exponents.
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Figure D1. FSS analysis for 3D and 4D. (a,d) Scaling of the susceptibility at
r̂ = r̂c, χ(r̂c;N), versus the system size, N . Black dashed line represent the best fit to
our data, scaling as χ(r̂c;N) ∝ Nγ/νd. (b,e) Scaling of the order parameter at r̂ = r̂c,
P∞(r̂c;N), versus the system size, N . Black dashed line represent the best fit to our
data, scaling as P∞(r̂c;N) ∝ N−β/νd. (c,f) Scaling of the maximum cluster at r̂ = r̂c,
S∞(r̂c;N), versus the system size, N . Black dashed line represent the best fit to our
data, scaling as S∞(r̂c;N) ∝ ND/d.
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Figure D2. FSS analysis for 6D and 7D. (a,d) Scaling of the susceptibility at
r̂ = r̂c, χ(r̂c;N), versus the system size, N . Black dashed line represent the best fit to
our data, scaling as χ(r̂c;N) ∝ Nγ/νd. (b,e) Scaling of the order parameter at r̂ = r̂c,
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data, scaling as P∞(r̂c;N) ∝ N−β/νd. (c,f) Scaling of the maximum cluster at r̂ = r̂c,
S∞(r̂c;N), versus the system size, N . Black dashed line represent the best fit to our
data, scaling as S∞(r̂c;N) ∝ ND/d.
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Figure D3 and D4 show the FSS collapse employing the obtained set of critical
exponents.
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Figure D3. (Left) FSS collapse for the order parameter. (Center) FSS collapse for
the susceptibility. (Right) Data collapse analysis of the avalanche size distribution
for different system sizes.
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