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Abstract

A distinctive aspect of human intelligence lies in its capacity to optimize decision-making in 

interactive settings based on the potential actions of others, a phenomenon known as strategic 

sophistication. This ability is pivotal in strategic interactions, where predicting others' actions, 

anticipating their beliefs about our possible actions, and making decisions based on such beliefs are 

essential. This competence holds particular relevance in negotiation, where achieving a compromise 

between demand and offer necessitates a thorough understanding of the counterpart's true 

objectives and the compromises they would be willing to accept. Despite extensive behavioral 

research revealing human behavioral flaws in strategic interactions, there's limited knowledge 

about the differences in strategic thinking abilities between expert negotiators and those not 

primarily involved in negotiation within their professional domain. Additionally, there's little 

understanding of the potential for enhancing strategic sophistication in expert negotiators and any 

variations in their ability to learn strategic behavior compared to individuals inexperienced in 

negotiation. In this innovative study, both non-expert individuals and expert negotiators are given 

the opportunity to learn through a specially designed app aimed at improving decision-making skills 

in complex strategic environments. Using a between-subject design, we compare the learning 

achieved by expert negotiators and non-expert individuals after extensive training with this app. 

Analysis of choice and belief elicitation data reveals that practicing with this app significantly 

increases participants' strategic abilities. Crucially, this improvement is more notable among expert 

negotiators, indicating a greater adaptability to feedback received during the training phase. Our 

findings offer new insights into the factors influencing learning in strategic interactions and shed 

light on differences in learning between expert negotiators and individuals with no experience in 

negotiation. Finally, our results emphasize the app's effectiveness in enhancing strategic skills across 

individuals, irrespective of their initial abilities.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4697704

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



2

1. Introduction

In our daily lives, decision-making is a constant occurrence. While some decisions may be 

straightforward, such as choosing between an apple and an orange, we often find ourselves in more 

complex situations where outcomes hinge not just on our decisions but also on the actions of others. 

Strategic interactions, as these scenarios are termed, demand optimal decision-making based on 

the ability to form accurate beliefs about others' intentions (first-order beliefs) and others' 

expectations of our potential actions (second-order beliefs). In this regard, the term "strategic 

sophistication" refers to the capacity to engage in high-quality and complex recursive reasoning, 

involving multiple steps of strategic thinking about both others and oneself. Game theory serves as 

a valuable tool to model strategic interactions and explore individuals' strategic sophistication in 

interactive settings, utilizing games (Figure 1). Extensive experimental evidence from games has 

unveiled significant heterogeneity in strategic sophistication. Contrary to the assumptions of 

classical game theory, which presupposes full rationality and correct beliefs (Nash, 1950), most 

players do not adhere to strategic rationality. They often fall short of applying all possible steps of 

recursive reasoning and instead rely on costless heuristics in their decision-making processes. For 

instance, some players make decisions without considering others' incentives and potential actions, 

and the majority do not form second-order beliefs (Polonio et al. 2015, Polonio & Coricelli 2019). 

A prominent model to characterize heterogeneity in strategic sophistication is the Cognitive 

Hierarchy model (CH, Camerer et al., 2004; Chong et al., 2016). The CH model delineates choice 

behavior through hierarchical levels of strategic thinking. Each player endeavors to anticipate the 

strategic level of their counterpart(s) and then optimally responds to this belief by employing a more 

sophisticated strategy. The hierarchy start with players employing random choices (level-0); then 

introduces level-1 players, who optimally respond to the belief that all other players are level-0; one 

step further there are level-2 players, who believe that the potential opponents are no more 

sophisticated than level-1, and so forth, expanding the depth of strategic thinking until behavior 

approximate the equilibrium predictions. This theoretical framework posits heterogeneity in 

individuals' strategic sophistication, contrasting with the Nash equilibrium, which presupposes the 

perfect rationality of agents possessing consistent beliefs about others' forthcoming actions and 

making optimal choices based on those expectations. This diversity in strategic thinking can be 

attributed to various factors, which can be categorized into two main groups. First, heterogeneity 

in strategic thinking is associated with variations in participants' beliefs regarding others' levels of 

strategic thinking (Costa-Gomes &  Weizsäcker 2008; Polonio & Coricelli, 2019). Second, the 
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execution of complex strategies involving more than one step of strategic thinking necessitates 

diverse cognitive abilities, including mentalizing, fluid intelligence, working memory, cognitive 

reflection, and representation skills (Alaoui & Penta, 2016, 2022; Brañas-Garza et al., 2012; 

Crawford, 2003; Goodie et al., 2012; Grosskopf & Nagel, 2008; Kiss et al., 2016; Zonca et al. 2020).

Recent experimental research has explored ways to enhance individuals' strategic sophistication in 

games, indicating improvements through exposure to feedback (Gill & Prowse, 2016; Knoepfle et 

al., 2009; Marchiori et al., 2021; Selten et al., 2003), observational learning (Zonca et al., 2021), 

experience with alternative decision rules (Zonca et al., 2019), and step-by-step training (Verbrugge 

et al., 2018).

The enhancement of strategic thinking skills is particularly pertinent in the realm of negotiation, 

where understanding the counterpart's true objectives and acceptable compromises is crucial for 

reaching a mutually beneficial agreement. Negotiation is a decision-making process where 

individuals collaboratively determine the allocation of scarce resources (Pruitt, 1983). It arises in 

situations of conflict without established rules or procedures for resolution, offering a non-

aggressive means of seeking agreements. Negotiating for goods such as commodities, money and 

services is a crucial skill for individuals striving to attain their goals through interaction (Thompson, 

1990). 

