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ABSTRACT In compression problems, the minimum average codeword length is achieved by Shannon
entropy, and efficient coding schemes such as Arithmetic Coding (AC) achieve optimal compression. In
contrast, when minimizing the exponential average length, Rényi entropy emerges as a compression lower
bound. This paper presents a novel approach that extends and applies the ACmodel to achieve results that are
arbitrarily close to Rényi’s lower bound. While rooted in the theoretical framework assuming independent
and identically distributed symbols, the empirical testing of this generalized AC model on a Wikipedia
dataset with correlated symbols reveals significant performance enhancements over its classical counterpart,
when considering the exponential average. The paper also demonstrates an intriguing equivalence between
minimizing the exponential average and minimizing the likelihood of exceeding a predetermined threshold
in codewords’ length. An extensive experimental comparison between generalized and classical AC unveils
a remarkable reduction, by several orders of magnitude, in the fraction of codewords surpassing the specified
threshold in the Wikipedia dataset.

INDEX TERMS Arithmetic coding, Campbell theorem, large deviations, Rényi entropy.

I. INTRODUCTION
In the realm of (lossless) data compression, the main goal is
to efficiently represent data in a manner that requires reduced
space without compromising its integrity. At the heart of
this challenge lies the encoding strategy, which determines
how individual symbols or sequences of symbols are
transformed into compressed representations. Traditionally,
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approving it for publication was Luca Barletta.

these strategies aim to minimize the average length of the
encoded symbols. By achieving a shorter average encoded
symbol length, one can ensure a more compact representation
of the entire input data and reduce the cost associated to
encoding/decoding, if such cost is linearly related to the
codewords’ length, thereby achieving the central objective
of many data compression problems. However, there are
scenarios in which it could be desirable to consider a different
type of average, namely the exponential average. The utility
of the exponential average in data compression can be
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understood from two distinct fronts. Firstly, when the costs
associated with encoding or decoding amplify, they might
grow exponentially with respect to the codewords’ length.
This leads to a nonlinear relation between compression costs
and codewords’ lengths. A case potentially falling into such
a scenario is DNA coding, where the apparatus involved
in encoding and decoding procedures is very costly [1],
[2]. Minimizing an exponential cost function could then
become essential for effective and efficient data storage.
Secondly, at a more theoretical level, the exponential average
arises naturally when aiming at curtailing the risk of buffer
overflow [3], [4] or bolstering the probability of transmitting
a message in a short time frame. This is a typical situation
in aerospace communication scenarios, where antennas may
be visible for a short fleeting moment, thus necessitating
rapid and reliable transmission of information [5]. In such
scenarios, estimating the likelihood of large deviations (for
these undesired events) involves the cumulant generating
function of the probability distribution, which in turn leads
to the exponential average. Moreover, it has been shown
that minimizing the exponential average, for a certain range
of its parameters, is related to maximizing the chance of
receiving a message in a single snapshot [6]. Therefore this
paper is devoted to studying and designing a coding scheme
that is suited to the case in which its costs are non-linear,
specifically exponential, in the codewords’ length; building
on Campbell’s classical result [7], we show that the proposed
encoding scheme achieves the Rényi entropy, which emerges
as the compression lower bound.

Consider a stationary source generating symbols from an
alphabet 6 = {x1, . . . , xN } of size |6| = N , with probability
p = {p1, . . . , pN }. Then, the ‘‘classical’’ compression
problem consists in finding the encoding strategy whichmaps
each symbol xi ∈ 6 into a D-ary codeword of length ℓD(i)
such that

L(0) =
N∑
i=1

piℓD(i) (1)

is minimized. L(0) is the codewords’ average length, and the
use of such notation will be clarified later.

In his pioneering work [8], Shannon proved that for a
source generating i.i.d. symbols, Eqn. (1) is minimized by
all encoding strategies such that ℓD(i) = − logD pi, for all
i = 1, 2, . . . ,N . However, in most cases, strategies that
guarantee such equality for each symbol do not exist but only
get ‘‘close’’ to it. This leads to the notorious relation

L(0) ≥ H1[p], (2)

where H1[p] = −
∑N

i=1 pi logD pi is the Shannon entropy
of the source, which can be understood as the codewords’
minimum average length. The use of the subscript in H1 will
also be clarified later.

Moreover, Eqn. (1) can be seen as a cost function C ,
because minimizing Eqn. (1) is equivalent to minimizing the

cost of encoding/decodingC(0) ∝ L(0) under the assumption
that such cost is linear in the codewords’ length.

Beyond the conventional focus on the linear average of
codeword lengths, it’s essential to acknowledge that this is
not the only viable metric to target for minimization, as we
briefly mentioned before. Delving deeper into the theoretical
underpinnings of averages, we encounter the Kolmogorov-
Nagumo (KN) averages [9], [10]: a more general family of
averages that offers a richer landscape for exploration. One
might be driven to consider minimizing these KN averages,
recognizing the possibility of uncovering novel compression
strategies and further refining data representation techniques
that are suitable in different scenarios. Following the
introduced notation, the codewords’ KN average length is
defined as

⟨ℓD⟩ϕ = ϕ−1
( N∑

i=1

pi ϕ(ℓD(i))
)

, (3)

where ϕ is a continuous injective function. Note that for
ϕ(x) = x the usual average length (1) is recovered. While,
in general, KN averages depend on ϕ, there is a natural
requirement that an average length measure should satisfy,
that restricts the space of admissible functions [11], [12].
Namely, it should be additive for independent symbols.
In particular, consider two independent sets of symbols
6(1)
= {x1, . . . , xN } and 6(2)

= {y1, . . . , yM }, respectively.
The associated probabilities are p = {p1, . . . , pN } and q =
{q1, . . . , qM }, and each symbol is encoded in a codeword
of length {ℓ(1)D (i)}Ni=1 and {ℓ(2)D (j)}Mj=1. Then, the additivity
requirement is formulated as follows:

ϕ−1
( N∑

i=1

M∑
j=1

piqj ϕ
(
ℓ
(1)
D (i)+ ℓ

(2)
D (j)

))

= ϕ−1
( N∑

i=1

piϕ(ℓ
(1)
D (i))

)
+ ϕ−1

( M∑
j=1

qjϕ(ℓ
(2)
D (j))

)
. (4)

