
A multi phase-field fracture model for long fiber reinforced composites
based on the Puck theory of failure

A. Deana,b,∗, P.K. Asur Vijaya Kumarc, J. Reinosob, C. Gerendta, M. Paggic, E. Mahdid, R. Rolfesa

aInstitute of Structural Analysis. Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany
bElasticity and Strength of Materials Group, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos

s/n, 41092, Seville, Spain
cIMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100, Lucca, Italy

dDepartment of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha,
Qatar

Abstract

Phase-Field (PF) methods of fracture have emerged as powerful modeling tools for triggering fracture
events in solids. These numerical techniques efficiently alleviate mesh dependent pathologies and are very
suitable for characterizing brittle as well as quasi-brittle fracture in a wide range of engineering materials
and structures including fiber reinforced composites. In this work, a multi phase-field model relying on the
Puck’s failure theory is proposed for triggering intra-laminar cracking in long fiber reinforced composites.
The current formulation encompasses the differentiation of fiber and inter-fiber (matrix-dominated) failure
phenomena via the consideration of two independent phase-field damage-like variables, and the corresponding
evolution equations and length scales. Moreover, for matrix-dominated deformation states, the present
formulations endow the incorporation of plastic effects via an invariant-based plasticity model. Special
attention is also devoted to its finite element implementation, which is conducted using the user-defined
capabilities UMAT and UEL of ABAQUS, in conjunction with the thorough assessment of its thermodynamic
consistency. Several representative applications pinpoint the applicability of the proposed computational
tool.

Keywords: A. Fiber Reinforced Composites; B. Fracture Mechanics; C. Finite Element Method (FEM);
D. Phase-Field Modeling

1. Introduction

The comprehensive understanding of fracture events in fiber reinforced composites (generally encom-
passing glass and carbon reinforced polymeric composites, GFRP and CFRP, respectively) is a matter of
significant importance in many practical applications, with a strong interest in aerospace and aeronautical
industries, widening their applicability to other production sectors. However, under in-service conditions,
cracking events generally lead to a drastic reduction of the load-bearing capacity of structural components
and the posterior achievement of the corresponding collapsing point.

The complexity of potential failure mechanisms from different signatures in long fiber reinforced com-
posites, i.e. inter-laminar (delamination and decohesion) and intra-laminar (fiber/matrix breakage, fiber
kinking, etc), has promoted the development of a range of different predictive models, especially within
the context of the Finite Element Method (FEM). In this setting, cohesive-like models have been proven
to be an efficient modeling tool for the reliable prediction of delamination events in composite materials
and structures at different scales [1, 2, 3, 4, 5, 6]. Focusing on intra-laminar failure, many of the previous
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works have exploited the adoption of Continuum Damage Mechanics (CDM)-based formulations in order
to account for the distinction between fiber- and matrix-dominated failures relying on the consideration of
different internal-like damage variables [7, 8, 9, 10, 11, 12, 13], which can be also applicable to non-local
formulations.

In the last decade, the landmark investigation by Francfort and Marigo [14] and its subsequent develop-
ments by Bourdin et al. [15, 16], which is denominated as the phase-field approach of fracture, has emerged
as a powerful strategy for modeling fracture phenomena in solids and structures via the exploitation and
revitalization of the Griffith fracture approach [17, 18, 19]. Phase-Field (PF) methods are characterized by
a diffusive crack representation with the prevention of any ad-hoc crack propagation criterion and preclud-
ing the implementation of complex crack tracking algorithms [20]. PF models have been validated against
theoretical and experimental results [21, 22]. Moreover, the exploitation of these appealing attributes has
led to the successful application of PF methods to ductile fracture [18, 23, 24], fatigue, hydrogen-assisted
crack failure [25], functionally graded materials, in combination with interface-like crack methods [26, 27],
among many other applications.

Within the context of cracking in anisotropic solids, several attempts have been developed so far, see the
use of tensor-based anisotropic formulations in anisotropic solids proposed in [28]. Further developments
have also concerned the inclusion of anisotropic surface energy which enables capturing complex crack
kinking phenomena [29]. One of the most prominent aspects of the intensive development of the PF method
in the last decade regarded its modular format which can be applied to non-standard solids regardless
of their inherent mechanical response [30, 31], which can also encompass anisotropic elasto-plastic effects
[32, 33, 34, 35, 36].

Focusing on modeling failure events in composite materials via PF methods, several approaches have been
proposed so far. In this concern, Dal et al. [37, 38], Reinoso et al. [39, 40], Alessi and Freddi [41] and Bleyer
and Alessi [42] pinpointed the applicability of PF crack methods to predict damage and failure of composite
laminates. Particularly, Bleyer and Alessi [42] derived a multi-field PF formulation that endowed the separate
effect of fiber and matrix failure to sing two independent damage-like variables. This pioneering contribution
was subsequently revised in [40] via the introduction of a simple phase-field variable with the identification
of the most prominent failure mechanisms at the material point level, which is also combined with cohesive-
like crack methods in [43, 44]. Notwithstanding, there exists an increasing interest in the development
of numerical predictive tools based on the PF method which allows the efficient use of phenomenological
failure theories for fiber reinforced composites [13]. Recalling these arguments, the present work concerns
with the development of a new PF model for long fiber reinforced composites via the exploitation of the
Puck’s failure theory [45]. Following the developments presented in [40] and [42], the current investigation
introduces the consideration of two independent phase-field crack variables for the distinction between fiber-
and matrix-dominated failures. Moreover, the formulation herein proposed endows the definition of two
independent length scales for each phase-field variable which can be related with Puck initiation strengths.
Finally, non-linear behaviour in shear-dominated response is accounted through elastic–plastic relationships
between stress and strain at ply level using an anisotropic invariant-based formulation [34, 46, 47, 48, 49].

The article is organized as follows. The modeling framework is presented in Section 2, and the corre-
sponding variational formulations are outlined in Section 3. Section 4 presents the main aspects for the FE
implementation. Subsequently, the model is examined via different representative applications in Section 5.
Conclusions of the present investigation are drawn in Section 6.

The article is organized as follows. The modeling framework is presented in Section 2, and the corre-
sponding variational formulations are outlined in Section 3. Section 4 presents the main aspects for the FE
implementation. Subsequently, the model is examined via different representative applications in Section 5.
Conclusions of the present investigation are drawn in Section 6.