The existing body of literature on decision-making has thoroughly investigated the distinctions 

between novice and experienced negotiators, providing insights into how different levels of 

expertise influence strategic choices in interactive scenarios (Babcock & Loewenstein, 1997; 

Loewenstein & Thompson, 2006; Thompson, 1990). Experienced negotiators display a more 

sophisticated and strategic approach to decision-making, stemming from their extensive exposure 

to negotiation contexts. This exposure enables them to recognize patterns, anticipate 

counterstrategies, and dynamically adapt their approach. Furthermore, experienced negotiators 

often showcase superior problem-solving skills, an enhanced ability to discern the intentions of their 

counterparts, and greater proficiency in creating and claiming value during negotiations. 

Conversely, individuals with low negotiation experience tend to rely on simpler decision-making 

heuristics, struggling to recognize and respond to complex interactive patterns in dynamic 

environments. Their limited exposure to diverse strategic scenarios may render them more 

susceptible to cognitive biases and heuristic errors. Novices may also grapple with accurately 

assessing the preferences, motivations, and potential strategies of their counterparts. 
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Studies have delved into the impact of experience on various negotiation facets, including 

information processing, strategic thinking, and emotional intelligence (Druckman, et al. 1972; 

Goleman, 1995; Pruitt & Carnevale, 1993; Neale & Northcraft, 1991; Thompson, 2010;). In summary, 

the literature on decision-making in negotiation underscores significant disparities between expert 

negotiators and non-expert negotiators, emphasizing the role of cognitive skills in determining the 

efficiency and optimality of the decision-making process.

Despite this progress, it remains unclear whether individuals who regularly engage in negotiation 

within a professional context are better equipped to make optimal decisions in broader and less 

work-specific strategic contexts. Moreover, little is known about potential differences in their ability 

to learn from the feedback they receive about the behavior of others in these more general strategic 

environments.

In the current study, we investigate strategic sophistication in Expert Negotiators (EN) and 

individuals with No Experience in Negotiation (NEN) examining their capacity to learn through a 

specifically designed app aimed at enhancing users' strategic skills, regardless of their initial 

competence level. Employing a between-subject design, we measured the initial strategic abilities 

of EN and NEN individuals, taking into account both the consistency of their choices with the 

equilibrium and the accuracy of their belief about the action of the counterpart. Subsequently, 

participants were provided with the opportunity to train using this app, which required them to 

engage with an algorithm making optimal decisions in interactive games of varying complexity. 

Following the training phase, participants' strategic abilities were re-evaluated. 

The results uncover an initial disparity in strategic competencies between EN and NEN participants, 

contingent upon the specific game complexity. After training occurs, negotiators exhibit a 

significantly higher level of performance, both in selecting the equilibrium strategies and in 

predicting the counterpart’s behavior. This increase in strategic sophistication is further assessed 

using the CH model, revealing a substantial difference in the attained level of strategic sophistication 

between the two groups post-app training. Specifically, EN participants reach a level between level-

3 and level-4, whereas NEN participants barely reach level-2. 

Our results show that our app enhances users’ strategic skills, regardless of their initial proficiency 

levels. Moreover, we show that expert negotiators adapt their strategic behavior to new 

counterparts better than non-experts, reaching higher performances. This result highlights the 

greater ability of individuals working in the field of negotiation in learning and adapting more 

efficiently to the observed behavior of others.
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Figure 1. An example of a 3x3 matrix game involving two players: a row player and a column player. Each cell 

report the outcomes for every possible combination of actions of the two players. The three possible actions 

for the row player are labelled Action I, Action II, and Action III, while those for the column player are labelled 

Action i, Action ii, and Action iii. The outcomes for the row player are represented in blue, while those for the 

column player are represented in red. The outcome of the game is determined by the combination of actions 

taken by both players. For example, if the row player selects Action I, and the column player chooses Action 

ii, the row player gains 74 points, and the column player gains 64 points.

2. Methods

2.1 Subject sample and experimental procedures

The current study employed a training and a baseline treatment. The training treatment aimed to 

investigate the development of learning through the utilization of a dedicated app, while the 

baseline treatment served as a control condition. The experiment involved 269 participants. Among 

them, 69 were Expert Negotiators (EN, 56 males, 14 females, mean age: 42, SD: ± 9.21, range: 21 – 

60), and 200 were participants with No Experience in Negotiation (NEN) recruited through the online 

platform Prolific (130 males, 71 females, mean age: 37, SD: ± 11.40, range: 23 – 63).

Expert Negotiators were individuals affiliated with the Intesa Sanpaolo Global Markets Solutions & 

Financing Business Unit and were recruited through an internal call within the business unit. The 

internal call was managed via an informal invitation sent through email to potential participants. 

This invitation email specified the absolute freedom to decide whether to participate in the study. 

Additionally, the email emphasized the employer's inability to monitor the involvement and the 

performance of individual employees in the study.
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Half of the NEN participants recruited through the online platform Prolific were assigned to the 

control condition (NEN no-training), and the remaining half were assigned to the training condition 

(NEN training), while all EN participants were included in the training treatment. All participants 

were provided with an exhaustive description of all the experimental procedures and were required 

to sign a written informed consent before taking part in the study. The study was conducted in 

accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and under a 

protocol approved by the Area Vasta Nord Ovest Ethics Committee (protocol n. 24579/2018).

The experiment comprised three phases: Assessment, Training, Re-assessment. Figure 2 

summarizes the experimental structure. Participants in the no-training treatment participated in the 

Assessment and the Re-assessment phases only (did not take part in the Training phase). 

Figure 2. Graphical summary of the experimental design.

In all phases, participants interacted with an algorithm (referred to as the computer) programmed 

to consistently follow the equilibrium strategy. Participants were informed at the beginning of each 

phase that the computer would play rationally, seeking to maximize its own payoff, without 

adjusting its strategy throughout the experiment or adapting its choices to those of the participant. 