It is possible to prove that Eqn. (4) leads to the so-called
exponential KN averages corresponding to ϕ(x) = ϕt (x) =
γDtx + b, where γ , t and b are real parameters and γ t > 0
(see Sec. III of [12] for a detailed derivation, and [13], [14]
for further discussion). Substituting ϕt into Eqn. (3), one gets
that

⟨ℓD⟩ϕt ≡ L(t) =
1
t
logD

( N∑
i=1

pi Dt ℓD(i)
)

, (5)

where t > −1. L(t) is then the exponential average of the
codewords’ length, independent of both γ and b. Notice that
for t approaching 0, the exponential average converges to
the linear average, i.e. limt→0 L(t) = L(0), which clarifies
the notation we have adopted before. In fact, by applying
L’Hôpital’s rule:

lim
t→0

L(t) = lim
t→0

(lnD)
∑N

i=1 ℓD(i) pi Dt ℓD(i)

(lnD)
∑N

i=1 pi D
t ℓD(i)

= L(0). (6)

VOLUME 12, 2024 77751



A. Somazzi et al.: On Nonlinear Compression Costs: When Shannon Meets Rényi

In his valuable paper [7], Campbell proved that the optimal
encoding lengths that minimize the exponential cost of
Eqn. (5) are

ℓ
(q)
D (i) = − logD

pqi∑N
j=1 p

q
j

, (7)

where q = 1/(1 + t). Moreover, he proved that the lower
bound for the exponential cost is given by the Rényi entropy
of order q = 1/(1+ t) of the source, defined as

Hq[p] =
1

1− q
logD

( N∑
i=1

pqi

)
, (8)

so that

L(t) ≥ H 1
1+t

[p] (9)

where the equality holds iff Eqn. (7) is exactly satisfied.
Note that limq→1Hq[p] = H1[p], i.e. Shannon entropy is a
particular case of Rényi entropy. It follows that for t → 0,
Eqn. (9) reduces to Eqn. (2).

The probability distribution p(q) =
{

pq1∑N
j=1 p

q
j
, . . . ,

pqN∑N
j=1 p

q
j

}
which appears in Eqn. (7) is often referred as escort or zoom-
ing probability distribution of p [15], [16], [17]. The reason
is that, depending on the value of q, it can amplify/suppress
values in the tails of the original distribution p (and,
since it is normalized, suppress/amplify the others). Escort
distributions have been applied and have emerged in various
fields, ranging from non-extensive statistical mechanics [15],
chaotic systems [16] and statistical inference [17]. Another
notable link among the Rényi entropy, the KN exponential
average, and escort distributions comes from an axiomatic
point of view. While Shannon entropy can be derived by
the four Shannon-Khinchin axioms (SK1-SK4) [18], Rényi
entropy is derived by relaxing SK4 (also called additivity
axiom) to a more general version, which involves both the
KN exponential average and the escort distributions [19].
Since Campbell, from the point of view of data com-

pression problems, escort distributions are also the optimal
distributions according to which one has to encode symbols
in order tominimize the exponential average codeword length
L(t). In fact, as we will show in the next sections, depending
on the value of the parameter t , the amplification/suppression
of the codewords’ lengths (with respect to the q = 1 classical
scenario) driven by Eqn. (7) leads to great advantages in the
case of a cost which grows exponentially with such lengths.
However, although Campbell provided the existence of an
optimal encoding length, he did not suggest any operational
strategy to achieve it. Some specific algorithms have been
later proposed [3], [4], [20], [21], and [22] noted that, since
the optimal lengths defined in Eqn. (7) have the same form
of the lengths which minimize the linear average length of
Eqn. (1) if p is replaced by its escort p(q), then it is sufficient to
feed a standard (i.e. ‘‘Shannonian’’) encoder with p(q) instead
of p in order to reach a cost L(t) close to its minimumH 1

1+t
[p].

In this paper, we provide a series of contributions.
i) We lay the mathematical ground to the observations
of the previous papers by applying the above conceptual
framework to one of the most efficacious algorithms in the
realm of data compression: i.e., Arithmetic Coding (AC)
(Sec. II). ii) We experimentally analyze the performance of
the proposed escort distribution-based compressor in the case
of optimizing the exponential average codeword length, over
both synthetic and real datasets. We confirm the theoretical
results on the former (composed by i.i.d. generated symbols)
and achieve surprising results on the latter (composed by
correlated symbols). In particular, we show that on a sample
of Wikipedia text the application of our compressor with
escort probability leads to an improved compression ratio
(when the considered metric is the exponential average code-
word length) with respect to a standard Shannon compressor,
even if the optimal value of q (i.e. the exponent leading to
the escort distribution) is unknown to the encoder (Sec. III).
iii) Finally, we examine analytically and experimentally the
practical case in which its crucial to not exceed a certain
threshold in the codewords’ lengths (such as in the context
of bounded buffers), by showing that the exponential average
naturally appears in the probability of large deviations thus
further justifying the study performed in the present paper.
In particular, we will show that by using our approach it is
possible to significantly reduce the probability that the length
of the codeword assigned to a given sequence of symbols
exceeds a certain threshold with respect to a classic Shannon
compressor (Sec. IV).
For the sake of presentation, Tables 1 and 2 report the

notation and the main formulas discussed in this paper.

II. METHODS
In the ensuing section, we undertake an examination of the
arithmetic coding compression scheme. We commence by
providing a theoretical description of AC and delineating
its operating principles. Following this, we weigh the pros
and cons of AC, offering a balanced viewpoint on its
utility and limitations in various application contexts. Finally,
we advance the discourse by generalizing AC with an aim
to achieve the theoretical limit as predicted by Campbell’s
theorem.

A. ARITHMETIC CODING
Arithmetic coding is a lossless encoding scheme [23].
Compressor and decompressor both need the alphabet of
symbols 6, the associated probability distribution p and the
length of the stream of symbols to encode/decode. Consider a
string s⃗ = (s1, . . . , sM ) of length M , where each sj = xij is a
symbol randomly generated by a source from alphabet6 with
associated probability p. Then, in order to encode s⃗ into a D-
ary alphabet, the encoder performs the procedure illustrated
in Algorithm 1.

Essentially the encoder, starting from the interval [0, 1),
iteratively divides it proportionally to the probabilities in p
and, at each iteration j, chooses the subinterval corresponding
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TABLE 1. Notation table.

TABLE 2. Summary table.