2. Multi phase-field formulation based on the Puck failure theory

In this section, we introduce the fundamental aspects of the current multi phase-field formulation for
modeling fracture events in long fiber reinforced composite materials. As stated above, the principal aim
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is the construction of a numerical formulation encompassing crack propagation in continuum anisotropic
media originated from different physical failure mechanisms.

The current formulation can be derived directly from thermodynamic considerations as proposed in [17],
which can be consistently equipped with the variational formalism in the spirit of the phase-field approach of
fracture. In this regard, we first formulate the particular form of total energy density W per unit volume for
anisotropic solids accounting for different failure mechanisms (Section 2.1). Subsequently, the constitutive
choices are addressed in Sections 2.2 and 2.3.

2.1. Postulation of the total internal energy density

Restricting our analysis to infinitesimal strains, the point of departure of the current formulation relies on
the consideration of an arbitrary body with B ∈ Rndim ( ndim is the dimension of the analysis). The delimiting
boundary of B is denoted by ∂B ∈ Rndim−1. Throughout the deformation process, the body experiences
a displacement field identified by the vector field u : B → Rndim at the material point level, hence the
infinitesimal strain tensor is defined as follows: ε := ∇su with ε : B → Rndim×ndim . Prescribed displacement
conditions are given by u = u on ∂Bu, whereas prescribed tractions conditions on the corresponding portion
of the boundary are denoted as t = σ ·n on ∂Bt with σ identifying the Cauchy stress tensor. Kinematic and
static boundary conditions satisfy the standard requirements: ∂Bt ∪ ∂Bu = ∂B and ∂Bt ∩ ∂Bu = ∅, where n
is the external outer normal vector to the body.

In classical continuum damage mechanics (CDM), the total internal energy density is a state function
of the deformation tensor ε and the internal damage-like variable d [50]. This basic formulation can be
extended to account for non-local effects via the incorporation of the material gradient of d, i.e. ∇d which
allows the circumvention of the ill-posed character of the corresponding Initial Boundary Value Problem
(IBVP) upon softening behavior. The consistent generalization of this isotropic damage formulation to
account for different failure mechanisms can be postulated by means of recalling an additive decomposition
scheme of the total energy density W per unit volume, so that it becomes a state function of: (i) the
strain field, (ii) the n scalar damage variables di (with i = 1, . . . , n), and (iii) their respective gradients
∇di. Based on this decomposition scheme, each individual damage variable is associated with a particular
physical failure mechanism and whose evolution is assumed to be confined between 0 (intact state) and
1 (fully broken state). Moreover, as an additional argument of the current formulation, we postulate the
evolution of plastic deformation in order to accurately predict the material non-linear behavior under a
matrix-dominated response.

With the previous ingredients at hand and advocating the decomposition of the Helmholtz free-energy
function proposed by Wagner and Balzani [51], which was successfully exploited in [13] for Puck-based
damage model, we assume that the total energy density W per unit volume for anisotropic materials can be
expressed as follows:

W (ε, εp, ŵp, di,∇di,A) = WFF (ε, dFF ,∇dFF ,A) +WIFF (ε, εp, ŵp, dIFF ,∇dIFF ,A), (1)

where WFF (ε, dFF ,∇dFF ,A) and WIFF (ε, εp, ŵp, dIFF ,∇dIFF ,A) correspond to the counterparts asso-
ciated with the fiber and the inter-fiber failure, respectively, as addressed in Section 2.2. In the previous
expression A identifies a second-order anisotropic tensor which renders: Â = 1 + α̂A. In this expression,
1 denotes the second order identity; α̂ stands for a parameter that weights the material direction a, and
A = a⊗ a.

Note that in the scheme herein proposed, the dissipated energy results from the contribution of each
individual failure mechanism which only affects their corresponding counterparts of the elasticity tensor.
Therefore, in contrast to Bleyer and Alessi [42], the current constitutive formulation completely precludes
the coupling between the different damage variables.

In the forthcoming developments, the total effective Helmholtz free energy function Ψ̂ renders:

Ψ̂(εe,A) =
1

2
εe : Ce : εe, (2)
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where Ce is the elastic constitutive tensor:

Ce := ∂εeεeΨ̂ = λ1⊗ 1 + 2µT I + α(1⊗A + A⊗ 1) + 2(µL − µT )IA + βA⊗A, (3)

where I stands for the fourth-order identity matrix; IA = AimIjmkl +AjmImikl, and λ, α, β, µT and µL are
to the elastic constants:

λ = E22 (ν23 + ν31ν13) /D, (4)

α = E22 [ν31 (1 + ν32 − ν13)− ν32] /D, (5)

β = E11 (1− ν32ν23) /D − E22 [1− ν21 (ν12 + 2(1 + ν23))] /D − 4G12, (6)

µL = G12 and µT = G23, (7)

with:
D = 1− ν232 − 2ν13ν31 − 2ν32ν13ν31. (8)

Note that usually, 1-direction corresponds to the fiber orientation, 2-direction is transverse in-plane orien-
tation with respect to the fiber direction, and 3-direction stands for transverse out-of-plane orientation.

The specialization of the composing terms of W (ε, εp, ŵp, di,∇di,A) can be established as follows. Start-
ing the derivation with the fiber failure contribution, the corresponding counterpart is given by:

WFF (ε, dFF ,∇dFF ,A) = (1− dFF )2Ψ̂e
FF (ε,A) +Wfr,FF (dFF ,∇dFF ), (9)

with Ψ̂e
FF identifying the elastic contribution associated with the fiber contribution with: Ψe

FF = 1
2ε : CeFF :

ε, where:

CeFF =


Ce11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (10)

and Wfr,FF (dFF ,∇dFF ) stands for the inelastic fracture energy due to the fiber breakage, which adopts the
form:

Wfr,FF (dFF ,∇dFF ) = Gc,FF [γ(dFF ,∇dFF )] = Gc,FF
[

1

2lFF
d2FF +

lFF
2
|∇dFF |2

]
. (11)

In the previous expression, Gc,FF identifies as the fracture energy associated with the fiber failure;
γ(dFF ,∇dFF ) is the crack density functional of this failure mechanism, and lFF is the characteristic length
scale in the phase-field approach of fracture associated with fiber failure. According to [22], the length scale
parameter can be related to the apparent material strength as follows:

lFF =
27

256

E11Gc,FF
σ2
s,FF

, (12)

where σs,FF is the material strength associated with fiber failure.
Similarly, the inter-fiber failure contribution (also accounting for the plastic deformation) can be ex-

pressed as:

WIFF (ε, εp, ŵp, dIFF ,∇dIFF ,A) = (1−dIFF )2Ψ̂e
IFF (ε−εp,A)+Ψp(ŵp, dIFF ,A)+Wfr,IFF (dIFF ,∇dIFF ),

(13)
where,

• Ψ̂e
IFF is the elastic-contribution associated with the matrix response: Ψ̂e

IFF = 1
2ε
e : CeIFF : εe, and:
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CeIFF =


0 Ce12 Ce13 0 0 0

Ce21 Ce22 Ce23 0 0 0
Ce31 Ce32 Ce33 0 0 0
0 0 0 Ce44 0 0
0 0 0 0 Ce55 0
0 0 0 0 0 Ce66

 . (14)

• Ψp(ŵp, dIFF ,A) stands for energy contribution associated with plastic deformation, whose particular
expression is given by:

Ψp(ŵp, dIFF ,A) = (1− dIFF )2ŵp(εp,A) with ŵp =

∫ t

0

φ̂(ε̇p,A) dt′, (15)

with φ̂(ε̇p,A) is the effective plastic dissipation potential as a function of the temporal derivative of the
plastic deformation for the elapsed time t throughout the deformation process. Moreover, note that without
any loss of generality, we adopt the same degradation function for the elastic and plastic contributions in
the part of the energy associated with inter-fiber failure.

• Finally, Wfr,IFF (dIFF ,∇dIFF ) is the dissipated energy due to matrix failure, and whose particular
form is given by:

Wfr,IFF (dIFF ,∇dIFF ) = Gc,IFF [γ(dIFF ,∇dIFF )] = Gc,IFF
[

1

2lIFF
d2IFF +

lIFF
2
|∇dIFF |2

]
. (16)

where Gc,IFF is the fracture energy corresponding to matrix failure, and lIFF is the corresponding length
scale. Similarly, the length scale parameter is estimated as:

lIFF =
27

256

E22Gc,IFF
σ2
s,IFF

, (17)

where σs,IFF is the material strength associated with inter-fiber failure, i.e. matrix cracking.
Note that with the previous definitions at hand, the damaged constitutive stiffness reads:

C(dFF , dIFF ) = (1− dFF )2CeFF + (1− dIFF )2CeIFF , (18)

C(dFF , dIFF ) =


P1Ce11 P2Ce12 P2Ce13 0 0 0
P2Ce21 P2Ce22 P2Ce23 0 0 0
P2Ce31 P2Ce32 P2Ce33 0 0 0

0 0 0 P12Ce44 0 0
0 0 0 0 P12Ce55 0
0 0 0 0 0 P2Ce66

 , (19)

where P1 = (1− dFF )2, P2 = (1− dIFF )2, and P12 = min (P1,P2).
As final comments, it is worth to remark that: (i) the current damage-based evolutions for fiber and

inter-fiber failures recall the quadratic dissipation function within the context of the phase-field approach
of fracture. Further extensions of the proposed formulation can be made using the so-called PF-CZM for
homogeneous media proposed by Wu and co-authors [52], which is a matter beyond the scope of the present
investigation. (ii) The current formulation is equipped with two different length scales, lFF and lIFF , which
are associated with different intra-laminar failure mechanisms and are linked with the respective fracture
energies Gc,FF and Gc,IFF . Moreover, such length scales are recalled as numerical regularizing parameters
since the damage initiation is triggered upon the evaluation of the Puck failure criteria (Section 2.2).
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2.2. Phenomenological failure criterion: fundamentals of the Puck failure theory

The condition of damage evolution at the material point level relies on the assessment of the Puck failure
criteria [53, 45], which distinguish between two main failure mechanisms: (i) fiber failure and (ii) inter-fiber
failure (matrix-dominated cracking). The ply coordinates are expressed in the local setting 0− e1− e2− e3,
see Figure 1.a. As customary, the fiber direction corresponds to the symbol ‖ (subscript 1), whilst the
directions transverse to the fiber direction in-plane (subscript 2) and out-of-plane (subscript 3) are denoted
by the symbol ⊥.

FExposure 

Factor

Failure Exposure Factor

Mode B

Mode BMode C

a b

50°

47°

42° 36° 24° 0°

e1

e3

e2

54°

Figure 1: Puck failure theory: (a) action plane concept and the definition of acting stresses (stressing) on the fracture plane
whose angle is denoted by Θfp and (b) visualization of the exposure factor fE and the exposure factor at the failure point
fE,fr [53].

According to Puck’s theory, fiber failure is attained through the violation of the corresponding failure
criterion in tension and compressions.

In this setting, for each of the identified failure mechanisms, fracture can be triggered by the evaluation
of the corresponding failure exposure factors (material efforts) that relate the length of a pseudo vector $
and that corresponding to the fracture vector $fr, i.e. fE = |$| / |$fr|, see [53]. Therefore, failure is
initiated when the exposure factor fE reaches 1, whereas subsequent failure progression relies on energetic
considerations inline with standard PF methods of fracture.

The exposure factor for fiber failure under tensile stress conditions, which is denoted by the subscript
FF+, is given by:

fE,FF+ =
1

Rt‖

[
σ̄11 −

(
ν⊥‖ −

E‖

E‖f
ν⊥‖f

)
(σ̄22 + σ̄33)P2

]
, (20)

where Rt‖ stands for the tensile longitudinal strength in fiber direction. ν⊥‖ and ν⊥‖f identify the major
Poisson’s ratios of the ply and the fibers, respectively, and E‖f is the elastic modulus of the fibers.