They were also informed that the algorithm selected its actions assuming that the participant would 

act rationally to maximize earnings. The decision to pair participants with an artificial opponent 

aligns beliefs and controls for unregulated adjustments in the level of strategic sophistication that 
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might occur with a human counterpart (see Agranov et al., 2012). While this control comes at the 

expense of limiting generalizability, as interactions with an artificial counterpart may prompt 

different strategic considerations than human interactions, it ensures a more controlled testing 

environment.

The initial phase (Assessment) aimed to evaluate each participant's initial level of strategic 

sophistication. During the Assessment, participants played a series of 12 two-person 3x3 games. 

Among these, three games had a dominant strategy for the row player (i.e., the participant) but no 

dominant strategies for the counterpart (referred to as 1-step games). Another three games had a 

dominant strategy for the column player (i.e., the computer) but no dominant strategies for the row 

player (referred to as 2-step games). Three games had a dominated strategy for the row player and 

are solvable in three steps of iterated elimination of dominated strategies (referred to 3-step 

games). Finally, three games had a dominated strategy for the column player and are solvable in 

four steps of iterated elimination of dominated strategies (4-step games). An extensive description 

of the four games is provided in the next section.

In each round (each game) of the experiment, participants had to select one of the three available 

actions (Action 1, Action 2, Action 3) and indicate the probability with which they expected the 

counterpart to choose the first, second, or third column (Action-1, Action-2, Action-3). To state their 

beliefs, participant had to associate a probability to each of the counterpart’s actions, choosing a 

value between 0 (certainty that the computer would not choose that action) and 100 (certainty that 

the computer would choose that action). Figure 3 provides a graphical representation of how the 

choice task and belief elicitation were presented to participants in the app. The aim of eliciting 

participants' beliefs was to assess whether the potential increase in strategic skills after training with 

the app is accompanied by more accurate beliefs about the counterpart's behavior. This evaluation 

aimed to ascertain whether improved strategic skills resulted not only from heuristics ensuring safe 

and sufficiently optimal choices but from a deeper understanding of computer incentives and a 

more accurate prediction of the rational counterpart's action in each specific game.

During the Assessment phase, participants received no feedback regarding the computer's choices 

or the game outcomes. Consequently, in this initial evaluation phase, participants could not learn 

from their previous decisions. Participants faced no time constraints during the task, and the phase 

had an overall duration of approximately twenty minutes.

Following the completion of the Assessment phase, participants in the training treatment were 

instructed to practice for approximately four weeks, engaging in a full practice session twice a week. 
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During the Training phase, participants played 36 games, presented in three parts of 12 games each. 

In each part, the games presented had a structure similar to the one of the games seen in the 

Assessment phase, but the information provided was differed. In part 1, participants played 12 

games without feedback; in part 2, they received feedback on the computer's choice and the 

outcome of the interaction; lastly, in part 3, participants played again 12 games without any 

feedback. Figure 2 presents a representation of the experimental structure, while Figure 3 offers a 

screenshot of the task as displayed in the app. A detailed description of the app can be found in 

Section A.3 of the Supplementary Material.

At the end of each session (after part 3 was over), participants received a summary table detailing 

their performance across the three parts. This summary table included the total points obtained out 

of the available total and the average accuracy of their belief statements. The summary provided 

participants with the opportunity, after each training session, to assess their progress and compare 

their improvement with their previous sessions.

The chance to engage in a feedback session allowed participants to carefully consider the rationale 

behind the counterpart's chosen actions in each game, assess the optimality of the outcomes, 

evaluate the accuracy of their beliefs regarding the counterpart's expected behavior, and compare 

the efficacy of the action they selected with alternative actions.

EN participants practiced using an especially developed app, installed on their mobile phones, while 

NEN participants recruited through the Prolific platform were asked to connect to a web version of 

the app via their computers. This setup allowed experimenters to monitor the actual usage of the 

app over the four weeks of training. The app comprised a comprehensive library of 200 games (fifty 

1-step games, fifty 2-step games, fifty 3-step games, and fifty 4-step-games) from which the games 

played were extracted. The assignment of payoffs in the three rows and columns was randomly 

allocated by the app at the start of each trial, ensuring participants never encountered the situation 

of repeatedly playing the same game. 

At the conclusion of the four-week training period, participants were invited to take part in a new 

experimental session (Re-assessment phase), which essentially replicated the Assessment phase. 

This phase included three 1-step, three 2-step, three four 3-step, and three 4-step games, albeit 

with different payoffs than those presented in the previous sessions. The goal of the Re-assessment 

phase was to assess participants' learning in terms of the proportion of optimal choices and the 

accuracy of their beliefs.
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NEN participants recruited in Prolific were incentivized throughout all stages of the experiment. In 

each experimental session, they had the opportunity to earn an amount ranging from a minimum 

of 2,10 pounds to a maximum of 6 pounds, depending on the outcome of their choices and the 

accuracy of their beliefs. Specifically, at the end of each experimental session, a round was randomly 

selected, and the participant received an amount depending on the outcome of the interaction (up 

to a maximum of 2 pounds) and the accuracy of their beliefs (up to a maximum of 2 pounds), in 

addition to a show-up fee of 2 pounds. Belief elicitation was incentivized with a quadratic scoring 

rule defined as follows: let 𝑦𝑖
𝑔 represent the stated belief of player 𝑖 in game 𝑔, where 𝑦𝑖