Algorithm 1 Arithmetic Coding
Require: The input string s⃗ = xi1xi2 · · · xiM , the probabilities

p = {p1, . . . , pN } and the cumulative f = {f1, . . . , fN } of
p.

Ensure: A subinterval [a, a+ S) of [0, 1).
1: S0 = 1
2: a0 = 0
3: j = 1
4: while j < M do
5: Sj = Sj−1 · pij
6: aj = aj−1 + Sj−1 · fij
7: j = j+ 1
8: end while
9: return ⟨k ∈ [aM , aM + SM ),M⟩

to the associated symbol sj = xij . After M iterations, the
encoder emits a number k , contained in the final subinterval
[aM , aM + SM ), with SM =

∏M
j=1 pij , which is uniquely

associated with the original string s⃗. Such number k is then
converted into its D-ary representation and communicated
to the decoder (together with the original string length M ),
which can reverse this procedure to get the original string.
It follows that the encoded string’s length ℓD(s⃗) is equal to
the number of symbols (bits if D = 2) necessary to encode k
in the desired alphabet.

From now on, we will consider for simplicity a binary
(D = 2) encoding alphabet. Nonetheless, while our focus is

on the classic binary AC, the results we present are inherently
generalizable to D > 2, ensuring that the core features and
principles of AC we discuss remain applicable and valid to
those other cases too.

It is possible to show that the length of the encoded
number k (i.e. encoded string) depends only on the length
of the final subinterval SM . In particular, by choosing
k = aM + SM/2 and by truncating its binary representation
to the first ⌈log2

2
SM ⌉ bits, the approximation error is so small

that such truncation is guaranteed to fall into the interval
[aM , aM + SM ). Considering that

ℓ2(s⃗) =
⌈
log2

2
SM

⌉
< 2− log2 SM = 2−

M∑
j=1

log2 pij ,

(10)

and that it is possible, for M large enough, to approximate
each pi with the fraction of occurrences of symbol xi in s⃗, i.e
pi ≃ ni(s⃗)/M , one gets that:

ℓ2(s⃗) < 2+M · H0[p]. (11)

Eqn. (11) unveils the main strength of the AC scheme:
the number of bits that are ‘‘wasted’’ in encoding s⃗
is 2, thus resulting intensive with respect to the string
length M (provided that we operate with infinite precision
arithmetic [23]). As M increases, the number of wasted bits
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per character goes to 0, in fact

ℓ2(s⃗)
M

<
2
M
+ H0[p]. (12)

A primary limitation of arithmetic coding (AC) lies in its
operational framework. Unlike certain encoding schemes that
allocate distinct codewords to individual symbols, AC assigns
a codeword to the entire string. This means that the decoding
process cannot commence in tandem with encoding so the
decoder must wait for the encoder’s completion of encoding
the entire string (see e.g. the variant Range Coding for
relaxing this limitation [24]). As the efficiency of AC
generally improves with an increase inM , this waiting period
can be time-consuming, rendering AC unsuitable for some
applications. Conversely, AC boasts superior performance
compared to encoding mechanisms that designate codewords
to each symbol particularly when probability distributions are
highly skewed. Such encoders mandate a minimum of 1 bit
per symbol. However, the optimal length — expressed as
− log2 pi — can be significantly less than 1.

B. GENERALIZED AC
We now propose a generalization of AC in order to optimally
minimize the exponential cost L(t) defined in Eqn. (5).
In analogy with the classical case, we try to execute AC by
dividing each segment according to the escort distribution

p(q), where p(q)i =
pqi∑N
j=1 p

q
j
, in order to reach the optimal

lengths defined in Eqn. (7). We will call this procedure
ACq. Moreover, we will call S(q)

j the length of the segment
generated by ACq at iteration j. The logarithm of the length
of the final segment S(q)

M for a string s⃗ is:

logD S
(q)
M (s⃗) = logD

M∏
j=1

pqij∑N
i=1 p

q
i

=

M∑
j=1

(
logD p

q
ij − logD

N∑
i=1

pqi

)

= q
N∑
i=1

ni(s⃗) logD pi −M logD

N∑
j=1

pqj (13)

where ni(s⃗) counts how many times the symbol xi appears
in the string s⃗. From this result, it is possible to evaluate the
number of bits emitted to encode a particular string in a binary
alphabet (D = 2):

ℓ
(q)
2 (s⃗) =

⌈
log2

2

S(q)
M (s⃗)

⌉
< 2− log2 S

(q)
M (s⃗). (14)

Let’s define now the exponential cost LM (t) of a string of
lengthM composed by independent symbols:

LM (t) =
1
t
log2

∑
s⃗

P(s⃗) 2tℓ2(s⃗), (15)

where P(s⃗) =
∏N

i=1 p
ni(s⃗)
i = SM (s⃗). Given Eqn. 5, it is

LM (t) = M · L(t). Substituting Eqn. (14) in the definition

of LM (t), and considering the optimal parameter value
q = 1/(1+ t), we get that:

LM (t) =
1
t
log2

∑
s⃗

P(s⃗) 2tℓ
((t+1)−1)
2 (s⃗)

<
1
t
log2

∑
s⃗

P(s⃗) 2t(2−log2 S
((t+1)−1)
M (s⃗))

=
1
t
log2

(
22t 2

tM log2
∑

j p
(t+1)−1
ij

·

∑
s⃗

(
P(s⃗)

N∏
i=1

(
pni(s⃗)i

)− t
t+1

))
= 2+

Mt
t + 1

H 1
t+1

[p]+
1
t
log2

∑
s⃗

P(s⃗)1−
t

t+1

= 2+
Mt
t + 1

H 1
t+1

[p]+
M
t + 1

H 1
t+1

[p]

= 2+MH 1
t+1

[p]. (16)

Which reads:

LM (t) < 2+MH 1
t+1

[p], (17)

where Hq[p] = 1
1−q log2

∑N
i=1 p

q
i is the Rényi entropy of

the source for a single symbol. Notice that for independent
symbols the Rényi entropy is additive, i.e. for i.i.d. symbols
Hq[P] = M · Hq[p] holds. So, the compressor ACq leads to
an average cost per symbol which is close to H 1

1+t
[p] as M

increases:

L(t) =
LM (t)
M

<
2
M
+ H 1

1+t
[p]. (18)

It is possible to visualize this result by considering the cost
LM (t, q), in which the parameters t and q are now decoupled:
t is the exponent of the cost function, while q is used in the
ACq procedure. In particular, it reads:

LM (t, q) =
1
t
log2

∑
s⃗

P(s⃗) 2t ℓ
(q)
2 (s⃗). (19)

Here, ℓ(q)2 represents the number of bits emitted by applying
the ACq procedure with the escort distribution of order q
(notice that, if q = 1, then the ACq=1 reduces to the classic
compressor AC).