The exposure factor for fiber failure in compression reads:

fE,FF− =

√√√√( 1

Rc‖

[
σ̄11 −

(
ν⊥‖ −

E‖

E‖f
ν⊥‖fmσf

)
P2 (σ̄22 + σ̄33)

])2

+ κ

(
σ̄2
12 + σ̄2

13

R2
⊥‖

)
, (21)

where Rc‖ is the compressive longitudinal strength in fiber direction, R⊥‖ represents the in-plane shear
strength, and mσf stands for the so-called magnification factor, which is assumed to take the values 1.1
for CFRP and 1.3 for GFRP [53]. The incorporation of P2 is to scale the influence of the transverse stress
components on the longitudinal stress (lateral contraction) with respect to the state of matrix damage. It
is assumed that the contraction in the longitudinal direction due to transverse stress will vanish in a case
P2 → 1, i.e. matrix rupture parallel to the fibers. In the case of compressive longitudinal stress, reduced
compressive longitudinal fracture resistance of the plies is assumed in case of increasing shear stress. The
parameter κ allows controlling the influence of shear stresses on the failure of the fibers under compression.
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In the case of lateral constraint κ = 0, because even in case of a crushed matrix the fibers are assumed to
be kept in line by the lateral constraint. In case of absent lateral constrains κ ≥ 0, since a crushed matrix
will promote fiber kinking and will, therefore, reduce the compressive load capacities in fiber direction.

With regard to the inter-fiber failure, Puck theory introduced the concept of the so-called fracture plane
[53, 45], and hence the inter-fiber failure criterion is based on the identification of the fracture angle θfp
and fracture plane with the highest exposure factor FE,IFF . The determination of the fracture plane is
usually performed via the assessment of the most critical stress state in terms of the local components by
calculating the value of FE,IFF for all angles θ within the interval of −90◦ ≤ θ ≤ +90◦, using an increment
of one degree. The transformation from the local ply setting to the action plane system yields:

 σ̄n(θ)
τ̄nt(θ)
τ̄n1(θ)

 =

 cos2 θ sin2 θ 2 cos θ sin θ 0 0
− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ 0 0

0 0 0 sin θ cos θ



σ̄22
σ̄33
σ̄23
σ̄13
σ̄12

 . (22)

The particular expressions for inter-fiber failure under tensile and compressive loading conditions on the
action plane are given by the following, respectively:

fE,IFF+(θ) =


√√√√[( 1

RAt⊥
−
pt⊥ψ
RA⊥ψ

)
σ̄n(θ)

]2
+

(
τ̄nt(θ)

RA⊥⊥

)2

+

(
τ̄n1(θ)

RA‖⊥

)2

+
pt⊥ψ
RA⊥ψ

σ̄n(θ)


1

ηw
for σ̄n(θ) ≥ 0,

(23)

fE,IFF−(θ) =


√√√√( pc⊥ψ

RA⊥ψ
σ̄n(θ)

)2

+

(
τ̄nt(θ)

RA⊥⊥

)2

+

(
τ̄n1(θ)

RA‖⊥

)2

+
pc⊥ψ
RA⊥ψ

σ̄n(θ)


1

ηw
for σ̄n(θ) < 0,

(24)

In the previous expressions, ηw accounts for the influence of the exposure factor in fiber direction on the
inter-fiber failure due to lateral contraction, as long as no fiber failure occurred. Moreover, one can identify
RAt⊥ = Rt⊥, RA⊥‖ = R⊥‖, where Rt⊥ represents the transverse tensile strength. Also, the fracture strength

RA⊥⊥ is given by:

RA⊥⊥ =
Rc⊥

2 (1 + pc⊥⊥)
, (25)

where Rc⊥ represents the transverse compressive strength of the ply. The definitions of the inclination
parameters pt⊥ψ and pc⊥ψ at any angle ψ are given by the following relations, respectively:

pt⊥ψ
RA⊥ψ

=
pt⊥⊥
RA⊥⊥

cos2 ψ +
pt⊥‖

RA⊥‖
sin2 ψ and

pc⊥ψ
RA⊥ψ

=
pc⊥⊥
RA⊥⊥

cos2 ψ +
pc⊥‖
RA⊥‖

sin2 ψ, (26)

with:

RA⊥ψ =

(cosψ

RA⊥⊥

)2

+

(
sinψ

RA⊥‖

)2
 . (27)
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The trigonometric terms defined as:

cos2 ψ =
τ̄2nt

τ̄2nt + τ̄2n1
and sin2 ψ =

τ̄2n1
τ̄2nt + τ̄2n1

. (28)

Finally, recommended values of material-dependent inclination parameters pt⊥⊥, pc⊥⊥, pt⊥‖, and pc⊥‖ are

reported in Table 1 for glass fiber reinforced (GFRP) and carbon fiber reinforced (CFRP) composites.

Material pt⊥⊥ pc⊥⊥ pt⊥‖ pc⊥‖
GFRP 0.30 0.25 0.20 0.25
CFRP 0.35 0.30 0.25 0.30

Table 1: Recommended inclination factors for CFRP and GFRP composites

2.3. Plasticity formulation for matrix-dominated response

The present section introduces an anisotropic plasticity model for the characterization of matrix-dominated
response in long fiber reinforced composites [32, 33, 34]. Via standard plasticity arguments, the total strain
tensor ε can be additively decomposed into elastic εe and plastic εp counterparts:

ε = εe + εp. (29)

The effective potential energy precluding fracture events Ψ̂ can be expressed as:

Ψ̂(εe,A, ŵp) = Ψ̂e(εe,A) + Ψ̂p(ŵp). (30)

with:

Ψ̂e(εe,A) =
1

2
εe : Ce : εe, (31)

and Ce denoting the elastic tensor introduced above.
Correspondingly, the elastic domain E can be expressed as:

E = {(ε̄p) | f(σ̂,A, ε̄p) ≤ 0}, (32)

where ε̄p is the equivalent plastic strain: ε̄p =
√

1
2‖ε

p‖. The particular form of the yield function F(σ̂,A, ε̄p)

is given by:

F(σ̂,A, ε̄p) = ζ1I1 + ζ2I2 + ζ3I3 + ζ4I
2
3 − 1 ≤ 0, (33)

where Ii (i = 1, 3) identify to the family of the stress invariants representing the integrity basis and whose
expressions are omitted here for the sake of brevity, see [32, 33] for further details.