𝑔  is a 

probability distribution over the three actions (“I”, “II”, and “III”) of player 𝑗 (the counterpart). The 

probability distribution is expressed as 𝑦𝑖
𝑔 =  (𝑦𝑖

𝑔,"𝐼" 𝑦𝑖
𝑔,"𝐼𝐼" 𝑦𝑖

𝑔,"𝐼𝐼𝐼"), with the constraint that 𝑦𝑖
𝑔 ∈ ∆2

= {𝑦𝑖
𝑔 ∈ ℜ3|⅀𝐶∈{“I”,  “II”, and “III”} 𝑦𝑖

𝑔,𝑐 = 1}. The action chosen by player 𝑗 (the counterpart) is denoted 

as 𝑥𝑗
𝑔 =  (𝑥𝑗

𝑔,"𝐼" 𝑥𝑗
𝑔,"𝐼𝐼" 𝑥𝑗

𝑔,"𝐼𝐼𝐼"), where 𝑥𝑗
𝑔  equals 1 for the chosen action and zero otherwise. The 

payoff 𝑣𝑔 of player 𝑖 is calculated using the following quadratic scoring rule 𝑣𝑔 = 𝐴 ― 𝑐

[(𝑦𝑖
𝑔,"𝐼" ― 𝑥𝑗

𝑔,"𝐼")
2 + (𝑦𝑖

𝑔,"𝐼𝐼" ― 𝑥𝑗
𝑔,"𝐼𝐼")

2 + (𝑦𝑖
𝑔,"𝐼𝐼𝐼" ― 𝑥𝑗

𝑔,"𝐼𝐼𝐼")
2], where 𝐴 and 𝑐 are constants (𝐴 =1 

Pound and 𝑐 = 0.5 Pounds). Prior to the experiment, participants were provided with a clear 

explanation of the quadrating scoring rule along with several examples. Expert negotiators were not 

remunerated but voluntarily participated in the experiment as part of a project funded by Intesa 

Sanpaolo Innovation Center S.p.A., aimed at enhancing negotiation skills within the human 

resources of their Business Unit.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4697704

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



10

Figure 3. Graphic representation of how the choice task and belief elicitation were presented to the 

participants in the app. In each trial, the participants had to both select their own action as row player and 

declare the probability (expressed with values from 0 to 100) with which they believed the counterpart (the 

computer) would select each of the three possible columns. Participants were free to indicate the 

probabilities first or select their own action, but they could not proceed to the next trial until they had 

completed all fields (choosing the action and entering beliefs about the three possible actions of the 

counterpart). Once these fields were completed, participants could move on to the next trial by validating 

their selections with the "next game" button.

2.2 The games

In the Assessment and Re-assessment phases (as well as in the three parts of the Training phase), 

we utilized 12 two-person 3x3 one-shot games presented in matrix form, each featuring a unique 

pure strategy Nash equilibrium. These games were categorized into four classes based on their 

structure and complexity: 1-step, 2-step, 3-step, and 4-step. Across each class, we manipulated the 

magnitude and location of payoffs while maintaining constant the structural properties described 

below:

1-step games: In these games, participants possess a "strictly dominant" strategy, ensuring a higher 

payoff than any other strategy (i.e., the "dominated" strategies), regardless of the opponent's 

actions. The optimal solution can be identified through a single step of strategic thinking—

eliminating the dominated strategies—by solely considering their own payoffs, without assessing 

the counterpart's incentives.

2-step games: Here, the opponent holds a "strictly dominant" strategy. The participant must identify 

the opponent's dominant strategy and respond accordingly to its expected action. Solving this type 

of game requires two steps of strategic thinking (or two steps of iterated elimination of dominated 

strategies) and the formation of first-order beliefs regarding the expected action of the counterpart.

3-step games: The solution requires three steps of strategic thinking. Initially, participants must 

recognize that they have a "dominated" strategy, i.e., a strategy paying less than any other available 

strategy, regardless of the opponent's potential actions. Then, they should realize that the opponent 

is aware that the participant will not choose the dominated strategy. This comes from the fact that 

the computer acts as a rational, profit maximizing agent. Therefore, the opponent would choose the 

best action for itself (i.e., the dominant action) between the two remaining actions. Ultimately, 
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participants should predict the agent’s action and respond accordingly, resulting in three steps of 

strategic thinking (and 3 steps of iterative elimination of dominated strategies).

4-step games: The solution requires four steps of strategic thinking. Initially, participants must 

recognize that the counterpart has a "dominated" strategy. Participants should believe that the 

opponent will never select that action and eliminate that possibility from the set of possible actions 

of the counterpart. After eliminating this action, the players have the opportunity to exclude one of 

their own options which is also dominated. At this point, the counterpart, understanding that 

“rational” participants will never choose the now-dominated option, will choose the best action for 

itself (i.e., the dominant action). Ultimately, participants should best respond to this dominant 

action of the counterpart resulting from the iterative elimination of dominated strategies. 

An example of the four game types is illustrated in Figure 4. The comprehensive list of games can 

be found in Section A.1 of the Supplementary Material.

Figure 4. Examples of the four classes of games (1-step, 2-step, 3-step, 4-step). Participants acted as row 

players, while the computer acted as the column player. The equilibrium solution of the game is indicated by 

underlined payoffs. Dominant and dominated strategies are highlighted with green and orange backgrounds, 

respectively. In 1-step games, the participant possesses a strictly dominant strategy (Action III). The column 

player optimizes their payoff by choosing Action iii. For 2-step games, the opponent has a strictly dominant 

strategy (Action iii), and the row player responds optimally by choosing Action III. In 3-step games, three 

steps of iterated elimination of dominated strategies are needed. The row players eliminate their own 

dominated strategy (Action I) and respond optimally (Action III) to the opponent's dominant action (Action 
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ii), derived by excluding the row player's dominated strategy from the set of possible actions. In 4-step games, 

four steps of iterated elimination of dominated strategies are required. The row player eliminates the 

opponent's dominated strategy (Action ii), then eliminates their resulting dominated strategy (Action I). 

Subsequently, the row players respond optimally to the resulting dominant strategy of the counterpart 

(Action III).