Figure 1 shows LM (t, q) for different values of q, and for
t = 0.8 and M = 50. In this simple example, N = 3 and
the source probability distribution follows a Zipf’s law, i.e.
pi ∝ i−1. The minimum is reached exactly in the value of q
predicted by Campbell, that we now call qt = 1

1+t . Moreover,
the distance between the minimum of LM (t, q), i.e. LM (t, qt ),
and the orange line (corresponding to M · H 1

1+t
[p]) is very

close to 2, confirming the result of Eqn. (17).

C. A NOTE ON THE SEMI-STATIC APPROACH
An encoding scheme can be static or semi-static, depending
on how the probability distribution of the source is computed
or updated. In the first case, the probability distribution
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FIGURE 1. Exponential average codeword length of strings of length
M = 50, composed by i.i.d. symbols sampled according to pi ∝ i−1,
i ∈ [1, 3]. Here t = 0.8. Its minimum is reached in the proximity of the red
vertical dashed line, corresponding to the optimal q, i.e. qt . For that value
of q, the distance with respect to the Rényi entropy of the string (flat
orange line) is approximately 2.

approximating the source’s one is fixed and never changed
while symbols or strings are generated. In the second case,
instead, the probability distribution is updated each time a
string needs to be encoded, and it is set equal to the frequency
of symbols appearing in that string. The main drawback of
this scheme is the fact that the encoder must send to the
decoder the model approximating the source’s distribution
each time a sequence of symbols is compressed. For example,
in [25], the AMS coding is focused on the second case.

Let’s assume that is possible to reach codewords’ lengths
as expressed in Eqn. (7), for any symbol and any value of
q. Then, by calling r the model representing the source’s
distribution (thus practically used in the algorithm by the
encoder and the decoder), it is possible to rewrite Eqn. (7)
as:

ℓ
(q)
D (s⃗) =

M∑
j=1

(
− logD

rqij∑N
i=1 r

q
i

)

= −

N∑
i=1

ni(s⃗) logD
rqi∑N
i=1 r

q
i

= M · H1[f (s⃗)||r (q)],

(20)

where H1[f || r] = −
∑

i fi logD ri is the cross-entropy
between distributions f and r , and f (s⃗) =

( n1(s⃗)
M , . . . ,

nN (s⃗)
M

)
is the empirical frequency of each symbol in the string s⃗.
We also remind that r (q) is the escort distribution of order q
of the distribution r . So, Eqn. (19) can be rewritten as:

LM (t, q) =
1
t
log2

( ∑
s⃗

P(s⃗) 2t M H1[f (s⃗) || r (q)]
)

. (21)

In a static scheme, r is kept constant and is ideally very
‘‘close’’ to p. Both the theoretical analysis of Campbell [7]
and the results of this paper suppose that r = p. In such
case, the exponential cost is minimized by setting q = qt =
1/(1 + t). On the other hand, in a semi-static scheme, r is

FIGURE 2. Probability distribution of the individual symbols (i.e.,
characters) in the Wikipedia dataset. Symbols have been ordered by
decreasing frequency and assigned a rank. The probability distribution
has been estimated in a frequentist approach as pi = ni /W , with ni
being the number of times that symbol xi appears in Wikipedia.

updated each time a string has to be encoded and set equal to
the empirical frequency of observed symbols, i.e. r = r(s⃗) =
f (s⃗). Then, Eqn. (21) can be rewritten as:

LM (t, q) =
1
t
log2

( ∑
s⃗

P(s⃗) 2t M H1[f (s⃗) || f (q)(s⃗)]
)

. (22)

The exponential cost is then minimized by taking q = 1,
because such choice minimizes each term in the sum due to
the fact that the cross-entropy is minimal when its two input
distributions are equal.

In other words, if r is updated each time a string has to
be encoded, q = 1 remains the best choice. This scheme,
however, has the disadvantage that the encoder must send
the updated r to the decoder each time. On the other hand,
in a static scheme our approach is optimal and q has to be set
according to q = qt = 1/(1+ t).

III. APPLICATION TO WIKIPEDIA
Having delineated the theoretical side of our ACq in the
preceding sections, we now transition to a more empirical
scenario. This section is dedicated to the application of our
outlined procedure to real-world data.

In particular, we applied ACq to Wikipedia data.1 The
dataset used for our analysis contains W ≈ 7 · 108 symbols
from an alphabet 6 of size |6| = N = 27. In order to
perform coding in a static approach as we mentioned earlier,
we computed from the whole dataset the empirical frequency
of the 27 distinct symbols, shown in Fig.2, and then used it to
set the probability distribution p = {p1, . . . , p27}.
Since the theoretical results presented so far are valid for

i.i.d. symbols, we first discuss and apply our procedure in the
case of i.i.d. symbols. After that, we will move to the real
Wikipedia dataset.

To begin with, we generated η = 3.500.000 strings
of length M = 20 composed by i.i.d. symbols sampled

1The dataset FIL9 can be downloaded from
https://fasttext.cc/docs/en/unsupervised-tutorial.html.
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Algorithm 2Wikipedia Data Analysis
Require: data, 6 = (x1, . . . , xN ), p = (p1, . . . , pN )
Ensure: len(data) = M · η
Ensure: qend > 0
1: M ← 20
2: η←

len(data)
M

3: q← 0
4: qidx ← 0
5: while q ≤ qend do
6: n← 0
7: p(q)i ←

pqi∑
j p
q
j
∀xi ∈ 6

8: while n < η do
9: string← data[M · n : M · (n+ 1)− 1]

10: S ← 1
11: for c in string do
12: i∗← i|c = xi
13: S ← S · p(q)i∗
14: end for
15: L[qidx , n]← log2⌈

2
S ⌉

16: n← n+ 1
17: end while
18: q← q+ 0.1
19: qidx ← qidx + 1
20: end while

according to p. We then applied ACq for different and
discretized values of q. For each string we evaluated the
length of the corresponding codeword generated by ACq
algorithm, without actually generating it, as ℓ