In Eq.(33), the yielding parameters are identified by: ζi(ε̄
p) (i = 1, 4) which represent different loading

states and can be characterized via experimental procedures.
The adoption of a pressure-dependent response is retrieved through the use of a non-associative flow

rule inline with [32, 33, 34]. This plastic response is characterized by an invariant-based pressure-dependent
quadratic transversely isotropic plastic potential function G(σ̂,A), whose definition is expressed as follows:

G(σ̂,A) = ς1I1 + ς2I2 + ς3I
2
3 − 1, (34)

where ςi (i = 1, 3) denotes the plastic potential parameters.
Finally, the maximum energy dissipation principle is exploited for the definition of the evolution equations

for the plastic rate of deformation. Such evolution equations are expressed in terms of the internal variables
of the model, i.e. the plastic strains εp as follows:
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ε̇p = γp
∂G(σ̂,A)

∂σ̂
, (35)

where γ is the so-called plastic multiplier.
With these derivations at hand, the Kuhn-Tucker (KT) loading/unloading conditions can be expressed

as:

γp ≥ 0, F(σ̂,A, ε̄p) ≤ 0 and γpF(σ̂,A, ε̄p) = 0, (36)

whilst the consistency condition reads:

γpḞ(σ̂,A, ε̄p) = 0. (37)

3. Variational formulation and thermodynamics aspects

In the sequel, the variational formulation of the present model is derived, see [54] for more comprehensive
details. The total energy functional of the body, Π(u, di) at an arbitrary instant t, can be formulated as:

Π(u, di) = Πint(u, di) + Πext(u), (38)

where Πint(u, d) and Πext(u) are the internal and external contribution to the energy functional, respectively:

Πint(u, di) =

∫
B
W (ε, εp, ŵp, di,∇di,A)dB = Πint,FF (u, dFF ) + Πint,IFF (u, dIFF ), (39)

Πext(u) = −
∫
B

fvdB −
∫
∂Bt

t̄d∂B, (40)

where fv is the deformation-independent volume-specific loads and:

Πint,FF (u, dFF ) =

∫
B
WFF (ε, dFF ,∇dFF ,A)dB

=

∫
B

(1− dFF )2Ψ̂e
FF (ε,A)dB +

∫
B
Gc,FF

[
1

2lFF
d2FF +

lFF
2
|∇dFF |2

]
dB,

(41)

Πint,IFF (u, dIFF ) =

∫
B
WIFF (ε− εp, dIFF ,∇dIFF ,A)dB

=

∫
B

(1− dIFF )2Ψ̂e
IFF (ε− εp,A)dB +

∫
B

Ψp(ŵp, dIFF )dB

+

∫
B
Gc,IFF

[
1

2lIFF
d2IFF +

lIFF
2
|∇dIFF |2

]
dB.

(42)

Recalling the standard Bubnov-Galerkin method, the three primary fields with:

u ∈ Uu :=
{
u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
,

dFF ∈ UdFF
:=
{
dFF ∈ H1(B)|dFF (x) ∈ [0, 1], ˙dFF ≥ 0, ∀x ∈ B

}
,

and:

dIFF ∈ UdIFF
:=
{
dIFF ∈ H1(B)|dIFF (x) ∈ [0, 1], ˙dIFF ≥ 0, ∀x ∈ B

}
,

are extended by the corresponding test functions:
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δu ∈ Vu =
{
δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

δdFF ∈ VdFF
=
{
δd ∈ H1(B)|δdFF ≥ 0, ∀x ∈ B

}
,

and:

δdIFF ∈ VdIFF
=
{
δd ∈ H1(B)|δdIFF ≥ 0, ∀x ∈ B

}
,

where H1 denotes the Sobolev space. There accordingly, the weak form of the coupled displacement-crack
phase-field problem is constructed as:

δΠ(u, di, δu, δdi) = δΠint(u, di, δu, δdi) + δΠext(u, δu) = 0, (43)

After simple algebraic manipulations, the strong form of the field equations can be obtained:

divσ + fv = 0 in B and σ · n = t̄ on ∂Bt, (44)

2(1− dFF )PFFHFF (x, t) = Gc,FF δdFF
γ(dFF ,∇dFF ) in B and ∇dFF · n = 0 on ∂B, (45)

2(1− dIFF )PIFFHIFF (x, t) = Gc,IFF δdIFF
γ(dIFF ,∇dIFF ) in B and ∇dIFF · n = 0 on ∂B. (46)

In the previous expressions, div[•] is the divergence operator. The Cauchy stress tensor σ can be
expressed in terms of the effective stress tensor σ̄ via: σ = (1 − dFF )2σ̄FF + (1 − dIFF )2σ̄IFF with
σ̄FF = CeFF : ε and σ̄IFF = CeIFF : εe. With respect to the crack driving forces defined in Eqs.(45) and
(46), it is worth mentioning that fiber failure only attains elastic deformation, whereas inter-fiber failure is
characterized by the evolution of plastic and elastic strains. Here, PFF and PIFF are activation flags for
current crack driving forces for fiber and inter-fiber failure, respectively, and are activated if and only if their
respective Puck failure criterion has been met. Accordingly, for fiber failure one can define:

HFF (x, t) = ξeFF

〈 max
τ∈[0,t]

Ψ̂e
FF (x, τ)

Ψ̂e
FF,init

− 1〉+

 , (47)

whereas for inter-fiber failure we adopt the crack driving force proposed by the authors in [54]:

HIFF (x, t) = ξeIFF

〈 max
τ∈[0,t]

Ψ̂e
IFF (x, τ)

Ψ̂e
IFF,init

− 1〉+

+ ξp

[
〈 Ψ̂p

Ψ̂p
init

− 1〉+

]
. (48)

It is worth mentioning that both HFF and HIFF ensure the positive evolution of the respective phase-
field variables, i.e. ˙dFF ≥ 0 and ˙dIFF ≥ 0. Moreover, Ψ̂e

FF is the maximum reached effective elastic energy
for fiber failure and ξeFF is a dimensionless parameter that characterizes the activation of fracture due to

the elastic contribution but also governs the post-peak behaviour for inter-fiber failure. Similarly, Ψ̂e
IFF

is the maximum ever reached effective elastic energy for inter-fiber failure, Ψ̂e
IFF,init is the effective elastic

energy for fracture initiation for inter-fiber failure, and ξeIFF is a dimensionless parameter associated with

the activation of fracture due to the elastic contribution, Ψ̂p stands for the effective plastic energy, Ψ̂p
init

is the effective plastic energy for fracture initiation, and ξp is a parameter that tracking the activation of
plastic-induced fracture.