3. Results

3.1 Analysis of the Assessment phase

Not all participants completed all three phases of the experiment. Out of the 69 expert negotiators 

who took part in the Assessment phase, 38 completed the entire training phase and participated in 

the Re-assessment phase. Those who did not complete the full training phase were excluded from 

the subsequent Re-assessment phase. Similarly, out of the 200 participants recruited through 

Prolific, 130 completed the entire training phase and participated in the Re-assessment phase, while 

70 were excluded from the Re-assessment phase for either not completing the training phase or 

simply not showing up during this final phase of the experiment (33 of whom belonged to the 

training condition and 37 to the no-training condition).

We first test whether there is a significant difference in the rate of equilibrium choices and in the 

accuracy of beliefs observed in the Assessment phase, between participants who completed all 

phases of the experiment and those excluded from the reassessment phase. If no difference is 

detected, we can pool data for the Assessment phase. We conducted a Wilcoxon rank-sum test for 

both NEN and EN participants, and in both cases, there is no difference between the two groups 

when comparing the proportion of equilibrium responses (EN participants: Wilcoxon rank-sum test, 

W = 559, p-value = 0.72; NEN participants: Wilcoxon rank-sum test, W = 5170, p-value = 0.103) and 

also when comparing the accuracy of the beliefs (EN participants: Wilcoxon rank-sum test, W =718, 

p-value = 0.121; NEN participants: Wilcoxon rank-sum test, W =4353, p-value = 0.61). Based on these 

results, to compare the initial strategic abilities of the two groups (EN and NEN participants) 

measured during the assessment phase, we considered the entire sample of participants. It is 

important to note that the results remain unchanged even when considering only the participants 

who completed all phases of the experiment (see Section A.2.1 of the Supplementary Material). 

Comparing the proportion of choices consistent with the equilibrium and the accuracy of beliefs, 

the results show a significant difference between EN and NEN subjects (Choices: Wilcoxon rank-sum 

test, W = 10036, p-value < 0.001; Beliefs: Wilcoxon rank-sum test, W = 9617, p-value < 0.001). In 
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particular, EN participants more frequently choose the action consistent with the equilibrium (Mean 

EN = 0.45; Mean NEN = 0.31) and have, on average, more accurate beliefs regarding the action the 

counterpart will take (Mean EN = 0.47; Mean NEN = 0.36). 

There are two different hypotheses that can explain these differences. The first is that EN 

participants may have superior computational abilities compared to the NEN participants. The 

second hypothesis is that they analyze the strategic structure of the game more carefully before 

responding. Some insight can be derived from the analysis of the response times of the two groups. 

If EN participants think more carefully about the possible actions of the counterpart, their response 

times should be longer than those of NEN participants. This hypothesis is confirmed by the data 

(Wilcoxon rank-sum test, W = 12211, p-value < 0.001). EN participants take, on average, more than 

twice the time to make their decisions compared to NEN participants (Mean EN = 97650 ms.; Mean 

NEN = 38648 ms.). The average response times are generally quite long, indicating that both groups 

invested effort and attention in the task before making their decisions.

The next question we want to answer is whether the difference between EN and NEN participants 

depends on the strategic complexity of the game type or if it is an independent and generalized 

effect across different strategic environments. Our hypothesis is that the difference between the 

two groups increases with the increasing of the complexity of the strategic environment and the 

number of iterative steps required to identify the optimal response. In this regard, we compare the 

frequency of equilibrium choices between the two groups in the four game types by running a two-

way repeated-measure ANOVA and considering a possible interaction (within-subject factor: Game 

type (1-step, 2-step, 3-step and 4-step); between-subject factor: Group (EN – NEN participants)). 

Results indicates a significant effect of the Game type (F (1, 267) = 42.4, p < 0.001) a significant effect 

of the Group (F (3, 801) = 176.18, p < 0.001) and a significant interaction (Game type* Group (3, 801) 

= 12.86, p < 0.001. Pairwise comparisons show that for participants in the EN group, there is a 

significantly higher proportion of equilibrium choices in step-1 and step-2 games compared to step-3 

and step-4 games (1-step - 3-step: p < 0.001; 1-step - 4-step: p < 0.001; 2-step - 3-step: p < 0.001; 2-

step - 4-step: p < 0.001). On the other hand, for participants in the NEN group, except for step-3 and 

step-4 games, there is a significant decrease in equilibrium responses as the strategic complexity of 

the game increases. The full list of pairwise comparisons is reported in Section A.2.2, SM.

As shown in Figure 5, NEN participants select more often the equilibrium response in simple games 

(1-step) that do not require considering the counterpart's incentives to identify the optimal option. 

However, the opposite is observed when considering more complex games (2-step, 3-step and 4-
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step) that require forming accurate beliefs about the counterpart's behavior to identify the optimal 

strategy. These results can be explained by the fact that NEN participants more frequently use, 

compared to EN participants, a rather common decision heuristic based on selecting the option with 

the highest average payoff (see Polonio et al., 2015). This heuristic ensures the selection of the 

optimal response exclusively in 1-step games. 

The results concerning choices are replicated in the analysis of beliefs, with the only difference being 

that in this case, the interaction is not significant. Indeed, a two-way repeated-measure ANOVA 

using the average accuracy of beliefs about the counterpart's choice as the dependent variable 

shows a significant effect of Game type (F (1, 267) = 158.082, p < 0.001), a significant effect of Group 

(F (3, 801) = 32.01, p < 0.001), and no significant interaction (Game type* Group (3, 801) = 2.138, p 

= 0.094).

As can be inferred from Figure 6, the accuracy of beliefs for both groups is higher for the 2-step 

game class, than for any other game class. These findings are consistent with prior research 

indicating that individuals often attribute simple decision-making strategies to their counterparts. 