(q)
2 (s⃗) =

log2⌈
2

S(q)
M (s⃗)
⌉. Such lengths have been stored in a matrix L,

whose entry Lij is the length of the codeword of the j-th
string, generated with ACqi , where qi is the i-th value of q that
we encode with. Algorithm 2 summarizes this procedure. By
using the matrix L generated by Algorithm 2, it is possible
to evaluate the empirical exponential average length, for
different values of t , as:

LempM (t, qi) =
1
t
log2

(
1
η

η∑
j=1

2tLij
)

. (23)

Figure 3 shows the empirical LempM as a function of q for
three different values of t , with the corresponding Rényi
entropy M · Hqt and the optimal qt = 1/(1 + t). It is clear
that the minimum of LempM (t, q) is reached at q = qt and that
it is very close to the Rényi entropyM · Hqt [p].
Let us now move to analyze the real Wikipedia dataset.

We divided it in η = 35.653.488 strings of length
M = 20. We applied again Algorithm 2, and proceeded
in the same way as we did for the i.i.d. symbols scenario.
Figure 5 reports our results. In particular, we can see that
argminq(L

emp
M (t, q)) < qt and that, for t = 0.2 (top panel),

our ACq can perform better than what Campbell predicted (in
fact, minq L

emp
M (t, q) < M · Hqt [p]). The emergence of such

discrepancies is not surprising, since real English text is not

FIGURE 3. This figure shows, for the synthetic i.i.d. generated symbols,
the empirical exponential average Lemp

M (t, q) for M = 20 (blue line), the
Rényi entropy M · Hqt [p] (horizontal orange line) with qt = 1/(1 + t)
(dotted vertical red line). The three panels show different values of
t ∈ {0.2, 0.8, 1.8}. We can see that, in each case, the minimum of
Lemp

M (t, q) is reached at q = qt , and that Lemp
M (t, qt ) − M · Hqt [p] ≈ 2.

composed by i.i.d. symbols, and thus the hypothesis on which
our theoretical description lies is not satisfied.

But what does it mean, ‘‘physically’’, the fact that, in this
case, the average empirical cost is minimized by considering
a q smaller than qt? Since we are using escort distributions
p(q) of order q as encoding strategy in Eqn. (7), decreasing
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FIGURE 4. Fraction of strings with probability p(s⃗) =
∏M

j=1 pij
< 2x ,

plotted against x , for the Wikipedia strings (blue solid line) and the i.i.d.
generated strings (orange dashed line). Rare strings, i.e. those with a
small p(s⃗) are more abundant in the Wikipedia dataset, as shown by the
fact that for x < −113 the number i.i.d. generated strings with such a
small probability vanishes, while the same is not true for the real
dataset.

the value of q is equivalent to increasing the probability of
the rare strings. This translates into assigning them shorter
codewords, more than it would be done by using q = qt .
In other words, when the real optimal q is smaller than qt ,
this means that ‘‘rare’’ strings are actually more abundant
in the dataset than they would be if they were generated
by a probability distribution calculated as the product of
the probability of i.i.d. symbols. In Figure 4 we show that
this is indeed true. We have counted, for both Wikipedia
and i.i.d. generated strings, the fraction of strings such that
log2 p(s⃗) < x. ‘‘Rare’’ strings, which correspond to a very
small p(s⃗) and largely contribute to the exponential cost,
are actually more abundant in the real dataset: while, for
x < −113, there are no synthetic strings such that log2 p(s⃗) <

x, there are many in the Wikipedia dataset. Moreover,
Figure 6 shows, for different values of t , the real (empirical)
optimal q overlapped to the theoretical qt . For most values
of the exponent t , the empirical best q is in fact smaller
than qt .
Finally, we want to stress that even if English text does

not satisfy the i.i.d. symbols hypothesis on which Campbell’s
theoretical description lies, the use of ACq still outperforms
the standard AC if the average length is exponential, although
the empirical optimal q is not the one predicted by Campbell.
In fact, while the value of q that is actually optimal in the
case real English text can not be known a priori, by using the
one which is optimal for i.i.d. symbols (i.e. qt ) it is possible
to significantly reduce the exponential average length, or the
cost, with respect to the standard case q = 1. This is shown
in Figure 7, where we can see that, even if the true optimal q
is different from qt , by encoding according to qt = 1

1+t there
is a notable exponential average length drop with respect
to the usual q = 1 encoding strategy. Of course, if one
would know the true optimal q the advantage would be even
greater.

FIGURE 5. This figure shows, for the real Wikipedia dataset,, the
empirical exponential average Lemp

M (t, q) for M = 20 (blue line), the Rényi
entropy M · Hqt [p] (horizontal orange line) with qt = 1/(1 + t) (dotted
vertical red line). The three panels show different values of
t ∈ {0.2, 0.8, 1.8}. In all these cases, it is instead evident that the
minimum of Lemp

M (t, q) is reached for q < qt . Additionally, minq Lemp
M (q, t)

could be lower (first panel) or almost exactly reach (second and third
panels) the value M · Hqt [p]. We can also see that encoding according to
ACqt (i.e., see the intersection between the blue line and the dotted line)
can lead to an exponential average length smaller than the Rényi entropy
(first panel), or to an error which greater than 2, i.e.
minq Lemp

M (t, q) − M · Hqt [p] > 2 (second and third panels).

IV. DISCUSSION
In this section, we’ll take a closer look at the core ideas
and findings from our research. We’ll first explore one of
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FIGURE 6. Empirical best q for the Wikipedia dataset (blue line solid line)
and qt (orange dashed line) for different values of t . For almost every
value of t , the empirical optimal q is smaller than qt , meaning that in the
Wikipedia dataset there is an abundance of ‘‘rare’’ strings.

FIGURE 7. Difference Lemp
M (t, q = 1) − Lemp

M (t, q = qt ) for M = 20 as a
function of t , for the Wikipedia dataset. Since, for t big enough, this
quantity is positive (and increasing), if the average to consider is the
exponential one, there is an advantage (which increases with t) in
encoding according to qt instead of q = 1.

the reasons behind the use of the exponential cost in our
study, thus explaining why it’s important and how it fits into
the bigger picture of data compression. After that, we will
provide further analysis of real data, which confirms our
previous findings. Moreover, we will also mention what are
the errors that can come up when our guesses about the
true probability distribution of the source are not accurate,
shedding light on some of the challenges we faced and how
they might be addressed in future studies.