Owing to the regularity of the energetic functions, first-order optimality condition is sufficient to ensure
stability and energy balance leading to the following Karush-Kuhn-Tucker (KKT) conditions:
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˙dFF ≥ 0 and ˙dIFF ≥ 0, (49)

2(1− dFF )PFFHFF (x, t)− Gc,FF δdFF
γ(dFF ,∇dFF ) ≤ 0, (50)

2(1− dIFF )PIFFHIFF (x, t)− Gc,IFF δdIFF
γ(dIFF ,∇dIFF ) ≤ 0, (51)

[2(1− dFF )PFFHFF (x, t)− Gc,FF δdFF
γ(dFF ,∇dFF )] ˙dFF = 0, (52)

[2(1− dIFF )PIFFHIFF (x, t)− Gc,IFF δdIFF
γ(dIFF ,∇dIFF )] ˙dIFF = 0. (53)

4. Finite element implementation

In this section, the finite element implementation of the proposed multi phase-field fracture model for
long fiber reinforced composites is outlined. The specific operations rely on the framework proposed in [55].
Furthermore, as discussed below, in this investigation, a staggered solution scheme is used for the coupled
system of equations. Alternative solution procedures as those given in [56, 57] can be also applicable with
relatively minor modifications, which is a task beyond the scope of the present paper.

The solution of the proposed elasto-plastic multi phase-field fracture problem is obtained after discretizing
the space using the Finite Element Method (FEM). This means, the continuous domain of the body B is
approximated by a discrete domain Bh that is formed by a finite number of disjoints elements Be. There
accordingly, the infinite-dimensional function spaces U and V are approximated by the corresponding finite-
dimensional subspaces Uh and Vh, imposing the same conditions on the boundaries.

The interpolation of the continuous fields ue, deFF , and deIFF is realized via the use of the element-based
shape functions:

ue =

Nnode∑
i=1

Nu
i u

e
i , deFF =

Nnode∑
i=1

Nd
i d

e
FF,i, deIFF =

Nnode∑
i=1

Nd
i d

e
IFF,i (54)

where Nu
i and Nd

i are the shape functions associated with node i for the displacement field uei and the two
phase-field values deFF,i, d

e
IFF,i, respectively, for NNode in the finite element. The derivatives associated with

the fields u, dFF , and dIFF are expressed as follows, respectively:

εe =

Nnode∑
i=1

Bu
i u

e
i , ∇deFF =

Nnode∑
i=1

Bd
i d
e
FF,i, ∇deIFF =

Nnode∑
i=1

Bd
i d
e
IFF,i,

where Bu
i and Bd

i are the corresponding spatial derivatives of the shape functions.
Similarly, the test functions and their respective derivatives take the form:

δue =

Nnode∑
i=1

Nu
i δu

e
i , δdeFF =

Nnode∑
i=1

Nd
i δd

e
FF,i, δdeIFF =

Nnode∑
i=1

Nd
i δd

e
IFF,i (55)

δεe =

Nnode∑
i=1

Bu
i δu

e
i , ∇δdeFF =

Nnode∑
i=1

Bd
i δd

e
FF,i, ∇δdeIFF =

Nnode∑
i=1

Bd
i δd

e
IFF,i.

The element residual vectors for the displacement and the two phase-fields can be reduced to:

rue =

∫
Be

[
(1− dFF )2(Bu)T σ̄FF + (1− dIFF )2(Bu)T σ̄IFF

]
dB −

∫
Be

(Nu)T fvdB −
∫
∂Be

u

(Nu)Tud∂B, (56)
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rdFF
e =

∫
Be

{[
Gc,FF
lFF

dFF − 2(1− dFF )PFFHFF (x, t)

]
(Nd)T + Gc,FF lFF (Bd)T∇dFF

}
dB, (57)

rdIFF
e =

∫
Be

{[
Gc,IFF
lIFF

dIFF − 2(1− dIFF )PIFFHIFF (x, t)

]
(Nd)T + Gc,IFF lIFF (Bd)T∇dIFF

}
dB. (58)

Notice that the system of equations is non-linear due to the presence of plasticity and fracture. Hence,
after assembling, one must resort to incremental iterative solvers such as Newton-Raphson (NR). It is clear
that the phase-field equations, see Eqs.(57)-(58), are uncoupled from each other, but coupled with the
equilibrium equation, see Eq.(56). However, the global system of equations is solved using an alternating
minimization scheme to decouple the displacement and the phase-field problem (fixed point minimization
algorithm).

The corresponding Newton-Raphson iteration for the global assembled system at step (n + 1) can be
written as:  u

dFF
dIFF


n+1

=

 u
dFF
dIFF


n

−

 Kuu 0 0
0 KdFF dFF 0
0 0 KdIFF dIFF

−1
n+1

 ru

rdFF

rdIFF


n

, (59)

where the corresponding element stiffness matrices read:

Kuu
e =

∂rue
∂ue

=

∫
B

[
(Bu)TCepdBu

]
dB,

KdFF dFF
e =

∂rdFF
e

∂deFF
=

∫
B

{[
Gc,FF
lFF

+ 2PFFHIFF (x, t)

]
Nd(Nd)T + Gc,FF lFF (Bd)TBd

}
dB,

KdIFF dIFF
e =

∂rdIFF
e

∂deIFF
=

∫
B

{[
Gc,IFF
lIFF

+ 2PIFFHIFF (x, t)

]
Nd(Nd)T + Gc,IFF lIFF (Bd)TBd

}
dB,

and Cepd is the material consistent tangent.
The above system of equations has been implemented in the general-purpose FE package ABAQUS to take

advantage of the in-built non-linear solvers and automatic time-stepping methods. Hence, a user-defined
UMAT is written for the solution of equilibrium equations associated with the displacement field whereas UEL
is utilized for solving the phase-field fracture problem. A three-layer structure (for each ply) is adopted
as shown in Figure 2, corresponding to the displacement field and the two phase-fields, where each of the
layers shares the same nodes but has different stiffness and Degrees of Freedom (DOFs). The elements in
the first layer contain three DOFs (two for the 2D case), whereas the second and third layers have one
DOF of phase-field dFF and dIFF , respectively. The UMAT is called at each Gauss point in the first layer
to evaluate the constitutive behavior of the displacement field. To be specific, the anisotropic elasto-plastic
model presented in Section 2 provides the elastic and plastic strains along with their corresponding effective
stresses. Subsequently, at each Gauss point, the stresses are checked against the Puck failure criteria to
predict the failure modes and activation flags. Since the degradation of the energy entirely depends on the
type of failure (i.e fiber failure or inter-fiber failure) different driving forces are computed accordingly. The
UEL is called at each element in the second and third layers. Depending on the computed driving force and
activation flags, the corresponding phase-field values are computed.