They face challenges in acknowledging that counterparts also develop beliefs about their actions, 

striving to respond optimally based on their anticipation of others' behavior. (Costa-Gomes & 

Weizsäcker, 2008; Polonio & Coricelli 2019). In our specific case, 2-step games correspond to 

situations where the counterpart (the computer) has a dominant choice, and participants find it 

relatively straightforward to predict that the counterpart will choose that option. However, 

participants exhibit much less accurate beliefs in 1-step games since, to respond correctly in these 

games, they should anticipate that the counterpart will select the optimal response to their 

dominant option. This requires considering a counterpart that thinks about what they will do in that 

particular game. 

Accurate beliefs in 2-step games paired with non-equilibrium choices (as observed for NEN subjects) 

clearly indicate a general inconsistency between choices and beliefs (i.e., choices are not optimal 

responses to personal beliefs). This outcome is extensively documented in the literature for players 

employing simple decision rules, such as the heuristic of selecting the option with the highest 

average payoff. Specifically, participants employing this simple decision rule tend to attribute the 

same decision strategy to their counterpart, resulting in a choice behavior that is not optimal 

according to their belief statements (Costa-Gomes & Weizsäcker, 2008; Polonio & Coricelli, 2019).

In summary, our findings indicate a consistent distinction between the two groups concerning the 

proportion of optimal choices and the accuracy of beliefs. However, it is important to note that this 
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difference, especially regarding participants' choices, is contingent upon the specific type of game 

under consideration. Moreover, both groups appear far from exhibiting optimal decision-making 

behavior and accurate beliefs in games that require more than one step of reasoning. In these 

games, the rate of optimal choices for both groups falls below 0.6 (EN: step-1 = 0.64; step-2 = 0.53; 

step-3 = 0.31; step-4 = 0.31; NEN: step-1 = 0.70; step-2 = 0.25; step-3 = 0.12; step-4 = 0.14).

In the next paragraph, we will examine whether training with the app has been able to enhance the 

participants' decision-making skills in different types of games and whether there is a difference in 

the level of learning achieved by the two groups of participants (EN and NEN participants).

Figure 5. Proportion of responses consistent with the equilibrium for the two groups of participants (EN and 

NEN participants) in the four types of games (1-step, 2-step, 3-step, 4-step). Data refer to the Assessment 

phase.
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Figure 6. Average proportion of beliefs aligning with the actions of the rational and profit-maximizing 

counterpart for both participant groups (EN and NEN participants) across the four game types (1-step, 2-step, 

3-step, 4-step). The data pertain to the Assessment phase.

3.2 Evidence of learning, choice task

When assessing learning for the two groups, we must consider only those participants who have 

completed all phases of the experiment. Overall, we have 38 EN participants and 130 NEN 

participants. The NEN participants are 63 participants belonging in the control condition who did 

not undergo training with the app (NEN no-training) and 67 participants who underwent training 

(NEN training).

First, we conducted a series of random effects logistic models on choice data to examine the 

presence of a learning effect contingent on the group (EN, NEN training, NEN no-training), 

comparing the Assessment and Re-assessment phases (a summary of the models is reported in 

Section A.2.3, SM). The trial-by-trial equilibrium responses (0: choice inconsistent with Nash 

equilibrium; 1: choice consistent with Nash equilibrium) were used as the binary dependent 

variable, with phase (Assessment; Re-assessment) and game type (1-step, 2-step, 3-step, 4-step) 

and their interactions as independent factors. The intercept was allowed to vary across participants, 

with random effects at the participant level to address intra-subject correlations from repeated 

assessments. Omnibus results for participants in the EN group indicate a significant main effect of 

the phase (χ2(1, N = 38) = 77.45, p < 0.001), a significant main effect of the game type (χ2(3, N= 38) 

= 61.60, p < 0.001) and no interaction (χ2(3, N= 38) = 2.65, p = 0.45). When considering the NEN 

training group, we find a significant main effect of the phase (χ2(1, N = 69) = 67.20, p < 0.001) a 

significant effect of the game type (χ2(3, N = 67) = 257.13, p < 0.001), and a significant interaction 

(χ2(3, N = 69) = 28.75, p < 0.001). The effect of phase is not significant for participants in the NEN 

no-training group (χ2(1, N = 63) = 2.81, p = 0.09), while there is a significant effect of game type 

(χ2(3, N = 63) = 250.44, p < 0.001) and a significant interaction (χ2(3, N = 63) = 18.50, p < 0.001).

Figure 7 provides a clear description of the learning in the four classes of games for the three groups. 
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Figure 7. Proportion of choices consistent with the Nash equilibrium across phases (Assessment, Re-

assessment) and game types for the three groups (EN, NEN training, NEN no-training). The error bars report 

between-subject standard errors of the mean.

Expert negotiators show a significant improvement in all four types of games. In 1-step games, they 

move from an initial average proportion of equilibrium choices of 0.64 to a proportion of 0.82. The 

same proportion is achieved in 2-step games with a 32% increase in equilibrium responses 
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(Assessment = 0.50, Re-assessment = 0.82). The initial proportion of equilibrium choices in 3-step 

and 4-step games does not differ from random choices (Assessment 3-step = 0.32; Assessment 4-

step = 0.33), but after the training phase, they choose the equilibrium action on average almost two-

thirds of the time (Re-assessment 3-step = 0.62; Re-assessment 4-step = 0.60). 

The observed learning for NEN participants is less pronounced than that of EN participants, and it 

occurs less and less as the complexity of the strategic environment increases. NEN participants 

already exhibited a high proportion of equilibrium choices in 1-step games. This is probably due to 

the initial heuristic primarily used by these players, which involves selecting the option with the 

highest average payoff without considering the counterpart's choice behavior (Polonio et al. 2015). 