A. A JUSTIFICATION TO THE EXPONENTIAL COST WITH
CRAMÉR’S THEOREM
In this subsection, we provide a simple yet powerful idea
about the usefulness of the exponential average and its
minimization. Such idea relies on the linkage between the
exponential average and the cumulant generating function of
a distribution. As we anticipated in the introduction of this
paper, such application could be useful in scenarios in which
it is imperative to minimize the probability that codewords’
lengths exceed a certain threshold.

Suppose we are interested in encoding strings of fixed
length M , and we do not want the lengths of the correspond-
ing codewords to exceed the threshold A = M · a. With
the usual notation, such problem translates into finding an
encoding strategy xi → ℓD(i) that assigns to each symbol xi
of the alphabet 6 a length ℓD(i) to its codeword, minimizing
the probability of exceeding the threshold:

Prob
[ M∑
j=1

ℓD(ij) ≥ A
]
= Prob

[
1
M

M∑
j=1

ℓD(ij) ≥ a
]
. (24)

Here, the sum runs over the whole string, and ℓD(ij) is the
length of the encoded symbol appearing at the j-th position
of the string to be encoded. Moreover, since the threshold for
the encoded strings is M · a, we can see a as the threshold
per symbol. According to Cramér’s theorem, it is possible to
write the following Chernoff bound:

Prob
[
1
M

M∑
j=1

ℓD(ij) ≥ a
]
≤ e−M

(
ta−µ(t)

)
∀t > 0, (25)

where µ(t) = lnEp[etℓD(i)] is the symbols’ distribution’s
cumulant-generating function and ln is the natural logarithm
(i.e. with base e). Eqn. (25) gives us an important degree of
control on the probability of exceeding the threshold, since,
as we will show, it is possible to control its upper bound, i.e.
the r.h.s. of the equation, by choosing an appropriate encoding
strategy. Of course, we are interested in situations in which
the exponent−M

(
ta−µ(t)

)
is negative, otherwise, we would

get an upper bound of a probability distribution greater than
1, thus totally uninformative. It is possible to rewrite the
exponent of the upper bound as:

−M (ta− µ(t)) = −M
(
ta− log

( ∑
i

pietℓD(i)
))

= −M
(
ta−

t logD(
∑

i piD
tℓD(i) logD e)

t logD e

)
= −M · t(a− L(t logD e)). (26)

SinceM , t and a are positive by definition, we are interested
in finding the strategy minimizing L(t logD e) ∀t > 0.
We know that, for a given value of t ′ = t logD e, the minimum
of L(t ′) is Hqt′ [p], with qt ′ =

1
1+t ′ . Moreover, we know that

such minimum is reached with the strategy pointed out in
Eqn. (7). So, substituting (7) in (26) and rewriting Eqn. (26) as
a function of qt ′ (and, for simplicity, by dropping the subscript
t ′), we get that:

−M (ta− µ(t)) = −M
1− q
q logD e

(a− Hq[p]), (27)

for q = 1/(1+ t logD e). So, it is possible to write Eqn. (25)
as:

Prob
[
1
M

M∑
j=1

ℓD(ij) ≥ a
]
≤e−M

1−q
q logD e (a−Hq[p]) ∀q ∈ (0, 1].

(28)
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Having pointed out that the best strategy consists in setting
the codewords lengths according to Eqn. (7) with q = 1/(1+
t logD e), we have now to determine which is the correct
t > 0 (and, in turn, q) to consider. We expect that such choice
depends on the threshold a. In order to choose the best q,
we will minimize the right-hand side of Eqn. (27). Since we
are assuming it to be negative, this guarantees that the upper
bound in Eqn. (28) is minimized.
Before going into the analytical details of such mini-

mization, we will consider two simple examples which will
provide an intuition on how the encoding strategy is related
to the threshold a. Recall that Hq[p] is a decreasing function
of q, i.e., H0[p] ≥ · · · ≥ H1[p].

1) CASE A > H0[P] = LOGD |6|

In the first case we consider, we assume that the threshold
a is bigger than the Rényi entropy of order 0 of the source
distribution. Since H0[p] = logD |6|, this is equivalent to
assume that the threshold exceeds the Shannon entropy of
a distribution that shares the same support as the original p,
but with entries replaced by 1/|6|, i.e. a uniform distribution.
In this scenario, the term (a− Hq[p]) in Eqn. (27) is positive
and finite ∀q ∈ (0, 1]. The r.h.s. of Eqn. (27) is then
maximized by letting q → 0 (i.e. t → +∞). By writing
a = H0[p]+ ϵ, with ϵ > 0, Eqn. (28) reads:

P
[
1
M

M∑
j=1

ℓD(ij) ≥ H0[p]+ ϵ

]
≤ lim

q→0
e−M

1−q
q logD e ϵ = 0.

(29)

So, the probability of emitting a codeword longer than the
threshold vanishes. This result is trivial: by setting q→ 0, the
encoding strategy is equivalent to the Shannon encoding for
symbols generated with a uniform probability distribution.
In fact, ℓ

(0)
D (i) = − log p(0)i = log |6|, and this holds

for any probability distribution p. In other words, if it
is imperative that the average codeword length does not
exceed H0[p], just encode the sequence as if the symbols are
uniformly distributed, irrespective of their actual probability
distribution.

2) CASE A < H1[P]
In this second case, we are going to consider a threshold
smaller than the Shannon entropy of the underlying proba-
bility distribution p. So, it follows that (a−Hq[p]) is negative
∀q because H0[p] ≥ · · · ≥ H1[p] > a. Then, by setting
a = H1[p]− ϵ, with ϵ > 0, Eqn. (28) reads:

P
[
1
M

M∑
j=1

ℓD(ij) ≥ H1[p]− ϵ

]
≤ e−M

1−q
q logd e

(
H1[p]−ϵ−Hq[p]

)
.

(30)

The exponent−M 1−q
q logd e

(
H1[p]− ϵ−Hq[p]

)
> 0 is positive

∀M ∈ N, and so it does not satisfy our hypothesis of a
negative exponent. As previously mentioned, this means that

the above right-hand side term is greater than 1. For this
reason, it gives no information on the probability of exceeding
the threshold. We can however see that since H1[p] is the
shortest achievable codewords’ (linear) average length, the
latter can be smaller than H1[p] only due to fluctuations in
the observed symbols frequency, which are suppressed in the
large M limit. The best strategy is then letting q = 1, but
still, the threshold will be exceeded almost always ifM is not
unrealistically small.