The corresponding layers in the system disseminate through the common block. After each increment,
the solution dependent variables are stored as STATEV in UMAT to post-process the results.

5. Representative applications

In this section, different numerical examples are presented showing the predictive capabilities of the
proposed formulation.
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Call UMAT at each
      Gauss point

Obtain the FF phase filed 

crack from the 2nd layer and

 IFF from the 3rd layer

Obtain the effective stresses 

from the plasticity routine 

and evaluate Puck's criterion

Update the stresses 

and tangent

Update the elastic strain 

energy, plastic dissipation 

and the rest of the state 

variables

End UMAT

Call UEL at each 

element

Obtain elastic strain energy 

associated with FF from 

the 1st layer at begining 

of each increment

Obtain elastic strain energy 

associated with IFF and the 

plastic dissipation from 

the 1st layer at begining 

of each increment

Calculate the FF phase filed 

crack

Calculate the IFF phase filed 

crack

Assemble the FF associated 

residual vector and stiffness

Assemble the IFF associated 

residual vector and stiffness

End UEL

1st layer

2nd layer

3rd layer

Three-layer structure

1st layer (displacment): UMAT

2nd layer (FF phase field): UEL

3rd layer (IFF phase field): UEL

Figure 2: Three-layer structure of ABAQUS subroutine.

5.1. Material parameters

Herein, two different materials are considered, CFRP (IM7/8552) and GFRP (E-Glass/MY750), and the
proposed model is calibrated on the experimental data provided in [58, 13, 59] and the references therein
given. The elastic material constants of the CFRP and GFRP materials are listed in Table 2.

Material E11 (GPa) E22 (GPa) G12 (GPa) ν12 ν23
CFRP 171.42 9.08 5.39 0.0169 0.38
GFRP 45.6 16.2 5.83 0.099 0.4

Table 2: CFRP and GFRP: elastic properties.

Following the procedure presented in [60], the yield function parameters ζi (i = 1, 4) that characterize
the onset of yielding are listed in Table 3 for CFRP and GFRP.

Material ζ1 ζ2 ζ3 ζ4
CFRP 0.00262532 0.00179157 −0.0097352 0.00411623
GFRP 0.00338351 0.00230897 −0.0110519 0.00530498

Table 3: CFRP and GFRP: yielding parameters ζi at the onset of yielding.

The plastic potential function parameters ςi (i = 2, 3) are obtained for the CFRP and GFRP for the
plastic Poisson’s ratios given in Table 4.

Material µp12 νp23
CFRP 1.0 0.38
GFRP 1.0 0.4

Table 4: CFRP and GFRP: plastic Poisson’s ratios.

Furthermore, for the Puck failure criteria, the strength properties are listed in Table 5 for the CFRP
and GFRP materials.
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Material Rt‖ (MPa) Rc‖ (MPa) Rt⊥ (MPa) Rc⊥ (MPa) R‖⊥ (MPa)

CFRP 2323.5 1200.1 62.3 199.8 92.3
GFRP 1280 800 40 145 73.3

Table 5: CFRP and GFRP: strength properties.

In addition, the fracture properties and phase-field parameters are reported in Table 6 for CFRP and
GFRP.

Material Gc,FF Gc,IFF lFF lIFF ξe,FF ξe,IFF ξp
(N/mm) (N/mm) (mm) (mm) (-) (-) (-)

CFRP 81.5 0.2774 0.273 0.07 50 (assumed) 0.5 (assumed) 0.5 (assumed)
GFRP 64 1.8 0.19 1.9 50 (assumed) 0.5 (assumed) 0.5 (assumed)

Table 6: CFRP and GFRP: fracture properties and phase-field parameters.

5.2. Validation of implementation

Herein, the validity and potential of the proposed formulation are assessed utilizing a single element FE
model. The CFRP 3D brick element’s side length is set to be 1 mm. Four load cases (corresponding to four
different failure modes) are considered for which the fiber direction is taken as reference: (i) longitudinal
uniaxial tension, (ii) transverse uniaxial tension, (iii) transverse uniaxial compression, and (iv) in-plane
shear.

With respect to the loading, in all the four cases, the element is loaded under displacement control with
constant increment ∆u = 0.0001 mm in order to ensure the stability of the numerical solution.

The numerical results of the first load case (longitudinal uniaxial tension) are depicted in Figure 3. In
this plot, it can be observed that, throughout the first part of the evolution, i.e. before the material strength
is reached, linear elastic behavior is retrieved. Once the fiber failure onset criterion is satisfied, the fiber
failure phase-field crack variable commences evolving.

Figure 3: Numerical simulations and experimental results: FF Mode.

The results from the second loading case (transverse uniaxial tension) are shown in Figure 4.a. Herein,
the pre-failure non-linearities are observed due to the assumption of elasto-plastic behavior in a matrix-
dominated response. Once the material strength is reached and the Puck inter-fiber failure criterion is met,
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the inter-fiber phase-field crack begins to evolve. The orientation of the fracture plane is stored as a state-
dependent variable. Hence, under uniaxial tensile conditions, the angle of the fracture plane is obtained
to be around θfp = 0◦, which is inline with Mode A in Puck’s theory. Similarly, for the third load case
(transverse uniaxial compression), the Puck inter-fiber failure criterion is violated, see Figure 4.b. However,
in this case, the angle of the fracture plane is predicted to be around θfp = 53◦ i.e. Mode C according to
the Puck theory.

Figure 4: Numerical simulations and experimental results: (a) IFF Mode A and (b) IFF Mode C.

In the fourth loading case, the applicability of the proposed model for triggering the failure of the
CFRP material under in-plane shear is examined. Similarly, the elasto-plastic model is used to predict the
experimentally observed prominent pre-failure non-linearities due to plasticity associated with such load
cases, see Figure 5.a. In accordance with Puck theory, inter-fiber failure with a fracture plane angle of
θfp = 0◦ is predicted. The simultaneous evolution of the plastic deformations and the cracking process is
depicted in Figure 5.b.

The ability of the proposed multi phase-field model to predict the different fracture mechanisms observed
in long fiber reinforced composites can clearly be noticed. Furthermore, in all the examined loading cases, a
very satisfactory agreement between the experimental data (up to failure [13]) and the numerical predictions
can be noticed.