By construction, this heuristic is always consistent with equilibrium choice in 1-step games and 

never in other types of games. For this reason, in the Assessment phase, both NEN training and NEN 

no-training participants show a relatively high proportion of equilibrium choices in 1-step games 

(0.74 and 0.72, respectively), which persists in the Re-assessment phase for NEN training 

participants (1-step = 0.76). As mentioned before, this heuristic is less effective in the remaining 

types of games, resulting in a consistently low proportion of equilibrium choices in the Assessment 

phase for both NEN training (Assessment 2-step = 0.27; Assessment 3-step = 0.11; Assessment 4-

step = 0.15) and the NEN no-training (Assessment 2-step = 0.25; Assessment 3-step = 0.13; 

Assessment 4-step = 0.16). In the Re-assessment phase, the increase in equilibrium choices for 

participants in the NEN training group is closely linked to the complexity of the game type. They 

achieve a proportion of equilibrium responses of 0.56 in 2-step games, 0.41 in 3-step games, and 

only 0.28 in 4-step games. Participants in the NEN no-training group show an increase in equilibrium 

choices only in 2-step games. This increase can be attributed to practice with the choice task and a 

change in the type of choice heuristic. The increase in equilibrium responses in 2-step games 

(Assessment 2-step = 0.25; Re-assessment 2-step = 0.42) is accompanied by a decrease in 1-step 

games (Assessment 1-step = 0.72; Re-assessment 1-step = 0.63), indicating that these participants 

struggle to adapt their choice strategy to the type of game they face.

3.3 Evidence of learning, belief elicitation task

We expect to replicate the findings from the choice task in the belief elicitation task. To investigate 

this, we employed a mixed-effects linear model analysis for the three participant groups, utilizing 

the proportion of correct beliefs as the dependent variable. The independent variables included 

phase and game type, and we incorporated random effects at the participant level. Our analysis 
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revealed significant main effects of phase (χ2(1, N = 38) = 208.77, p < 0.001) and game type (χ2(3, 

N= 38) = 56.06, p < 0.001), as well as a significant interaction (χ2(3, N= 38) = 19.52, p < 0.001) for 

participants in the EN group. Similarly, participants in the NEN training group exhibited significant 

main effects of phase (χ2(1, N = 69) = 118.97, p < 0.001) and game type (χ2(3, N = 67) = 242.01, p < 

0.001), along with a significant interaction (χ2(3, N = 69) = 18.95, p < 0.001). The NEN no-training 

group also demonstrated significant effects of phase (χ2(1, N = 63) = 6.72, p = 0.009) and game type 

(χ2(3, N = 63) = 297.05, p < 0.001), with a significant interaction (χ2(3, N = 63) = 16.32, p < 0.001). A 

summary of the models is reported in Section A.2.4 (SM).

The results from the belief elicitation task replicate those obtained in the choice task, with the only 

difference being that in this case, a significant increase in the proportion of beliefs consistent with 

Nash equilibrium is observed even for participants in the NEN no-training group. This increase, as 

evident from Figure 8, is of modest magnitude (less than 5%, on average) compared to the increase 

observed for the EN (30% on average) and NEN training (17% on average) conditions and can be 

attributed to repeated practice with the task at hand.
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Figure 8. Mean proportion of beliefs consistent with the Nash equilibrium during the two phases 

(Assessment, Re-assessment) and game types for the three groups (EN, NEN training, NEN no-training). Error 

bars indicate between-subject standard errors of the mean.

3.4 Difference between groups after training
As shown in Figures 7 and 8, the accuracy in choices and beliefs for participants who underwent the 

training phase (EN and NEN training) appears to be substantially higher than that of NEN participants 

who did not (NEN no-training). To validate this observation, we performed a Kruskal-Wallis test, 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4697704

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



21

incorporating the Group (EN, NEN training, and NEN no-training) as a between-subject factor. The 

results show a significant effect both for the proportion of choices at equilibrium (Kruskal-Wallis chi-

squared = 33.66, df = 2, p < 0.001) and for the average proportion of beliefs consistent with 

equilibrium (Kruskal-Wallis chi-squared = 49.39, df = 2, p < 0.001). Pairwise comparisons adjusted 

for multiple testing (Holm method) indicate a significant difference between all groups in terms of 

choices consistent with equilibrium (EN – NEN training: p = 0.001; EN – NEN no-training: p < 0.001; 

NEN training – NEN no-training: p = 0.001) and also in terms of beliefs consistent with the selected 

action of the counterpart (EN – NEN training: p < 0.001; EN – NEN no-training: p < 0.001; NEN 

training – NEN no-training: p = 0.006).

In the next section, we will delve into a detailed characterization of the participants' behavior in the 

three groups. This involves assessing their relative level of strategic thinking using the Cognitive 

Hierarchy (CH) model and examining how it evolves following the app training.

3.5 Learning in the framework of the CH model
To characterize participants’ behavior in the three groups, we computed their relative levels of 

strategic thinking, as estimated by the CH model.1  The CH model assumes a Poisson distribution, 

denoted as f(k), for the frequency distribution of players' hierarchical steps of strategic thinking. 

This distribution is characterized by a single parameter τ, representing both the mean and variance. 

A higher τ indicates a greater level of strategic sophistication within a population (within each group 

in our case). To validate the findings from the previous section, we compared the τ parameter across 

phases and treatments to explore changes in strategic sophistication resulting from the app training. 