3) CASE H1[P] ≤ A ≤ H0[P]
Now that we have shown the two extreme cases a > H0[p]
and a < H1[p], let’s focus our attention on the most
interesting case: i.e. H0[p] ≤ a ≤ H1[p]. As previously
mentioned, we are interested in finding the value q = q∗

for which −M 1−q
q logD e

(a − Hq[p]) is minimized. Taking the
derivative, one gets:

d
dq

(
−M

1− q
q logD e

(a− Hq[p])
)

= −
M

logD e

(
1

q(1− q)
DKL[p(q)||p]−

1
q2

(a− Hq[p])
)

,

(31)

whereDKL[p(q)||p] =
∑

i p
(q)
i logD

p(q)i
pi

is theKullback-Leibler
divergence between the escort of p and p itself. The minimum
is then found by setting the derivative to zero, leading to the
condition:

a− Hq∗ [p] =
q∗

1− q∗
DKL[p(q

∗)
||p]

=
q∗

1− q∗

|6|∑
i=1

p(q
∗)

i logD
p(q
∗)

i

pi

=
q∗

1− q∗

[ |6|∑
i=1

(
pq
∗

i∑|6|
j=1 p

q∗
j

logD p
q∗−1
i

)

−

|6|∑
i=1

(
pq
∗

i∑|6|
j=1 p

q∗
j

logD

|6|∑
j=1

pq
∗

j

)]

= q∗(H1[p(q
∗)
||p]− Hq∗ [p]). (32)

Moreover, it is useful to write the Shannon entropy of the
escort p(q):

H1[p(q)] = −
|6|∑
i=1

pqi∑|6|
j=1 p

q
j

logD
pqi∑|6|
j=1 p

q
j

= qH1[p(q)||p]+ (1− q)Hq[p] (33)

By plugging Eqn. (33) into Eqn. (32), one gets that the value
q∗ which sets the derivative to 0 (i.e. minimizes the upper
bound in the r.h.s. of Eqn. (28)) satisfies:

H1[p(q
∗)] = a. (34)
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This equation relates the threshold a to the encoding strategy
driven by pq

∗

. In particular, such relation unveils that,
if a ∈ [H1[p],H0[p]], the optimal encoding strategy is the
one that takes q = q∗ by solving Eqn. (34), and then
uses that q∗ into the escort distribution of Eqn. (7). This
means that even if setting q = 1 guarantees the smallest
linear average, such a choice would lead to larger fluctuations
in the codewords’ length, and thus to a larger probability
of exceeding the threshold a. Instead, by setting q = q∗,
these fluctuations are reduced and, in turn, the probability
of exceeding the threshold a in the codewords’ length is
significantly decreased.

Summarizing our contributions in this section, we note that
we have justified the use of the exponential average by the
necessity of not exceeding a certain threshold in the length
of the encoded string. In particular, given the value of the
threshold a as an input, the procedure has three steps:
1) Estimate the probability distribution p of the input

symbols.
2) Find q∗ by solving Eq. (34).
3) Encode the input data with ACq∗ .

Such procedure guarantees that, if a > H1[p], it is possible
to reduce the number of codewords exceeding the threshold
with the use of the described ACq model, which reaches the
Rényi entropy bound with an error of at most 2 bits.

In the following paragraph, we will show a couple of
examples over real and simulated data on how to infer the
proper q∗, and how much this choice impacts the fraction of
strings exceeding the threshold.

B. EXAMPLE
Throughout this section, we will apply our procedure to both
the usual Wikipedia dataset and simulated strings composed
by i.i.d. symbols. We will generate the latter according to the
probability p = (p1, . . . , p27) extracted from the Wikipedia
dataset (see Figure 2 for a visual reference). In order to
understand which is the range of interest for the threshold
a, we have evaluated that H0[p] ≈ 4.75 and H1[p] ≈
4.12. For this reason, we will consider a threshold a ∈
[4.12, 4.75]. Figure 8 shows both the value q∗ for different
values of a, evaluated as the solution of Eqn. (34), and
the corresponding upper bound (UB) of the probability of
exceeding the threshold, evaluated as:

UB = e
(
−M 1−q∗

q∗ logD e (a−Hq∗ [p])
)
, (35)

where we set M = 20. For a ≤ H1[p], the upper bound UB
is equal to 1, thus it gives no information on the probability
of exceeding the threshold. Instead, when a increases, UB
gets smaller until, for a ≥ H0[p], it reaches 0 (and so
does q∗), meaning that if the threshold is bigger than H0[p],
by encoding with escort distribution of order 0 it becomes
impossible to exceed the threshold. This agrees with our
previous analysis.

So, we expect that, by applying ACq∗ to both Wikipedia
and simulated data, the fraction of strings that exceed the

FIGURE 8. Dashed orange line: q∗ as solution of Eqn. (34). Solid blue line:
upper bound of the probability of exceeding the threshold. Black dotted
vertical lines: H1[p] and H0[p]. As the threshold a increases, the
probability of exceeding it decreases until it reaches 0 for a = H0[p].

threshold M · a is smaller than the one obtained by using
the classic arithmetic coder, i.e. AC1. Figure 9 shows,
as a function of a, the fraction of strings of length M =

20 exceeding the threshold M · a when ACq∗ and AC1 are
applied, over Wikipedia and simulated data (i.i.d. symbols).
It can be noted that, by generalizing the encoding procedure,
the number of codewords exceeding the threshold can be
decreased significantly, especially for ‘‘large’’ a. Such a drop
is more pronounced in the case of the Wikipedia data. The
reason is that, since there is an abundance of ‘‘rare’’ strings in
the real data (as we already discussed), the encoding strategy
with escort distribution, which penalizes frequent symbols in
favor of rare ones, is more efficient than it is for truly i.i.d.
symbols.