5.3. Demonstrative examples

In the preset section, the potential of the proposed formulation to capture the anisotropic fracture
behavior of long fiber composites is demonstrated. For this purpose, a FE model that mimics a plate with
an initial notch made of GFRP composites is constructed. The plate is partitioned into four regions to
allow assigning different fiber orientations to each one. The geometry, partitioning, boundary conditions,
and loading are depicted in Figure 6. Three different fiber orientation arrangements are considered in the
present study, which are listed in Table 7.

FO of Region 1 FO of Region 2 FO of Region 3 FO of Region 4
Case 1 0◦ 0◦ 0◦ 0◦

Case 2 −45◦ −45◦ 0◦ 0◦

Case 3 0◦ 0◦ −45◦ −45◦

Table 7: GFRP plate with an initial notch: fiber orientation (FO) arrangements for the three different cases.
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Figure 5: Numerical simulations and experimental results of the pure shear case: (a) stress-strain response and (b) simultaneous
evolution of the plastic deformations and the inter-fiber cracking process.

The domain is discretized employing 251000 4-node quadrilateral plane stress elements. In all the three
cases, the plate is loaded under displacement control with constant increment ∆u = 0.0001 mm.
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Figure 6: GFRP plate with an initial notch: specimen geometry and boundary conditions.

The numerical predictions obtained from the three different cases are presented in Figures 7-9. Inline
with previous research [40], matrix-dominated cracking evolution is predicted. Figures 7-9 depicts the
different phases of the cracking evolution whereby significant crack kinks between adjacent layers are obtained
stemming from the differences between the corresponding material orientations. Hence, the capability of the
proposed implemented model to predict the anisotropic fracture behavior of long fiber reinforced composites
can be observed.
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a b

Figure 7: Inter-fiber phase-field crack (SDV20) from case 1 of the GFRP plate in: (a) undeformed configuration and (b)
deformed configuration.

a b

Figure 8: Inter-fiber phase-field crack (SDV20) from case 2 of the GFRP plate in: (a) undeformed configuration and (b)
deformed configuration.

5.4. Open-hole tension problem

The proposed multi phase-field formulation is applied to predict the progressive failure of an open-
hole fiber reinforced specimen. The geometric definition of the specimen under consideration is shown in
Figure 10, replicating the 3 mm thick CFRP quasi-isotropic [90◦/0◦/± 45◦]3s laminate investigated in [13]
employing a CDM model. The specimen is discretized employing 475008 8-node 3D brick elements. Two
elements per ply are used. Inline with [13], the following in-situ strengths are incorporated into the model
based on the formulation proposed in [61], see Table 8. The specimen is loaded under tension until failure
via displacement control with constant increment ∆u = 0.0001 mm.

The numerical-experimental correlation corresponding to the load-displacement curve is depicted in
Figure 11. In both cases (numerical and experimental) and before the maximum strength is reached, a
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a b

Figure 9: Inter-fiber phase-field crack (SDV20) from case 3 of the GFRP plate in: (a) undeformed configuration and (b)
deformed configuration.
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Figure 10: open-hole tension problem: specimen geometry and boundary conditions.

Rt⊥ (MPa) R‖⊥ (MPa)
Embedded plies 106.2 101.4

Outer plies 130.2 107.0

Table 8: CFRP: in-situ strengths properties.

bilinear evolution of the curve is observed. Therein, an initial linear evolution stage followed by a quasi-
linear evolution due to the initiation and development of damage and failure. Despite the fact that the
numerically predicted initial linear stage of the curve matches perfectly the experimental results, in the
quasi-linear stage, a stiffer response is predicted. Such discrepancies are attributed to the fact that inter-
laminar failures are not considered appropriately in this simulation and hence the interaction between
intra-laminar and inter-laminar fracture events. However, a satisfactory agreement between the numerical
and the experimental data can be observed.

The inter-fiber and fiber failure patterns at different loading stages (40%, 65%, 85% of the ultimate load,
and rupture) are shown in Figures 12 and 13, respectively. As depicted in Figure 12, an X-shaped inter-
fiber crack pattern is observed in the 90◦ ply. With respect to the 0◦ ply, tensile fiber failure is predicted,
see Figure 13. Inline with [13], a net section failure mode is predicted in which the cracks are initially
concentrated around the hole and subsequently propagate perpendicular to the loading direction.
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Figure 11: Open-hole tension problem: Numerical-experimental correlation corresponding to the load-displacement curve.

a

b

c

d

Figure 12: Open-hole tension problem: IFF phase-field crack (SDV26) evolution in the outer90◦ layer at different loading
stages: (a) 60% of the ultimate load, (b) 80% of the ultimate load, (c) 100% of the ultimate load, and (d) rupture.

6. Conclusions

Relying on the Puck’s failure theory, fracture events in long fiber reinforced composites at ply level
can be mainly classified into fiber and inter-fiber (matrix-dominated) cracking. In order to account for
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Figure 13: Open-hole tension problem: FF phase-field crack (SDV23) evolution in the outer0◦ layer at different loading stages:
(a) 60% of the ultimate load, (b) 80% of the ultimate load, (c) 100% of the ultimate load, and (d) rupture.

such failure mechanisms into the Phase-Field (PF) approach of fracture, a novel multi phase-field model
has been proposed. Particularly, in the present investigation, we have formulated a novel model that is
characterized by: (i) the consideration of a single damage-like phase-field variable for each failure mechanism
with corresponding fracture energy and length scale, and (ii) the integration of an invariant-based plasticity
model for characterizing matrix-failure dominated states.

The proposed formulation has been carefully derived via a multi-field variational formalism with the
specific incorporation of the multiple dissipative mechanisms within the spirit of the PF method. Special
attention has been also devoted to the consistent numerical implementation.

On the applicability side, several illustrative examples have evidenced the reliability of the proposed
formulation. Finally, it is worth noting that this work can be conceived as a first attempt whereby phe-
nomenological failure criteria for long fiber reinforced composites are integrated into PF methods. Fur-
ther developments may concern the corresponding extension to fatigue [62, 63] and the combination with
interface-like cracking models for triggering complex fracture patterns in composites. Dynamic fracture is
of high-interest in a wide variety of engineering applications. In this view, the proposed PF model will be
extended incorporating the rate-dependent material models presented in [64, 65].
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