Interestingly, during the Assessment phase, participants in the three groups exhibited a uniform 

initial level of strategic sophistication between level-0 and level-1 (EN: τ = 0.45; NEN training: τ = 

0.62; NEN no-training: τ = 0.61). This means that participants struggled to provide an optimal 

response even in simple games where they had a dominant choice. Such a low level of this 

parameter for all three groups underscores the general inability of individuals to exhibit high levels 

of strategic sophistication in complex decision-making environments, as those presented in this 

study. However, the analysis of results related to the re-assessment phase shows a substantial 

1 It is important to note that, since in our experiment the players were aware that the counterpart was an algorithm 
consistently making rational choices aimed at maximizing gains, assuming that the counterpart (i.e., the participant) 
would also always choose rationally with the goal of winning as much as possible, any deviations from equilibrium by 
the participants cannot be explained by assuming that they had different beliefs about the sophistication level of the 
counterpart (i.e. the algorithm). Instead, these deviations can be exclusively attributed to their limitations in strategic 
thinking abilities.
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increase in the level of strategic sophistication for participants who underwent app training. The 

group comprising EN participants reaches a level of strategic sophistication between level-3 and 

level-4 (τ = 3.43), meaning that these players learned, on average, to solve games that require 3 and 

in some cases 4 steps of iterated elimination of dominated strategies to be solved. There is a 

significant increase in the level of strategic sophistication for NEN training participants as well, 

transitioning from an initial τ of 0.62 to a post-training τ of 2.23. They thus attain a level of strategic 

sophistication higher than level-2, enabling them to solve games that require 2 steps of iterated 

elimination of dominated strategies. Participants in the NEN no-training condition, on the other 

hand, do not exhibit any increase in their level of strategic sophistication, moving from a τ of 0.61 

to a τ of 0.59. These results suggest that, although participants in the NEN no-training condition 

improve in terms of the average proportion of equilibrium responses, this increase is likely due to 

the use of more efficient heuristics rather than a genuine enhancement of their strategic 

sophistication.

4. Conclusions
In this study, we examined and compared the strategic sophistication abilities of expert negotiators 

and participants not primarily engaged in negotiation within their professional domains. Following 

an initial phase to assess their level of strategic thinking, participants were provided with targeted 

training aimed at enhancing their strategic skills using a specially designed app. The goal of this 

paper was two-fold: first, testing whether our training app is an effective tool to boost strategic 

sophistication; second, inspecting whether expert negotiators learn to adapt their strategies to new 

strategic settings better than non-experts. 

Our app focused on improving decision-making and belief formation skills related to the expected 

behavior of counterparts in interactive decision-making contexts. Users engaged with a profit 

maximizer algorithm that made optimal decisions in strategically interactive contexts of varying 

complexity. The app, developed to enhance strategic abilities across different competence levels, 

allowed users to learn through feedback on decision outcomes, the accuracy of beliefs about 

counterparts' actions, and observations of counterparts' actual choices. Users could also monitor 

their learning through score analysis and belief accuracy in different gaming sessions. 

The results unveiled an initial inability to respond optimally in games requiring the evaluation of the 

counterpart's incentives and the formation of accurate beliefs about their expected behavior, both 

among expert negotiators and individuals inexperienced in negotiation. However, following 

training, expert negotiators demonstrated a significant increase in strategic abilities, making optimal 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4697704

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



23

decisions and holding accurate beliefs even in highly complex games. Non expert participants also 

exhibited improved strategic skills, although they did not consistently achieve optimal solutions in 

highly complex games. Conversely, the control group (non-experts without app training) showed 

limited improvement.

To further support these results, we estimate the relative levels of strategic thinking of the three 

groups using the Cognitive Hierarchy model. The Cognitive Hierarchy model findings provided 

further evidence that app training significantly enhanced participants' strategic thinking abilities. 

Both EN and NEN training groups exhibited different but significant increases in their levels of 

strategic sophistication. EN participants increased from a τ parameter of 0.45 to 3.43, while NEN 

training participants increased from 0.62 to 2.23. In contrast, the NEN no-training group showed no 

improvement (from 0.61 to 0.59). 

These findings underscore the effectiveness of targeted app training in enhancing general strategic 

decision-making skills, highlighting its potential application in various contexts, including 

negotiation and interactive decision-making environments.

How do we explain a higher learning for expert negotiators? In the study we conducted, participants 

engaged in games with complete information. At the start of the experiment, they received explicit 

information about the counterpart's rationality, the counterpart's beliefs regarding the player's 

rationality, the counterpart's objectives, and the counterpart's beliefs about the player's objectives. 

However, these initial pieces of information proved insufficient to determine a high proportion of 

optimal choices and the formation of accurate beliefs regarding the expected behavior of the 

counterpart, even for expert negotiators. Our findings indicate that both expert negotiators and 

non-experts frequently make suboptimal decisions, even in simple games where they have a 

dominant strategy (36% for EN participants; 27% for NEN participants). This percentage of 

suboptimal choices increases drastically when considering more complex games. Nonetheless, a 

crucial skill for negotiators is to deepen their understanding of their opponents as negotiations 

progress. Negotiators must continually update their beliefs and adjust the probability distribution 

established regarding their opponent's type. This iterative process highlights the ongoing 

refinement of strategic considerations in response to the evolving dynamics of the negotiation. We 

believe that negotiators exploit years of practice (and probably a natural propensity) to adapt fast 

to the new interactive setting. This gives them an advantage on non-experts and explains the 

difference in performance after training.
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In conclusion, our results support the hypothesis that expert negotiators are more adept than other 

individuals in implementing this continuous process of revising the strategic elements of an 

interaction. 

A limitation of this study that is important to mention concerns the absence of indices on the 

cognitive abilities and intelligence of the participants. For this reason, we cannot exclude that the 

two groups may differ in terms of intelligence or in some specific type of cognitive ability. However, 

the estimation of the initial level of sophistication for the two groups, conducted under the 

framework of the CH model, revealed no differences. This suggests that the substantial difference 

observed in the re-assessment phase may be attributed to the unique ability of the negotiator group 

to comprehend and adapt to the feedback received on the observed algorithm's behavior.
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