Moreover, we also want to explain the presence of the
spike, followed by a short plateau, in the fraction of strings
exceeding the threshold shown in the bottom panel of
Figure 9, occurring for a ≳ H0[p]. It is caused by the intrinsic
2-bits error of ACq∗ procedure (see Eqn. (17)). In fact, if a =
H0[p] ≈ 4.75, then M · a ≈ 95. If we could exactly
reach the desired symbols’ length of Eqn. (7) with q∗ = 0,
we would never exceed the threshold. But ACq∗ carries an
intrinsic error: the encoded strings’ lengths are all 97 bits,
in accordance with the predicted ACq∗ error. The fraction of
strings exceeding the threshold is then 1 until a becomes such
thatM ·a = 97, i.e. a = 4.85. After such value, the exceeding
fraction drops to 0. In other words, when the threshold is close
to H0[p], even the very small error of the Arithmetic Coding
procedure can lead to exceed it. Despite that, the ensemble of
such cases is very small with respect to all the possibilities:
for every a ∈ (4.12, 4.75) the ACq∗ procedure performs better
than the usual AC1, both for real (correlated) symbols and
simulated (independent) ones.

C. A NOTE ON THE ESTIMATION OF THE SOURCE
PROBABILITY DISTRIBUTION
So far, we have considered that the probability p of the source
generating i.i.d. symbols is known to the encoder. In reality,
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FIGURE 9. Fraction of strings exceeding the threshold for Wikipedia data
(top panel) and for the simulated i.i.d. symbols (bottom panel). The
orange dashed line is obtained with the classic arithmetic coder AC1,
while the solid blue line with ACq∗ . In the second panel, the spike before
the plateau comes from the fact that an error 2/M = 2/20 = 0.1 is
intrinsically made by the ACq procedure. In particular, recalling that for
a ≥ H0[p] we have that q∗ = 0 (i.e. all the strings are encoded as if the
source distribution is uniform), the plateau occurs when a ≥ H0[p] and
persists as long as a < H0[p] + 2/M. In such range of values, where
ideally we would like to encode as if the source distribution is uniform,
the error carried by ACq is enough to make all the encoded strings exceed
the threshold, which is very close to the Shannon entropy H0[p]. Instead,
when a > H0[p] + 2/M, the threshold is less stringent and the ACq error
does not make the codewords exceed a.

this could not be the case and a measure of error is needed if
the probability r = {r1, . . . , rN } is used to encode symbols
generated by the probability p. In the classical case, this
is a well known problem. Assuming that it is possible to
achieve the best encoding length which minimize the average
length L(0), i.e. ℓD(i) = − log pi, then if the probability r is
practically used to encode symbols generated according to p,
the average codewords length is simply given by

H1[p||r] = −
N∑
i=1

pi logD ri. (36)

H1[p||r] is called cross-entropy. From this, it is possible
to define the number of bits that are wasted by encoding
according to r as the difference between the cross-entropy
(i.e. the actual average length) and the Shannon entropy
(i.e. the lowest possible average length), thus getting the

FIGURE 10. Error ERq[p||r ] for two instances of p and r : pi ∝ i−1 and
ri ∝ i−2. The horizontal dashed black line corresponds to DKL[p||r ],
which corresponds to ER1[p||r ].

Kullback-Leibler divergence:

DKL[p||r] = H1[p||r]− H1[p] =
N∑
i=1

pi log
pi
ri

. (37)

Following the same path, we would like to provide a measure
in the case of an exponential average. While Rényi himself
defined a generalized DKL [26], further analyzed in [27]
and [28], and different definitions of a generalized cross-
entropy exist [29], we would like to define such quantities
in the framework of data compression. In particular, the
exponential average codeword length when r is used to
perform the compression is given by:

Hq[p||r] =
1
t
logD

N∑
i=1

piD−t logD(r
(q)
i )

=
q

1− q
logD

N∑
i=1

pir
q−1
i + (1− q)Hq[r],

(38)

where r (q) is the escort distribution of r , q = 1/(1 + t)
and Hq[r] is the Rényi entropy of the distribution r . From
this definition, it is possible to write a function for the error
of encoding with distribution r instead of the true p, as the
difference between the actual exponential average length
Hq[p||r], and the lowest possible exponential average length
Hq[p], that would be obtained by the exact guessing of p, i.e.
with r = p:

ERq[p||r] = Hq[p||r]− Hq[p]

=
q

1− q
logD

N∑
i=1

pir
q−1
i

+ (1− q)Hq[r]− Hq[p]. (39)

It is easy to see that ERq[p||p] = 0 ∀q > 0 and that
limq→1 ERq[p||r] = DKL[p||r]. Figure 10 shows the error
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function for varying q, with given p and r such that pi ∝ i−1

and ri ∝ i−2.
To our knowledge, despite the different definitions of

generalized divergences and cross-entropies in the literature,
the quantity ERq has not been defined. Yet, it has a direct
interpretation and provides a measure of how a wrong
estimate of the probability p propagates on the exponential
average codeword length L(t).

V. CONCLUSION
In this article, we have provided an operational scheme
to encode sequences of symbols in order to minimize the
exponential average codeword length. Our algorithm leads to
an exponential average length per symbol that is arbitrarily
close to the Rényi entropy of the source distribution.
Moreover, we have detailed a possible application of the
exponential average, based on its connection with the
cumulant generating function of the source’s probability
distribution. Namely, if the encoder’s priority is to minimize
the risk of exceeding a certain codewords’ threshold length,
minimizing the exponential average is a better solution than
minimizing the linear average. Even if all our theoretical
considerations are based on the hypothesis that the symbols
are i.i.d. distributed and that the encoder knows the true
source distribution p, we have both shown empirically that
ACq is advantageous also in the presence of correlations and
provided a measure of the error when the encoder guesses the
incorrect source distribution.

Our study offers promising insights into nonlinear data
compression that may inspire some future research activities.
First of all, we notice that all our theoretical results and
experimental achievements could benefit from the use of
more recent statistical compressors (i.e., ANS [25]) in place
of AC, whose simplicity has been exploited in this paper just
for clarity of explanation. Moreover, it would be interesting
to generalize our approach to lossy compression techniques,
extending it to multimedia files such as images and videos.
We also foresee further applications of our study on nonlinear
compression techniques to meet the evolving demands of
modern data processing and communication systems. Finally,
on the technical side, it would be interesting to explain
quantitatively the phenomenon, highlighted in Section III,
about how correlations among input symbols lead to an
optimal q different from qt ; and evaluate the expected error
of guessing the source distribution given a certain (‘‘small’’)
training dataset.
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